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Diffusive Phonons in Nongray
Nanostructures
Nanostructured semiconducting materials are promising candidates for thermoelectrics
(TEs) due to their potential to suppress phonon transport while preserving electrical
properties. Modeling phonon-boundary scattering in complex geometries is crucial for
predicting materials with high conversion efficiency. However, the simultaneous presence
of ballistic and diffusive phonons challenges the development of models that are both
accurate and computationally tractable. Using the recently developed first-principles
Boltzmann transport equation (BTE) approach, we investigate diffusive phonons in nano-
materials with wide mean-free-path (MFP) distributions. First, we derive the short MFP
limit of the suppression function, showing that it does not necessarily recover the value
predicted by standard diffusive transport, challenging previous assumptions. Second, we
identify a Robin type boundary condition describing diffuse surfaces within Fourier’s
law, extending the validity of diffusive heat transport in terms of Knudsen numbers.
Finally, we use this result to develop a hybrid Fourier/BTE approach to model realistic
materials, obtaining good agreement with experiments. These results provide insight on
thermal transport in materials that are within experimental reach and open opportunities
for large-scale screening of nanostructured TE materials. [DOI: 10.1115/1.4040611]

Due to their ability to convert heat directly into electricity, ther-
moelectric (TE) materials have a wide range of applications,
including waste heat recovery [1], wearable devices [2], and
deep-space missions [3]. Widespread of TE materials is limited;
however, by the simultaneous requirement for low thermal con-
ductivity and high electrical conductivity, a condition that is
rarely met in natural materials [4]. Nanostructured materials over-
come this limitation in that heat-carrying phonons have mean free
paths MFPs (K) larger than the limiting dimension, Lc, resulting
in strong thermal transport suppression [5]. On the other side,
electrons have MFPs that are typically as small as a few nano-
meters thus their size effects are mostly negligible [6]. Notable
nanostructures, including thin films [7], nanowires [8,9], and
porous materials [10–15], show a significant suppression in ther-
mal conductivity with respect to the bulk, holding promises for
high-efficiency thermal energy conversion.

In order to concisely describe phonon size effects in
complex geometries, we have recently introduced the concept of
“directional phonon suppression function,” S(K, X). Such a quan-
tity is proportional to the flux of phonons with mean-free-path
(MFP) K and solid angle X traveling in the nanomaterial
normalized to the thermal flux in the bulk counterpart [16]. The
directionality of S(K, X) arises from the anisotropy in the
geometry of the material. The effective thermal conductivity is

then computed via jeff=jbulk ¼
Ð1

0
dK
Ð

4pdXKbulkðKÞSðK; XÞ,
where Kbulk (K) is the bulk MFP distribution, obtained from first-
principles [17]. When averaged over the solid angle, S(K, X)

reduces to the phonon suppression function, SðKÞ [16]. The sup-
pression function, directly evaluated from the phonon Boltzmann
transport equation (BTE), provides useful insights on thermal
transport regimes [18,19]. We conveniently introduce the Knud-
sen number, defined as Kn¼K/Lc. Phonons with large bulk Kn
travel ballistically and their suppression function goas as 1/K. On
the other hand, the suppression of phonons with low Kns becomes
independent on the MFP reaching a pleteau given by standard
Fourier’s law.

Using our recently developed solver for the space-dependent
BTE, we investigate the diffusive limit of heat transport in materi-
als with wide bulk MFP distributions, i.e., “nongray” materials.
First, we provide an analytical expression for the small-Kn limit
of the suppression function, demonstrating a significant departure
from the gray model. Second, we investigate the effect of large-
Kn phonons on the diffusive thermal flux along the wall of the
pores, identifying a Robin-type boundary condition that, essen-
tially, extends the range of validity of Fourier’s law. Finally, using
these two findings we implement a hybrid Fourier/BTE model to
calculate jeff in realistic porous samples, obtaining good agree-
ment with experiments. Our work enhance our knowledge of heat
transport in nanostructured materials and provides insights for ab
initio, multiscale thermal conductivity calculations.

