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Abstract

It is well known that the perceived texture and consistency of liquid foods are strong drivers of

consumer preference, yet quantification of these parameters is made complicated by the absence of a

concise mathematical framework. In this paper, we demonstrate that fractional rheological models,

including the fractional Maxwell model (FMM) and the fractional Jeffreys model (FJM), are potential

candidates to fill this void as a result of their ability to succinctly and accurately predict the linear

and nonlinear viscoelastic response of a range of liquid food solutions. These include a benchmark

fluid, the dysphagia product Resource R⃝ Thicken Up Clear, various plant extracts whose constituent

polysaccharides have been reported to impart significant viscoelasticity, and human whole saliva. These

fractional constitutive models quantitatively describe both the linear viscoelasticity of all of the liquid

foods as well as the shear thinning of their steady shear viscosity (through application of the Cox-Merz

rule), and outperform conventional multi-mode Maxwell models with up to 50 physical elements in

terms of the goodness of fit to experimental data. Further, by accurately capturing the shear viscosity

of the various liquid food solutions at the shear rate of γ̇ = 50 s−1 (widely deemed relevant for oral
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evaluation of liquid texture), we show that two of the constitutive parameters of the fractional Maxwell

model can be used to construct a state diagram that succinctly characterizes both the viscous and elastic

properties of the different fluids. This characterization facilitates the assignment of quantitative values

to largely heuristic food textural terms, which may improve the design of future liquid foods of specific

desired consistencies or properties.

1 Introduction

For many food products, textural attributes are strong drivers of consumer preference [1]. In addition to

the importance for the sensory experience associated with food, texture plays a critical role in determining

what can and cannot be consumed for people suffering from mastication and swallowing disorders, which

are collectively known as dysphagia [2, 3, 4]. As a result of the difficulty that many of these patients

have with swallowing very tough foods such as meat, softer diets are commonly followed [4]. Moreover,

higher viscosity, ‘thicker’, liquids are generally preferred over ‘thinner’ ones due to the increased risk of

aspirating thin liquids [2].

Quantification of food consistency is complicated by at least two important factors, however: i) the in-

evitable variations in perceived texture across individuals, and ii) the absence of a concise mathematical

framework and robust set of measurable parameters for doing so. As an illustrative example of individual

variations, at a lecture delivered in 1970 at the Technical University in Budapest, the English rheologist

G. W. Scott Blair noted that since the French ‘seldom spread jam on their bread’, texture and hole

density play a diminished role compared to taste in their enjoyment of bread, resulting in consistency

being a much larger concern for bread-makers selling their fare to jam-spreading Britons [5].

To assess concepts such as consistency, sensory panel testing requires a number of individuals to consume

a product in a well-controlled manner and rate various ‘sensory attributes’ against a given standard. For

example, one could attempt to quantify the crunchiness of an apple on a numerical scale for which a ripe

peach is a 1 and a really fresh stick of celery is a 10. Each individual will likely show differences in sensory

perception, rendering such attributes difficult (if not impossible) to measure objectively. An additional

consideration relates to common reference points. Unlike for simple colours and sound, for example, such

references are not obvious for oral mechanoreception, where the medium to be sensed needs to be moved

and manipulated inside the oral cavity to reach the locations where it is sensed (tongue, palate, cheeks,
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etc. . . ). This manipulation in the oral cavity is likely to vary from person to person, and is consequently

difficult to standardize.

To address the second issue, the development of a mathematical framework for the quantification of

food consistency to reduce the need for subjective assessments is needed. Food materials are generally

inhomogeneous and exhibit markedly different properties depending on the time- and length-scales of

observation. This structural complexity adds some difficulties for material characterization; in general,

simple physical laws such as Newton’s law of viscosity for liquids and Hooke’s law for elastic solids are

insufficient [6, 7]. A classical approach to develop models for rheologically complex materials has been

to conceptualise networks of springs and dashpots to incorporate elements capturing both an elastic and

a viscous response in the sample stress as it responds to imposed deformations [8]. Classic examples

include the Maxwell model (one spring and one dashpot in series), which has been successfully applied to

polymer fluids for small displacement gradients, as well as the Kelvin-Voigt model (one spring and one

dashpot in parallel), which can compactly describe the creep of solid-like materials [8].

These constitutive formulations have also been employed in the characterization of food rheology, for in-

stance, Schofield and Scott Blair used an intricate network of springs to model the response of gluten and

starch in bread dough [9]. Kokini [10] investigated the applicability of a range of constitutive equations

in rheological studies of pectin solutions and gluten doughs. While he was able to adequately model the

rheological response of the individual foods using specifically tailored models, he concluded that ‘new

models need to be designed which are capable of accounting for the diverse and complex structural prop-

erties of foods’.

To this end, fractional rheological models, originally pioneered by Nutting and Scott Blair [6, 11, 12], have

proven to be a concise and elegant framework for predicting the response of complex fluids such as liquid

foods using a small number of parameters. The introduction of what Scott Blair called quasiproperties

[6], i.e. material parameters that interpolate between a viscosity and an elastic modulus, as well as the

incorporation of fractional time derivatives of the imposed strain and resulting stress, offers a compact

alternative to fitting a spectrum of material constants to the numerous length and time scales typically

found in many complex fluids [7].
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Originally, Scott Blair and coworkers applied these models towards the classification of industrial mate-

rials such as rubber and bitumen [13, 14]. Since then, their utility in the field of food rheology has also

been recognized1. Oroian et al. have modeled the linear viscoelastic response of honey using a fractional

rheological model [15], while Song et al. applied a similar approach to the modeling of xanthan gum

solutions [16]. These latter authors concluded that the weak dependence of the storage and loss moduli

on frequency during small amplitude oscillatory shear flows, as measured by the fractional value of the

time derivative of the material strain, was an indication of a weak gel-like structure in these xanthan gum

solutions. In their studies of product aging, Quinchia et al. have also modeled the linear viscoelastic re-

sponse of a commercial strawberry pudding using power laws, although the direct connection to fractional

calculus was not made at the time by these authors [17]. As a final example, Faber et al. have recently

applied fractional models towards the evaluation of the effect of fat and water content on technological

measures such as the firmness, rubberiness, and springiness of cheese at different temperatures [18, 19].

In this manuscript, we first use fractional constitutive models to predict the linear and nonlinear viscoelas-

tic response of a well defined, benchmark system designed to produce fluids with specific food textures

at appropriate concentrations: the xanthan gum based food-thickening dysphagia product Resource R⃝

Thicken Up Clear (referred to henceforth as TUC) produced by Nestlé. Based on early sensory panel

reports of the perceived texture of various starch-based food solutions [20], the National Dysphagia Diet

Task Force (NDDTF) classifies food solutions with shear viscosities of 1 ≤ η ≤ 50mPa s as having a ‘thin’

consistency, viscosities in the range 51 ≤ η ≤ 350mPa s are described as having a ‘nectar-like’ consistency,

higher viscosities 351 ≤ η ≤ 1750mPa s correspond to a ‘honey-like’ consistency, and η > 1750mPa s is

termed a ‘spoon-thick’ consistency (also referred to as ‘pudding-like’), with all measurements performed

at a shear rate of γ̇ = 50 s−1 and at 25 ◦C [2]. We note that in other countries such as the United Kingdom

and Australia, the viscosities along which these textural divisions are drawn are similar, but the specific

descriptive term associated with each consistency varies [21].

