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SUMMARY

The diverse malignant, stromal, and immune cells in tumors affect growth, metastasis and 

response to therapy. We profiled transcriptomes of ~6,000 single cells from 18 head and neck 

squamous cell carcinoma (HNSCC) patients, including five matched pairs of primary tumors and 

lymph node metastases. Stromal and immune cells had consistent expression programs across 

patients. Conversely, malignant cells varied within and between tumors in their expression of 

signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-to-

mesenchymal transition (p-EMT). Cells expressing the p-EMT program spatially localized to the 

leading edge of primary tumors. By integrating single-cell transcriptomes with bulk expression 

profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal 

†Corresponding Authors: Itay Tirosh (itay.tirosh@weizmann.ac.il), Derrick Lin (derrick_lin@meei.harvard.edu), Aviv Regev 
(aregev@broadinstitute.org), Bradley Bernstein (bernstein.bradley@mgh.harvard.edu).
*These authors contributed equally to this work.
‡Lead contact

AUTHOR CONTRIBUTIONS
S.V.P., I.T., A.S.P, A.P.P., S.G., and C.R. designed and performed experiments. C.L.L. and R.M. provided guidance for FACS analyses, 
K.Y. assisted with WES, and W.C.F. led all histology. E.A.M., K.S.E, D.G.G., M.A.V., O.R., and J.W.R. provided input on 
experimental and study design. S.V.P., I.T., and A.S.P. wrote the manuscript with input from A.R. and B.E.B.. D.T.L., A.R., and B.E.B. 
supervised the project.

HHS Public Access
Author manuscript
Cell. Author manuscript; available in PMC 2018 December 14.

Published in final edited form as:
Cell. 2017 December 14; 171(7): 1611–1624.e24. doi:10.1016/j.cell.2017.10.044.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



composition, and established p-EMT as an independent predictor of nodal metastasis, grade, and 

adverse pathologic features. Our results provide insight into the HNSCC ecosystem and define 

stromal interactions and a p-EMT program associated with metastasis.
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Single-cell RNA sequencing; metastasis; head and neck squamous cell carcinoma; epithelial-to-
mesenchymal transition; tumor microenvironment

INTRODUCTION

Genomic and transcriptomic studies have revealed driver mutations, aberrant regulatory 

programs, and disease subtypes for major human tumors (Stratton et al., 2009; Weinberg, 

2014). However, these studies relied on profiling technologies that measure tumors in bulk, 

limiting their ability to capture intra-tumoral heterogeneity. Substantial evidence indicates 

that intra-tumoral heterogeneity among malignant and non-malignant cells, and their 

interactions within the tumor microenvironment (TME) are critical to diverse aspects of 

tumor biology (Meacham and Morrison, 2013; Weinberg, 2014).

Recent advances in single-cell genomics provide an avenue to explore genetic and functional 

heterogeneity at a cellular resolution (Navin, 2015; Tanay and Regev, 2017). Single-cell 

RNA-seq (scRNA-seq) studies of human tumors, circulating tumor cells (CTCs) and patient-

derived xenografts have revealed new insights into tumor composition, cancer stem cells, 

and drug resistance. However, scRNA-seq studies have not deeply characterized epithelial 

tumors, despite their predominance. In these tumors, metastasis to draining lymph nodes 

(locoregional metastasis) and other organs (distant metastasis) represents a major cause of 

morbidity and mortality. Metastases are often treated based on molecular and pathologic 

features of the primary tumor, raising the question of whether they share the same genetics, 

epigenetics, and vulnerabilities. However, the potentially different composition of primary 

tumors and metastases hinders the straightforward comparison of bulk tumor profiles. 

Single-cell expression profiling studies would, in principle, offer a compelling alternative.

Epithelial-to-mesenchymal transition (EMT) has been suggested as a driver of epithelial 

tumor spread (Gupta and Massague, 2006; Lambert et al., 2017). The process of EMT is 

fundamental to embryonic development and may be co-opted by malignant epithelial cells to 

facilitate invasion and dissemination (Thiery et al., 2009; Ye and Weinberg, 2015). EMT 

markers have been detected on CTCs associated with metastatic disease (Ting et al., 2014; 

Yu et al., 2013). However, since most EMT studies have focused on laboratory models, the 

extent and significance of EMT in primary human tumors and metastases remains 

controversial (Lambert et al., 2017; Nieto et al., 2016). Moreover, while mesenchymal 

subtypes have been identified for certain tumors (Cancer Genome Atlas, 2015; Cancer 

Genome Atlas Research, 2011; Verhaak et al., 2010), it remains unclear whether they reflect 

mesenchymal cancer cells or, alternatively, contributions of non-malignant mesenchymal 

cell types in the TME.
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Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous epithelial tumor with 

strong associations to alcohol and tobacco exposure (Puram and Rocco, 2015). Metastatic 

disease remains a central challenge, with patients often presenting at advanced stages with 

LN metastases. Here, we investigate primary HNSCC tumors and matched LNs to better 

understand intra-tumoral heterogeneity, invasion, and metastasis. Transcriptional profiles for 

~6,000 cells from 18 patients revealed expression programs that distinguish diverse 

malignant, stromal, and immune cells. Malignant cells varied in their expression of cell 

cycle, stress, hypoxia and epithelial differentiation programs. A subset of cells also 

expressed a partial EMT (p-EMT) program with extracellular matrix proteins, but lacking 

classical EMT transcription factors (TFs). p-EMT cells localized to the leading edge of 

primary tumors in proximity to cancer-associated fibroblasts (CAFs). We used this 

knowledge of the HNSCC ecosystem to re-evaluate bulk RNA-seq data from The Cancer 

Genome Atlas (TCGA). This revealed new insight into HNSCC expression subtypes, and 

established the p-EMT program as an independent predictor of adverse clinical features, 

including invasion and metastasis.

RESULTS

A single-cell expression atlas of HNSCC primary tumors and metastases

To explore the cellular diversity in HNSCC tumors, we focused on oral cavity tumors, the 

most common subsite of HNSCC. We generated full-length scRNA-seq profiles for primary 

tumors from 18 treatment-naïve patients and for matching LN metastasis from five of these 

patients (Figure 1; Tables S1 and S2). We also acquired whole exome sequencing (WES) 

and targeted genotyping (SNaPshot) data for these tumors, which demonstrated a range of 

putative driver mutations and chromosomal aberrations (Figure S1B; Tables S3 and S4), 

consistent with established HNSCC genetics (Agrawal et al., 2011; Cancer Genome Atlas, 

2015; Stransky et al., 2011).

We retained single-cell transcriptomes for 5,902 cells from 18 patients after initial quality 

controls (Figure S1A). We confidently distinguished 2,215 malignant and 3,363 non-

malignant cells by three complementary approaches. First, we inferred large-scale 

chromosomal copy-number variations (CNVs) in each single cell based on averaged 

expression profiles across chromosomal intervals (Muller et al., 2016; Patel et al., 2014; 

Tirosh et al., 2016b). These inferred CNVs, which were consistent with WES (Figures 1B, 

S1B, and S1C), separated malignant cells from non-malignant cells with normal karyotypes. 

Second, we distinguished malignant cells by their epithelial origin, which differs from 

stromal and immune cells in the TME (Figure 1C). We found remarkable concordance 

between cells with epithelial marker expression and cells with aberrant karyotypes (Figure 

1D). Finally, we partitioned cells to preliminary clusters by their global expression patterns. 

The vast majority of cells were part of clusters with concordant malignant or non-malignant 

classifications, based on CNV and epithelial marker analyses (Figure S1D).

Landscape of expression heterogeneity in head and neck cancer

Single-cell profiles of non-malignant cells highlighted the composition of the TME. We 

partitioned the 3,363 non-malignant cells to eight main clusters by their expression states 
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(Figures 2A, S1E, S1F and S2H). We annotated clusters by the expression of known marker 

genes as T-cells, B/plasma cells, macrophages, dendritic cells, mast cells, endothelial cells, 

fibroblasts, and myocytes (Figure S1F). Notably, each of the clusters contained cells from 

different patients, indicating that cell types and expression states in the TME are consistent 

across HNSCC tumors and do not represent patient-specific subpopulations or batch effects, 

though they do vary in their proportions.

We found further diversity within both T-cells and fibroblasts through finer clustering, 

powered by their relatively large numbers in our dataset (Figure 2B). The main T-cell cluster 

(~1,000 T-cells) can be partitioned into four sub-clusters (Figures 2B and S2A), which we 

annotated as regulatory T-cells (Tregs), conventional CD4+ T-helper cells (CD4+ Tconv), and 

two cytotoxic CD8+ T-cell populations (CD8+ T and CD8+ Texhausted). The cytotoxic 

subsets differed in expression of co-inhibitory receptors (e.g. PD1, CTLA4) and other genes 

associated with T-cell dysfunction and exhaustion, and thereby defined a putative T-cell 

exhaustion program in HNSCC (Figures 2B and S2A). Proportions of exhausted CD8+ T-

cells varied significantly among patients in our cohort (Figure S2B). These T-cell expression 

states may inform efforts to understand and predict responses to checkpoint 

immunotherapies (Mellman et al., 2011).

Despite significant interest, the regulatory states of fibroblasts in human tumors remain 

obscure. The ~1,500 fibroblasts partitioned into two main subsets (Figure 2B, black and 

blue), and a third minor subset (Figures 2B, brown, S2C and S2D). One subset expressed 

classical markers of myofibroblasts, including alpha smooth muscle actin (ACTA2) and 

myosin light chain proteins (MYLK, MYL9). Myofibroblasts are an established component 

of the TME and have been linked to wound healing and contracture (Rockey et al., 2013). A 

second subset expressed receptors, ligands, and extracellular matrix (ECM) genes, including 

fibroblast activation protein (FAP), podoplanin (PDPN), and connective tissue growth factor 

(CTGF), that have been associated with CAFs (Madar et al., 2013). The third subset was 

depleted of markers for myofibroblasts and CAFs and may represent resting fibroblasts. 

These diverse fibroblast expression states were reproducibly detected across tumors, and 

may thus represent common features of the HNSCC TME.

Although the cellular identity and origin of CAFs has been ascribed to various lineages 

(Madar et al., 2013), the subpopulations we detect are highly consistent with a fibroblast 

identity. Further analysis partitioned CAFs into two subsets (CAF1 and CAF2) with 

differential expression of immediate early response genes (e.g. JUN, FOS), mesenchymal 

markers (e.g. VIM, THY1), ligands and receptors (e.g. FGF7, TGFBR2/3), and ECM 

proteins (e.g. MMP11, CAV1) (Figures S2D and S2E; Table S5). This intra-tumoral 

fibroblast heterogeneity is consistent with the view that CAFs are involved in complex 

structural and paracrine interactions in the TME.