In this work, we model phonon transport in nanostructured
materials via the MFP-dependent BTE [18]

KŝðXÞ � rTðr;K;XÞ ¼ TLðrÞ � Tðr;K;XÞ (1)

where T(r, K, X) is an effective, space-dependent temperature
associated with phonons with MFP K and direction ŝðXÞ denoted
by X; the term TL(r) is an effective lattice temperature, obtained
by

TLðrÞ ¼
ð

B2ðKÞTðr;K;XÞdK (2)

The term B2(K) is a bulk material property, computed by

Bn Kð Þ ¼ Kbulk Kð Þ
Kn

� � ð
Kbulk K0ð Þ

K0n

� �
dK0

" #�1

(3)

and f ðXÞ ¼
Ð�1

4p dXf ðXÞ is an angular average. Equation (2)

results from the continuity equation for thermal flux, i.e.,
r � JðrÞ ¼ 0. Within this formalism, the normalized thermal flux
is Jðr;K;XÞ ¼ B1ðKÞTðr;K;XÞŝðXÞ [18], where we used the

scaling factor ½
Ð

KbulkðKÞ=KdK��1
. For simplicity, when unambig-

uous, we will drop the space and angular dependencies from the
notation.
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We first solve Eqs. (1) and (2) on ordered nanoporous Si with
infinite thickness. As shown in Fig. 1(a), we consider a two-
dimensional unit-cell containing one circular pore and apply
periodic boundary conditions both along x̂ and ŷ. We choose a
porosity of u¼ 0.25 and periodicity L¼ 10 nm. The walls of the
pores are assumed to scatter phonons diffusively, a condition that
translates into the following temperature imposed to outgoing
phonons [20]:

TB ¼
ð

B1ðKÞgðKÞdK (4)

where g(K) is the average flux of incoming phonons, given by
gðKÞ ¼ ½hŝ � n̂iþ�

�1hTðKÞŝ � n̂iþ. The notation hf iþ stands for an
angular average for the hemisphere where ŝ � n̂ > 0. Equation (4)
arises from the condition of zero normal flux along the boundary.
Heat flux is enforced by applying a difference of temperature
DT¼ 1 K between the hot and cold contacts, as illustrated in
Fig. 1(a). Once Eqs. (1) and (2) are solved iteratively, we compute
the directional suppression function [16]

S K;Xð Þ ¼ �3
L

DT
ŝ � ŝrhT Kð ÞiAhot

� n̂ (5)

where hf iAhot
¼ ðAhotÞ�1Ð

Ahot
fdS is a spatial average along the hot

contact, denoted by Ahot. In agreement with previous results [20],

jeff � 6 Wm�1 K�1, significantly lower than the bulk value

jbulk ¼
Ð

KbulkðKÞdK � 153 Wm�1 K�1 [21]. The angularly

averaged suppression function SðKÞ, simply referred to as the
suppression function, is shown in Fig. 1(a). We note that for

large Kns, SðKÞ / 1=K in accordance with the ballistic regime,
whereas suppression of phonons with short Kns is constant
with MFP until approaching the quasi-ballistic regime, i.e., for
Kn � 1.

For small Kns, phonon distributions are isotropic and can be
expanded to first-order spherical harmonics TðKÞ � TðKÞ�
Kŝ � rTðKÞ, which, when combined with Eq. (5) and after an
angular average, leads to

SISO Kð Þ ¼ � L

DT
hrT Kð Þ � n̂iAhot

(6)

where ISO stands for “isotropic,” and we used ŝ � ŝ ¼ ð1=3Þdij.
Heat transport in the short MFP region is calculated by including
this expansion in Eq. (1), obtaining [22]

K2

3
r2T Kð Þ ¼ T Kð Þ � TL (7)

Equation (7) is the diffusive heat conduction equation with effec-
tive heat sources arising from the coupling between phonons with