In this paper, we show that the values of the quasiproperties and power law indices of the fractional models

describing different concentrations of TUC can be used to quantify the different levels of viscoelasticity

associated with each of these descriptors. We then apply this framework towards the characterization

of selected plant extracts whose constituent biopolymers are known to impart significant viscoelasticity

and show that the rheological response of these materials can also be well described by fractional models.
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Examples include extracts from okra plants, chia seeds, and flax seeds, as well as gums typically used

in food manufacturing and stabilization, including guar and tara gums [22, 23]. Since we have observed

similar trends in the rheological behaviour of whole human saliva (which plays a significant role in mouth-

feel and food textural perception [24]), we include a similar analysis of saliva as well. We conclude that in

general, the specification of a single shear viscosity at γ̇ = 50 s−1 might be insufficient to uniquely capture

the rheological response associated with conventional food textural terms such as ‘nectar’ and ‘pudding’.

Instead, we show that by quantifying the rheological response of these liquid foodstuffs in terms of two

constitutive parameters obtained from the fractional models, a ‘consistency phase space’ can be developed

which allows for an improved mapping of these descriptive textural terms to quantitative values of the

material viscoelasticity.

2 Background

2.1 Experimental details

Commercial formulations of Thicken Up Clear (TUC) were purchased from the storefront Treasure Zone

on Amazon. Solutions were prepared by combining the appropriate amount of TUC powder with deion-

ized water and then vigorously stirring using a magnetic stir bar at 300 rpm for 3 minutes at room

temperature. The solutions were then mixed gently on a roller mixer for 2 hours to insure complete

hydration. The procedural details for each of the other biopolymer solutions and saliva are provided in

Section 4.

Shear measurements were performed using a TA Instruments (New Castle, DE, USA) stress controlled

AR-G2 rheometer with a 60mm, 2◦ cone-and-plate fixture. All experiments were performed on a Peltier

plate at a constant temperature T = 25 ◦C. We follow the recent recommendation of Wagner et al. [25]

by requiring the accumulation of material strains in excess of γ ≥ 5 in all of the biopolymer solutions

before reporting viscosity data during steady state flow measurements. This recommendation was made

in response to various reports in the literature of a curious region of shear thickening at low shear rates

(γ̇ . 0.1 s−1) in high molecular weight synthetic and biopolymer solutions, leading to an apparent local

maximum in the shear viscosity [25]. Wagner et al. demonstrate that when total strains of γ ≥ 5 are

allowed to accumulate during each steady state flow measurement at each share rate, proper sample

equilibration eliminates this non-monotonic response in the apparent steady shear viscosity [25].
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2.2 Theoretical and modeling details

Biological polysaccharides (e.g. guar and tara gum, okra, etc. . . ) possess a polydisperse distribution of

polymer chain lengths and a variety of binding/crosslinking and/or macromolecular association mech-

anisms, producing a microstructure with a seemingly continuous distribution of chain lengths between

associative junctions. These features contrast with the classical Green–Tobolsky network model in which

a single relaxation mode corresponding to an active elastic segment of a given length (represented me-

chanically by a spring and dashpot in series) describes the linear viscoelastic response of the physical

network. A large ensemble of these Maxwell modes in parallel is required to approximate the experimental

response of multi-scale materials like biopolymers, which has been argued by some, including Tschoegl,

to lead to a ‘loss of physicality’ [26].

Balancing the desire for parsimonious and physically meaningful models with accurate descriptions of

measured material properties persists as a major challenge in food process engineering, particularly for

multi-component and multi-scale materials where an a priori understanding or description of the material

microstructure is absent. Freund and Ewoldt have recently proposed a fitting regimen using Bayesian

statistics to select an optimal rheological model from a pool of pre-defined candidate models [27]. The

selection of a single candidate model is driven by the product of two fitness terms: one that reflects the

ability of the model to faithfully reproduce the data, and a data independent term reflecting a priori

knowledge of the model based on physical intuition [27]. These authors argue that fractional models are

generally able to reproduce data very well (thus resulting in a high score for the reproducibility term), but

claim that physical intuition for fractional models is generally lacking (resulting in a low score for the intu-

ition component) [27]. Despite the subjectiveness of the latter criterion, their Bayesian analysis concludes

that for some complex fluids such as gluten gels, models such as the CGRM (Critical Gelation Rouse

Model) which can be represented in a compact fractional framework are in fact the most appropriate

choice [27]. Further, Bagley has shown in several papers that a broad range of generalized Rouse-Zimm

like models can also be represented in the form of fractional viscoelastic constitutive equations [28, 29, 30].

Jaishankar and McKinley [7] have recently demonstrated that the fractional Maxwell model (FMM, de-

picted schematically in Figure 1a) is very well suited to capture the linear response of aqueous biopolymer

solutions such as xanthan gum and the food biopolymer solutions considered in this manuscript. The

mathematical details of the FMM are discussed at length elsewhere [7, 31]. Briefly, this model consists
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Fractional Jeffreys Model
(FJM)

a b

Figure 1: Schematic representation of the fractional Maxwell model (FMM) as two ‘springpots’ in series
and the definition of a springpot as a mechanical element that interpolates between a spring (α = 0) and
a dashpot (α = 1). (b) Fractional Jeffreys model (FJM) with two springpots in series arranged in parallel
with a purely viscous (dashpot) element to account for solvent viscosity.

of two springpots (or ‘Scott Blair elements’) in series. These fractional mechanical elements interpolate

between a spring and a dashpot. The first we denote with a quasiproperty V with units of [Pa sα] and

fractional derivative order α, and the second with quasiproperty G [Pa sβ] and fractional derivative order

β, where we take 0 ≤ β < α ≤ 1 without loss of generality [7]. We note that while the physical meaning

of a quasiproperty is perhaps initially less straightforward to grasp as compared to an elastic modulus

or a viscosity, the quasiproperty magnitudes can nevertheless be taken as indicators of the ‘stiffness’

of the complex fluid in question and the scale of the stress expected in a system once a characteristic

timescale or deformation rate is specified. Clearly, when α → 1 and β → 0, the classical Maxwell model

is recovered (see Figure 1a). In general, the FMM model gives rise to power law responses in the linear

viscoelastic relaxation modulus G(t), with the exponent α capturing the slope dG(t)/dt at long times (or

low frequencies), and the exponent β capturing the slope at short times (or high frequencies) [7]. The

FMM expression for the complex modulus G∗(ω) as a function of frequency is given in compact form [7]

as

G∗
FMM (ω) =

V(iω)αG(iω)β

G(iω)α + V(iω)β
. (1)

The individual components of storage and loss moduli can consequently be obtained by separating the

complex modulus into its real and imaginary parts, G∗(ω) = G′(ω) + iG′′(ω), yielding
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G′
FMM (ω) = G′

FJM (ω) = Vτ−α (ωτ)α cos(πα/2) + (ωτ)2α−β cos(πβ/2)