In contrast to non-malignant cells, the 2,215 malignant cells clustered according to their 

tumor of origin (Figures 2C and S2H). Over 2,000 genes were preferentially expressed in 

individual tumors (Figure 2D). Differentially-expressed genes were enriched within CNVs 

that vary between tumors (Figure S2F and S2G). Other differences relate to tumor subtypes 

(see ‘HNSCC subtypes…’, below). For example, genes associated with detoxification and 
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drug metabolism (e.g. GPX2, GSTMs, CYPs, ABCC1) were preferentially expressed by the 

two classical subtype tumors in our cohort (MEEI6 and MEEI20; Figure 2D). Finally, other 

differentially expressed genes relate to stress (e.g. JUNB, FOSL1) or immune activation 

(e.g. IDO1, STAT1, TNF), potentially in response to varied TMEs. Thus, inter-tumoral 

malignant cell expression heterogeneity reflects differences in genetics, subtypes, and TME 

between tumors in our cohort.

Intra-tumoral expression heterogeneity of the malignant compartment

We next explored how expression states varied among different malignant cells within the 

same tumor, focusing on 10 tumors from which the largest numbers of malignant cell 

transcriptomes were acquired. We used non-negative matrix factorization to uncover 

coherent sets of genes that were preferentially co-expressed by subsets of malignant cells. 

For example, we defined six gene signatures that vary among malignant cells of MEEI25 

(Figures 3A and S2I; Table S6). Applying the approach to each of the 10 tumors defined a 

total of 60 gene signatures that coherently vary across individual cells in at least one tumor 

(Table S6). Next, we used hierarchical clustering to distill these 60 signatures into meta-

signatures that reflect common expression programs that vary within multiple tumors 

(Figures 3B, S3A and S3B; Table S6 and S7). The high concordance between signatures 

from different tumors suggests that they reflect common patterns of intra-tumoral expression 

heterogeneity.

Seven expression programs were preferentially expressed by subsets of malignant cells in at 

least two tumors. Two programs (clusters 1,2 in Figures 3A and 3B) reflected the G1/S and 

G2/M phases of the cell cycle and distinguished cycling cells in each tumor (14–40% of 

cells in different tumors) (Figure S3A; Table S7). A third program (cluster 6 in Figures 3A 

and 3B) consisted of JUN, FOS, and immediate early genes implicated in cellular activation 

and stress responses (Figure S3A; Table S7). A fourth program was enriched for hypoxia-

related genes and increased in HNSCC cells cultured in hypoxic conditions (Figures 3B, 

S3A and S5Q; Table S7).

Two additional programs (clusters 4,5 in Figures 3A and 3B) consisted primarily of 

epithelial genes, such as EPCAM, cytokeratins (e.g. KRT6, 16, 17, 75), and kallikreins 

(KLK5-11) (Figure S3A; Table S7). While all malignant cells expressed epithelial markers, 

many of which were largely uniform across malignant cells (Figures 1C, 1D and S3E), 

expression of these particular epithelial genes varied coherently across malignant cells 

(Figure S3D), and may reflect the degree of epithelial differentiation. A final expression 

program (cluster 3 in Figures 3A and 3B) contained genes associated with ECM and had 

features of EMT (Figure S3A; Table S7). This program was evident in subsets of cells from 

seven of the ten tumors examined (Figure S3B).

A partial EMT program in HNSCC

Although EMT programs have been widely considered as potential drivers of drug 

resistance, invasion, and metastasis, their patterns and significance in human epithelial 

tumors in vivo remains unclear (Nieto et al., 2016; Thiery et al., 2009; Ye and Weinberg, 

2015). We therefore closely examined the ECM program for features of EMT. In addition to 
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ECM genes such as matrix metalloproteinases, laminins and integrins, this program included 

the EMT markers vimentin (VIM) and integrin α-5 (ITGA5) (Figures 3A, 3C, S3A and 

S3C; Table S7). Moreover, one of the top scoring genes in this program was TGFβ-induced 

(TGFBI), implicating the classic EMT regulator TGFβ (Figure S3C).

While the program had key features of classical EMT, it lacked other hallmarks. First, 

although the signature was accompanied by reduced expression of certain epithelial genes, 

overall expression of epithelial markers was clearly maintained (Figures S3D and S3E). 

Second, we did not detect expression of the classical EMT TFs, ZEB1/2, TWIST1/2 and 

SNAIL1. Only SNAIL2 was detected (in 70% of HNSCC cells), and while its expression 

correlated with the program across tumors, it did not correlate with the program across 

individual cells within a tumor (Figure S3F). Recent work suggests that SNAIL2 peaks 

earlier than other EMT TFs (van Dijk et al., Pre-print, 2017). SNAIL2 is also implicated in a 

partial EMT response in wound healing (Savagner et al., 2005). We note that EMT is 

increasingly recognized to be a continuous and variable process (Lambert et al., 2017; 

Lundgren et al., 2009; Nieto et al., 2016). We therefore suggest that the in vivo program 

identified here reflects a partial EMT-like state or ‘p-EMT’. Several additional analyses 

demonstrate that that this p-EMT program is distinct from full EMT programs derived from 

cell lines and tumor models, as well as from “Mesenchymal” signatures derived from bulk 

tumor profiles (Figures S4A–D) (Cancer Genome Atlas, 2015; Tan et al., 2014).

In vitro p-EMT cells are dynamic and invasive

We investigated the functional significance of the p-EMT program across five HNSCC cell 

lines. Expression profiles of 501 cells were largely distinct from human tumors (Figure 

S3G). However, a subset of cells in SCC9, an oral cavity-derived line, partially recapitulated 

the in vivo p-EMT program (Figure S3H). When these p-EMThigh cells were isolated by 

flow cytometry, they demonstrated increased invasiveness (Figures 3D and 3E). They also 

had a decreased proliferation rate (Figure 3F), consistent with scRNA-seq analysis of patient 

samples (Figure S4E) and prior EMT studies (Nieto et al., 2016; Ye and Weinberg, 2015).

Prior studies suggested that early stages of EMT may be transitional or metastable (Lambert 

et al., 2017; Lundgren et al., 2009; Nieto et al., 2016). We therefore considered whether p-

EMT might reflect a transient state in dynamic equilibrium with more epithelial 

subpopulations. To test this, we sorted p-EMThigh and p-EMTlow cells from SCC9, cultured 

them, and re-assessed marker expression. The two populations remained distinct 4 hours and 

24 hours after sorting (t-test, p<0.0001; Figure S4H) but became indistinguishable after 4 

days of culture, with both cultures recapitulating the distribution of marker expression in 

unsorted SCC9 cells (Figures 3G, 3H and S4H). The dynamic nature of this in vitro program 

raises the possibility that the in vivo p-EMT program may also represent a transient state.

p-EMT cells localize to the leading edge in proximity to CAFs

Taken together, our in vivo profiles and in vitro functional data suggest the p-EMT program 

is dynamic, invasive, and potentially responsive to TME cues. This led us to investigate the 

in situ spatial localization of cells expressing this program within HNSCC tumors. We used 

immunohistochemistry to stain a collection of tumors for the top genes in the p-EMT 
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program (PDPN, LAMC2, LAMB3, MMP10, TGFBI and ITGA5), along with the HNSCC 

marker p63 (Figures 4A, 4B and S5A–D). These experiments revealed a population of 

malignant cells that co-stain for p-EMT markers and localize to the leading edge of tumors 

in close apposition to surrounding stroma. Tumors that lacked the p-EMT program per 

scRNA-seq did not stain for these markers (Figures S5E–G). In contrast, epithelial 

differentiation markers (SPRR1B, CLDN4) stained a distinct set of cells at the core of 

tumors (Figures 4C and S5H–K), consistent with the negative correlation between these 

programs in scRNA-seq data (Figure 4D).

The localization of the p-EMT program to the leading edge prompted us to consider 

interactions with the TME, such as ligand-receptor signaling. We inferred putative tumor-

stromal interactions based on high expression of a ligand by one cell type and a 

corresponding receptor by another cell type (Ramilowski et al., 2015). This predicted 

“outgoing” signals from malignant cells to the various TME cell types in similar proportions 

(Figure 4E). Conversely, when we considered “incoming” signals to malignant cells, we 

found that CAFs expressed notably higher numbers of ligands that correspond to receptors 

expressed by the malignant cells of the corresponding tumor (hypergeometric test, p<0.05; 

Figures 4E and S5L). These included interactions that may promote EMT, such as TGFB3-

TGFBR2, FGF7-FGFR2 and CXCL12-CXCR7 (Figure 4F) (Moustakas and Heldin, 2016; 

Ranieri et al., 2016; Yao et al., 2016). Accordingly, when we stained tumors for CAF 

markers (FAP, PDPN), we found that CAFs were present near p-EMT cells at the leading 

edge (Figures 4C and S5M).

To evaluate the functional significance of the ligand-receptor interactions, we treated SCC9 

cells with TGFβ. Four hours of exposure induced a p-EMT-like program, which was 

repressed upon inhibition of TGFβ (t-test, p<10−16; Figures 4G and 4H). TGFβ treatment 

also increased invasiveness and reduced proliferation, while inhibition had opposite effects 

(ANOVA, p<0.0001; Figures 4I and S5N). In addition, overexpression of TGFBI, a known 

target of TGFβ and the top p-EMT gene, led to similar effects on invasiveness and 

proliferation (t-test, p<0.005 and ANOVA, p<0.0001, respectively; Figures S4F and S4G). 

Conversely, genetic inactivation of TGFBI abrogated the TGFβ response (ANOVA, 

p<0.0001; Figure S5O and S5P). Although we sought to test CAFs from primary tumors in 

co-culture, we found that cultured fibroblasts lost expression of typical activation markers 

and ligands (Figure 4F) and failed to induce a p-EMT response in co-cultured cancer cells 

(Figure S5R). Taken together, these data suggest that paracrine interactions between CAFs 

and malignant cells promote a p-EMT program at the leading edge of HNSCC tumors with 

potential roles in tumor invasion.

Intra-tumoral HNSCC heterogeneity recapitulated in locoregional metastases

To gain further insight into potential determinants of HNSCC spread, we compared LN 

metastases to primary tumors. Although WES and inferred CNVs revealed some genetic 

differences between primary and matched LN samples, they did not identify any distinctions 

that were consistent, possibly due to the small number of individuals studied (Figures S1B, 

S1C and S6A).
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The expression profiles of malignant cells in LNs also largely matched the corresponding 

primary tumors (Figure 5A). Few differentially-expressed genes were evident for each 

matched pair, and they were not consistent across the cohort (Figure S6B). The existence of 

p-EMT high and low subpopulations was also consistent between primary tumors and LNs 

of all patients, though their prevalence differed between sites (Figures S6C and S6D). These 

findings raise the possibility that programs required for LN metastasis are dynamic and 

hence undetected in comparisons of primary tumors and LNs. Indeed, prior studies have also 

failed to detect genetic or transcriptional distinctions between tumors and locoregional 

metastases (Colella et al., 2008).

We also observed an overall concordance in the identity and representation of stromal and 

immune cells in LNs and matched primary tumors, albeit with some important distinctions. 