Fig. 1 (a) For short Kns, the suppression function, S (K), reaches a plateau that is significantly lower than that calculated by

the standard Fourier’s law. Up to Kn � 1, the isotropic suppression function, SISO(K) � S (K), because the phonon distributions
are isotropic. The diffusive suppression function, SD(K), reveals the breakdown of Fourier’s law for Kn > 1. In the inset, the unit
cell including a single circular pore and with periodicity L 5 10 nm. (b) The coefficients B2(K) for a realistic, diffusive, and ballis-
tic materials. The dotted line represents the characteristic length, Lc; (c) S(K) and (d) SISO (K) for the case of ballistic and diffu-
sive materials. Realistic materials lie in the shaded regions. The curves for Si at T 5 150, 200, 250, and 300 K are shown for
comparison.
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different MFPs [22]. For K ! 0, Eq. (7) simplifies to Tð0Þ ¼ TL,
which, after using Eqs. (2) and (6), gives

Sð0Þ ¼
ð1

0

B2ðKÞSISOðKÞdK (8)

Equation (8) is the first key result of this paper. We note that Sð0Þ
depends on the entire bulk MFP distribution, embodying the effect
of ballistic phonons on diffusive heat.

The upper bound of Sð0Þ is evaluated by introducing the con-
cept of “diffusive materials,” i.e., a material where all the MFPs
for which B2(K) is significant are much smaller than Lc, as

depicted in Fig. 1(b). Under this condition, TL ¼ Tð0Þ, and Eq. (7)

becomes the Laplacian r2Tð0Þ ¼ 0. Moreover, the boundary

temperature becomes TB ¼ Tð0Þ. Then, Sð0Þ is given by Eq. (6).
For the case of ordered circular pores, this model gives

Sð0Þ � ð1� uÞ=ð1þ uÞ ¼ 0:6, as illustrated in Fig. 1(a). This
value can be seen as the diffusive limit of a diffusive material.

A lower limit to Sð0Þ can be achieved in the case of a “ballistic
material,” namely when the MFPs contributing to B2(K) are much
larger than Lc, as shown in Fig. 1(b). Within this regime,

TB¼ g(1) and Sð0Þ ¼ �ðL=DTÞhrTð1Þ � n̂iAhot
� �0:5, with

Tð1Þ computed by Eq. (1). Although a negative suppression
function is counterintuitive, note that the actual MFPs in the nano-

structure Knano ¼ SðKÞK are still positive. Again, SISOð0Þ ¼ Sð0Þ,
because for short MFPs the phonon distributions are isotropic.
Furthermore, SISO (0)¼ SISO (1), as demonstrated by simply

including Tð1Þ in Eq. (5), and shown in Fig. 1(d). In the case of

realistic materials SðKÞ and SISO (K) fall in between the diffusive
and ballistic material limits, depending on the MFPs contributing

to B2(K) with respect to Lc. In Figs. 1(c) and 1(d), we report SðKÞ
and SISO (K), respectively, for different temperatures. We note
that both functions decrease with temperature, as the bulk MFPs
become larger [20], resulting in a shift of B2(K) toward higher
MFPs.

We now analyze the effect of ballistic phonons on the
boundary conditions along the boundary of the pore, within
the diffusive regime. The condition imposed on phonons leav-
ing the boundary, exemplified by Eq. (4), translates into the
following expression for the angularly averaged, normal ther-
mal flux:

J Kð Þ � n̂ ¼ 1

4
B1 Kð Þ g Kð Þ �

ð
B1 K0ð Þg K0ð ÞdK0

� �
(9)

where we used hn̂ � ŝiþ ¼ ð1=4Þ. The first and second terms in the

parenthesis of Eq. (9) are related to the incoming and outgoing

phonons, respectively, with respect to the boundary of the pore.
To understand the power balance along the diffuse surface of the
pore, we note that large Kn phonons tend to accumulate at the hot
side of the pore wall [23], resulting in higher value of g(K) with
respect to diffusive phonons. Furthermore, as TB is a weighted
average of g(K), we have gðK > LcÞ > Tb > gðK < LcÞ, as illus-
trated in Fig. 2(b). Consequently, according to Eq. (9), the normal
flux is positive for small Kns and negative for ballistic phonons
(see Fig. 2(a)). The transition value is close to Kn¼ 1 and depends
on B1(K). The normal flux at the cold side of the pore has the
opposite trend. To derive an approximation to Eq. (9) for
short Kns, we first note that, within the diffusive regime, at a

point right before the wall of the pore, heat flux is JðKÞ ¼
�B1ðKÞK=3rTðKÞ. Then, we expand g(K) up to its first harmon-