(ωτ)2(α−β) + 2(ωτ)α−β cos(π(α− β)/2) + 1
(2)

and

G′′
FMM (ω) = Vτ−α (ωτ)α sin(πα/2) + (ωτ)2α−β sin(πβ/2)

(ωτ)2(α−β) + 2(ωτ)α−β cos(π(α− β)/2) + 1
, (3)

where τ = (V/G)1/(α−β) is a characteristic time scale of the FMM [32]. Provided 1 ≥ α > 1/2 > β ≥ 0, so

that the model response is not purely viscous or purely elastic at any point over the entire frequency range,

it can be shown that the viscoelastic moduli show a crossover from a dominantly viscous to a dominantly

elastic response as the frequency increases [32]. The crossover frequency ωc at which G′(ωc) = G′′(ωc) can

be found by equating Equations (2) and (3), giving an alternate way of determining a single characteristic

time of the FMM. The crossover time scale τc ≡ 1/ωc is given by the expression [32]:

τc =
1

ωc
= τ

[
cos(πβ/2)− sin(πβ/2)

sin(πα/2)− cos(πα/2)

]1/(α−β)

. (4)

Either τ or τc can be used to compactly provide a single scalar metric combining all four constitutive

parameters in the FMM. Because τc can be related to a visually distinct measure (the crossover frequency

at which G′(ωc) = G′′(ωc)), we choose to report values in Table 1 using this parameter.

To demonstrate qualitatively and quantitatively the descriptive ability of the FMM over a generalized

Maxwell model corresponding to an ensemble of M discrete Maxwell modes (or N = 2M parameters), we

compare the cost function of the FMM versus an M-mode Maxwell model describing the linear viscoelastic

properties of the c = 1.2wt% preparation of TUC. We undertake this exercise to determine what number,

if any, of linear Maxwell modes will model the linear viscoelastic data as well as the 4 parameter FMM.

Since the optimal parameter values for each mode of the M-mode Maxwell model are unknown, and the

parameter space is increasingly difficult to explore as the number of parameters is increased, we perform

repeated minimizations of the cost function

ϵ =

ndata∑
i=1

(
(G′

i −G′
i,fit)

G′
i

)2

+

(
(G′′

i −G′′
i,fit)

G′′
i

)2

(5)

using the genetic algorithm command ga in Matlab. For each minimization, we initialize the genetic

algorithm with the larger of 300 or 100×M children (where M is the number of Maxwell modes), which
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then evolve to determine the best fit to the candidate data. We constrain all initial and evolved model

parameters to be positive numbers, following physicality arguments, and do not place constraints upon

the magnitude of these parameters. The genetic algorithm is halted once the 1000th generation is reached

or the average relative change in the best fit determined across successive generations differs by less than

1× 10−6. We show the results of this fitting procedure in Figure 2a.

N-parameter Maxwell model 
Fractional Maxwell model

Number of parameters N (parsimony)

E
rr

or
 in
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it

 (
pe

na
lty

)

[rad/s]

[rad/s]

G
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'' 
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G

',G
'' 

[P
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Figure 2: Comparison of the goodness of fit for M-mode Maxwell models against the FMM, as fitted to
experimental SAOS data for c = 1.2wt% TUC. In (a), the error (penalty function) is plotted as a function
of the number of model parameters N (parsimony) for both models. In (b) and (c), the predictions of
the 4 parameter FMM (red lines) and the experimental data (circles) are plotted, along with the model
predictions for an M = 2 mode (N = 4 parameter) Maxwell model (b) and an M = 25 mode (N = 50
parameter) Maxwell model (c) (blue lines).

The results in Figure 2 demonstrate the superiority of the FMM over all M-mode Maxwell models tested.

Further, for the same number of parameters, the FMM performs almost two orders of magnitude better

(as measured by the error in fit) than the M = 2-mode (N = 4-parameter) generalized Maxwell model.

These data also indicate that the cost function of the M-mode Maxwell model converges nearly quadrat-

ically to a limiting plateau error value (at around 20 parameters or 10 modes). Note that even with

50 parameters the Maxwell model exhibits a greater error than the FMM. We communicate the effect

of these errors in Figures 2b and 2c, showing the performance of the FMM and 2-mode Maxwell model

(both having four parameters) in Figure 2b, and the FMM with a 25-mode Maxwell model (both having
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similar values of the penalty function) in Figure 2c, along with the data to which each model is fitted.

For some of the food solutions we consider in this study, large degrees of shear thinning result in the

solvent viscosity playing an important role in the non-linear steady state flow response, particularly at

high shear rates. In order to account for this, we introduce a purely viscous element (a dashpot) in

parallel with the FMM mechanical elements, resulting in the fractional Jeffreys model (FJM), shown

schematically in Figure 1b. The effect of this modification is to guarantee a plateau in the viscosity at

high shear rates, ηs, and also results in a linear increase in the loss modulus (G′′(ω)) measured in Small

Amplitude Oscillatory Shear (SAOS) flow at high frequencies. Analysis of the frequency response using

Fourier transforms results in the addition of a purely imaginary term in the complex modulus that is

linearly proportional to the oscillation frequency:

G∗
FJM (ω) =

V(iω)αG(iω)β

G(iω)α + V(iω)β
+ iηsω. (6)

In order to select the best model (FMM or FJM) for each food solution, both models were fit to the

SAOS data using the Matlab function fminsearch with the criterion of minimizing the error defined in

Equation (5). Subsequently, the model with the lower fitting error ϵN was selected as the optimal choice

for the given food solution, where

ϵN =
1

2ndata

ndata∑
i=1

(
|G′

i −G′
i,fit|

G′
i

)
+

(
|G′′

i −G′′
i,fit|

G′′
i

)
× 100% (7)

is a modified version of Equation (5) which estimates the average percent error of the model at each data

point. The two exceptions were the okra and chia solutions, for which the low values of the viscoelastic

moduli limited the range of frequencies over which G′(ω), G′′(ω) could be measured. In these cases, the

FJM was used (despite it showing a slightly higher ϵN ) in order to more faithfully reproduce the shear

viscosity data. Further discussion of this is provided in Section 4.2.

In the next section, we use these fractional constitutive models to fit both the linear and non-linear

experimental rheological data for the TUC solutions at various concentrations, and demonstrate how the

values of the quasiproperties resulting from the model fits can serve as indicators of food texture.
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3 Fractional rheological modeling of aqueous solutions of Resource R⃝

Thicken Up Clear

3.1 Linear rheology of TUC

We begin by measuring the rheological response of solutions of various concentrations of TUC under the

linear deformation of Small Amplitude Oscillatory Shear (SAOS). This particular fluid was selected as a

‘benchmark’ as a result of its shelf-stability, well controlled and constant composition, and reproducible

rheological properties. Strain sweep experiments (not shown in this paper) indicate that the linear vis-

coelastic regime for TUC solutions extends to γ . 5%, with some small amount of variation between the

various concentrations. As such, each SAOS measurement was performed at a strain amplitude within

this calculated range, varying between 1% . γ . 3% for all TUC solutions tested. The results of these

measurements are shown in Figures 3a and 3b.