Although most clusters contained cells from both sites, myocytes were observed only in 

primary tumors and B/plasma cells were found only in LNs (Figure 5B). Fibroblast subsets 

were also differentially represented: LN fibroblasts were enriched for myofibroblasts and the 

CAF1 subtype (hypergeometric test; p<0.05), and preferentially expressed certain receptors 

and ligands (e.g. IL1R1, MMP11, SPARC) (Figures 5B, S2E and S6E). These differences 

support an altered signaling environment in the LN, but suggest that the TME remains 

largely stable upon locoregional metastasis.

These findings prompted us to examine the histology of LN specimens, using the markers 

described above. We found largely intact epithelial structures or ‘nests’ of malignant cells 

(Figures S6F and S6G) with p-EMT markers at their periphery, surrounded by CAFs and 

other TME components. These observations are consistent with a ‘collective migration’ 

model (Clark and Vignjevic, 2015; Lambert et al., 2017), where malignant and stromal cells 

move in clusters to spread lymphatogenously and form LN metastases. Alternatively, 

individual cells may disseminate and engraft at the same site (‘single-cell dissemination’), 

thereby recapitulating primary tumor heterogeneity within LN metastases.

HNSCC subtypes refined by deconvolution of bulk expression data

We next considered the generality and prognostic significance of the malignant and stromal 

expression programs identified from our scRNA-seq data. A recent TCGA study analyzed 

expression profiles for hundreds of HNSCC tumors, and classified them into four subtypes: 

basal, mesenchymal, classical, and atypical (Cancer Genome Atlas, 2015). Although the 

TCGA profiles were acquired from bulk tumors, we reasoned that expression programs of 

individual cellular components might enable us to extract additional insights. In particular, 

we asked whether molecular subtypes defined from these bulk data reflect differences in 

malignant programs, malignant cell composition, and/or TME composition.

We first determined the TCGA expression subtypes of our ten HNSCC tumors. We scored 

malignant cells from each tumor for their correspondence to subtype expression signatures. 

Strikingly, each tumor clearly mapped to just one of three subtypes: basal (n=7), classical 

(n=2), or atypical (n=1) (Figure 6A). None of the malignant cells mapped to the 

mesenchymal subtype, even though it is the second most frequent subtype among oral cavity 

tumors. However, when we expanded our analysis to include stromal and immune cells, we 

found that hundreds of CAFs, myofibroblasts, and myocytes mapped to the mesenchymal 
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subtype (Figure 6B). This finding raised the possibility that the mesenchymal TCGA 

subtype reflects high stromal representation in bulk samples, rather than a distinct malignant 

cell program. Indeed, analysis of TCGA samples confirmed that mesenchymal subtype 

tumors highly expressed genes specific to CAFs and myocytes (Figure 6C). Furthermore, 

when we examined histology sections for HNSCC tumors from TCGA, we confirmed that 

mesenchymal tumors had roughly 2.7-fold more fibroblasts than basal tumors (t-test, 

p<0.0001; Figures S7A–D).

To investigate the influence of TME composition on TCGA classifications further, we 

devised a computational approach to subtract the effect of non-malignant cells from TCGA 

profiles. We restricted the analysis to genes expressed by malignant cells. Since most of 

these genes were also expressed by non-malignant cells, we normalized their expression to 

remove the expected contribution of non-malignant cells. To this end, we used cell type-

specific gene signatures to estimate the relative abundance of each cell type in each tumor 

and then, for each gene, we inferred a linear relationship between its bulk expression across 

tumors and the relative abundance of each cell type using multiple linear regression (Figure 

6E). By using the residual of this regression model, we removed the influence of cell type 

frequencies, including malignant cell frequency (i.e. purity), and inferred a malignant cell-

specific intrinsic expression profile for each TCGA tumor.

Remarkably, while standard analysis of TCGA data recovered all four subtypes (Figure 6D), 

analysis of inferred malignant cell-specific expression eliminated the mesenchymal subtype, 

while maintaining the other three subtypes (Figure 6F). Tumors previously classified as 

mesenchymal were found to be part of the previously described basal subtype (now referred 

to as ‘malignant-basal’). We validated that TCGA mesenchymal scores reflect genes 

primarily expressed by CAFs and do not correlate with the malignant cell-specific p-EMT 

program (Figure S4B–D). We therefore suggest that HNSCC tumors may be refined into 

three subtypes of malignant cells (malignant-basal, classical and atypical), with the 

previously described mesenchymal subtype reflecting malignant-basal tumors with a large 

stromal component. The combined malignant-basal subtype would be particularly prevalent, 

comprising >70% of oral cavity tumors in TCGA, consistent with the classification of seven 

out of ten tumors in our cohort.

p-EMT predicts metastasis and adverse pathological features

Incorporation of TCGA data gave us an opportunity to examine the prevalence and 

significance of the p-EMT program across a larger cohort. In our smaller cohort, the p-EMT 

program was evident in cells from seven of ten tumors (Figure S3B), which exactly 

correspond to the seven tumors that mapped to the malignant-basal subtype (Figure 6A). 

Consistent with our smaller cohort, p-EMT levels were highest in malignant-basal tumors in 

TCGA (Figure S7E). Furthermore, principal component analysis of malignant-basal TCGA 

tumors, but not atypical and classical tumors, revealed that the first two components were 

associated with expression of p-EMT genes and were inversely correlated with epithelial 

differentiation genes (Figures 7A, 7B, S7F and S7G). Remarkably, p-EMT programs defined 

from these unbiased analyses of bulk expression data were highly consistent with those 

defined by our scRNA-seq analyses (Figure 7A). They independently confirmed the absence 
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of classical EMT TFs, except for SNAIL2 (Figure S7L), and further support an in vivo p-

EMT state in human tumors. Thus, by controlling for confounding effects of TME 

composition, we demonstrate that differences in p-EMT program expression represents a 

predominant source of inter-tumoral variability in HNSCC tumors.

Lymphatogenous spread of HNSCC tumors to form LN metastases is a major source of 

disease burden and mortality. Accordingly, resection of oral cavity tumors is typically 

accompanied by neck dissection to remove the first echelon of draining LNs, a procedure 

associated with patient morbidity. Tumors with poor prognostic features, such as 

extracapsular extension or lymphovascular invasion, also receive adjuvant therapy. We 

therefore tested whether the in vivo p-EMT signature might predict unfavorable pathological 

features or disease outcome in malignant-basal tumors.

We found that high p-EMT scores were associated with the existence and number of LN 

metastases and with higher nodal stage (hypergeometric test; p<0.05; Figure 7C). We also 

found an association with higher tumor grade, offering an explanation for the aggressiveness 

of poorly differentiated tumors. High p-EMT scores were similarly associated with adverse 

pathological characteristics, including extracapsular extension and lymphovascular invasion 

(Figure 7C), for which reliable biomarkers are lacking. Interestingly, p-EMT was not 

associated with primary tumor size (Figure 7C), suggesting a direct association with 

invasion and metastasis but not with tumor growth. Overall, p-EMT genes were among the 

top correlated genes with these clinical features, while other programs such as cell cycle or 

hypoxia did not correlate nearly as strongly (Figures 7D and S7H). In contrast, the epithelial 

differentiation program was negatively associated with metastasis (Figure S7H), consistent 

with our prior observation of an inverse correlation between p-EMT and epithelial 

differentiation. Importantly, the p-EMT program is a stronger predictor of nodal metastasis 

and local invasion (Figure S7I) than either the TCGA mesenchymal program or conventional 

EMT signatures, both of which primarily reflect CAF frequency (Figures S4A and S7I) 

(Cancer Genome Atlas, 2015; Tan et al., 2014). Current clinical practice relies on imperfect 

predictors of nodal metastasis, such as tumor thickness and size, resulting in a high rate 

(~80%) of unnecessary neck dissections (Monroe and Gross, 2012). The p-EMT score could 

help predict nodal metastasis and thus spare patient morbidity associated with unnecessary 

neck dissections (Figure S7J).

DISCUSSION

Intra-tumoral heterogeneity represents a major challenge in oncology. Among emerging 

technologies, scRNA-seq has facilitated the identification of developmental hierarchies, drug 

resistance programs, and patterns of immune infiltration relevant to tumor biology, 

diagnosis, and therapy (Kim et al., 2016; Li et al., 2017; Patel et al., 2014; Tirosh et al., 

2016a; Tirosh et al., 2016b; Venteicher et al., 2017). Here, we applied the approach to 

characterize primary HNSCC tumors and matched LN metastases. Our analysis highlights a 

complex cellular ecosystem with active cross-talk between malignant and non-malignant 

cells, and an in vivo p-EMT program associated with metastasis (Figure 7E). Our study 

represents an important step towards understanding intra-tumoral expression heterogeneity 

in epithelial tumors, which encompass most solid malignancies.
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Among our key findings is the identification of a p-EMT program in malignant cells in vivo. 

This program involves upregulation of certain mesenchymal genes and moderation of 

epithelial programs. Although reminiscent of an EMT-like process, the program lacks 

classical TFs thought to drive EMT, with exception of SNAIL2 (Nieto et al., 2016; Thiery et 

al., 2009; Ye and Weinberg, 2015). SNAIL2 levels do not correlate with the p-EMT program 

across individual cells in a tumor, but do correlate with the p-EMT program across tumors, 

both in our small cohort and in TCGA tumors (Figures S7K and S7L), hinting at post-

transcriptional regulation. Prior studies have linked SNAIL2 to EMT-like changes required 

for wound healing (Savagner et al., 2005), raising the possibility that such physiologic 

responses are co-opted by invasive tumor cells.

Given the absence of classical regulatory programs, the retention of epithelial markers, and 

the likely transience of this expression state, we speculate that the p-EMT program reflects a 

‘metastable’ state that recapitulates certain aspects of EMT, but may be fundamentally 

different from those defined in vitro (Lundgren et al., 2009; Nieto et al., 2016). Indeed, 

although we describe an isolated EMT-like program, the molecular description of EMT is 

currently being re-evaluated with increasing evidence for a continuum of states. It has also 

been hypothesized that a dynamic, partial EMT state confers invasive properties without 

losing tumor initiation capacity (Lambert et al., 2017). It remains unclear whether a full 

EMT state exists in HNSCC, or if the spectrum extends only to p-EMT. Regardless, our 

unbiased definition of an in vivo partial EMT-like program in patients should guide future 

studies of this process as it relates to human cancers and metastases.

Several observations suggest that the p-EMT program may promote local invasion and LN 

metastasis. First, IHC analyses clearly showed that the program localizes to the leading edge 

of primary tumors, potentially enabling the collective migration of cohorts of cells (Figure 

7E) (Clark and Vignjevic, 2015; Lambert et al., 2017). Interestingly, p-EMT cells are in 

close proximity to CAFs in the surrounding TME, consistent with ligand-receptor analyses 

supporting regulatory cross-talk between these populations. Second, p-EMThigh HNSCC 

cells have increased invasive potential in vitro. Third, deconvolution of bulk expression 

profiles for hundreds of HNSCC tumors identified the p-EMT program as a leading source 

of variability between patients that is strongly predictive of nodal metastases, 

lymphovascular invasion, and extranodal extension. Importantly, although CAF abundance 

did not independently predict nodal metastasis and invasion, tumors with both high CAF 

scores and high p-EMT scores had a particularly high propensity for metastasis, consistent 

with a cooperative effect (Figure S7I). This may reflect a role for paracrine signaling 

between CAFs and malignant cells in promoting nodal disease.

