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Abstract

Human whole saliva consists of a physically-associated network of mucin molecules. The inter-chain

physical associations control the rheological characteristics of the solution and in particular, the lifetime

of filaments and threads. Measurements show that the shear rheology of salivary mucin solutions (as

measured by steady shear viscosity and small amplitude oscillatory shear (SAOS)) is quite insensitive

to sample age over a 24 hour period following sample collection. By contrast, the filament thinning

dynamics vary dramatically, with the characteristic relaxation time of the saliva and the breakup time

of a fluid thread decreasing significantly with sample age. We interpret our results within the framework

of a Sticky Finitely Extensible Network (SFEN) model which respects the known physical dimensions

and properties of the mucin molecules in saliva, and models them as a network of physically associating

and finitely extensible polymer chains. The model predicts an initially strain-hardening response in the

transient extensional rheology, followed by a sudden extensional thinning and filament rupture as the

chains approach their maximum extensibility and the tension between junction points increases rapidly.

We show that the model can accurately capture the changes observed in the filament thinning dynamics

with sample age by incorporating a steady decrease in the molecular weight of the supramolecular

aggregates of mucin. These experimental observations highlight the importance of considering sample

age and enzymatic degradation when reporting extensional rheological measurements of saliva.

∗cewagner@mit.edu
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1 Introduction

The development of a nonlinear viscoelastic constitutive model that can qualitatively describe the rheol-

ogy of a sticky or physically-associating reversible network of polymer chains has applications to a wide

variety of biological problems. For instance, protein and polysaccharide interactions in animal cytoskele-

tons and plant cell walls, respectively, have been accurately described using Glassy Worm-Like Chain

Models [1], while DNA/protein interactions and cell division are highly dependent on interactions with

the surrounding tissue network [2, 3]. It is generally not possible to describe the rheology and mechanics

of such complex biopolymeric systems by considering the dynamics of the constituent chains in isolation

[2, 4]. However, the macroscopic rheological response of mucus and other bodily fluids has been success-

fully modeled by incorporating associative network considerations (see for instance the work by Ewoldt

et al. on Hagfish slime [5] or by Broedersz et al. on actin networks [6]). The ‘sticky’ elements of the bio-

logical macromolecules in these systems originate from a number of different association types, including

hydrogen bonding, ion complexation, disulphide linkages, and local crystallization domains [7]. Physical

associations between chain segments can generally be accounted for by confining the segment ends to lie in

an energy well of width rc and depth ∆G [1, 2, 4, 8] that depends on the type of interactions in the system

and the level of tension in the chain segments that form the network. As the elastically active network

is strained by extensional deformation and individual segments are stretched, the energy well they must

overcome becomes increasingly shallow, and the rate of chain dissociation increases. This is analogous

to rejuvenation concepts in soft glasses, where thermally activated jumping between local traps occurs [1].

The particular physically associating network of interest to this study is the salivary network; a glycoprotein-

based hydrogel formed by a complex set of interactions between the constituent mucin chains includ-

ing charge-mediated carbohydrate-carbohydrate interactions, weak calcium-mediated physical crosslinks,

stronger disulphide bonds, and hydrophobic interactions [9, 10, 11]. This complex network results in saliva

being highly viscoelastic, and indeed without the ability of saliva to form viscoelastic thin films, speech

and swallowing would be severely impaired, and oral decay would be inevitable [10, 12, 13]. Characteri-

zation and quantification of saliva viscoelasticity is also becoming increasingly important as a diagnostic

tool, largely as a result of the ease and safety of obtaining fluid samples, as compared to more commonly

used biofluid sources such as blood [14]. For instance, Basilevsky et al. have explored the degradation of

sputum upon exposure to certain bacteria as measured through changes in its elastic properties [15], while
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Zussman et al. have noted that differences in saliva viscoelasticity between teenagers and the elderly may

explain why the most common dental health issues plaguing these two age groups differ [16].

As early as 1922, however, in his ground-breaking studies of saliva’s potere filante (or ‘filament forming

potential’), Aggazzotti observed that the rheological properties of saliva are not constant with time [17].

In a series of experiments, he found that both the shear viscosity (as measured with a viscometer) and

the extensional properties of saliva (as measured by the maximum length of a fluid filament that was

formed by stretching a sample from the end of a capillary tube) decreased as the age of the sample

(or time since it was extracted from the mouth) increased. He further noted that the solubility of the

salivary components upon addition of acetic acid increased with sample age [17]. At the time, Aggaz-

zotti attributed these observations to “changes in the physical state, the molecular constitution, of the

mucin” [17]. More recent studies on the size of salivary proteins by Esser et al. [14] measured using Sur-

face Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS) have

shown quantitatively that with time, enzymatic and biological activity lead to degradation of the mucin

molecules contained in the saliva. Despite this, the vast majority of the literature on the shear and exten-

sional rheological properties of saliva makes no mention of the age of the sample used, which, in addition

to the disparity in measurement techniques, may help to explain why reported values differ so greatly [10].

In this paper, we present data on the shear properties (steady shear viscosity and SAOS measurements of

the linear viscoelasticity) and extensional rheology (as measured with a Capillary Breakup Extensional

Rheometer (CaBER)) of saliva at six different sample age times (0 h < tage < 24 h). We show that the

shear rheology remains largely unchanged, while the extensional properties of saliva deteriorate completely

over the time period in question. We quantify these changes in the extensional rheology through the

development of a Sticky Finitely Extensible Network (SFEN) model, extended from the work of Tripathi

et al. for synthetic associative polymers [8], in which saliva is modeled as a physically associating network

of finitely extensible elastic segments. We show that this model can accurately describe the capillary

thinning and filament rupture behaviour of saliva using parameters that are consistent with the biological

properties of the mucin chains. This model can systematically account for the observed temporal changes

through a progressive decrease in the molecular weight of the primary polymer component (MUC5B) in

the mucin network.
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2 The Salivary Network

The viscoelastic properties of whole saliva can be largely attributed to its principal structural element:

the high molecular weight mucin MUC5B [10], depicted schematically in Figure 1a. MUC5B is heav-

ily glycosylated, with approximately 80% of its mass derived from carbohydrates forming moderately

branched oligosaccharide chains that attach to the protein core in a bottlebrush configuration [18]. The

intact MUC5B molecule found in secretions consists of 50− 100 macromonomer subunits [19], which we

term ‘muc-mers’, each with a molecular weight of approximately MW,MUC ≈ 2MDa [19], assembled via

disulphide bonds (shown schematically as light blue filled circles in Figure 1a) in a linear fashion, leading

to an overall estimated molecular weight of MW ≈ 150MDa [19]. The overall supramolecular mucin

network depicted in Figure 1b is formed by topological entanglements and hydrophobic crosslinking in-

teractions between the non-glycosylated regions of these enormous biopolymers, as well as other weak

associations such as ion complexation and electrostatic repulsion [10, 18].
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Figure 1. Schematic description of the MUC5B mucin network parameters used in this paper. (a)
Coarse-graining of an individual MUC5B molecule to a bead-spring chain. The schematic representa-
tions of the MUC5B muc-mer and macromonomer are reproduced from [18]. (b) Organization of the
MUC5B supramolecular network with both dangling and bridged sticky segments, as well as a schematic
representation of the SFEN parameters relevant for considerations of network formation and inter-chain
associations.
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To simplify the problem, we coarse-grain the mucin macromonomer structure by approximating the

chains to be random walks of Nk Kuhn steps of Kuhn length bk [20]. The persistence length of

MUC5AC, which is a genetic relative of MUC5B showing significant homology in its non-glycosylated

domains [21], has been estimated by Cao et al. at pH7 using Dynamic Light Scattering to be ap-

proximately lp = 7nm [22]. From this result, we can obtain an estimate for the Kuhn length of

MUC5B from the relationship bk = 2lp = 14nm. Additionally, from the fully extended MUC5B

muc-mer length of Q0,MUC = Nk,MUCbk = 500 nm measured by Kesimer et al. [19], the number of

Kuhn steps per muc-mer and their molecular weight MW,k can be approximated as Nk,MUC ≈ 35 and

MW,k = MW,MUC/Nk,MUC ≈ 57.1 kDa. Finally, the finite extensibility b of an intact MUC5B molecule

with nc muc-mers and a resulting molecular weight of MW = ncMW,MUC , which is defined as the

square of the ratio of the fully extended chain length to its equilibrium size, can be calculated from

b = 3MW /MW,k = 3Nk [20]. This results in a finite extensibility of b ≈ 8000 based on the initial molecu-

lar weight of the entire MUC5B molecule, MW ≈ 150MDa.

Following Rubinstein and Colby [23], the plateau modulus of a polymer network with well defined entan-

glement and crosslink molecular weights (MW,e and MW,x respectively) is given by

G ≈ ρkBNAT

(
1

MW,e
+

1

MW,x

)
,

where ρ is the density of the polymer, kB is the Boltzmann constant, NA is Avogadro’s number, and T

is the temperature. In the case of mucins, however, the structural and association details of the MUC5B

network are not yet well understood, and consequently MW,e and MW,x are not well-defined [18, 24].