Using the principle of Time-Concentration-Superposition [33, 34, 35], the data from Figures 3a and 3b

are collapsed against the c = 1.2wt% preparation of TUC. For each of the other TUC concentrations,

an appropriate shift factor ac is determined which reduces the frequency of the SAOS data ωr = acω, as

well as a vertical shift factor bc which is taken to be the same for both G′ and G′′ [35]. The rheological

master curves resulting from this superposition are shown in Figure 3c, where it is clear that the linear

viscoelastic response of all concentrations of TUC can be neatly collapsed to single curves for G′(ωr) and

G′′(ωr) respectively. In Figure 3d, we plot these shift factors as a function of TUC concentration. As

expected, the vertical shift factor bc is a nearly monotonically decreasing function of concentration. The

frequency shift factor ac initially exhibits a strong dependence on the solution concentration, but appears

to saturate (or, possibly, to shift outside of the experimental range) at high concentrations (c & 2wt%)

as the complex modulus data becomes increasingly power law-like. This change in the shape of the G′′

curves between the terminal and high frequency regions has been reported previously in the literature for

polystyrene solutions above the entanglement concentration [36], suggesting that ce ≈ 2wt% for the TUC

solutions. This value is in reasonable agreement with the reported value of ce ≈ 0.5wt% for pure xanthan

gum solutions measured by Choppe et al. [34], given that xanthan gum constitutes only approximately

1/3 of the contents by weight of TUC [37].

In Table 1, the best fitting fractional constitutive model (fractional Maxwell, FMM, or fractional Jeffreys,
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4.5wt%
3.4wt%
2.3wt%
1.5wt%
1.2wt%
0.75wt%
0.50wt%
0.25wt%
0.10wt%

a

4.5wt%
3.4wt%
2.3wt%
1.5wt%
1.2wt%
0.75wt%
0.50wt%
0.25wt%
0.10wt%

b

c

4.5wt%
3.4wt%
2.3wt%
1.5wt%
1.2wt%
0.75wt%
0.50wt%
0.25wt%
0.10wt%

G': filled
G'': unfilled

TUC Concentration [wt%]

d

Figure 3: (a) Storage modulus G′(ω) and (b) loss modulus G′′(ω) for the TUC solutions. The symbols
denote the experimentally obtained data and the solid and dashed lines denote the model fits, with
individual parameter values specified for each concentration in Table 1. The data from Figures (a) and
(b) are shifted to form a master curve using the c = 1.2wt% preparation of TUC as a reference. The
frequency is reduced using a shift factor ac and the moduli G′(ω) and G′′(ω) are reduced using a common
shift factor bc. The master curves are shown in (c), and the shift factors are plotted as a function of TUC
concentration in (d).

FJM), the values of all model parameters, and the value of the fitting error ϵN are presented for each

TUC concentration tested.
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Concentration [wt%] V [Pa sα] α G [Pa sβ] β ηs [Pa s] τc [s] f50 ϵN [%] Model

0.10 0.12 0.92 0.12 0.39 - 9.1×10−2 1.0 2.6 FMM

0.25 0.38 0.93 0.23 0.42 - 1.4×10−1 0.95 3.0 FMM

0.50 0.82 0.76 0.78 0.31 - 5.7×10−1 0.88 2.0 FMM

0.75 2.4 0.77 1.3 0.30 - 1.9×100 0.78 7.5 FMM

1.2 8.2 0.69 2.8 0.25 - 2.1×101 0.77 0.83 FMM

1.5 48 0.73 5.4 0.23 - 1.1×102 0.48 3.4 FMM

2.3 95 0.57 10 0.19 3.6×10−2 1.5×104∗ 0.41 1.0 FJM

3.4 260 0.60 15 0.18 6.4×10−2 1.2×104∗ 0.42 1.1 FJM

4.5 1100 0.62 75 0.17 2.8×10−1 3.3×103∗ 0.41 0.43 FJM

Table 1: FMM and FJM model parameters for the TUC solutions of various concentration. For each
solution, the best fitting model (FMM or FJM) is indicated, along with the quasiproperties V and G,
fractional exponents α and β, and solvent viscosity ηs (when appropriate) obtained from the model fits
to the experimental data (Equations (1) and (6)). In addition, the characteristic relaxation times τc
(Equation (4)) and fitting errors (ϵN ) for the selected models are shown. Finally, the difference between
the Cox-Merz prediction and the measured shear viscosity at γ̇ = 50 s−1 is denoted by the parameter f50
(see [7] and Section 3.2).

It is worth noting, however, that at high TUC concentrations (c & 2wt%), the crossover frequency

ωc = 1/τc is below the minimum frequency tested (ωmin = 10−2 rad/s). As a result, for these concentra-

tions, τc is obtained by extrapolation and is thus less accurately determined. These points are indicated

by an asterisk in Table 1.

From Table 1, we observe that for concentrations c . 2wt%, the TUC solutions are better modeled by

the FMM than the FJM model. As the moduli of the solutions increase, higher test frequencies can

be attained experimentally before the raw phase angle in the linear viscoelastic measurement exceeds

175◦. At these high frequencies, the role of the solvent viscosity begins to play an increasingly important

role in the SAOS response, and the FJM model (see Figure 2b), with its additional term accounting for

the solvent viscosity, is better able to describe the material response. We anticipate that if the SAOS

response for the more dilute solutions at similarly high frequencies were able to be obtained, this same

contribution from the solvent viscosity would be observed. From the small values of the fitting error

(ϵN . 10%) in Table 1 and the fits shown in Figure 3 (solid (G′) and dashed (G′′) lines, respectively), it
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is evident that both models can provide excellent descriptions of the linear viscoelasticity of these xanthan

gum-based solutions over a wide range of frequencies (10−2 ≤ ω ≤ 102 rad/s) with a small number of

model parameters.

3.2 Non-linear rheology of TUC

Following the assessment of the linear rheological response of the TUC solutions using SAOS, steady

shear flow measurements were performed to determine the nonlinear viscometric response. In Figure 4,

the results of these measurements are shown using filled symbols.

4.5wt%
3.4wt%
2.3wt%
1.5wt%
1.2wt%
0.75wt%
0.50wt%
0.25wt%
0.10wt%

Filled: Steady State Flow Data
Unfilled: Cox-Merz Result

Model Fit (Table 1)

Figure 4: Steady state flow data for the TUC solutions. The filled symbols denote the data obtained
experimentally during a steady state flow experiment, the unfilled symbols denote the calculated Cox-
Merz result using the SAOS data presented in Figure 3, while the lines denote the fractional model
predictions, specified for each concentration in Table 1.