At the same time, other observations temper our conclusions. First, an important caveat of 

our study is that only 10 tumors were deeply characterized. Analysis of more tumors may 

reveal additional stromal, immune and malignant cell states, potentially including malignant 

cells that have further progressed towards a mesenchymal state. Second, the p-EMT program 

is largely absent from classical and atypical HNSCC tumors, which nonetheless metastasize 

at similar rates. Thus, p-EMT may be relevant in some subtypes but not others, potentially 

explaining discord regarding the importance of EMT in tumor biology (Nieto et al., 2016; 

Thiery et al., 2009; Ye and Weinberg, 2015). Third, although our data imply that the p-EMT 
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state is responsive to CAF signals, the program might simply be a function of increased 

TME interactions due to disrupted tumor borders, and thus a correlate but not a cause of 

metastasis. Further study is needed to define the precise mechanisms by which p-EMT and 

corresponding stromal interactions drive HNSCC metastasis.

Subtype classification schemes have been applied to several tumor types based on ‘bulk’ 

analyses, which cannot effectively parse intra-tumoral heterogeneity. Here, knowledge of the 

expression states of malignant, stromal, and immune cell types in HNSCC tumors enabled 

us to deconvolve bulk TCGA data and infer malignant cell-specific expression profiles. This 

analysis suggested that the mesenchymal subtype reflects the TME, namely the fraction of 

CAFs and myocytes within a tumor. Indeed, no malignant cells mapped to the mesenchymal 

subtype described by TCGA. Thus, the mesenchymal subtype may reflect stromal 

composition and should be re-evaluated in future studies. In contrast, we find strong support 

for the other three HNSCC subtypes (classical, atypical, basal). Malignant cells from each of 

our tumors map exclusively to one of those subtypes. These subtypes also remain stable 

when controlling for TME. Nonetheless, the potential of stromal components to offer 

orthogonal prognostic insight (Figure S7I) suggests that future classification systems may 

ultimately need to integrate both malignant and non-malignant components in a tumor.

In summary, our work provides important insights into HNSCC biology and an atlas of 

malignant, stromal, and immune cells that should prove relevant to other epithelial 

malignancies. Our computational approach for inferring malignant cell-specific profiles 

from bulk expression data refined HNSCC subtypes, and offers a general strategy to extract 

information from many other cancer datasets. Finally, our definition of a p-EMT program 

helps relate a large body of EMT data to the in vivo biology of a human tumor. Although 

further studies are needed, the association of this p-EMT program to unfavorable clinical 

features may guide future diagnostic strategies and treatment algorithms.

STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Monoclonal mouse CD45-
vioblue, clone 5B1

Miltenyi Biotec Cat#130-092-880, RRID:AB_1103220

Monoclonal mouse CD90-PE, 
clone 5E10, lot #4343763

BD Biosciences Cat#555596, RRID:AB_395970

Monoclonal mouse CD31-
PE-cy7, clone WM59, lot 
#4357750

BD Biosciences Cat#563651

Monoclonal mouse CD3-PE-
cy7, clone UCHT1, lot 
#E09903-1631

ThermoFisher Cat#25-0038-42

Calcein AM ThermoFisher Cat#C3100MP

TO-PRO-3 iodide ThermoFisher Cat#T3605
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REAGENT or RESOURCE SOURCE IDENTIFIER

Monoclonal mouse p63, 
clone 4A4, lot #031915, 
040416

Biocare Medical Cat#CM 163 A/B, RRID:AB_10582730

Monoclonal mouse LAMC2, 
clone CL2980, lot #CL2980

Novus Biologicals Cat#NBP2-42388

Polyclonal rabbit Beta Ig-h3/
TGFBI, lot #QC14319-41943

Novus Biologicals Cat#NBP1-60049, RRID:AB_11005227

Polyclonal rabbit CLDN4, lot 
#AA43131

Novus Biologicals Cat#NB100-91712, RRID:AB_1216500

Monoclonal mouse MMP-10, 
clone 110304, lot 
#DRA0215031

R&D Systems Cat#MAB910, RRID:AB_2144566

Polyclonal goat p63, lot 
#KFX0115111

R&D Systems Cat#AF1916, RRID:AB_2207174

Polyclonal sheep PDPN, lot 
#XXO0115071

R&D Systems Cat#AF3670, RRID:AB_2162070

Polyclonal rabbit LAMB3, lot 
#A74251

Sigma-Aldrich Cat#HPA008069, RRID:AB_1079228

Polyclonal rabbit ITGA5, lot 
#B74062

Sigma-Aldrich Cat#HPA002642, RRID:AB_1078469

Polyclonal rabbit SPRR1B, 
lot #SA100223AI

Sigma-Aldrich Cat#SAB1301567

Polyclonal rabbit FAP, lot 
#R84355

Sigma-Aldrich Cat#HPA059739

Monoclonal mouse CXADR-
PE, clone RmcB, lot 
#2766468

EMD Millipore Cat#FCMAB418PE, RRID:AB_10807695

Polyclonal rabbit TGFBI, lot 
#75709

LifeSpan Biosciences Cat#LS-C325695

Monoclonal mouse p16, 
clone E6H2

Roche Tissue Diagnostics Cat#725-4713

RNAscope Probe HPV-HR18 Advanced Cell Diagnostics Cat#312591

R-PE Rabbit IgG Labeling 
Kit

ThermoFisher Cat#Z25355

Bacterial and Virus Strains

Biological Samples

See Table S1 for a list of patients included in the study.

Chemicals, Peptides, and Recombinant Proteins

A-83-01 Tocris Bioscience Cat#2939

DMH-1 Tocris Bioscience Cat#4126

CHIR99021 Tocris Bioscience Cat#4423

Y-27632 Selleck Chemicals Cat#S1049

Recombinant TGFβ1 R&D Systems Cat#240-B-010

Recombinant TGFβ3 R&D Systems Cat#243-B3-010

Critical Commercial Assays

Human Tumor Dissociation 
Kit

Miltenyi Biotec Cat#130-095-929

CellTiter-Glo Promega Cat#G7572
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REAGENT or RESOURCE SOURCE IDENTIFIER

BioCoat Matrigel Invasion 
Chambers

Corning Cat#354480

RNeasy Micro Kit Qiagen Cat#74004

QIAamp DNA Blood Mini 
Kit

Qiagen Cat#51106

pENTR/D-TOPO Cloning Kit ThermoFisher Cat#K240020

Gateway LR Clonase Enzyme 
Mix

ThermoFisher Cat#11791019

FuGENE HD Transfection 
Reagent

Promega Cat#E2312

PCR Supermix ThermoFisher Cat#10572014

Deposited Data

Raw data dbGAP phs001474.v1.p1

Processed data GEO GSE103322

Experimental Models: Cell Lines

Cal27 Ohio State University, James 
Rocco Lab

RRID:CVCL_1107

SCC9 Ohio State University, James 
Rocco Lab

RRID:CVCL_1685

SCC4 Ohio State University, James 
Rocco Lab

RRID:CVCL_1684

SCC25 Ohio State University, James 
Rocco Lab

RRID:CVCL_1682

JHU-006 Ohio State University, James 
Rocco Lab

RRID:CVCL_5985

HEK293T MGH, Bradley Bernstein 
Lab

RRID:CVCL_0063

Experimental Models: Organisms/Strains

Oligonucleotides

TGFBI forward: 5′-CAC 
CAT GGC GCT CTT CGT 
GCGG-3′

IDT Ref#150615285

TGFBI reverse: 5′-CTA ATG 
CTT CAT CCT CTC-3′

IDT Ref#150615286

TGFBI sgRNA1 forward: 5′-
CAC CGA GCT GGT 
AGGGCG ACT TGG C-3′

IDT Ref#150619894

TGFBI sgRNA1 reverse: 5′-
AAA CGC CAA GTC 
GCCCTA CCA GCT C-3′

IDT Ref#150619895

TGFBI sgRNA2 forward: 5′-
CAC CGC GAC TTG GCG 
GGA CCC GCC A-3′

IDT Ref#150619896

TGFBI sgRNA2 reverse: 5′-
AAA CTG GCG GGT CCC 
GCC AAG TCG C-3′

IDT Ref#150619897

TGFBI sgRNA3 forward: 5′-
CAC CGC ATG CTC ACT 
ATC AAC GGG A-3′

IDT Ref#150619898
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REAGENT or RESOURCE SOURCE IDENTIFIER

TGFBI sgRNA3 reverse: 5′-
AAA CTC CCG TTG ATA 
GTG AGC ATG C-3′

IDT Ref#150619899

TGFBI NGS forward (sgRNA 
1 and 2): 5′-TCC ATG GCG 
CTC TTC GTG-3′

IDT Ref#160658478

TGFBI NGS reverse (sgRNA 
1 and 2): 5′-GAC TAC CTG 
ACC TTC CGC AG-3′

IDT Ref#160658479

TGFBI NGS forward 
(sgRNA3): 5′-GTG GAC 
CCT GAC TTG ACC TG-3′

IDT Ref#160658480

TGFBI NGS reverse 
(sgRNA3): 5′-GTA GTG 
GAT CAC CCC GTT GG-3′

IDT Ref#160658481

Recombinant DNA

pDNR-Dual-TGFBI Harvard Plasmid Consortium Cat#HsCD00003120

pMAL MGH, Bradley Bernstein 
Lab

van Galen et al. (2014)

pMAL-Luc MGH, Bradley Bernstein 
Lab

van Galen et al. (2014)

pMAX-GFP MGH, Bradley Bernstein 
Lab

van Galen et al. (2014)

lentiCRISPRv2 Addgene 52961

Non-targeting control plasmid Broad Institute BRDN0001478216

Software and Algorithms

FlowJo version 10.2 TreeStar https://www.flowjo.com/solutions/flowjo

NIS-Elements Advanced 
Research version 3.10

Nikon https://www.nikoninstruments.com/Products/Software/NIS-Elements-Advanced-Research

GraphPad Prism version 4.0 GraphPad Software https://www.graphpad.com/scientific-software/prism/

MatLab version 2014b MathWorks https://www.mathworks.com/products/matlab.html

MatLab scripts for analyses Trinity Cancer 
Transcriptome Analysis 
Toolkit

https://github.com/NCIP/Trinity_CTAT/wiki

Other

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents may be directed to, and will be 

fulfilled by, the Lead Contact Bradley Bernstein (bernstein.bradley@mgh.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Tumor Specimens—Patients at the Massachusetts Eye and Ear Infirmary 

(MEEI) were consented preoperatively to take part in the study following Institutional 

Review Board approval (Protocol #11-024H). Age and gender of human subjects providing 

samples are summarized in Table S1 and listed as follows: MEEI5 69/F; MEEI6 88/F; 

MEEI7 71/F; MEEI8 82/F; MEEI9 77/F; MEEI10 76/M; MEEI12 80/M; MEEI13 52/F; 

MEEI16 63/F; MEEI17 59/M; MEEI18 41/M; MEEI20 53/M; MEE22 77/M; MEEI23 
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56/M; MEEI24 78/F; MEEI25 76/F; MEEI26 51/M; MEEI28 58/M. Fresh biopsies of oral 

cavity head and neck squamous cell carcinoma (HNSCC) were collected at the time of 

surgical resection, either from the primary tumor or lymph node (LN) dissection. A small 

fragment was snap frozen for bulk whole exome sequencing and the remainder of the 

provided tissue was processed for single-cell RNA-seq (scRNA-seq).