In this case, we employ the Rubinstein and Colby definition for the plateau modulus Gs of a general

polymer network with apparent strand molecular weight MW,s [23], allowing us to obtain an estimate for

the molecular weight of a sticky segment as

MW,s =
ckBTNA

Gs
, (1)

where c is the concentration of MUC5B which has been determined by Raynal et al. to be c = 233 µgml−1

in saliva [25]. In general, the plateau modulus of a typical biopolymeric gel is not as clearly identifiable

as that for a polymer melt, GN
0 [26]. Nevertheless, we can estimate Gs from SAOS data, and with

this in place, the number of physical interactions, or ‘sticky’ points, per mucin macromonomer follows
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immediately as z =MW /MW,s. Finally, we fix the interaction strength of these sticky sites that assemble

the physically associated network at ∆G ≈ 6kBT ; an average value for weak physical interactions such

as hydrophobic interactions and electrostatic repulsion [27].

With these biological parameters in place, in the section to follow, we develop a model that respects these

molecular dimensions and allows us to investigate the nonlinear properties of mucin solutions, particularly

at the large Hencky strain values relevant to CaBER experiments near filament breakup.

3 Model Description

We follow the approach of Tripathi et al. [8], who studied the nonlinear shear and extensional rheo-

logical properties of hydrophobically modified ethoxylate-urethane (HEUR) telechelic systems, to model

the salivary network. This model, extended from the ideas of Tanaka and Edwards [28, 29] and Vaccaro

and Marrucci [30], is particularly suitable as it focuses specifically on the nonlinear rheological properties

that dominate filament thinning measurements, and can account for a wide range of interaction types

and number of interaction sites [8]. Telechelic HEUR polymers contain both hydrophilic central regions

and hydrophobic end groups which physically associate with one another in flower-like micelles to mini-

mize their exposure to the surrounding aqueous environment [8], introducing the ‘sticky’ character to the

network. We introduce an analogous term to capture the physical interactions in the salivary network,

and allow for destruction and reformation of network junctions at these points [8].

The number density of elastically active segments (meaning those that form inter-chain bridges and

participate in the network) is denoted by ν and depends on the depth of the energy well ∆G through the

expression [28]

ν = n

(
exp (∆G/kBT )

1 + exp (∆G/kBT )

)
(2)

where n = cNA/MW,s is the total number density of sticky segments. When ∆G is large compared to

the thermal energy, ν ≈ n and all chain segments are considered active and able to contribute to the

accumulation of polymer stresses in the network [8].

Following Tanaka and Edwards [28], we define the exit rate of the network junctions, Ωexit, as the product
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of the natural thermal vibration frequency Ω (where 108Hz < Ω < 1010Hz) and the quasi equilibrium

likelihood of reaching a transition state given the activation barrier ∆G, i.e.

Ωexit = Ωexp (−∆G/kBT ). (3)

The depth of the relevant energy well ∆G under flow depends, however, on the extent to which the chain

segments are stretched, which can be characterized by the end-to-end vector q of each sticky segment.

These concepts related to network formation and inter-chain associations are depicted schematically in

Figure 1b.

The fraction of bridged chains as a function of chain stretch and time can be specified by a distribution

function Ψa(q, t). Ψa can also be defined in terms of the probability density function ψa for a single

active chain through Ψa = νaψa where νa ≤ ν is the number of bridged, elastically active chain segments

(and hence (ν− νa) is the number of dangling elastically active chain segments), and ψa is normalized by∫
ψadV = 1. Unlike Tripathi et al. [8], we consider only the bridged chains (or species A in their work)

to contribute to the stress tensor and we neglect contributions from temporarily dangling segments (or

species B). Since our model allows for both network dissociation and rejoining, the number of bridged

chains νa consequently varies with the state of stress in the network.

By considering the interactions of the junction points with the flow (see discussions by van den Brule

and Hoogerbrugge [31] and Bird et al. [20]), the conservation equation for the probability distribution

function can be written in the form of a Smoluchowski expression

∂Ψa

∂t
= − ∂

∂q
·
[
(∇v)T · qΨa

]
−M(q, t)Ψa + L̃(q, t), (4)

where M(q, t) and L̃(q, t) are the destruction and creation rate of junction points, respectively. Multi-

plying Equation (4) by the second moment tensor qq and integrating over configuration space [8] yields

⟨qq⟩(1) = −M ⟨qq⟩+ L̂I, (5)

where L̂ = 4π/3
∫∞
0 L̃q4dq [20], I is the identity tensor, and the subscript (1) denotes the upper convected

derivative defined as
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⟨qq⟩(1) =
D ⟨qq⟩
Dt

− {(∇v)T · ⟨qq⟩+ ⟨qq⟩ · (∇v)}. (6)

Finally, by expressing the stretching of the network in terms of a microstructural deformation tensor

defined as

A =
⟨qq⟩
l2c

, (7)

where lc =
√
Nkbk/

√
3 is the characteristic equilibrium size of an entire network macromonomer [8], we

arrive at a differential equation governing the evolution of A

A(1) = −MA+ LI, (8)

where L = L̂/l2c . Following the approach originally proposed by Tanaka and Edwards [28, 29] and later

extended by Vaccaro and Marrucci [30] and Tripathi et al. [8], we can incorporate finite extensibility

mediated network behaviour by defining the network destruction rate to be the (nonlinear) product of

the natural thermal vibration frequency and a stretch-dependent exit frequency, i.e.

M(q) = g(c,MW,s)Ω exp

(
− 1

kBT

{
∆G−

∫ q−rc

q
Fe · dq

})
, (9a)

where g(c,MW,s) is a scaling function determined from equilibrium measurements that depends on the

chain segment concentration and molecular weight and Fe(q) is the stretch-dependent tensile elastic force

acting on a segment in the network. Note that for the remainder of this manuscript, to simplify notation

since the concentration and strand molecular weight are not changed during our experiments, we combine

g(c,MW,s) and the network exit rate Ωexit from Equation (3) into a single, scaled timescale associated

with the lifetime of network junctions: λexit = 1/ (gΩexit). This allows us to rewrite Equation (9a) as

M(q) =
1

λexit
exp

(
1

kBT

{∫ q−rc

q
Fe · dq

})
. (9b)

The upper limit of integration in Equation (9b) represents the distance that a stretched network segment

with length q = |q| must be displaced through to escape the energy barrier of width rc associated
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with a sticky domain, as illustrated in Figure 1b. Representing the chain segments as finitely-extensible

non-linear elastic (FENE) springs, we can express the deformation-dependent force using the Warner

expression [8] as

F e =
Hq

1−
(
q/(

√
blc)
)2 , (10)

where H = kBT/l
2
c is the spring constant [32] and Q0 =

√
blc is the fully extended length of the

macromonomer chain. Substitution of this result into Equation (9b) and applying the usual Peterlin

closure approximation allows us to arrive at an expression for the ensemble average dissociation rate

M(tr(A)) =
1

λexit

1−
(√

tr(A)−X)2/b

1− tr(A)/b

b/2

, (11)

where X = rc/lc is the width of the energy barrier normalized by the equilibrium chain size and tr(A)

indicates the trace.

To balance the destruction rate of elastically active segments (M(tr(A))), a creation term denoted by

L in Equation (8) is required [33]. We follow Vaccaro and Marrucci [30], as well as Ng et al. [34] and

Ewoldt et al. [5], and choose a constant stretch-independent creation term L such that under no flow

conditions, the distribution is stationary with A(1) = 0. We thus obtain

L =
1

λexit

[
1−

(√
3−X)2/b

1− 3/b

]b/2
. (12)

which for large b≫ 3 simplifies to L ≈ λ−1
exit. The microstructural deformation tensor A is related to the

polymer stress tensor τ p through the Kramers expression [20]

τ p = −nkT [f(tr(A))A− I], (13)

where f(tr(A)) is the FENE term that accounts for finite extensibility within the chain segments. Using

the Peterlin closure approximation [20], we can write the following expression for the ensemble average

stretch in the network

f(tr(A)) =
1

1− tr(A)/b
. (14)
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At equilibrium (τ p = 0), Equations (13) and (14) imply that trAeq = 3/ (1 + 3/b) ≈ 3 for the large

values of the finite extensibility parameter b used in this study.

Equations (8)-(14) represent a set of evolution equations for the polymeric contribution to the stress in a

Sticky Finitely Extensible Network which we refer to as SFEN for compactness. The evolution equation

for the number density of bridged active segments is found by integrating Equation (4) over configuration

space [8], yielding

dνa
dt

= −Mνa + L(ν − νa). (15)

Further, for the specific case of a time-varying shear-free or elongational flow, the SFEN equations for

the number density of bridged elastically active segments and the non-zero individual components of the

microstructural deformation tensor A become:

dAzz

dt
= 2ϵ̇Azz −MAzz + L (16)

dArr

dt
= −ϵ̇Arr −MArr + L (17)

where ϵ̇(t) is the instantaneous strain rate imposed by the kinematics of the flow under consideration.

For the various specific elongational flow types considered in the sections to follow, the time evolution of

flow stresses are determined by solving the governing SFEN equations ((15)-(17)) in combination with

the appropriate expressions for the flow kinematics, where the junction destruction, M(tr(A)), and cre-

ation, L, rates are given by Equations (11) and (12), respectively. We note that in the limit of a steady

state shear flow of vanishing strength, it is straightforward to show that the steady state shear viscosity

predicted by the SFEN model is η0 = ηs + νkBTλexit/2, where ηs is the solvent viscosity and the steady

state value of the number of bridged active chains is νa,eq = ν/2.