To describe this nonlinear shear rheology data using our fractional models, we use the empiral Cox-Merz

rule which relates the complex viscosity to the shear viscosity through the expression [8, 38]

η(γ̇)|γ̇=ω ≈ |η∗(ω)|. (8)

The hollow symbols plotted in Figure 4 show the magnitude of the complex viscosity [8], calculated from

the SAOS data for each fluid using the definition
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|η∗(ω)| =
√

G′(ω)2 +G′′(ω)2

ω
. (9)

Finally, the dashed lines denote the predicted shear viscosity obtained by applying the Cox Merz rule to

the complex viscosity calculated from the FMM and FJM expressions for G′ and G′′ given in Equations

(2), (3), and (6). This results in the following expressions:

ηFMM(γ̇) =
VGγ̇α+β−1√

(Vγ̇α)2 + (Gγ̇β)2 + 2Vγ̇α+βG cos(π(α− β)/2)
(10)

and

ηFJM(γ̇) =
VGγ̇α+β−1√

(Vγ̇α)2 + (Gγ̇β)2 + 2Vγ̇α+βG cos(π(α− β)/2)
+ ηs. (11)

From Figure 4, it is clear that for the same range of less concentrated TUC solutions for which the FMM

model was better suited than the FJM model (c . 2wt%), the magnitude of the complex viscosity is an

excellent approximation of the steady state flow viscosity. Furthermore, for α ̸= 1, there is no predicted

low shear rate plateau viscosity: asymptotic analysis of Equations (10) and (11) shows that the viscosity

instead diverges as η(γ̇) ∼ γ̇α−1 for γ̇τc ≪ 1 although the shear stress still vanishes (as expected at

low shear rates) as τyx = η(γ̇)γ̇ ∼ γ̇α. This divergence in shear viscosity with bounded shear stress

predicted by the fractional constitutive models is in agreement with what is observed experimentally

in many complex biopolymer fluids including saliva and food solutions [7, 39, 40]. Consistent with

previous findings for biopolymer solutions, however, as the TUC fluids enter the fully entangled regime

(c > ce), the steady shear viscosity predicted using the Cox-Merz rule (Equations (10) and (11)) begins

to systematically overestimate the corresponding experimental measurement [7, 38, 40]. Jaishankar and

McKinley show that this is because of chain alignment and disentanglement in strong shearing flows

which gives rise to a strain-dependent damping function [7]. To quantify this discrepancy, we follow

[7] and calculate an offset factor fγ̇ = η(γ̇)/|η∗(ω)| which indicates the magnitude of the discrepancy.

We evaluate this factor at the shear rate widely deemed relevant for oral evaluation of liquid texture,

γ̇ = 50 s−1 [20],

f50 ≡
η(γ̇)

|η∗(ω)|

∣∣∣∣
ω=γ̇=50s−1

(12)

which we also include in Table 1. For the lowest TUC concentration (c = 0.1wt%), f50 = 1.01, which is
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reflected in the excellent agreement between the complex and steady state shear viscosities observed in

Figure 4. As the TUC concentration is increased, f50 begins to decrease, and reaches a plateau value of

f50 ≈ 0.41 for the most concentrated solutions, comparable to the value computed analytically by Jais-

hankar and McKinley [7] using a fractional KBKZ model which incorporates a strain dependent damping

function. Nevertheless, we see that from a single rheological test protocol (a frequency sweep in SAOS),

the FMM and FJM models provide very good estimates of the steady shear viscosity of TUC solutions

over a wide range of shear rates from application of the Cox-Merz rule, with a single correction factor

arising from strain-dependent damping in the relaxation modulus at high sample concentrations.

As a final result in this section, we collapse the steady shear viscosity data presented in Figure 4 onto

a single master curve, using the concentration-dependent shift factors shown in Figure 3d that were

determined from the linear viscoelastic measurements. From Equation (9), it follows that the shifted or

reduced value of the steady shear viscosity ηr predicted by the Cox-Merz rule is given by

ηr(acγ̇) =

√
(bcG′(acγ̇))2 + (bcG′′(acγ̇))2

acω
=

bc
ac

|η∗(acγ̇)|. (13)

In Figure (5), we plot the shifted experimental steady state flow data (solid symbols), the shifted values

of the dynamic viscosity predicted from the Cox-Merz rule (Equation (9), unfilled symbols), and the

shifted predictions of the FMM/FJM models (dashed lines) evaluated using Equation (13) and the model

parameters in Table 1. For the sake of clarity and preserving readability, we only show alternate values

of the nine TUC concentrations for which steady shear viscosity was collected.
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4.5wt%

2.3wt%

1.2wt%

0.50wt%

0.10wt%

Filled: Steady State Flow Data
Unfilled: Cox-Merz Result

Model Fit (Table 1)

Figure 5: Master curve for steady state flow data of TUC solutions. Only alternate concentrations
are shown for clarity. The shift factors ac and bc are those determined previously for the G′, G′′ master
curve. The filled symbols denote the data obtained experimentally during a steady state flow experiment,
the unfilled symbols denote the calculated Cox-Merz result using the linear viscoelastic data presented
in Figure 3, and the lines denote the fractional model predictions using Equation (13) and the model
parameters specified for each concentration in Table 1.

As with the linear viscoelastic measurements, the steady shear viscosity data for the TUC solutions

collapses quite nicely onto a single master curve. It can be seen, however, that above acγ̇ ≈ 1 s−1 the

curves appear to separate onto two distinct branches depending on whether their TUC concentration

is greater than or less than the estimated entanglement concentration of ce ≈ 2wt%. In this case, for

the entangled TUC solutions, the steady shear viscosities calculated using the Cox-Merz rule once again

slightly over-predict the steady shear flow measurements [7, 40], and in fact collapse well onto the master

curve defined by the lower viscosity (unentangled) solutions.

Having demonstrated how fractional constitutive models can accurately and parsimoniously describe both

linear viscoelastic and steady shear rheology data, in the next section, we apply this same framework

towards modeling the rheological response of other selected plant extracts whose constituent carbohydrate

biopolymers have been previously reported to impart significant viscoelasticity, and to human whole

saliva, which is of keen interest in the study of mouth-feel and food textural perception [24].
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4 Rheology of food biopolymer solutions and saliva

In this section we use the fractional constitutive models discussed previously to model the rheologi-

cal response of food biopolymer solutions including two galactomannan heteropolysaccharide solutions:

0.4wt% tara gum procured from TIC Gums (White Marsh, MD) (3 : 1 ratio of mannose : galactose

along its backbone [41]) and 0.5wt% guar gum procured from Sigma Aldrich (St Louis, MO) (2 : 1 ratio

of mannose : galactose along its backbone), as well as extracts from chia seeds, flax seeds, okra, and

human whole saliva.

The principal polysaccharide of flax seed (75% by mass), has a molecular weight of MW ≈ 1.2MDa,

and is a neutral arabinoxylan (0.24 : 1 ratio of arabinose : xylose), with sidechains consisting of varying

galactose and fucose residues [42]. The principal polysaccharide of chia seed has a molecular weight of

MW ≈ 0.8− 2MDa and consists of a mixture of xylose and mannose (17%), glucose (2%), galacturonic

acid (5%), and arabinose (2%) [39]. Flax and chia seed extracts were prepared by combining seeds

procured from a local grocery store with deionized water at a mass ratio of 1 : 25 for the flax seeds,

following Ziolkovska [42], and 1 : 40 for the chia seeds, following Capitani et al. [39]. Both mixtures

were then stirred at 300 rpm on a hot plate at 80 ◦C for 30 minutes. There was little difficulty in sep-

arating the flax seeds from the supernatant, which was generally clear of particulates. In contrast, the

chia seed solution required straining through a conventional metal kitchen strainer, with scraping used

in order to encourage passage of liquids through the mesh, and then filtering using 100 µm filter paper

in order to remove large particulate matter. Thermogravimetric analysis using a Perkin Elmer Pyris 1

Thermogravimetric Analyzer (TGA) revealed that the weight percent of solid particulates in the flax seed

solutions was approximately 0.4wt%, but it was not possible to obtain a similar estimate for the chia seed

solutions due to the absence of an obvious plateau in the sample weight following evaporation of the water.