Cell Lines—Oral cavity HNSCC cell lines (Cal-27, SCC9, SCC4, SCC25, and JHU-006; 

all derived from male patients) were generously provided by Dr. James Rocco and 

colleagues after confirmation by short tandem repeat (STR) analysis (data not shown). They 

were cultured as follows: JHU-006 cells were grown in RPMI 1640 media (ThermoFisher 

Scientific), while others cells were grown in 3:1 Ham’s F12 (ThermoFisher 

Scientific):DMEM (ThermoFisher Scientific). 10% fetal bovine serum (FBS; Peak Serum, 

Fort Collins, CO) and 1X penicillin-streptomycin-glutamine (PSG; ThermoFisher Scientific) 

were added to all growth media.

METHOD DETAILS

Tumor Dissociation—Fresh biopsy samples of oral cavity HNSCC were minced, washed 

with phosphate buffered saline (PBS; ThermoFisher Scientific, Waltham, MA), and 

dissociated using a Human Tumor Dissociation Kit (Miltenyi Biotec, Bergisch Gladbach, 

Germany) per manufacturer guidelines. Viability was confirmed to be >90% in all samples 

using trypan blue (ThermoFisher Scientific) exclusion. Cell suspensions were filtered using 

a 70 μm filter (ThermoFisher Scientific), and dissociated cells were pelleted and re-

suspended in PBS with 1% bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO). 

Cells were stained with CD45-vioblue (Miltenyi Biotec), along with either the combination 

of CD90-PE (BD Biosciences, Franklin Lakes, NJ) and CD31-PE-cy7 (BD Biosciences) or 

CD3-PE-cy7 (ThermoFisher Scientific), then washed with cold PBS, and re-suspended for 

flow cytometry analyses.

Sorting of Patient Samples—Cells were stained for viability with 1 μM calcein AM 

(ThermoFisher Scientific) and 0.33 μM TO-PRO-3 iodide (ThermoFisher Scientific) 

immediately prior to sorting. Fluorescence-activated cell sorting (FACS) was performed on 

FACSAria Fusion Special Order System (BD Biosciences) using 488 nm (calcein AM, 

530/30 filter), 640 nm (TO-PRO-3, 670/14 filter), 405 nm (Vioblue, 450/50 filter), 561 nm 

(PE, 586/15 filter; PE-Cy7, 780/60 filter) lasers. Standard forward scatter height versus area 

criteria were used to discard doublets and capture singlets. Viable cells were identified as 

calceinhigh and TO-PROlow and additional gates were used to enrich or deplete specific cell 

types in each plate. For each tumor, plates were sorted containing CD45-cells (to deplete 

immune cells), CD45-/CD90-/CD31-cells (to further deplete fibroblasts and endothelium 

and enrich for malignant cells), CD45+ cells (to enrich for immune cells), and CD45+/CD3+ 

cells (to enrich specifically for T-cells). Single cells were sorted into 96-well plates 

containing TCL buffer (Qiagen, Hilden, Germany) with 1% β-mercaptoethanol. Plates were 

briefly centrifuged, snap frozen, and stored at −80 °C before cDNA synthesis and library 

construction. For each tumor sample, at least one CD45- and one CD45+ plate was 

sequenced.
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cDNA Synthesis and Library Construction—Libraries for isolated single cells were 

generated based on the SMART-Seq2 protocol (Picelli et al., 2014) with the following 

modifications: RNA was purified using Agencourt RNAClean XP beads (Beckman Coulter, 

Brea, CA), prior to reverse transcription with Superscript II (ThermoFisher Scientific) or 

Maxima (ThermoFisher Scientific) reverse transcriptase and whole transcriptome 

amplification using KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, MA). 

Full length cDNA libraries were tagmented using the Nextera XT Library Prep Kit 

(Illumina, San Diego, CA). 384 samples were pooled and sequenced as paired-end 38 base 

reads on a NextSeq 500 instrument (Illumina).

Whole Exome and Targeted Sequencing—Snap frozen fresh biopsy and matched 

whole blood samples were processed by the Genomics Platform at the Broad Institute. 

Whole exome sequencing was performed per standard protocols using Illumina technology 

(Illumina). Briefly, library construction was performed as previously described (Fisher et al., 

2011). Subsequently, hybridization and capture were performed using the Rapid Capture 

Exome Kit (Illumina) per manufacturer protocol. After post-capture enrichment, library 

pools were quantified using an automated qPCR assay on the Agilent Bravo (Agilent 

Technologies, Santa Clara, CA). Cluster amplification of denatured templates was performed 

per manufacturer’s protocol using HiSeq 4000 cluster chemistry and HiSeq 4000 flowcells 

(Illumina). Flowcells were sequenced using v1 Sequencing-by-Synthesis chemistry for 

HiSeq 4000 flowcells. The flowcells were then analyzed using RTA v.1.18.64 or later 

(Illumina). In addition, SnAPShot next generation sequencing v2 assay was performed on 

FFPE samples at the MGH Center for Integrated Diagnostics per standard protocols as 

previously described (Zheng et al., 2014). Sequencing was performed on an Illumina 

NextSeq (Illumina). Novoalign (Novocraft Technologies, Selangor, Malaysia) was used to 

align reads to the hg19 human genome reference. Single nucleotide and indel variants were 

detected using MuTect1 (Cibulskis et al., 2013), LoFreq (Wilm et al., 2012), and GATK 

(DePristo et al., 2011; McKenna et al., 2010; Van der Auwera et al., 2013). Exons from 91 

gene targets were sequenced.

RNA-seq of Cell Lines—For scRNA-seq, cells were harvested, stained for viability, and 

sorted into 96-well plates, as described above. cDNA synthesis, library construction, and 

sequencing were also performed as described. For bulk RNA, RNA was isolated from 1,000 

pooled cells using RNEasy Micro Kit (Qiagen).

Flow Cytometry and Sorting of Cell Lines—Sorting of SCC9 cells was performed 

using TGFBI antibody (LifeSpan Biosciences, Seattle, WA) conjugated to PE using the R-

PE IgG labeling kit (ThermoFisher Scientific) per manufacturer specifications. Cells were 

sorted as described above. For stained samples, cells were considered marker-positive if 

marker signal was at least as high as the top ~2% of cells in the unstained control. For 

repopulation experiments, 105 TGFBIhigh, TGFBIlow, and bulk sorted cells were plated and 

propagated. Cells were harvested after 4 hours, 24 hours, 4 days, and 7 days, stained with 

TGFBI-PE as described, and re-analyzed by FACS. Cells harvested at 4 hours were not re-

stained prior to FACS analysis. Final analysis was performed in FlowJo version 10.2 
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(TreeStar, Ashland, OR). In addition, single cells in each condition at the 7 day time point 

were sorted into 96-well plates for scRNA-seq.

Modification of Culture Conditions—For hypoxia cultures, SCC9 cells were grown for 

seven days in a Galaxy 48R CO2 incubator (Eppendorf, Hamburg, Germany), with 2% O2, 

5% CO2. Cells were then harvested and FACS sorted for scRNA-seq. For co-culture 

experiments, a tumor biopsy from MEEI18 was used to derive CAFs by the Broad Institute 

Cancer Cell Line Factory. Briefly, the tissue was washed with PBS (ThermoFisher 

Scientific) and minced using a scalpel. It was digested in 5 mL media with 1 mL 10X 

collagenase-hyaluronidase (StemCell Technologies, Vancouver, Canada) and 1 mL dispase 

(StemCell Technologies) for one hour at 37°C. Cells were then centrifuged at 1000 rpm for 

5 minutes, followed by RBC lysis with a 5 minute incubation in ACK lysis buffer 

(ThermoFisher Scientific), followed by 3 minutes in 1 mL media with 1:6 DNase I 

(StemCell Technologies). Cells were then washed and plated for propagation in ACL4 media 

(RPMI with L-glutamine (ThermoFisher Scientific) with 5% FBS (Sigma-Aldrich), 0.5% 

BSA (Rockland Immunochemicals, Limerick, PA), 10 mM HEPES (Sigma-Aldrich), 0.5 

mM sodium pyruvate (Sigma-Aldrich), 0.02 mg/mL insulin (Sigma-Aldrich), 0.01 mg/mL 

transferrin (Sigma-Aldrich), 25 nM sodium selenite (Sigma-Aldrich), 50 nM hydrocortisone 

(Sigma-Aldrich), and 1 ng/mL epidermal growth factor (Sigma-Aldrich)). Growth of a pure 

population of fibroblasts was confirmed by a PCR-based targeted sequencing assay using the 

TruSeq Custom Amplicon platform (Illumina). These tumor-derived fibroblasts were 

initially plated at a 1:3 ratio with SCC9 cells, and cells were harvested after 48 hours when 

the ratio of tumor-derived fibroblasts to SCC9 cells was approximately 1:1.

TGFβ Treatment and TGFBI Overexpression—For drug treatment experiments, 

SCC9 cells were grown in vehicle (4μM HCl with 1μg/mL BSA), TGFβ, or TGFβ-inhibitor. 

For TGFβ-treated cells, 10 ng/mL recombinant TGFβ1 (R&D Systems, Minneapolis, MN) 

or TGFβ3 (R&D systems) was applied. Cells in the TGFβ-inhibitor condition were either 

grown in 3:1 F12:DMEM (ThermoFisher Scientific) with 1μM A-83-01 (Tocris Bioscience, 

Bristol, UK) or small airway basal medium (Lonza, Basel, Switzerland) with four inhibitors 

of the TGFβ pathway: 1 μM DMH-1, 1 μM A-83-01, 1 μM CHIR99021 (Tocris Bioscience), 

and 10 μM Y-27632 (Selleck Chemicals, Houston, TX). For scRNA-seq, cells in each 

condition were harvested 4 hours after treatment. For bulk RNA-seq, cells were harvested 2, 

4, or 6 days after treatment and titrated for analysis. For matrigel invasion assay and cell 

proliferation assays, cells were maintained in the given conditions for the duration of the 

experiment.