3.1 Response of the SFEN model under simple elongational flow conditions

To explore the nonlinear response of this model for a physically associated biopolymer network, we first

consider a simple, homogeneous, elongational flow at constant strain-rate ϵ̇0. In Figure 2a, we plot the
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predicted evolution in the transient extensional viscosity η+e = (τzz − τrr)/ϵ̇0 normalized by the steady

state elongational viscosity ηe,0 = 3η0 as a function of the accumulated strain ϵ = ϵ̇0t at various values

of the Weissenberg number Wi = ϵ̇0λexit. In Figure 2b, this same information is presented as a three-

dimensional surface as a function of dimensionless time and Weissenberg number. The trajectories in

Figure 2a correspond to horizontal lines in Figure 2b at each of the values of Wi indicated.

a

Wi=0.01

Wi=0.5

Wi=10

I

II

III

CaBER Trajectoryb

Wi=100

Figure 2. (a) SFEN model predictions for the normalized extensional viscosity η+e /ηe,0 under simple,
homogeneous, elongational flow conditions at constant strain-rate ϵ̇ = ϵ̇0 as a function of the total
accumulated strain ϵ = ϵ̇0t for Wi = ϵ̇0λexit = 0.01, 0.5, 10, and 100. (b) Surface plot of the SFEN
model predictions for the normalized extensional viscosity η+e /ηe,0 as a function of both Wi and the
non-dimensionalized time τ = t/λexit under simple, homogeneous elongational flow conditions (coloured
surface) as well as the trajectory followed during a filament thinning (CaBER) experiment for which
ϵ̇ = − (2/R) dR/dt (solid black line). The regions indicated with roman numerals in the CaBER trajectory
correspond to viscocapillary thinning (I), elastocapillary thinning (II), and the terminal thinning regime
(III) [35]. In both (a) and (b), the chosen parameters correspond to those determined for saliva at
tage = 0h in Section 4: b = 8000, X = 0.02, ∆G = 6kBT , λexit = 0.26 s, ηs/η0 = 0.003, and Ec =
νkBT/(σ/R0) = 0.02.

At time t = 0+, there are no accumulated stresses in the polymer network and consequently η+e (t =

0+) = 3ηs, with the solvent contributing exclusively to the extensional viscosity. As the accumulated

strain increases the polymeric contributions to the stress grow. For Wi = ϵ̇0λexit ≤ 0.5, the chains do

not stretch sufficiently for dissociation to become significant, and the extensional viscosity plateaus at

the expected equilibrium value of η+e (t → ∞) = ηe,0 = 3η0. As the strain rate ϵ̇0 is increased, it is clear

that the coil-stretch transition is approached and the extensional viscosity changes dramatically at an
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approximately constant value of the product (Wi)c(τ) = (ϵ̇cλexit)(t/λexit) = ϵ̇ct = ϵc corresponding to the

diagonal ‘line’ at approximately 45◦ formed by the surface countours in Figure 2b. At larger strains ϵ > ϵc

the extensible segments of the network begin to stretch closer to their full extent, and the nonlinear terms

associated with finite extensibility and network dissociation come increasingly into play. This is seen in

Figures 2a and 2b as an initial strain hardening and increase in the extensional viscosity η+e followed by a

dramatic rupture of the network and decrease of the extensional viscosity at a large Hencky strain ϵc ≈ 4.

We note that similar extensional viscosity overshoots in highly branched but non-physically associated

LDPE networks have been modeled by Hoyle et al. [36].

3.2 Response of the SFEN model during Capillary Breakup Extensional Rheometry

(CaBER)

We now consider the response of the model during a filament thinning experiment in a CaBER device.

Unlike the constant homogeneous strain rates considered above, the dynamics of the problem are specified

by assuming a time-varying and axisymmetric uniaxial elongational flow [vr = −1
2 ϵ̇(t)r, vz = ϵ̇(t)z] in a

cylindrical filament of radius R(t), from which it follows that the time-varying strain rate is given by

ϵ̇(t) = − 2

R

dR

dt
. (18)

Following [35], we can combine force balances in the radial and axial directions to eliminate the unknown

pressure inside the thinning filament and obtain the following force balance, in which the capillary stress

is balanced by a combination of the extensional stress difference resulting from the viscous solvent and

the deforming and physically associated polymer network:

σ

R
= 3ηsϵ̇+ (τp,zz − τp,rr), (19)

where σ is the surface tension of the fluid. Using the definition of the strain rate in Equation (18),

the microstructural deformation terms Azz and Arr (Equations (16) and (17)) and the governing force

balance (Equation (19)) can be written in the form

dAzz

dt
= − 4

R

dR

dt
Azz −MAzz + L, (20)
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dArr

dt
=

2

R

dR

dt
Arr −MArr + L, (21)

σ

R
= − 6

R

dR

dt
ηs + νakBTf(Azz −Arr), (22)

where the junction destruction, M(tr(A)), and creation, L, rates are given by Equations (11) and (12),

respectively.

The resulting equation set comprises a stiff initial value problem that can be integrated in time (e.g. using

Matlab from R = R0 and νa = νa,eq at t = 0) for different initial conditions to compare with experimental

measurements (as has been done previously in [37, 38, 39, 40, 41] for other constitutive models). As the

filament thins under capillary pressure, the strain rate ϵ̇(t) given in Equation (18) and total Hencky

strain ϵ(t) correspondingly evolve in time. In Figure 2b, we superimpose a CaBER trajectory (solid

black line) labeled with regions (I)-(III) onto the three-dimensional extensional viscosity surface, using

the same physical parameters as for the simple elongational flow curves. We must also specify an elas-

tocapillary number which compares the ratio of elastic to capillary forces, and an appropriate value for

mucin filaments with σ ≈ 72mNm and R0 ≈ 0.5mm is Ec = νkBT/ (σ/R0) = 0.02. We can define three

general dynamical regimes as shown in Figure 2b: (I) viscocapillary thinning during which the solvent

extensional stresses predominantly balance the capillary pressure; (II) a constant strain-rate regime of

elastocapillary thinning (termed the ‘middle elastic time’ by Entov and Hinch [35]) during which axial

polymer stresses balance capillary pressure but the chains remain far from their finite extensibility limit

(b(II) ≫ A
(II)
zz ≫ A

(II)
rr , f (II) ≈ 1); and (III) a terminal regime during which the polymers approach their

maximum extension and filament rupture occurs [35]. As can be seen, following a rapid initial strain hard-

ening and decrease in the strain-rate ϵ̇ associated with rapid filament thinning during the viscocapillary

regime (I), the strain-rate and extensional viscosity both plateau at nearly constant values during regime

II, and finally, as the chains approach their maximum extension (regime III), the elastic forces become

large and the destruction rate M(tr(A)) (Equation (11)) diverges, leading to a rapid destruction of the

network and filament rupture. In this final region (III) the extensional viscosity continues to decrease

with increasing strain as the number of elastically active chains decrease until ultimately the extensional

viscosity is reduced to the initial solvent contribution.
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3.2.1 Constant strain-rate elastocapillary thinning (Regime II)

In order to use our SFEN model to interpret experimental CaBER data with salivary mucins, the sig-

nificance of the filament thinning rate, typically extracted from the time constant associated with the

exponential radius decay characteristic of regime II [35], must be understood in the context of the SFEN

parameters.

For many moderate molecular weight systems with finite chain extensibility, there is already significant

axial microstructural stretch incurred in the system by the time this regime occurs following the initial

viscocapillary thinning regime (I). However the inequality Azz ≪ b still holds (see for instance Wagner,

et al. [39]). Under these conditions, a Taylor series expansion can be used to simplify Equation (11) for

the destruction rate to the form

M (II)(tr(A)) ≈ 1

λexit
[1 + δ] , (23)

where the superscript II indicates explicitly the elastocapillary regime (II) and

δ =

√
tr(A)Xb

b− tr(A)
≈

√
A

(II)
zz Xb

b−A
(II)
zz

. (24)

In the limit of infinitely extensible springs (b → ∞) or negligible sticky effects (X → 0), δ → 0. For

finitely extensible springs, Wagner et al. [39] provide an implicit analytical expression for the axial mi-

crostructural deformation A
(II)
zz at the transition point between regimes I and II, which can be used in

this instance to obtain an estimate for δ during the middle elastic time (II). A more detailed explanation

regarding the derivation of this approximate result for A
(II)
zz is provided in Appendix A. In reality, of

course, A
(II)
zz and hence the destruction rate M are not constant during regime II, but for moderately

extensible chains this approximation is reasonable [39] and, as we will see, allows for the development of

an approximate analytic expression governing the time-dependent evolution of the filament radius during

this regime.

Using the approximation in Equation (23) for M and L ≈ 1/λexit, Equation (15) can be solved explicitly

(with the initial condition νa(t = 0) = νa,eq = ν/2) to yield
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ν(II)a (t) ≈ ν

2 + δ

[
δ

2
exp

(
−(2 + δ)t

λexit

)
+ 1

]
≈ ν

2 + δ
, (25)

and so indeed in this regime the number density of sticky segments is approximately constant in time.