The principal polysaccharide found in okra plants has a molecular weight of MW ≈ 1.4MDa, and consists

primarily of galactose, rhamnose, and galacturonic acid [43]. Solutions were prepared using fresh okra

plants obtained from a local grocery store. Pods were sliced in half lengthwise following removal of the

ends, and the seeds and pith were removed as well. The halves were then cut into approximately 2 cm

pieces along their cross-section, and combined with deionized water at a mass ratio of 1 : 10 (plant :

water). As with the chia and flax seeds, the cut okra mixtures were stirred at 300 rpm on an 80 ◦C hot
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plate for 30 minutes. The supernatant was then separated from the plants and centrifuged at 2000 rpm

for 4 minutes to remove large particulate matter. A similar TGA analysis approximated the solid mass

content of the okra extract at 0.1wt%.

Saliva samples used in this work were obtained without stimulation using the procedure outlined in

Frenkel and Ribbeck [44]. Donors were instructed to refrain from eating or drinking for one hour prior

to collection. Vacuum was drawn in a closed collection vial using an Amersham VacuGene Pump, into

which a tube terminating in the donor’s mouth was inserted, and saliva was allowed to accumulate.

The collected saliva received no further treatment and was stored at room temperature. Rheological

experiments were performed within one hour of collection to ameliorate effects associated with enzymatic

degradation of the salivary mucins [45].

4.1 Linear rheology of food biopolymer solutions and saliva

We begin by measuring the linear viscoelastic response of the food biopolymer solutions and saliva and

show these results in Figure 6.

Whole Saliva
Flax seed (0.4wt%)
Guar gum (0.5wt%)
Chia seed
Tara gum (0.4wt%)
Okra (0.1wt%)

a

Whole Saliva
Flax seed (0.4wt%)

Chia seed
Tara gum (0.4wt%)
Okra (0.1wt%)

Guar gum (0.5wt%)

b

Figure 6: (a) Storage modulus G′(ω) and (b) loss modulus G′′(ω) for the food biopolymer solutions
and saliva. The symbols denote the experimentally obtained data, while the lines denote the model fits,
specified for each sample in Table 2. As for the TUC solutions, all SAOS measurements were performed
at a strain amplitude within the linear viscoelastic regime of each biopolymer solution as determined by
separate strain sweep experiments (results not shown in this paper).

Using the same approach as for the TUC solutions, the FMM or FJM was selected for each biopolymer
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solution, and we indicate the best fitting model and corresponding values of the model parameters plus

the corresponding fitting errors in Table 2.

Solution V [Pa sα] α G [Pa sβ] β ηs [Pa s] τc [s] ϵN [%] Model

Chia seed 0.00 - 6.1×10−2 0.50 5.0×10−3 - 8.9 FJM

Flax seed (0.4wt%) 0.00 - 0.56 0.14 9.0×10−3 - 13 FJM

Okra (0.1wt%) 0.00 - 6.4×10−3 0.62 1.5×10−3 - 11 FJM

Guar gum (0.5wt%) 0.74 0.83 7.9 8.2×10−2 - 5.6×10−2 7.4 FMM

Tara gum (0.4wt%) 0.18 0.92 8.7 0.00 - 1.7×10−2 12 FMM

Whole Saliva 37 1.0 1.4 0.13 - 3.2×101 4.1 FMM

Table 2: FMM and FJM model parameters for the food solutions and saliva. The material parameters
are defined in Equations (2), (3), and (6).

The chia, flax, and okra solutions are relatively weak gels with low viscosities, and are better fit by the

FJM with a single dashpot (V → 0). In constrast, the 0.5wt% guar gum and 0.4wt% tara gum as well

as whole human saliva are more broadly viscoelastic over a wide range of frequencies and are thus better

fit by the FMM. Additional discussion of the model selection for these materials is provided in Section 5.

As with the TUC solutions, both models are able to reproduce the experimental data for the biopolymer

solutions and saliva well, despite the wide range of differing behaviours and magnitudes of the linear

viscoelastic properties observed in the two classes of fluids. However, as a result of inertial limitations

to the range over which linear viscoelastic measurements could be performed for the low viscosity food

solutions, the high shear rate plateau viscosities measured during steady simple shearing flow for the

food solutions that are better fit by the FJM were often not observable in the SAOS response. As such,

improving the model fit to the shear viscosity data comes at the cost of poorer agreement with the

SAOS data, which explains in part the somewhat higher fitting error (ϵN . 15%) for these solutions.

In contrast, for the more viscoelastic TUC solutions, the effects of the background viscosity could be

accurately measured for the most concentrated solutions, and the viscoelastic moduli could be accurately

measured up to high frequencies in the absence of inertial effects. Consequently, this tradeoff did not

exist and the fitting error remained small.
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4.2 Non-linear rheology of food biopolymer solutions and saliva

In Figure 7, the steady shear viscosity as a function of shear rate is plotted for the food biopolymer

solutions and saliva, with the data divided into two separate plots for clarity. The Cox-Merz rule does

a good job of predicting the shear viscosity for the food biopolymer solutions, but it is interesting to

note that a significant discrepancy is encountered for whole saliva, as was observed in much more highly

concentrated polymer solutions, such as the TUC for c = 3.4wt% or c = 4.5wt% (c.f. Figure 4).

This suggests that despite its low values of steady shear viscosity, during the linear deformations of

small amplitude oscillatory shear flow, the physical crosslinking present in saliva from electrostatic and

hydrophobic interactions [46] plays an important role in the weak gel-like response measured in oscillatory

shear, but these effects are largely eliminated during the large strain deformations associated with steady

shear flows [7].

Filled: Steady State Flow Data
Unfilled: Cox-Merz Result

Model Fit (Table 2)

Whole Saliva
Guar gum (0.5wt%)

Tara gum (0.4wt%)

a

Filled: Steady State Flow Data
Unfilled: Cox-Merz Result

Model Fit (Table 2)

Flax seed (0.4wt%)
Chia seed
Okra (0.1wt%)

b

Figure 7: Steady state flow data for the food biopolymer solutions and saliva, divided into two separate
plots (a) and (b) for clarity. The filled symbols denote experimental data obtained from steady state flow,
and the hollow symbols denote the calculated values using the SAOS data from Figure 6 in conjunction
with the Cox-Merz rule. The lines denote the model fits evaluated using Equations (10) and (11), specified
for each concentration in Table 2.

5 Rheological interpretation of food consistency and texture using

fractional models

The selection of γ̇ = 50 s−1 as the shear rate at which viscosity measurements are performed for food

texture characterization (including for the ‘nectar’, ‘honey’, and ‘pudding’ standards set by the NDDTF
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for starch-based solutions discussed earlier [2]) is generally attributed to the approach devised by F.W.