For TGFBI overexpression, TGFBI was PCR-amplified from pDNR-Dual-TGFBI (Harvard 

Plasmid Consortium, Cambridge, MA) using the following primers (Integrated DNA 

Technologies, Coralville, IA): For: 5′-CAC CAT GGC GCT CTT CGT GCG G-3′ and Rev: 

5′-CTA ATG CTT CAT CCT CTC-3′. The PCR product was then cloned into pMAL (van 

Galen et al., 2014) using the pENTR/D-TOPO Cloning Kit (ThermoFisher Scientific) and 

the Gateway LR Clonase protocol (ThermoFisher Scientific). SCC9 cells at 50–70% 

confluence were transfected with pMAL-TGFBI or pMAL-Luc (van Galen et al., 2014) 

using the FuGENE HD transfection reagent (Promega, Madison, WI) per manufacturer 
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protocol. Transfection with pMAX-GFP (van Galen et al., 2014) in parallel conditions 

confirmed adequate transfection efficiency. Cells were harvested 24 hours after transfection.

TGFBI Knockout Using CRISPR-Cas9—CRISPR sgRNAs were subcloned into 

lentiCRISPRv2 (Addgene, Cambridge, MA) using primers listed in the Key Resources 

Table. The target sequences were: sgRNA1 (exon 1 CDS, antisense): 5′-AGC TGG TAG 

GGC GAC TTG GC-3′; sgRNA2 (exon 1 CDS, antisense): 5′-CGA CTT GGC GGG ACC 

CGC CA-3′; and sgRNA3 (exon 8 CDS, sense): 5′-CAT GCT CAC TAT CAA CGG GA-3′. 

A non-targeting control (“mock”) plasmid (BRDN0001478216, Broad Genetic Perturbation 

Platform, Broad Institute, Cambridge MA) was used for comparison. CRISPR plasmids 

were co-transfected into 293T cells with GAG/POL and VSVG plasmids, per the Addgene 

third generation lentiviral system, using the FuGENE HD transfection reagent (Promega) per 

manufacturer’s protocol. At 36 hours post-transfection, the supernatant was collected and 

concentrated using Lenti-X Concentrator (Clontech), per manufacturer’s protocol. SCC9 

cells at 70% confluence (approximately 2.5 × 104 cells) in 24-well plates were infected with 

concentrated virus for 36 hours, allowed to recover for multiple passages, and selected with 

1 μg/mL puromycin (Life Technologies) for 48 hours, prior to harvesting for matrigel and 

sequencing assays. Genomic DNA was isolated from 3 × 106 cells using QIAamp DNA 

Blood Mini Kit (Qiagen). A ~200 bp fragment surrounding the CRISPR cut site of each 

sample was PCR amplified (PCR Supermix, ThermoFisher Scientific) using TGFBI NGS 

primers listed in the Key Resources Table. Efficient genome editing was confirmed with next 

generation sequencing of PCR products at the Massachusetts General Hospital (MGH) 

Center for Computational & Integrative Biology (CCIB) DNA Core per standard core 

protocols. Briefly, this entailed Illumina adapter ligation, low-cycle PCR amplification, and 

sequencing on the Illumina MiSeq (Illumina). Results were analyzed using the CRISPResso 

software pipeline (Pinello et al., 2016).

Matrigel Invasion Assay—Matrigel invasion assay was performed as previously 

described (Puram et al., 2012). Preformed matrigel invasion chambers (Corning, Corning, 

NY) were prepared per manufacturer protocol. Serum-containing media was placed below 

the invasion chambers and 2.5 × 104 cells suspended in 500 μL serum-free media were 

placed above the invasion chambers and incubated for 24 hours. Cells on the lower surface 

of the membrane were fixed with methanol, stained with crystal violet, and counted in a 

blinded manner. Cells in serum-containing media were used as a negative control.

Cell Proliferation Assay—CellTiter-Glo (CTG) proliferation assay were performed per 

manufacturer protocol. Cells were plated in 96-well plates in 6–9 replicates per condition at 

1,000 cells per well. Cells were lysed on days 2, 4, and 6 by adding CTG reagent (Promega), 

and point luminescence was measured via the BioTek Synergy HTX Platereader (BioTek, 

Winooski, VT). For all experiments, a proportional sampling of cells were also lysed at 1 

hour after initial plating to ensure that equal numbers were plated across conditions. For 

cells lysed on day 6, fresh media was added on day 3. CTG luminescence values for 

individual wells were normalized by subtracting background luminescence (mean 

luminescence values for wells containing PBS, with CTG reagent added), adjusting for 2μM 
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adenosine triphosphate (ATP) luminescence measured on the same 96-well plate, and 

normalizing by numbers of plated cells in each condition (as measured by T0 luminescence).

Staining of Tissue Sections—Sectioning and immunohistochemical (IHC) staining of 

formalin fixed, paraffin-embedded (FFPE) HNSCC specimens was performed by the MGH 

Histopathology Core per standard protocols. All sections were 5 μm thick. Briefly, antigen 

retrieval was performed in a decloaker (Biocare Medical) using citrate buffer at pH 6.0. 

Sections were deparaffinized through xylenes and graded ethanol. Primary antibodies were 

visualized with HRP- or AP-linked secondary antibodies, followed by diaminobenzidine 

(DAB; Dako, Glostrup, Denmark) or AP-red (Dako) chromogens, respectively. Sections 

were counterstained with hematoxylin (ThermoFisher Scientific). Human papillomavirus 

(HPV) in situ hybridization (ISH) was performed per Advanced Cell Diagnostics RNAscope 

DAB ISH protocol (Advanced Cell Diagnostics, Newark, CA), with dewaxing followed by a 

95-minute target retrieval step, incubation with the RNAscope enzyme, and a 6-hour 

hybridization. Stained sections were visualized using a Nikon Eclipse 90i microscope with a 

Nikon DS-Fi1 high definition color camera and NIS-Elements Advanced Research version 

3.10 software (Nikon, Melville, NY). Images were captured with a 20X objective and were 

reviewed by a dedicated head and neck pathologist (W.C.F.).

TCGA Stromal Quantification—Digital hematoxylin and eosin stained slides for TCGA 

tumors were downloaded and entire sections were examined in a blinded manner. Working 

with a dedicated head and neck pathologist (W.C.F.), the stromal content of each basal and 

mesenchymal tumor was quantified by percent and scored as 0 (<10% stromal content), 

1+ (10% to <20%), 2+ (20% to <30%), 3+ (30% to <50%), or 4+ (≥50%).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with GraphPad Prism version 7. (GraphPad Software, La 

Jolla, CA) or MatLab version 2014b (MathWorks, Natick, MA). Parameters such as sample 

size, the number of replicates, the number of independent experiments, measures of center, 

dispersion, and precision (mean ± SD or SEM), and statistical significance are reported in 

Figures and Figure Legends. Results were considered statistically significant when p < 0.05, 

or a lower threshold when indicated, by the appropriate test (ANOVA, t-test, Pearson 

correlation). The Student’s t-test, permutation test, and hypergeometric test were utilized for 

comparisons in experiments with two sample groups. In experiments with more than two 

sample groups, analysis of variance (ANOVA) was performed followed by Bonferroni’s 

post-hoc test.

Single-Cell RNA-seq Data Processing—Expression levels were quantified as 

Ei,j=log2(TPMi,j/10+1), where TPMi,j refers to transcript-per-million for gene i in sample j, 
as calculated by RSEM (Li and Dewey, 2011). TPM values are then divided by 10 since we 

estimate the complexity of single-cell libraries to be on the order of 100,000 transcripts and 

would like to avoid counting each transcript ~10 times, as would be the case with TPM, 

which may inflate the difference between the expression level of a gene in cells in which the 

gene is detected and those in which it is not detected. This modification has a minimal 

influence on the expression values (Spearman correlation of 1, Pearson correlation of 0.98), 
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but decreases the difference between the expression values of undetected genes (i.e. zero) 

and that of detected genes (data not shown), thereby reducing the impact of dropouts on 

downstream analysis. We note that the SMART-Seq2 protocol cannot incorporate unique 

molecular identifiers (UMI) and therefore we cannot directly identify duplicate reads.

For each cell, we quantified two quality measures: (i) the number of genes for which at least 

one read was mapped, which is indicative of library complexity and (ii) the average 

expression level (E) of a curated list of housekeeping genes (Tirosh et al., 2016a), which is 

meant to verify that genes which are expected to be expressed highly, regardless of cell type, 

are indeed detected as highly expressed. Scatter plot analyses of all profiled cells separated 

low and high quality cells based on the these two measures (data not shown), and we 

therefore conservatively excluded all cells with either fewer than 2,000 detected genes or an 

average housekeeping expression level (E) below 2.5, as done in previous studies (Patel et 

al., 2014; Tirosh et al., 2016a). For cells passing these quality controls, the median number 

of reads were 1.34 million per cell, with a 52.2% transcriptome mapping rate and 3,880 

detected genes.

We used the remaining cells (k=5,902) to identify genes that are expressed at high or 

intermediate levels by calculating the aggregate expression of each gene i across the k cells, 

as Ea(i)=log2(average(TPM(i)1...k)+1), and excluded genes with Ea<4. For the remaining 

cells and genes, we defined relative expression by centering the expression levels, Eri,j=Ei,j-
average[Ei,1...k]. The relative expression levels, across the remaining subset of cells and 

genes, were used for downstream analysis. Although normalization approaches can 

potentially introduce bias into initial clustering, relative expression levels, as defined above 

and as defined with an alternative normalization method (Bacher et al., 2017) were highly 

similar. The use of alternative normalization had a limited influence on downstream results 

such as the distribution of p-EMT scores (data not shown).

To test for batch effects, we performed preliminary clustering of all cells using t-SNE with 

perplexity of 30 followed by density clustering (DBscan with parameters epsilon=5 and 

MinPoints=15). The resulting clusters showed limited impact of sequencing batches but an 

apparent batch effect linked to the enzyme used for reverse transcription (Superscript II or 

Maxima; data not shown). Since these batch effects have a different impact on the 

transcriptomes of distinct cell types, we corrected the effect in two steps. First, of the 27 

clusters identified in our preliminary clustering described below (see Classification to 
Malignant and Non-malignant Cells and Figure S1D), we identified seven pairs of clusters 

that differed by the enzyme used but otherwise were highly similar (as defined by an average 

Pearson correlation above 0.9); each of these pairs of clusters were then merged, thereby 

reducing the impact of enzyme usage on cluster assignment. We then normalized the data 

within each cluster to correct for within-cluster differences that may be linked to enzyme 

usage. In each cluster, we calculated, for each gene, the average expression among cells 

processed with Superscript II, the average expression among cells processed with Maxima, 

and the difference between those. We then subtracted the difference from all cells processed 

with Maxima in order to correct for the average differences between the two subsets of cells, 

and make all data comparable to that generated by Superscript II.

Puram et al. Page 21

Cell. Author manuscript; available in PMC 2018 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Annotation of t-SNE clusters (as in Figures 2A and 2C) by the reverse transcription enzyme 

revealed that all non-malignant clusters and most malignant clusters contained cells 

processed with both enzymes (data not shown), suggesting that the choice of enzymes has a 

minimal effect on the final clustering pattern. Five malignant clusters (each corresponding to 

all malignant cells from a specific tumor) included cells processed only with Superscript II 

or only with Maxima. Four of these clusters included only cells processed by Superscript II; 

since the normalization was done to make all data comparable to Superscript II (by only 

correcting the Maxima-generated data) these clusters should remain comparable to all other 

clusters. One malignant cluster contained only cells processed by Maxima, corresponding to 

all malignant cells of MEEI28, which could theoretically introduce variability between 

MEEI28 and other malignant clusters; however, this tumor had few differentially expressed 

genes compared to other tumors (Figure 2D), indicating that batch effects are unlikely to 

explain the differences between tumors. Importantly, variability of the p-EMT and epithelial 

differentiation programs was not influenced by the enzyme used for reverse transcription 

(data not shown).