The remaining ‘middle elastic time’ approximations (b ≫ A
(II)
zz ≫ A

(II)
rr , f (II) ≈ 1) allow us to simplify

Equation (20) to the form

dA
(II)
zz

dt
≈ − 4

R(II)

dR(II)

dt
A(II)

zz − 1 + δ

λexit
A(II)

zz , (26)

which has the solution

A(II)
zz (t) ≈

(
1

ξ(II)(t)

)4

exp

(
− t(1 + δ)

λexit

)
(27)

given the initial conditions Azz(t = 0) = 1 and R(t = 0) = R0, where ξ
(II)(t) = R(II)(t)/R0 is the dimen-

sionless radius of the filament which we seek to determine.

Finally, the governing SFEN force balance (Equation (22)) can similarly be simplified in regime II to

σ

R(II)
≈ ν(II)a kBTA

(II)
zz , (28)

and by substituting Equations (25) and (27) into (28), we obtain an explicit expression for the evolution

of the filament radius during the ‘middle elastic time’, or regime II:

ξ(II)(t) ≈
(

Ec

2 + δ

) 1
3

exp

(
− t(1 + δ)

3λexit

)
. (29)

The longest relaxation time of a polymer solution (λ0) is typically extracted from the period of exponential

radius decay during a CaBER experiment using the expression ξ(II) ∼ exp (−t/3λ0) [35, 37]. Comparison

of this expression and Equation (29) reveals that monitoring the rate of filament decay in regime (II)

given by ϵ̇(II) = −(2/ξ)ξ̇ = (2/3)λ−1
0 therefore provides a direct measure of the network junction exit rate

λ−1
exit, and that these two quantities are related through the expression

ϵ̇(II) ≈ 2

3
(1 + δ)λ−1

exit. (30)

When sticky effects are larger and the assumption in Equation (25) of a nearly constant number density
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of bridged active segments νa does not hold, a more sophisticated analysis (presented in Appendix B)

can be used to find a more accurate expression for the local filament thinning rate in regime II.

3.2.2 Terminal asymptotic behaviour (Regime III)

Finally, we consider the asymptotic behaviour of the SFEN model as the thinning filament approaches

rupture and breakup. In this regime (denoted III in Figure 2b), the chains are essentially fully stretched

(A
(III)
zz ≈ b) [35] and as such we can approximate that the time rate of change of the axial microstructural

deformation vanishes (Ȧ
(III)
zz → 0). Consequently, the destruction rate of elastically active segments far

outweighs the creation rate (i.e. M (III) ≫ L(III)). Entov and Hinch show that for a dilute suspension of

FENE-P springs in this terminal regime, the FENE term approaches f (III) → 2ϵ̇(III)λ0 and each segment

essentially behaves as a fully stretched rigid rod, resulting in a constant polymeric contribution to the

viscosity given by [35]

η
(III)
FENE−P =

2

3
nkBTλ0b. (31)

Furthermore, the filament radius in this region evolves linearly as R(III)(t) = σ(tbreak − t)/(6η(III)).

Considering the analogous regime in the SFEN model, for Azz ≈ b, Eq (16) reduces to ϵ̇(III) ≈M/2 which

reveals, by direct comparison with Eq (15), that

ϵ̇(III) = − 1

2ν
(III)
a

dν
(III)
a

dt
. (32)

Combining this result with the kinematic definition of the strain rate (Equation (18)) and integrating,

we obtain that

ν(III)a =
ν∗a
R∗4

(
R(III)

)4
(33)

where ν∗a and R∗ are the number density of bridged chains and the filament radius when this terminal

regime begins. It is clear that as the filament thins and R(III) decreases the number of bridged elastically

active chains decreases very rapidly.

Making use of the definition of the FENE term f (Eq (14)), we arrive at an analogous, strain-rate
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dependent expression to that of Entov and Hinch for the evolution in the nonlinear stretching of the

chains in regime III:

f (III) ≈
√
b

2X

[
(2ϵ̇λexit)

2/b − 1
]
. (34)

Neglecting the radial microstructural deformation Arr and the small contribution of the solvent stress,

the late-time force balance is given by

σ

R(III)(t)
≈ ν(III)a (t)kBTf

(III)(t)A(III)
zz (t). (35)

Substituting Equations (33) and (34) as well as the approximation A
(III)
zz ≈ b into this expression allows us

to obtain an expression for the evolution of the filament radius during regime III (non-dimensionalized by

its value at the start of the terminal regime, ξ(III)(t) = R(III)(t)/R∗), in terms of time non-dimensionalized

by the exit rate of network segments (τ = t/λexit):

∫
1

ξ(III)

[
1 +

1

K
(
ξ(III)

)5
]− b

2

dξ(III) =

∫
−dτ

4
(36)

where the constant K is given by

K =
1

2

[
ν∗akBTb

σ/R∗

](√
b

X

)
. (37)

The first term in Equation (37), in square brackets, is proportional to the ratio of the steady state

extensional stress of a dumbbell suspension [32] to the capillary pressure in the filament at the start of

regime III. From the definitions of b and X, we see that the second term, in parentheses, is the ratio of

the fully extended length of a network segment to the width of the energy activation barrier rc. We term

the inverse of this parameter the “stickiness number”, i.e.

Sk = X/
√
b. (38)

When Sk is small (or when K is large), which is achieved either by having network segments that are

extremely extensible (b → ∞), or by having negligibly wide junction energy wells (rc → 0), physical

association effects are negligible. In this limit, Equation (36) reduces to
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∫
1

ξ(III)
dξ(III) =

∫
−dτ

4
, (39)

and so the terminal filament thinning kinematics are exponential in nature with ξ ∼ exp (−τ/4).

Conversely, as Sk becomes larger, as achieved by either less extensible stiffer chains or a wide junction

energy well, network effects are no longer negligible. In this regime, as ξ(III) → 0, Equation (36) simplifies

to

∫
Kb/2

(
ξ(III)

)5b/2−1
dξ(III) =

∫
−dτ

4
, (40)

and an explicit analytical expression for the late-time decay of the filament radius can be found:

ξ(III) → (5b/8)
2
5b K−1/5(τcrit − τ)

2
5b , (41)

where τcrit is the non-dimensional breakup time of the filament. In practice, as a result of the difficulty of

obtaining an explicit analytic expression for τcrit in terms of the model parameters and initial conditions,

we estimate the value of this singular point numerically as the time at which the non-dimensional filament

radius ξ = R/R0 reaches a vanishingly small value (taken to be ξ ≤ 5× 10−8 in the present study).
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Numerical result
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b

Figure 3. Filament thinning dynamics of the SFENmodel, with ∆G = 6kBT , Ec = 0.1, and ϵ̇(II) = 3.8 s−1.
In (a), the effect of the stickiness number Sk on the evolution of the filament radius is shown for a value
of the finite extensibility parameter comparable to those estimated for the mucin macromonomers (b =
5000). The exponential elastocapillary (II) and terminal (III) thinning regimes described in Equations
(29) and (39) for the case of vanishing stickiness effects Sk → 0 are shown as the dotted and dashed
lines, respectively. In (b), the asymptotic decay to breakup of the SFEN model during filament thinning
experiments is shown as a function of time from the singularity (τcrit − τ) for four values of the finite
extensibility parameter b with the energy well width to the equilibrium macronomer size ratio fixed at
X = 10−3. The b-dependent decay during regime III (Equation (41)) is shown as the dotted line. The
final late-time linear decay of the filament radius as a result of the residual solvent contribution at very
small length scales is made apparent by the indication of the region with slope 1.

In Figure 3a, the SFEN predictions for the radial evolution of a thinning filament are shown for various

values of the stickiness number Sk. The exponential elastocapillary thinning regime (II) described in

Equation (29) for the limit of Sk → 0 and hence δ → 0 is shown by the dotted line. Clearly, as Sk

increases and network effects become large, the slope during regime (II) becomes increasingly steep, as

described in Equations (30) as well as the additional discussion in Appendix B, and the filament ruptures

earlier. In the limit of Sk → 0, the exponential terminal thinning dynamics described in Equation (39)

are recovered, as indicated by the dashed line. In Figure 3b, the late time asymptotics of the SFEN

model are shown as a function of time from the breakup singularity. Unlike the linear decay of a FENE-P

filament close to rupture [35], the evolution of the filament radius for the SFEN model in regime (III)

depends on the finite extensibility b of the network segments, although in practice this analytic result

saturates quickly for large values of b (see Equation (41)).
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When plotted in terms of Figure 3b which reflects distance from the finite time singularity corresponding

to filament rupture, it is clear that there is in fact a fourth thinning regime at very small length and

time scales. Once the associating mucin network has ruptured and polymer stresses have been removed,

solvent stresses present the only opposition to capillary pressure and (consistent with the appropriate

force balance in Equation (22)) a final universal linear decay of the filament is expected as shown in

Figure 3b with a slope of unity. This decay is faster than that for a FENE-P filament (Equation (31)) as

it arises from the viscous solvent alone [35]. We note here that Renardy has also investigated the breakup

behaviour of fluid filaments for a number of constitutive models [42, 43, 44, 45], and our results are

consistent with his conclusion that Newtonian breakup asymptotics are ultimately observed for finitely

extensible dumbbell models (although the functional forms of the FENE and SFEN stretch terms do, of

course, differ).