Wood for analyzing his early food sensory panel data [20]. Although Wood acknowledges that ‘simple

viscosity measurements cannot be used directly to assess the consistency of liquid foods’ [20], partially

as a result of the different ways that food is handled in the mouth, he nevertheless felt that the range of

shearing stresses accessible in the mouth during food consumption must be universal enough for simple

characterizations to be meaningful [20]. Consequently, he asked panelists to taste various soups and

sauces, and to indicate the Newtonian fluid to which each was closest in consistency [20]. By measuring

the steady state flow properties of each of these non-Newtonian soups and sauces, he determined that

γ̇ = 50 s−1 was the shear rate at which the viscosity of the liquid foods most often matched that of

the Newtonian standard to which they were compared, and thus concluded that this must be a relevant

characteristic shear rate for food processing in the mouth [20].

In addition to selecting a Newtonian fluid of comparable consistency, many of the panelists in Wood’s

study reported that they forced the cream or soup to flow by squeezing it between the tongue and the

roof of the mouth by raising the tongue suddenly [20]. Interestingly, this selection of a high frequency

deformation to comparably assess the various liquid foods is consistent with what is known about the flow

behaviour of polymer solutions at different concentrations. As evidenced in Figure 4, as the concentration

of a polymer solution is increased, the onset of shear thinning begins at successively lower shear rates

[47]. This can be understood by considering the Weissenberg number Wi = γ̇τc for each of these steady

state flow curves; a dimensionless parameter quantifying flow nonlinearity that combines the rate of an

imposed deformation (γ̇) and the characteristic relaxation time of the fluid (τc). For Wi ≪ 1, or relatively

weak flows, molecular deformations are able to relax sufficiently quickly to avoid being deformed by the

flow, and as a result the fluid behaves essentially in a Newtonian fashion corresponding to the zero-shear-

rate plateau. Conversely, once the timescale of rearrangement or relaxation of the constituent polymers

exceeds that associated with flow deformation, i.e. Wi & 1, the chains are not able to relax sufficiently

quickly and thus are forced to align and deform in the flow direction, resulting in the progressive decrease

in the fluid viscosity, or shear thinning.

Adam and Delsanti have shown that as the concentration of a polymer solution increases and the

chains begin to interact and entangle, the longest viscoelastic relaxation timescale of the fluid scales

as τc ∼ (c/c∗)3(1−ν)/(3ν−1), where c∗ is the critical overlap concentration and ν is the excluded volume
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exponent [48]. Therefore, for more concentrated polymer solutions with higher crossover times τc, shear

thinning occurs at smaller values of γ̇, and from Table 1, it is clear that satisfying γ̇ & 11 s−1 results in

Wi & 1 for all of the TUC solutions. Consequently, at the shear rate of γ̇ = 50 s−1 proposed by Wood,

it is reasonable to expect that all of the TUC solutions are undergoing nonlinear deformation leading

to shear thinning in the fluid viscosity, and thus it seems reasonable to compare fluid properties under

these flow conditions. If a much smaller shear rate, say γ̇ = 1 s−1, were selected, then the measured

physical properties of the less concentrated solutions which have not yet begun to shear thin may not be

directly comparable with those of the more concentrated ones since they are not experiencing comparable

perturbations of the underlying fluid microstructure.

We now proceed to show how fractional constitutive models are able to compactly capture a number of

these important ideas. First, we note that from Figures 3a, 3b, and 6, it is clear that while multi-mode

models such as the FMM or FJM are required to describe the flow behaviour of these food biopolymer

solutions over the entire deformation range probed, at frequencies in the vicinity of ω ≃ 50 rad/s (or

γ̇ ≃ 50 s−1 from application of the Cox-Merz rule), the storage and loss moduli of all of these solutions can

also be well approximated locally by even simpler power law viscoelastic relationships. This observation

was formalized by Jaishankar and McKinley [7], who demonstrated using Taylor series expansions that

in the absence of non-linear damping, the rate-dependent shear viscosity predicted by the FMM and the

Cox-Merz rule takes on the limiting expressions of

lim
γ̇≪1/τc

η(γ̇) ≈ Vγ̇α−1 (14)

and

lim
γ̇≫1/τc

η(γ̇) ≈ Gγ̇β−1. (15)

Such relationships arise naturally from the response of a single springpot or Scott Blair element, for which

the complex moduli can be expressed compactly (following [49]) as

G∗ = iωη∗ = Kωn(cos(πn/2) + i sin(πn/2)). (16)

This result and others for the single Scott Blair element can be obtained from the expressions given
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above for the FMM model by setting V → 0 (plus ηs = 0 for the FJM). Additionally, for notational

uniformity, we have replaced G with K and β with n to be consistent with the conventional nomenclature

used to describe inelastic power law fluids [8]. The quasiproperty K is then typically referred to as the

‘consistency’ of the fluid (with units of Pa sn).

From Equation (16), the steady shear viscosity of a viscoelastic material described by a single springpot

can be calculated using the Cox-Merz rule and the magnitude of the complex viscosity as

η(γ̇)|γ̇=ω ≃ |η∗(ω)| = Kωn−1. (17)

Equation (17) implies that iso-viscosity curves for a specified viscosity value (denoted generically by the

value η̂) can be plotted for fixed values of γ̇ as a function of K and β. Selecting the shear rate of interest

γ̇ = 50s−1 and a viscosity value η̂, Equation (17) reduces to the constraint

η̂ = η(γ̇ = 50s−1) = K(50)n−1. (18)

Solving for n as a function of K yields

n = [1 + log η̂/ log 50]− logK/ log 50. (19)

From this equation, it is clear that the slope of these iso-viscosity contours in {n,K} space is set by the

desired shear rate of interest, i.e.

dn

dlogK

∣∣∣∣
γ̇=50s−1

= − 1

log 50

and its locus in this space is set by the relative magnitude of η̂.

Using the limiting expressions for η(γ̇) in Equations (14) and (15) and the relative magnitude of γ̇ = 50 s−1

and the crossover frequency ωc = 1/τc, we select from Tables 1 and 2 the quasiproperty and fractional

exponent which characterize this high frequency, predominantly elastic response for the TUC solutions,

food extracts, and saliva, and plot these values in Figure 8. We note that for materials described by a

single springpot (okra, flax, and chia) for which a crossover frequency does not exist, the same quasiprop-
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erty and fractional exponent describe the material response for all frequencies of interest and hence first

comparing γ̇ = 50 s−1 and ωc is not necessary. For all other materials except tara gum, ωc < γ̇ = 50 s−1

and hence we take K = G and n = β, while for tara gum we select K = V and n = α. In this vis-

coelastic power law space which is parametrized by the values of {n,K}, the lower ordinate axis (n = 0)

corresponds to the limit of a Hookean solid, and then the abscissa corresponds to the magnitude of the

elastic shear modulus K = G. Similarly, the upper ordinate axis n = 1 corresponds to the limit of a

Newtonian liquid, and then the abscissa corresponds to the viscosity K = η. The interior of this pa-

rameter space describes in a compact fashion the viscoelastic response of power law fluids. We also plot

iso-viscosity contours in Figure 8 (the border lines of the shaded regions) corresponding to the textures

named ‘nectar’, ‘honey’, and ‘pudding’ for weakly shear thinning starch solutions specified by the NDDTF.