ics, i.e., gðKÞ ¼ TðKÞ � ð2=3ÞKrTðKÞ � n̂, where we used
hŝ � ŝiþ ¼ ð1=6Þdij. After combining these results, Eq. (9)

becomes

J Kð Þ � n̂ ¼ 1

2
B1 Kð Þ T Kð Þ � TB

� �
(10)

a typical Robin boundary condition for heat flux, with boundary
conductance (1/2)B1(K). Equation (10) constitutes the second key
result of this paper. In practice, the introduction of such a bound-
ary condition extends the range of validity of Fourier’s law to
larger MFPs. To better visualize this concept, we introduce the
“diffusive suppression function,” SD(K), computed by Eq. (6) but
with TðKÞ obtained with Eqs. (7)–(10) for the whole range of
MFPs. From Fig. 1(a), we note a deviation from SðKÞ around
Kn � 1. The high-Kn limit of SD(K) is given by standard Fourier’s
law as Eq. (7) becomes the Laplacian of TðKÞ.

In this last part, we calculate the thermal conductivity of
recently fabricated porous Si membranes [14]. Among the avail-
able dataset, we consider the case with periodicity of 200 nm
thickness of 145 nm and pores with diameters ranging from 90 nm
through 168 nm. The bulk thermal conductivity, computed by the
temperature dependent effective potential (TDEP) method
[24,25], is jbulk� 142 W m�1 K�1. Although the solver for Eq. (1)
has been conveniently parallelized, computing phonon transport
in such a large simulation domain can become cumbersome. In
particular, the computational bottleneck arises from the need to
solve the BTE for a wide spectrum using the same space discreti-
zation. To this end, we devise a hybrid Fourier/BTE computa-
tional model that solves the BTE for long Kns phonons and
Fourier’s law (by means of Eqs. (7)–(10)) for phonons with small
Kn. To uniquely define the MFP delimiting the two regions, we
first solve both the BTE and Fourier model for decreasing MFP
starting from the highest K in the bulk MFP distribution. Then,

Fig. 2 (a) Normal thermal flux for different Kns at the hot and cold sides of the pore. (b) Temperature profile around the
boundary of the pore for TB, as calculated by Eq. (4), as well as for high and low Kn phonons. The angles / 5 –p and / 5 0 coin-
cide with the directions x̂ and 2x̂.
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when the resulting suppression functions converge within 1%,
only the latter is used until a plateau for small Kns is obtained. In
this case, the BTE is solved only for about 50% of the spectrum,
allowing accurate phonon transport simulations within reasonable
computational time. As shown in Fig. 3(a), the thermal conductiv-
ity decreases monotonically with the diameter until reaching the
value of 7.4 Wm�1 K�1 for the larger pore. Comparison with
experiments show an excellent agreement for the case with small
diameters and a qualitative agreement for large pores. Hereafter,
all the results are for the case with a diameter of 168 nm. In Fig.
3(b), we illustrate the normalized thermal flux. Similarly to Ref.
[18], most of the flux is concentrated along the space between
pores, a typical signature of phonon size effects. Figure 3(c) shows
S(K) and SD(K). As these two functions are identical for a signifi-
cant part of the low-MFP spectrum, we deduce that a large fraction
of the heat travels diffusively. In Fig. 3(d), we report the MFP dis-
tribution Kbulk (KS(K))S(K) in the membrane. We note that the
maximum allowed MFP is around 30 nm, which is roughly the
pore–pore distance.

In summary, using first-principles calculations and the BTE, we
have rivisited the diffusive regime in nongray nanostructured
materials. In particular, we investigated the effect of long-Kn pho-
nons on heat diffusion, deriving an analytical expression for the
short-Kn limit of the suppression function and a Robin type
boundary condition for thermal flux normal to the pore bounda-
ries. Finally, we developed a hybrid Fourier/BTE model to calcu-
late the thermal conductivity in realistic materials, finding
excellent agreement with experiments. These findings refine the

concept of diffusive transport in nongray materials and pave the
way for accurate yet inexpensive modeling of nanostructured
materials for thermoelectric applications.
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