To summarize this section, we have developed a Sticky Finitely Extensible Network (SFEN) model for

an associating polymeric network whose parameters respect the known biological properties of mucin

molecules and whose dynamics can be related to the filament thinning theory traditionally used to

interpret CaBER experimental data. Interestingly, the terminal dynamics of this model depend on

the finite extensibility b of the network segments and on a dimensionless stickiness number Sk that

incorporates the width of the energy well and the length of the chains (c.f. Equations (11) and (38)).

With this analysis in place, we proceed in the following section to compare the predictions of the SFEN

model during CaBER filament thinning with experimental data of saliva at various sample ages tage,

and use these results to comment on the effect of enzymatic degradation on reported measures of saliva

extensional rheology.

4 Results and Discussion

Saliva samples used in this paper were obtained without stimulation following the procedure outlined in

[46]. Donors were instructed to refrain from eating or drinking for one hour prior to collection. Vacuum

was drawn in a closed collection vial using an Amersham VacuGene Pump, into which a tube terminating

in the donor’s mouth was inserted, and saliva was allowed to accumulate. Once collected, the saliva was

not treated and was stored at room temperature. All shear rheology tests were performed using a stress

controlled ARG2 rheometer (TA Instruments, New Castle, DE, USA) with a 60mm, 2◦ cone-and-plate
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fixture on a Peltier plate at a constant temperature T = 25 ◦C. Extensional rheometry tests were per-

formed using a Capillary Breakup Extensional Rheometer (CaBER, Cambridge Polymer Group) with

plate diameter D = 6mm, initial plate separation Li = 2mm and final plate separation Lf = 9.1mm.

The top plate reached its final height in a strike time of tstrike = 50ms using a stepper motor, and the

diameter of the resulting filament was tracked using a laser micrometer with a resolution of 10 µm.

In Figure 4a, the results of CaBER experiments are shown for measurements taken immediately after

sample procurement, as well as after the sample had been sitting (untreated, at room temperature) for

tage = 1, 3, 5, and 10 h. Data for the sample at tage = 24h are not shown since samples at that age were

unable to form filaments that persisted beyond the plate strike time of tstrike = 50ms. Consistent with

previous data from Zussman et al. [16], the experimental results show a clear exponential thinning region

(regime II) followed by rapid filament failure (regime III).

a
b

c

SFEN model 
Symbols: CaBER data 

0 hours

3 hours
1 hour

10 hours
5 hours

Figure 4. (a) Comparison of the SFEN model predictions with CaBER data for saliva at various sample
ages. In (b) and (c), the fitted values for the weight averaged macromonomer molecular weight MW

and the reaction probability p, respectively, are shown as filled circles, and the theoretical predictions for
the same parameters obtained using a randomly initiated depolymerization model are shown as the solid
lines.
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In Figure 5, the results of SAOS experiments (Figure 5a) and steady state flow (Figure 5b) for the same

samples discussed in Figure 4a as well as the sample at tage = 24h are presented. Small variations (less

than a factor of 2) are observed between the samples, and appear to be more likely attributable to sample

inhomogeneity than clearly discernible trends with sample age. A more detailed discussion of the steady

state flow data shown in Figure 5b and the predictions of the SFEN model in steady simple shearing flow

is presented in Appendix C.

a
G': filled
G'': unfilled

b
0 hours

3 hours
1 hour

10 hours
5 hours

24 hours

Figure 5. The shear rheology of whole saliva as measured by (a) small amplitude oscillatory shear (SAOS)
and (b) steady simple shear flow. In Appendix C we show that in the shear-thinning regime, the SFEN
model predictions are only weakly dependent on the sample age (set using the appropriate parameters
from Table II), in agreement with our experimental observations.

The dependence of the moduli on the angular frequency, shown in Figure 5a, is nearly power-law like in

nature; a signature of physically associated biopolymer networks with very large numbers of interaction

modes [47]. As a result, no clear unique plateau value of the storage modulus can be defined (as expected

[26]), and so we take as an approximate value Gs ≈ 2.5 ± 0.5Pa for all sample ages. Using Equation

(1), this fixes the molecular weight of each sticky segment at MW,s ≈ 2.3 × 105Da, which results in

approximately z = 9 sticky segments per muc-mer. In all cases, as seen in Figure 5b, saliva viscosity is

quite strongly shear thinning (with a power law index n ≈ 0.11) with no evidence of a plateau viscosity

at low shear rates, and an asymptotic solvent viscosity of ηs ≈ 10−3 Pa s. We note that this broad power-

law frequency dependence can be described quantitatively in compact form using the fractional Maxwell

model, as has been recently shown in [48].
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Further, recognizing that the real mucin system is polydisperse [14], we define the initial, mass-averaged,

molecular weight of an entire MUC5B molecule as ⟨MW (tage = 0)⟩ = MW (tage = 0) = 150MDa [19],

where ⟨...⟩ denotes an ensemble average. The width of the energy wells rc is obtained by manually fitting

the SFEN model to the experimental data in order to achieve a consistent filament breakup time using

the fixed, remaining parameters at tage = 0h. The obtained result of rc = 8.35 nm is consistent with ex-

perimental data from Israelachvili and Pashley on the distance over which the strength of a hydrophobic

interaction decays exponentially (l ≈ 10 nm) [49] as well as the Debye length for electrostatic interactions

in biological systems (l ≈ 1 − 3 nm) [50]. Finally, the rate of filament decay in regime II (ϵ̇(II)) for each

saliva sample is obtained by fitting the exponential thinning region of the appropriate CaBER data set

in Figure 4a to the expression ξ(II) ∼exp
(
− ϵ̇(II)

2 t
)
.

Using the shear rheological data presented in Figure 5 along with the various parameter definitions from

this and previous sections, we can define the full set of 10 parameters needed for the SFEN model, which

we use to fit the CaBER data in Figure 4a. These parameters are summarized in Table I, and their

numerical values are provided. In Appendix D, we investigate the effect of varying a subset of these

physical parameters on the filament thinning dynamics.

TABLE I. List of SFEN model parameters, along with their definitions and numerical values. The effect
of varying a subset of these parameters on the filament thinning dynamics is considered in Appendix D.

Parameter Definition Numerical value

MW Mass-averaged molecular weight of MUC5B molecule 150MDa at tage = 0h

MW,s Molecular weight between association points 230 kDa

MW,k Kuhn segment molecular weight 57.1 kDa

bk Kuhn length 14 nm [22]

rc Energy well width 8.35 nm

∆G Energy well depth 6kBT

c MUC5B concentration in saliva 0.23 kgm−3 [19]

ηs Solvent viscosity 1× 10−3 Pa s

σ Saliva surface tension 72× 10−3Nm

R0 Initial filament radius (CaBER experiment) 5× 10−4m
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In Figure 4a, the filament thinning predictions of the SFEN model are compared with CaBER data at

various sample ages. The CaBER data is collected from the time that the plate separation has occurred

(and hence the time reported is actually (t− tstrike) to be consistent with the model), and the measured

radius is normalized by the filament radius R0 at the time the plates have separated. The initial condition

for the filament radius of the SFEN model is taken to be R(t = 0) = R0, but since the model does not

account for the initial plate separation period, the initial axial microstructural stretch is taken to be

slightly larger than the equilibrium value of Azz = 1 but still much smaller than the maximum value of

the finite extensibility parameter b, namely A0
zz/b ≈ 0.05. The initial radial microstructural deformation

value is set to the equilibrium value of A0
rr = 1 and all chains are assumed to be in their equilibrium

configuration such that νa(t = 0) = νa,eq = ν/2. Visual inspection confirms that Equation (30) provides

a good estimate for the network junction rate λ−1
exit for the first two age points (tage = 0h and tage = 1h),

but at later sample ages when the extensibility is reduced a higher order estimate is needed (see the

discussion in Appendix B). For both expressions, we use the implicit expression for A
(II)
zz at the transition

between regimes (I) and (II) provided in [39] to approximate δ and hence the destruction rate M , where

we take the polymer viscosity to be ηp = νkBT/(3ϵ̇
(II)).