Pa s

Pa s

Pa s

Pa s

Guar gum (0.5wt%)

Tara gum (0.4wt%)

Okra (0.1wt%)

Chia seed

Flax seed (0.4wt%)

Whole saliva

0.25wt%

0.10wt%
0.5wt%

0.75wt%

1.2wt%

1.5wt%
4.5wt%2.3wt%

3.4wt%

TUC

Figure 8: Fractional parameter phase space for food consistency. The markers correspond to the values
of the quasiproperty K and fractional exponent n best describing the shear-thinning in the steady shear
viscosity of the TUC solutions, food extracts, and whole saliva at γ̇ = 50 s−1. The dashed diagonal lines
bordering the shaded regions denote iso-viscosity curves at γ̇ = 50 s−1 corresponding to the ‘nectar’,
‘honey’, and ‘pudding’ preparations of starch solutions by the NDDTF. The line connecting the TUC
solution markers is a guide for the eye.
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As shown in Figure 8, as the concentration of TUC is increased, the quasiproperty K increases monotoni-

cally, affirming its interpretation as an indicator of the viscoelastic modulus of the solution |G∗| ≃ K(50)n.

In conjunction, the fractional exponent n begins at a value of n ≈ 0.40 for low concentrations, somewhat

below the Rouse limit (corresponding to n = 1/2 [30]), and then decreases as the TUC concentration is

increased before leveling off at a high-concentration plateau of n ≈ 0.18. A dashed line indicating these

trends has been added to the TUC data in Figure 8 as a guide for the eye. It is instructive then to con-

sider the location of the different food extracts and saliva in comparison to this family of TUC solutions.

The dependence of the viscoelastic moduli of human whole saliva, flax seed extract, and guar gum on

frequency (for frequencies ω ≈ 50 rad/s) is weaker than those of the most concentrated TUC solutions

(n ≈ 0.13), consistent (from Equation (18)) with higher levels of shear thinning, while the magnitude of

their quasiproperty K is consistent with the TUC solutions of moderate concentrations. The okra and

chia seed extracts both exhibit very small values of K, and moderate values of n, near or slightly above

the Rouse limit, consistent with classical polymer solutions. Finally, the quasiproperty or consistency

K of the tara gum solution is comparable to those of saliva and the flax seed extract, but its fractional

exponent is much higher (n = 0.92), corresponding to much lower levels of shear thinning.

Plotting the rheological response of these complex viscoelastic fluids during steady state flow and os-

cillatory shear in this novel material parameter space allows us to capture both the viscous and elastic

characteristics of the fluids, whereas traditional comparison of conventional steady state flow curves or

regression to inelastic models such as the Cross or Carreau models fails to discriminate these relevant fea-

tures. In addition, this representation in {n,K} space makes it strikingly clear that considering the shear

viscosity of a solution alone is insufficient to fully characterize its texture. To illustrate this, consider the

following exercise. The NDDTF has determined that the lowest shear viscosity at γ̇ = 50 s−1 for a food

solution to have the texture of a pudding is η(50 s−1) = 1.75Pa s. If one were asked to procure a pudding

using this criterion, it would be natural to begin with the simplest fluid choice, a Newtonian liquid, and

perhaps select maple syrup, which is known to have a viscosity in that range [50]. Since Newtonian flu-

ids are purely viscous, they are characterized using fractional nomenclature as having n = 1 and K = µ.

Maple syrup would therefore lie on the line of η̂ = 1.75Pa s, at the top of the graph where n = 1. Our own

experience with eating, however, is likely sufficient to cast doubt on whether maple syrup is the most ap-

propriate choice to mimic a pudding. In more quantitative terms, it appears that a c ≈ 4wt% solution of

TUC would also satisfy this viscosity criterion, yet its location on the phase space in Figure 8 is at nearly
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the opposite end of the ordinate axis, approaching the limit of of n → 0, where a truly ‘elasto-plastic’

or yield-stress-like response is recovered. More accurate phase boundaries demarcating textures such as

‘pudding’ must therefore correspond to more complex loci than the straight lines given by Equation (19).

It appears as well that since the fractional exponents of all of the TUC solutions and human whole saliva

lie below n = 0.5, an element of elasticity is essential in the development of dysphagia products, which

is consistent with the idea that foods that remain in a cohesive ‘bolus’ are safer and easier to swallow [51].

6 Conclusions

In this work we have modeled the linear and nonlinear rheological response of a benchmark viscoelastic

liquid food, the dysphagia product Resource R⃝ Thicken Up Clear (TUC), as well as various plant extracts

and human whole saliva, using fractional rheological models. Using the Matlab genetic algorithm func-

tion, we have shown that the FMM does a better and more parsimonious job of capturing the rheological

response of the TUC solutions (using a representative concentration of c = 1.2wt%) than an N-element

Maxwell model consisting of up to 50 true physical elements, justifying the use of this more compact rep-

resentation even at the expense of possible lost physical meaning [27]. We note, however, that for these

biopolymer solutions, the breadth of the viscoelastic spectrum is extremely large. The physical meaning

of a model containing 10 modes, or 20 parameters (which is the number required for the multi-mode

Maxwell model to begin to be comparable to the FMM in terms of goodness of fit to experimental data),

becomes increasingly difficult to interpret and unwieldy to use in simulations of viscoelastic flows.

In addition, we have shown that by expressing the viscosity of these liquid foods at the shear rate of

γ̇ = 50 s−1 (widely deemed relevant for oral evaluation of liquid texture [20]) in terms of the quasiproperty

K and the fractional exponent n arising from these fractional models, far more information about the

nonlinear fluid rheology can be gleaned than is usually possible from a traditional steady state flow

curve. This extension requires no additional material parameters, but just an application of the Cox-

Merz rule. For instance, after ascertaining a characteristic deformation rate for the material of interest,

the magnitude of the quasiproperty K can clearly be interpreted as an indicator of the complex modulus

of the solution, while n provides a direct measure of the solution elasticity and the degree of shear

thinning. Additionally, by considering the location of the different plant extracts and whole human saliva
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in relation to the dysphagia solutions in the phase space formed by K and n, we can begin to relate these

fractional parameters to textural and oral sensory perception terms such as the concepts of a ‘pudding’

and a ‘nectar’ in a useful and quantifiable way. Ultimately, we believe that this fractional constitutive

framework could be a useful tool for the interpretation of future sensory studies and in the design of

liquid food solutions with specifically tailored consistencies or properties.
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8 Footnotes

1. Similarly, Simpson et al. have argued that classical Fickian models are insufficient to describe

diffusion processes through food substances, particularly the diffusion of water during dehydra-

tion processes, as a result of the morphological changes that these complex fluids undergo on the

microscopic level as the water content decreases [52]. They propose that fractional diffusional mod-

els, with their non-integer dependence of concentration on both space and time, are more broadly

applicable [52].
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