Epithelial Classification—We defined a set of potential epithelial markers consisting of 

all cytokeratins, EPCAM, and SFN. We excluded potential markers that were lowly 

expressed (Ea<4) or not co-regulated with the other markers across all single cells (Pearson 

R<0.4 with the average of all other markers). The average expression (E) of the 14 

remaining genes was used to quantify an epithelial score, which was bimodally distributed 

(Figure 1C). Epithelial and non-epithelial cells were defined as those with epithelial scores 

above 3 and below 1.5, respectively, and the remaining cells (with intermediate scores) were 

unresolved.

CNV Estimation—Initial CNVs (CNV0) were estimated by sorting the analyzed genes by 

their chromosomal location and applying a moving average to the relative expression values, 

with a sliding window of 100 genes within each chromosome, as previously described (Patel 

et al., 2014; Tirosh et al., 2016a). To avoid considerable impact of any particular gene on the 

moving average, we limited the relative expression values to [−3,3] by replacing all values 

above 3 by a ceiling of 3, and replacing values below −3 by a floor of −3. This was 

performed only in the context of CNV estimation. We scored each cell for the extent of CNV 

signal, defined as the mean of squares of CNV0 values across the genome, and for the 

correlation between the CNV0 profile of each cell with the average CNV0 profile of all cells 

from the corresponding tumor. Putative malignant cells were then defined as those with 

CNV signal above 0.05 and CNV correlation above 0.5, putative non-malignant cells as 

those below the two cutoffs, and unresolved cells as those above only one of the thresholds. 

This initial analysis was based on the average CNV0 of all cells as a reference, which is 

biased due to the inclusion of many malignant cells. We thus redefined CNV estimations, the 

CNV signal, and CNV correlations values using the average patterns of non-malignant cells 

as a reference. Non-malignant cells were separated into distinct clusters based on t-SNE as 

described below. For each cluster we defined a baseline reflecting the average CNV0 

estimates of all cells in that cluster, and based on these distinct baselines we defined the 

maximal (BaseMax) and minimal (BaseMin) baseline at each window. The final CNV 

estimate of cell i at position j was defined as:
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CNV f (i, j) =

CNV0(i, j) − BaseMax( j), i f CNV0(i, j) > BaseMax( j) + 0.2

CNV0(i, j) − BaseMin( j), i f CNV0(i, j) < BaseMin( j) − 0.2

0, i f BaseMin( j) − 0.2 < CNV0(i, j) < BaseMax( j) + 0.2

Classification to Malignant and Non-malignant Cells—Epithelial and CNV-based 

classifications were highly concordant and enabled robust assignment of single cells as 

malignant or non-malignant. To further support these classifications, we reasoned that global 

similarity of gene expression programs should also distinguish between malignant and non-

malignant cells. We examined 27 clusters as defined by the preliminary clustering described 

above. Most clusters contained exclusively malignant or non-malignant cells by the above 

two criteria. Five clusters of smaller sizes were associated primarily with cells that had 

unresolved or inconsistent assignments by the above two criteria. These clusters were also 

associated with low complexity (number of genes detected in each cell) and low expression 

of housekeeping genes, leading us to suspect that they reflect low-quality data. Exclusion of 

these 324 cells was therefore useful both in order to maintain confidence in malignant 

classifications and to remove cells of low quality for which the global expression profile and 

associated clustering may be highly affected by their low data quality.

Identification of Differentially Expressed Genes—To identify differentially 

expressed genes between different clusters, including comparisons of non-malignant clusters 

and of malignant clusters, we combined three criteria: (i) an average fold-change of 2, (ii) a 

t-test p-value below 10−10, and (iii) a permutation test p-value below 0.001. The latter 

criterion was defined by shuffling the assignments of cells to clusters 10,000 times and 

counting the fraction of times where an equal or larger difference was obtained between the 

average expression of each cluster and that of the remaining clusters. The cutoff in the 

second criterion ensures the control for multiple testing (a stringent Bonferroni correction 

would result in a corrected p-value of 6.5 × 10−6, as there are at most 10 × 6,465 tests in the 

family of hypotheses for differential expression).

Classifying Non-malignant Cells—t-SNE analysis of all non-malignant cells using 

perplexity of 30 was followed by DBscan clustering (with parameters 5 and 15) to identify 

eight major clusters. Clustering using this approach was highly consistent with an alternative 

approach (Figure S1E) (Bacher et al., 2017). Furthermore, additional t-SNE analyses with 

multiple perplexity parameters (15, 20, 25, 30 and 35) and six instances for each perplexity 

parameter confirmed the robustness of the clustering patterns (data not shown). For each 

original cluster, we quantified its robustness in each alternative t-SNE instance by the 

fraction of cells for which the five nearest neighbors (in the alternative t-SNE) are all 

assigned to the same cluster as the cells being examined. This analysis demonstrated an 

average rate (across the 30 alternative t-SNE analyses) of consistent clustering larger than 

99.6% for each of the clusters. Inspection of the top differentially expressed genes revealed 

classical cell type markers; for each cluster, we thus defined a set of marker genes, which 

were both identified as differentially expressed and previously associated with a specific cell 
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type. The average expression profiles of those gene-sets were indeed highly specific to the 

corresponding clusters (Figure S1F), supporting the cell type classifications.

To further identify subtypes we focused on the two cell types with the largest numbers of 

cells: T-cells and fibroblasts. We used refined DBscan clustering of the t-SNE analysis (with 

parameters Epsilon=3, and MinPoints=5) to separate each of those clusters to sub-clusters, 

and further examined the results with multiple t-SNE analyses to evaluate the robustness of 

cluster assignments (data not shown).

The T-cell cluster was subdivided into four subtypes, which were annotated based on the 

differential expression of T cell markers (Figure S2A). This clustering was not strict as 

variability among T cells was continuous, yet the four clusters were used to represent the 

main patterns of variability that we observed among T cells (exhausted, CD4, CD8, Tregs).

For fibroblasts, we first observed two robust sub-clusters (myofibroblasts and CAFs, each 

with more than 98% consistent clustering as defined above) and a third intermediate sub-

cluster which was less robust (89% consistent clustering, data not shown). In subsequent 

analysis, we explored further the diversity of fibroblasts using a focused PCA (Figure S2D). 

This analysis was restricted to fibroblasts and to genes that are preferentially expressed by 

fibroblasts (defined as Ea of fibroblast higher than Ea of all other non-malignant cells 

combined). It recapitulated the three sub-clusters defined above, but also demonstrated that 

CAFs may be further separated into two subtypes (CAF1 and CAF2) that differ in the 

expression of many ligands, receptors, and other fibroblast-related genes (Figure S2E).

Expression Programs of Intra-tumoral Heterogeneity—For each of the 10 tumors, 

non-negative matrix factorization (as implemented by the Matlab nnmf function, with the 

number of factors set to 10) was used to identify variable expression programs. NNMF was 

applied to the relative expression values (Er), by transforming all negative values to zero. 

Notably, undetected genes include many drop-out events (genes that are expressed but are 

not detected in particular cells due to the incomplete transcriptome coverage), which 

introduce challenges for normalization of single-cell RNA-seq; since NNMF avoids the 

exact normalized values of undetected genes (as they are all zero), it may be beneficial in 

analysis of single-cell RNA-seq (data not shown). We retained only programs for which the 

standard deviation in cell scores within the respective tumor was larger than 0.8, which 

resulted in a total of 60 programs across the 10 tumors. The 60 programs were compared by 

hierarchical clustering (data not shown), using one minus the Pearson correlation coefficient 

over all gene scores as a distance metric. Six clusters of programs were identified manually 

(Figure 3B) and used to define meta-signatures. For each cluster, NNMF gene scores were 

log2-transformed and then averaged across the programs in the cluster, and genes were 

ranked by their average scores (see Table S6 for the top 50 genes in each cluster). The top 30 

genes for each cluster were defined as the meta-signature that was used to define cell scores 

(see Table S7); each of those genes had average scores above 1 and a t-test p-value below 

0.05, based on their scores across the individual programs in the cluster. Since the number of 

programs in a cluster was small this analysis was not powered to correct for multiple testing 

and thus we refer to an uncorrected p-value and selected the top ranked genes. However, 

while confidence is difficult to establish for individual genes in each meta-program, each 
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gene-set defined as a meta-program is highly significant in its co-variation in tumors. For 

each of the meta-programs, and within each of the tumors included in those meta-programs 

(2–8 tumors for each meta-program), the average Pearson correlation between all pairs of 

genes included in the gene-set (calculated across single malignant cells from the respective 

tumor) was higher than that obtained for 10,000 control gene-sets, which were selected to 

reproduce the overall distribution of expression levels of the meta-program genes (see also 

Defining Cell and Sample Scores).

To show the robustness of the NNMF-derived programs with regards to the number of 

NNMF factors in our dataset, we repeated the NNMF analysis with the number of factors 

between 5 and 15 (data not shown). We then compared the resulting NNMF programs to the 

meta-programs defined in our original analysis, with a threshold of global Pearson 

correlation (across all genes) of 0.2. This threshold is highly significant as it was never 

observed among 10,000 permutation analyses, in which we permuted the centered 

expression data of each cell and repeated the analysis. Each of the six meta-programs was 

identified with each of the NNMF parameters.

Defining Cell and Sample Scores—We used cell scores in order to evaluate the degree 

to which individual cells express a certain pre-defined expression program. These are 

initially based on the average expression of the genes from the pre-defined program in the 

respective cell: Given an input set of genes (Gj), we define a score, SCj(i), for each cell i, as 

the average relative expression (Er) of the genes in Gj. However, such initial scores may be 

confounded by cell complexity, as cells with higher complexity have more genes detected 

(i.e. less zeros) and consequently would be expected to have higher cell scores for any gene-

set. To control for this effect we also add a control gene-set (Gj
cont); we calculate a similar 

cell score with the control gene-set and subtract it from the initial cell scores: 

SCj(i)=average[Er(Gj,i)] – average[Er(Gj
cont,i)]. The control gene-set is selected in a way 

that ensures similar properties (distribution of expression levels) to that of the input gene-set 

to properly control for the effect of complexity. First, all analyzed genes are binned into 25 

bins of equal size based on their aggregate expression levels (Ea). Next, for each gene in the 

given gene-set, we randomly select 100 genes from the same expression bin. In this way, the 

control gene-set has a comparable distribution of expression levels to that of the considered 

gene-set, and is 100-fold larger, such that its average expression is analogous to averaging 

over 100 randomly-selected gene-sets of the same size as the considered gene-set. A similar 

approach was used to define bulk sample scores from TCGA.