Esser et al. have shown that the distribution of protein molecular weight in saliva is highly sensitive to

sample age as a result of enzymatic activity and protein breakdown [14]. Consequently, we hypothesized

that the dramatic decrease in elasticity observed in the filament thinning data shown in Figure 4a as

the saliva samples age could be attributed to a time-dependent decrease in the mass-averaged molecular

weight of the mucin molecules. For tage > 0 h, the same procedure previously described was used to fit

the mass-averaged molecular weight MW (t) for all of the sample ages considered. In so doing, we assume

that the width of the activation barrier rc measured at tage = 0h as well as all other parameters except

for the finite extensibility (b = 3MW /Mk) and the network exit junction rate λ−1
exit remained constant

with age. The fitted results for MW (t) are shown as the solid circles in Figure 4b, and a summary of the

age-dependent SFEN model parameters at all sample ages is provided in Table II.
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TABLE II. Age-dependent SFEN model parameters for saliva. For stickiness numbers Sk & 5.0× 10−4,
the higher order approximation relating the network junction exit rate (λ−1

exit) to the rate of filament
decay in regime II (ϵ̇(II)) presented in Appendix B was used. These values are indicated by an asterisk.

tage[ h] MW [MDa] ϵ̇(II) [s−1] λ−1
exit [s

−1] b Sk

0 150 3.8 3.8 8000 2.2×10−4

1 102 5.2 4.9 5500 3.3×10−4

3 45 19 7.5∗ 2400 7.4×10−4

5 34 43 16∗ 1800 9.8×10−4

10 33 68 24∗ 1800 1.0×10−3

It is clear from Table II that the finite extensibility of the elastic network strands decreases dramatically

with age (b ∼MW ), and this increases the nonlinearity in the FENE springs which then increases the exit

rate of chains from the associative network (c.f. Equation (11)). This is confirmed by the experimental

observation of a strong dependence of the extensional properties of saliva on sample age, as measured by

both the rate of filament thinning in the intermediate elastic time (see Table II and Equation (30)) and

the time to breakup for the data CaBER presented in Figure 4a. By contrast, in the shear thinning reimge

the shear rheology is relatively age-invariant as seen in Figure 5. This latter finding, discussed in addi-

tional detail in Appendix C, could be related to the fact that while the chains shorten due to enzymatic

activity, the concentration of mucin remains constant, and hence shear measurements at moderate strain

values remain largely unaffected as the product (cMW ) is unchanged. Our SFEN model is able to capture

the evolution in the extensional viscosity through allowing a single parameter (MW (t)) to decrease with

sample age. The very rapid rupture of the filament just before breakup at young sample ages is quite

distinct from that observed in high molecular weight polymer solutions, and is also well described by the

model through the incorporation of the stretch-dependent dissociation term (see Equation (11)). Indeed,

for young samples (small tage), the mass-averaged molecular weightMW and hence the finite extensibility

parameter b are large, resulting in a small value of the stickiness number Sk (Equation (38)). Consistent

with Figure 3a, the thinning filaments are able to persist for longer, but their eventual breakup is more

dramatic and sudden. Conversely, following degradation, the relatively less extensible mucin chains lead

to larger values of Sk, and the lifetime of the filaments correspondingly decreases.

We model the enzymatic ‘cutting’ of the concatenated mucin chains as a randomly initiated depolymer-
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ization [51] process of the concatenated muc-mers. Indeed, the assembly (or disassembly in our case) of

supramolecular networks is often analyzed in the framework of classical polymerization theory (see the

book chapter by Anthamatten [52] for additional details). In a step growth polymerization process, the

weight fraction distribution of molecules nc muc-mers in length is given byWc(nc) = nc(1−p)2pnc−1 [53],

where p is the degree of polymerization. From this definition, it follows that the mass-averaged, most

probable number of concatenated muc-mers in a molecule is given by

n∗c =
∑
nc

ncWc = (1 + p)/(1− p). (42)

Using the fitted values of the mass averaged molecular weight MW = n∗c ×MW,MUC from Table II, the

degree of polymerization p can be found at each sample age time point tage using this formula. These

results are shown as solid circles in Figure 4c.

For randomly initiated depolymerization in which complete degradation of all molecules is expected,

MacCallum [51] has shown that the reaction probability p can be approximated to vary linearly in time

as p(t) = p0−αt, where α is the degradation rate and p0 is the initial degree of polymerization. Although

the exact magnitude of α depends on the initial distribution of polymer molecular weights, this simple

linear relationship holds even without such information [51]. From this result and Equation (42), it is

straightforward to obtain that the mass-averaged molecular weight of the mucin molecules should vary

in time as

MW (t) =MW,MUC

[
1 +

2
1

p0−αt − 1

]
. (43)

These predicted expressions for p(t) and MW (t) are fit to the experimental data and shown as the solid

lines in Figures 4b and 4c. From these fits, we obtain an estimate for the muc-mer degradation rate as

α = 0.011 h−1, and p0 = 0.97.

5 Conclusion

In conclusion, we have shown that the transient extensional rheology of whole saliva (as measured with

CaBER) is extremely sensitive to sample age (Figure 4a), while the corresponding shear rheological prop-
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erties (SAOS and steady state flow, as shown in Figures 5a and 5b respectively) are relatively invariant.

In order to explain these observations, we have developed a Sticky Finitely Extensible Network (SFEN)

model based on the approach of Tripathi et al. [8], which respects the known biological dimensions of

mucins, and models saliva as an associating network of finitely extensible elastic segments. This model

incorporates linear viscoelasticity as well as filament thinning and network rupture, and is likely to prove

useful for modeling a number of biopolymeric networks under various flow conditions. Capillary thinning

experiments prove particularly useful because we show (c.f. Equation (30)) that the rate of filament

thinning during regime II is a direct measure of the exit rate of chain segments from the network. The

stretch-dependence of this exit rate is taken into account by the SFEN model and results in progressively

faster network rupture as the filament thins.

By assuming a decrease in the mass-averaged molecular weight of the MUC5B molecules with sample

age (consistent with salivary measurements of enzymatic activity and protein degradation [14]), the fi-

nite extensibility b of the network chains decreases as well, resulting in an increase in the importance

of supramolecular network effects, which are quantified by a newly-introduced stickiness parameter Sk.

Increasing values of Sk lead to more rapid growth in elastic stresses and sudden rupture of the network

as shown in Figures 3a and 4a. This final rupture is much faster than the rate of thinning predicted by

the FENE-P model for extensible polymer solutions [35, 37].

Our measurements and corresponding model for the evolution in network extensibility and molecular

weight demonstrate the importance of carefully monitoring and stating sample age in reports of saliva

and mucin network rheology. This provides a plausible explanation for why previous rheological data

on saliva reported in the literature varies so greatly, and emphasizes the care that should be taken in

interpreting diagnostic information from rheological measurements of saliva if sample age and degradation

are not accounted for.
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A Appendix A: Determination of the microstructural deformation at

the transition point between regimes I and II

In a previous study of the filament thinning dynamics of FENE-P fluids, Wagner et al. [39] have provided

an implicit analytic expression for the axial microstructural deformation A∗
zz at the transition between the

viscocapillary filament thinning regime (I) and the elastocapillary regime (II). This result is constructed

by equating the expressions for the filament thinning rate ϵ̇ and the axial microstructural deformation

Azz during regimes I and II at the transition time t∗ between the two regimes, as illustrated in Figure 6a.

a b

I

II

Figure 6. (a) Evolution of the axial microstructural deformation Azz (solid black curve) near the transition
time t∗ between regimes I and II. The curve corresponding to the analytic expression for Azz during the
viscocapillary regime (Equation (A.3)) is shown as the dashed blue line, and the approximate value of
A∗

zz calculated using the method outlined in Wagner et al. [39] is shown as the black dashed-dotted line.
(b) Full temporal evolution of Azz (solid black line) and the network junction destruction rate M (dotted
red line) for the model parameters in Table II corresponding to tage = 0h (b = 8000, λ−1

exit = 3.8 s−1). The
value of the finite extensibility b = 8000 is shown as the black dashed line, and the approximate values

of A
(II)
zz and M (II) at the crossover from regime I to regime II are shown as the dashed-dotted black and

red lines, respectively.

During regime I (before the polymer chains experience significant microstructural deformation), the
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viscous stress of the solvent presents the primary opposition to capillary pressure, and hence Equation

(22) can be approximated as

σ

R
= 3ηsϵ̇visc. (A.1)

For a low viscosity solvent such as water, this results in a high initial rate of thinning. At the critical time

t∗ when regime II begins and viscous and polymer stresses are of the same order, Equation (A.1) must

hold simultaneously with the complete force balance (suitably modified to account for the previously

outlined assumptions valid in the case of negligible sticky effects: b≫ Azz ≫ Arr, f ≈ 1 [35]):

σ

R
= 3ηsϵ̇

∗ + νakBTA
∗
zz, (A.2)

which implies that the strain rate must drop in regime II to some lower value ϵ̇∗ < ϵ̇∗visc. Furthermore, the

axial microstructural deformation at the transition time t∗ must be continuous between both regimes. It

is straightforward to show using Equation (20) from the main text (with M = L = λ−1
exit) that during the

viscocapillary regime (I), the evolution equation for Azz is given by

Azz,visc =

(
tc

tc − t

)4

exp

(
− t

λexit

)
, (A.3)

where tc is the breakup time of a purely Newtonian fluid tc = 6ηsR0/σ [39] and λexit is the lifetime of

network junctions as defined in Equation (30). This result is shown as the dashed blue line in Figure 6a,

while the full numerical solution of Azz is shown as the solid black curve. Additionally, as seen in Figure

6a, at the onset of regime II when sticky effects are still negligible, the rate of change of Azz is very small.

Hence, using the assumption dAzz/dt ≈ 0 and the FENE-P evolution equation for Azz, Wagner et al.

[39] show that the axial microstructural deformation at the transition between regimes I and II can be

written as

Azz = b

(
1− 1

2λexitϵ̇∗

)
. (A.4)

Although the FENE-P and SFEN evolution equations for Azz differ (as a result of the incorporation of the

network junction destruction (M) and reformation (L) terms in the case of the latter model), numerical

simulations reveal that in regime I and early in regime II, before chain stretching and network dissociation

effects become important, the approximation in Equation (A.4) is also reasonable for the SFEN model.
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Therefore, combining and rearranging Equations (A.1)-(A.4), an implicit result for the transition time t∗

can be found as:

1

2

(
1−

exp (− t∗

λexit
)

b

(
tc

tc − t∗

)4
)−1

=

2λexit
(tc−t∗) +

νakBTbλexit
3ηs

1 + 2νakBTbλexit
3ηs

. (A.5)

Solving this expression numerically for t∗ and inserting the result into Equation (A.3) yields the de-

sired value of A∗
zz. For the conditions at tage = 0h given in Table II, we find that A∗

zz ≈ 510 and

t∗ ≈ 0.33× 10−4 s. The elastocapillary thinning regime (II) is thus entered very quickly.

In Figure 6b, the full temporal evolution of Azz is shown for the parameters corresponding to tage = 0h

in Table II as the solid black curve. We note that in order to clearly illustrate the expected evolution of

Azz during all filament thinning regimes in Figure 6b, Azz was initialized at its true equilibrium value

of Azz(t = 0) = 1 as opposed to the slightly higher value chosen in Figure 4a that accounts for the

axial microstructural deformation incurred during the initial period of plate separation during CaBER

experiments (which is not accounted for in this asymptotic analysis). As can be seen, the value of A∗
zz

calculated implicitly provides an excellent approximation for the value of the axial microstructural defor-

mation at the transition point between regimes I and II. Further, the maximum value of Azz at filament

breakup is the finite extensibility b (shown by the dashed black line), as expected.

In order to demonstrate how this result is useful for determining the chain segment destruction rate

during regime II (denoted M (II) in Section 3.2.1 of the main text), we also plot the evolution of M in

Figure 6b as the dotted red line. As can be seen, the assumption of a nearly constant destruction rate

M (II) during this regime (calculated using the result for A∗
zz as well as Equations (23) and (24)) is a

reasonable one, and the quantitative agreement between the the full numerical solution for M during

regime II and the approximate value of M (II) is quite good. Without the use of Equations 23 and 24, the

equilibrium expressionMeq ≈ 1/λexit = 3.8 s−1 significantly underpredicts the exit rate from the network.
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B Appendix B: Filament thinning rate in the limit of large sticky

effects

We begin by noting that Equation (24) can be rewritten in terms of our new stickiness parameter defined

in Equation (38):

δ =

√
A

(II)
zz b

1−A
(II)
zz /b

Sk =

√
A

(II)
zz /b

1−A
(II)
zz /b

(bSk) . (B.1)

As sticky effects become increasingly important, the Taylor series expansion for the destruction rate M

and the predicted near time-invariance of the number density of bridged sticky segments νa (Equations

(23) and (25), respectively) become less and less accurate. Although the first effect is difficult to mitigate

due to the large values of b relevant to the biological system in this study, it is possible to address the

second and in doing so improve our analytic result during regime II by recognizing that in the limit of

large sticky effects, the product of the stress-dependent network dissociation term M and the number

density of bridged segments νa dominates over the product of the rejoining term L and the number

density of dangling segments (ν − νa). As such, Equation (15) is better approximated as

dν
(II)
a

dt
≈ −(1 + δ)

λexit
ν(II)a , (B.2)

which can readily be solved to yield

ν(II)a (t) ≈ ν

2
exp

(
− t(1 + δ)

λexit

)
(B.3)

using the same initial condition as before of νa(t = 0) = νa,eq = ν/2. In this case, substitution of

Equations (B.3) and (27) into (28) yields a similar expression for the evolution of the filament radius

during regime II

ξ(II)(t) ≈
(
Ec

2

) 1
3

exp

(
−2(1 + δ)t

3λexit

)
, (B.4)

although it is clear that now the rate of filament thinning is increased due to sticky finitely extensible

segments being pulled out of the network. The network junction exit rate and the filament thinning rate

are hence related through:

31



ϵ̇(II) = −2

ξ

dξ

dt
≈ 4

3
(1 + δ)λ−1

exit. (B.5)

C Appendix C: Comparison of experimental data and SFEN model

predictions for shear rheological experiments

In the main text, we discussed the response of the SFEN model to both steady simple elongational flow

as well as during the axisymmetric uniaxial elongational flow relevant to CaBER experiments. Here, we

consider steady simple shearing flow [vx = γ̇y, vy = 0] (where γ̇ is a spatially uniform, constant shear

rate) in order to compare the SFEN model predictions with the shear rheological data presented in Figure

5.

The evolution equations for the microstructural deformation tensor during a transient simple shearing

flow are readily found to be

dAxx

dt
= 2γ̇Axy −MAxx + L, (C.1)

dAxy

dt
= γ̇Ayy −MAxy, (C.2)

and

dAyy

dt
= −MAyy + L, (C.3)

where the expressions for M and L are given in Equations (11) and (12), respectively, and the evolution

equation for the number of bridged, active chain segments is given in Equation (15). The expression for

Azz is identical to the one for Ayy. Following the procedure described in the main text, these coupled

differential equations can be integrated simultaneously using a numerical solver with the initial conditions

νa = νa,eq, Axx = 1, Axy = 0, and Ayy = 1 to calculate the response in a simple shearing flow. From

the steady state value of Axy, the shear viscosity at a given shear rate can then readily be found from

η(γ̇) = ηs + τxy/γ̇, where τxy = νakBTf(tr(A))Axy.
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In addition to computing the evolution in the shear viscosity by integrating the above system of equations

numerically, a semi-analytic expression can also be developed. We begin by solving Equations (C.1)-

(C.3) simultaneously at steady state to obtain expressions for the components of the microstructural

deformation tensor:

Axx =
L

M

(
1 +

2γ̇2

M2

)
, (C.4)

Axy =
γ̇

M2
L, (C.5)

and

Ayy =
L

M
. (C.6)

To simplify notation, we let T = tr(A) = Axx+2Ayy, and note here that the destruction rateM =M(T )

only (c.f. Equation (11)). From Equations (C.4) and (C.6) we consequently obtain that

T =
2γ̇2L

M3
+

3L

M
=

L

M

(
3 + 2

γ̇2

M2

)
. (C.7)

Rearranging Equation (C.7), an explicit expression for the dependence of the shear rate γ̇ on the trace

of the microstructural deformation tensor can be found as

γ̇ =
M√
2

[
MT

L
− 3

]1/2
. (C.8)

Substituting this expression into Equation (C.5), Axy can similarly be expressed in terms of T only:

Axy =
L√
2M

[
MT

L
− 3

]1/2
. (C.9)

By solving for the values of γ̇(T ) and Axy(T ) at various values of T within in its physical range of

3 ≤ T ≤ b, the dependence of Axy on γ̇ can readily be constructed.

In Figure 7, the SFEN model predictions for the shear viscosity η(γ̇) as a function of the shear rate γ̇ are

plotted as dashed lines for each sample age tage at which CaBER experiments were performed using the

appropriate model parameters listed in Table II. In addition, we also plot the result of the semi-analytic
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solution (filled red diamonds) given in Equations (C.8) and (C.9) for the set of parameters from Table II

corresponding to tage = 0h, and excellent agreement with the full numerical solution is observed.

 SFEN numerical result
0 hours

3 hours

1 hour

10 hours

5 hours

Semi-analy�c result (0 hours) 

Figure 7. The numerical predictions of the SFEN model under steady simple shearing flow conditions for
the parameter sets in Table II corresponding to all five sample ages at which CaBER experiments were
performed (dashed lines). In addition, the the semi-analytic SFEN result for tage = 0h is shown as filled
red diamonds.

As can be seen in Figure 7, the largest effect of sample aging predicted by the SFEN model under steady

simple shearing flow conditions is a steady decrease in the zero shear-rate viscosity η0. This can easily be

understood from the limiting expression presented in Section 3 for this parameter, η0 = ηs+νkBTλexit/2,

as well as the significant increase in the junction exit rate λ−1
exit as a function of sample age reported in

Table II. During the regime of strong shear thinning, however, only a minimal variation between the

steady state shear flow curves η(γ̇) corresponding to the various sample ages is predicted by the model.

This is in keeping with our experimental observation of the shear rheology of saliva being relatively in-

sensitive to sample aging and the associated enzymatic degradation of the mucin macromolecules (Figure

5), in contrast to the strong decrease observed in its extensional rheology (Figure 4a).

Although certain features of the experimental steady state flow data (Figure 5b) are well described by

the SFEN model, complete qualitative and quantitative agreement cannot be expected. In particular, the

model prediction of a well-defined zero shear-rate viscosity stands in sharp contrast to the experimental
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data, which suggests that η(γ̇) diverges with a weak power-law dependence on the shear rate as γ̇ → 0.

If a zero shear-rate viscosity does exist for the saliva sample at tage = 0h, it must occur for values of

γ̇ below the minimum shear rate measured and reported in Figure 5b, γ̇ = 0.1 s−1. Hence, the onset of

experimental shear thinning at γ̇∗λexit ≈ 1 would occur at a critical shear rate γ̇∗ substantially smaller

than that predicted by the SFEN model (γ̇∗ ≈ 10 s−1 for tage = 0h). This suggests that the longest

relaxation timescale for undegraded saliva under steady state shearing flow conditions is in fact much

longer than that derived from the rate of filament thinning during CaBER experiments, ϵ̇(II), from which

the characteristic time scale λexit of the SFEN model is calculated (Equation (30)). This is consistent

with the experimental results from several other studies of the shear and extensional rheological proper-

ties of associating polymer networks. For instance, Kheirandish et al. found that the longest relaxation

time measured in small amplitude oscillatory shear flow was up to two orders of magnitude larger than

that measured using CaBER for solutions of hydrophobically modified alkali-swellable emulsion (HASE)

polymers [54], and up to four orders of magnitude larger in solutions of their non-hydrophobically modi-

fied (ASE) counterparts [55]. We note that the longest relaxation time from shear for the ASE polymer

solutions was measured using both small amplitude oscillatory shear flow as well as by fitting a Giesekus

model to steady state shear flow data [55]. Similar findings have also been reported in highly viscous

alginate solutions by Storz et al. [56] and Rodŕıguez-Rivero et al. [57].

Physically, biopolymers such as mucin generally possess complex, hierarchical microstructures with nu-

merous types of interaction moieties which enable a range of intermolecular associations of different

strengths [10]. Consequently, the rheological response of solutions of such supramolecular assemblies

cannot typically be characterized well by a single relaxation mode or timescale [47, 48]. Indeed, using

a molecular model for associative polymer networks, Groot et al. have shown that inter-chain physical

association dramatically broadens the linear viscoelastic spectrum of these solutions and results in a

substantially lower crossover frequency during SAOS [58]. Similarly, using a time marching algorithm

that accounts for hindered fluctuations, Ahmadi et al. have shown that the relaxation time of solutions

of entangled polymers with sticky side groups increases as the number of stickers is increased [59]. We

can expect then that during experiments in which only small, linear deformations are imposed, the in-

corporation of this broad spectrum of relaxation modes into the constitutive model will be essential for

quantitative predictions of experimental data. By contrast, during the large, non-linear deformations

associated with filament thinning experiments and also in high shear rate steady state flow measure-
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ments, significant network stretching and flow alignment disrupts these slow supramolecular relaxation

modes, and a single characteristic time-scale (such as λexit in the case of the SFEN model) is sufficient to

characterize the fluid rheological response. Finally, the SFEN model assumes that only bridged segments

contribute to the polymer stress response, when in reality a variety of configurations and multichain

structures which all relax and contribute differently to the overall polymer stress are possible for chain

segments with functionalized end groups. These configurations, such as loops and higher order bridged

structures, have been illustrated in schematic form by Annable et al. [60]. These different supramolecu-

lar configurations play an increasingly important role when chain stretch is more modest and junctions

are readily both created and destroyed, whereas during large chain stretching and high rates of network

destruction, the rheological contributions of these higher order assemblies is expected to be less prominent.

In summary, we note that although the predictions of the SFEN model under uniaxial flow conditions

agree quantitatively with our CaBER measurements for saliva and are also in qualitative agreement with

our observations in steady state shear flow, the development of a constitutive model capable of quantita-

tively capturing both the non-linear rheological response of associating polymer networks as well as their

very broad relaxation spectra during linear viscoelastic deformations remains an open challenge.

D Appendix D: Effect of varying the SFEN model parameters on the

predicted filament thinning dynamics

In Figure 8, we assess the effect of varying the magnitude of the finite extensibility b (8a), energy well

depth ∆G (8b), energy well width rc (8c), and initial filament radius R0 (8d) on the filament thinning

dynamics predicted by the SFEN model. We do so by plotting the predicted temporal evolution of the

non-dimensional filament radius ξ(t) = R(t)/R0 for the original set of parameters given in Tables I and

II at tage = 0h (solid black curves) as well as when a single parameter among this subset of four variables

is varied (dotted red and dashed blue curves).

These particular parameters were selected as a result of the important role they play in setting the

key physical groups relevant to the SFEN model: the finite extensibility b and the energy well width

rc strongly influence the magnitude of the dimensionless stickiness parameter Sk defined in Equation
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(38), which dominates the late time asymptotic filament dynamics as evidenced in Equations (36) and

(37). In addition, b fixes the flexibility of the associated mucin molecules, which determines when the

onset of non-linear chain stretching and rapid network junction destruction occurs (Equation (11)). The

capillary pressure σ/R0 is the driver for filament thinning throughout the CaBER experiment, and thus

plays an important role during all four regimes. Finally, the most complex interaction to understand

systematically is the role of of the energy well depth ∆G. Naturally, this parameter affects the number

of elastically active chain segments ν, as seen in Equation (2), although in practice this effect saturates

quickly as ∆G grows and ν → n. We note that although the energy well depth undoubtedly affects the

exit rate of network junctions Ωexit (Equation (3)), in experiments with natural or reconstituted biopoly-

mer gel networks such as saliva it is impossible to determine the scale parameter g(c,MW,s) (defined in

Equation (9a)) independently. This is because one cannot easily vary the molecular weight or the mass

concentration of a single purified component of these gels (which was possible for solutions of the synthetic

linear telechelic block copolymer HEUR chains used in the groundbreaking experiments of Annable et

al. [60]). The composite parameter g(c,MW,s)Ω exp (−∆G/kBT ) (see Equation (11)) is thus fitted to

filament thinning data of the as-constituted mucin network in order to satisfy the relationship between

the filament thinning rate in regime II (ϵ̇(II)) and the lifetime of network junctions (λexit) outlined in

Equation (30). Therefore, to explore theoretically how changes in the energy well depth of the associative

stickers would change the filament thinning rate observed experimentally, we use a gedankenexperiment

in which we hold g(c,MW,s)Ω constant and vary the well depth by ±1kBT per molecule.

37



  Effect of finite extensibility

rc
  Effect of energy well width

a b

c d

  Effect of energy well depth

  Effect of filament radius

Figure 8. Effect of varying the finite extensibility b (a), the energy well depth ∆G (b), the energy well
width rc (c), and the initial filament radius R0 (d) on the temporal evolution of the non-dimensional
filament radius ξ predicted by the SFEN model. The solid black curves in each model correspond to
the original set of parameters defined in Tables I and II for the sample at tage = 0h. The dashed blue
and dotted red lines correspond to the predictions of the SFEN model with a single parameter changed
compared to this original set, with the new value indicated in the figure. In (a), the stickiness parameters
associated with each curve are Sk = 6.3 × 10−4 for b = 103, Sk = 2.2 × 10−4 for b = 8 × 103, and
Sk = 6.3 × 10−5 for b = 105, while in (b) Sk = 2.7 × 10−4 for rc = 10nm, Sk = 2.2 × 10−4 for
rc = 8.35 nm, and Sk = 1.6× 10−4 for rc = 6nm.

As can be seen from Figure 8, the sensitivity of the SFEN model predictions to the values of the model

parameters varies. For instance, as b is changed from b = 8 × 103 to b = 1 × 103 and from b =

8× 103 to b = 1× 105 (Figure 8a), the slope during the exponential thinning regime remains essentially

unchanged, and the time to breakup changes by approximately 15% and 5%, respectively. The SFEN

model predictions are more sensitive to the choice of the energy well depth (∆G) and width (rc), as well

38



as the initial filament radius R0 (or, equivalently, the surface tension σ). Increasing or decreasing the

energy well depth by 1kBT (Figure 8b) modifies the slope during regime II substantially, and results in

an approximately 168% increase or 63% decrease in the time to breakup, respectively. In the case of rc,

as seen in Figure 8c, the time to breakup decreases by approximately 13% as the energy well width is

increased from rc = 8.35 nm to rc = 10nm, and increases by approximately 20% as rc is decreased to

rc = 6nm. As for the initial filament radius R0, the time to breakup varies by approximately 35% as

R0 is either doubled or halved from its original value of R0 = 0.5mm, as seen in Figure 8d. Clearly

then, although the numerical values of the SFEN model parameters do all lie within the expected range

based on what they represent physically, small modifications to these parameters undoubtedly affect the

filament thinning dynamics predicted by the model. As such, independent measurement of the model

variables using other experimental techniques (such as estimation of the persistence length lp [22] and

energy well depth [61] from dynamic light scattering data and measurement of the linear viscoelastic

spectra and fluid microstructure using atomic force microscopy [62] or microrheology [1]) is essential for

quantitatively describing the rheological response of other biopolymer networks using the SFEN model.
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[57] C. Rodŕıguez-Rivero, L. Hilliou, E. M. Mart́ın del Valle, and M. A. Galán. Rheological characteriza-

tion of commercial highly viscous alginate solutions in shear and extensional flows. Rheologica Acta,

53(7):559–570, 2014.

[58] R. D. Groot, A. Bot, and W. G. M. Agterof. Molecular theory of the yield behavior of a polymer

gel: Application to gelatin. The Journal of Chemical Physics, 104(22):9220–9233, 1996.

[59] M. Ahmadi, L. G. D. Hawke, H. Goldansaz, and E. Van Ruymbeke. Dynamics of Entangled Lin-

ear Supramolecular Chains with Sticky Side Groups: Influence of Hindered Fluctuations. Macro-

molecules, 48(19):7300–7310, 2015.

[60] T. Annable, R. Buscall, R. Ettelaie, and D. Whittlestone. The rheology of solutions of associating

polymers: Comparison of experimental behavior with transient network theory. Journal of Rheology,

37(4):695–726, 1993.

[61] C. Semmrich, T. Storz, J. Glaser, R. Merkel, A. R. Bausch, and K. Kroy. Glass transition and

rheological redundancy in F-actin solutions. Proceedings of the National Academy of Sciences,

104(51):20199–20203, 2007.

[62] J. Alcaraz, L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farré, and D. Navajas. Microrheol-
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