Flow Cytometry and Sorting of Cell Lines—We performed n=3 independent 

experiments for TGFBI staining. For stained samples, cells were considered marker-positive 

if marker signal was at least as high as the top ~2% of cells in the unstained control.

Matrigel Invasion Assay—We performed n=3 independent experiments per condition, 

and n=4–6 replicates per independent experiment. Invaded cells in each well were counted in 

a blinded manner across four distinct high powered fields and averaged. Error was calculated 

as SEM for a representative experiment.
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Cell Proliferation Assay—We performed n=3–4 independent experiments per condition, 

and n=6–9 replicates per independent experiment. CTG luminescence values for individual 

wells were normalized by subtracting background luminescence (mean luminescence values 

for wells containing PBS, with CTG reagent added), adjusting for 2μM adenosine 

triphosphate (ATP) luminescence measured on the same 96-well plate, and normalizing by 

numbers of plated cells in each condition (as measured by T0 luminescence). Error was 

calculated as SEM for a representative experiment.

Putative Interactions Between Cell Types—We identified putative interactions 

between any pair of cell types based on expression of a receptor by one cell type and 

expression of an interacting ligand by the other cell type: whenever a ligand transcript is 

“expressed” by cell type A and the interacting receptor transcript is “expressed” by cell type 

B, we define it as a potential interaction between A and B. If the malignant cells express the 

receptor or the ligand, then the corresponding interaction was defined as incoming or 

outgoing, respectively. This analysis required two additional definitions. First, the set of 

potential receptor-ligand interactions were obtained from Ramilowski et al. (Nature 

Communications, 2015). Second, a ligand or receptor transcript was defined as “expressed” 

by a given cell type if its average expression in that cell type was above our threshold of 4 

(in values of log2(TPM+1)).

TCGA Subtype Analysis—Bulk RNA-seq data of HNSCC tumors (rnaseqv2-

RSEM_genes_normalized) was downloaded from the Broad Firehose website (https://

gdac.broadinstitute.org/), along with additional tumor and clinical annotations. Expression 

data was log2-transformed, filtered to include only the top 10,000 genes (based on average 

expression), centered for each gene, and compared between subtypes. We identified all 

genes preferentially expressed in each of the four subtypes (fold-change >2 and p<0.01 by t-

test, when comparing a given subtype to each of the other three subtypes) and scored single 

cells by the four subtype gene-sets (Figures 6A and 6B). To further examine the 

classification of TCGA samples, we first calculated the average Pearson correlation of each 

sample with all samples classified by TCGA into a given subtype; samples with an average 

correlation above 0.1 to one (and only one) subtype were retained for further analysis 

(Figures 6C–F), while samples with lower correlations for all four subtypes or higher 

correlation to more than one subtype were excluded.

Inferring Cancer-cell Specific Expression—We first excluded all genes that are not 

expressed by the malignant cells (i.e., are only expressed by the TME) based on the single-

cell data. We retained cells with Ea above 3 (as calculated only over the malignant cells). 

While this step reduces the influence of TME on bulk expression profiles, it is not sufficient 

to control for the effect of TME because most genes expressed by malignant cells are also 

expressed at comparable levels by additional cell types in the TME. We thus aimed to 

remove this influence using regression analysis. For each of the cell types (t) (both TME and 

malignant cells) we used the average expression of cell type-specific genes to estimate the 

relative abundance of the cell type (Frt) across all bulk tumors. These estimates were then 

used for a multiple linear regression seeking to approximate Ex(i,g), the (log-transformed 

and centered) expression level of gene g in bulk tumor i, by the sum of Frt(i), the estimated 
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relative cell type frequencies of tumor i, multiplied by gene-specific and cell type-specific 

scaling factors Xt(g):

Ex(i, g) = ∑t ∈ Tg
(Frt(i) ∗ Xt(g)) + R(i, g)

Tg includes all the cell types for which the average expression of gene g is lower than that of 

the malignant cells by at most 2-fold; note that this definition includes also the malignant 

cell as a cell type, which enables the regression to account for purity. This regression defines 

the scaling factors Xt(g) that minimize the sum of squares of the residuals, R(i,g), which 

reflect the component of expression level that is not accounted by the expression of cell 

types Tg based on the assumption of linear relationship between cell type abundances and 

total expression level; we define the residuals as the inferred cancer-cell specific expression.

p-EMT Stratification of TCGA samples—Since p-EMT and epithelial differentiation 

scores were a prominent source of variability in malignant-basal tumors, but not in classical 

and atypical, we classified only those tumors into p-EMT high and p-EMT low. We defined 

sample scores (see Defining Cell and Sample Scores) for all malignant–basal tumors based 

on the inferred cancer-cell specific expression of the p-EMT and epithelial differentiation 

(Epi. Diff. 2) signatures; only the subset of genes from these signatures which were included 

in the inferred cancer-cell specific expression were used for these scores. We then ranked the 

tumors based on their p-EMT score minus the epithelial differentiation, and defined the 

highest 40% as p-EMT high and the lowest 40% as p-EMT low, while excluding the 

remaining 20% of tumors with intermediate scores.

Prognostic analysis of p-EMT and CAF scores—To evaluate the effect of p-EMT on 

seven clinical features (Figure 7C), we compared the fractions of patients with that feature 

between p-EMT high and p-EMT low tumors, and evaluated the significance of enrichments 

with a hypergeometric test. To further evaluate the effect of p-EMT while also taking CAF 

frequency (which is highly consistent with TCGA mesenchymal scores) into account, we 

used a binomial logistic regression model as implemented by MATLAB fitglm function, 

with binomial distribution and included interactions. These models fit a logistic regression of 

two effects (p-EMT scores and CAF frequency scores) and their interactions, in order to 

predict the clinical features, with a separate model for each feature. The p-values from these 

models are shown in the bottom panel of Figure S7I.

DATA AND SOFTWARE AVAILABILITY

Raw expression and WES data is available through dbGAP (https://www.ncbi.nlm.nih.gov/

gap) with accession number phs001474.v1.p1. Processed expression data is available 

through the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) with accession 

number GSE103322. Matlab scripts for analyses are available through the Trinity Cancer 

Transcriptome Analysis Toolkit (https://github.com/NCIP/Trinity_CTAT/wiki).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterizing intra-tumoral expression heterogeneity in HNSCC by single-cell RNA-
seq
(A) Workflow shows collection and processing of fresh biopsy samples of primary oral 

cavity HNSCC tumors and matched metastatic LNs for scRNA-seq.

(B) Heat map shows large-scale CNVs for individual cells (rows) from a representative 

tumor (MEEI5), inferred based on the average expression of 100 genes surrounding each 

chromosomal position (columns). Red: amplifications; Blue: deletions.

(C) Heatmap shows expression of epithelial marker genes across 5,902 single cells 

(columns), sorted by the average expression of these genes.

(D) Violin plot shows distributions of epithelial scores (average expression of epithelial 

marker genes) for cells categorized as malignant or non-malignant based on CNVs.

See Figure S1; Tables S1–S4.
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Figure 2. Expression heterogeneity of malignant and non-malignant cells in the HNSCC 
ecosystem
(A) t-distributed stochastic neighbor embedding (t-SNE) plot of non-malignant cells from 10 

patients reveals consistent clusters of stromal and immune cells across tumors. Clusters are 

assigned to indicated cell types by differentially expressed genes (see also Figure S1F).

(B) (Left) Zoomed in t-SNE plot of T-cells with distinct naïve-like, regulatory, cytotoxic, 

and exhausted populations as identified by DBscan clustering. (Right) Zoomed in t-SNE plot 

of fibroblasts with myofibroblasts, non-activated resting fibroblasts, and activated CAFs, 

which can be seen to further divide into two sub-clusters. Differentially expressed genes are 

listed for key subsets.

(C) t-SNE plot of malignant cells from 10 patients (indicated by colors) reveals tumor-

specific clusters. Clustering patterns for malignant and non-malignant cells are not driven by 

transcriptome complexity (see Figure S2H).

(D) Heatmap shows genes (rows) that are differentially expressed across 10 individual 

primary tumors (columns). For five tumors, expression is also shown for matched LNs. Red: 

high expression; Blue: low expression. Selected genes are highlighted. Two classical subtype 

tumors (MEEI6 and MEEI20; see also Figure 6A) preferentially expressed genes associated 

with detoxification and drug metabolism (e.g. GPX2, GSTMs, CYPs, ABCC1).

See Figures S1 and S2; Table S5.
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Figure 3. Unbiased clustering reveals a common program of partial EMT (p-EMT) in HNSCC 
tumors
(A) Heatmap shows differentially-expressed genes (rows) identified by non-negative matrix 

factorization (NNMF) clustered by their expression across single cells (columns) from a 

representative tumor (MEEI25). The gene clusters reveal intra-tumoral programs that are 

differentially expressed in MEEI25. The corresponding gene signatures are numbered and 

selected genes indicated (right).

(B) Heatmap depicts pairwise correlations of 60 intra-tumoral programs derived from 10 

tumors, as in (A). Clustering identifies seven coherent expression programs across tumors. 

Rows in the heatmap that correspond to programs derived from MEEI25 are indicated by 

arrows and numbered as in (A).

(C) Heatmap shows NNMF gene scores (rows) for common (top) and tumor-specific 

(bottom) genes within the p-EMT program by tumor (columns).

(D) Representative images of SCC9 HNSCC cells sorted by p-EMT marker TGFBI into p-

EMThigh and p-EMTlow populations and analyzed by matrigel invasion assay.

(E) Bar plot depicts relative invasiveness of p-EMThigh and p-EMTlow SCC9 cells sorted 

and analyzed as in (D) (representative experiment; error bars reflect SEM; ANOVA, 

p<0.005, n=3).

(F) Bar plot depicts relative proliferation of p-EMThigh and p-EMTlow SCC9 cells sorted as 

in (D) (representative experiment; error bars reflect SEM; ANOVA, p<0.0001, n=4).
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(G) (Left) Fluorescence-activated cell sorting plot identifies p-EMThigh and p-EMTlow 

SCC9 cells isolated based on TGFBI expression. (Right) Histogram (offset) reveals the 

distribution (x-axis) of TGFBI expression across cells from the respective isolates (p-

EMThigh, p-EMTlow, and unsorted; separated by dashed lines). After 7 days in culture, p-

EMThigh, p-EMTlow, and unsorted cells have similar distributions of p-EMT marker 

expression. Additional experiments with the p-EMT marker CXADR demonstrate similar 

findings (data not shown).

(H) Violin plot depicts p-EMT scores for unsorted, p-EMTlow, and p-EMThigh SCC9 cell 

sorted and cultured as in (G). Respective isolates largely recapitulate the initial distribution 

of p-EMT scores.

See Figures S3 and S4; Tables S6 and S7.
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Figure 4. p-EMT cells at the leading edge engage in cross-talk with CAFs
(A–C) IHC images of representative HNSCC tumors (MEEI5, MEEI16, MEEI17, MEEI25, 

MEEI28) stained for p-EMT markers (PDPN, LAMB3, LAMC2) and the malignant cell-

specific marker p63 (A and B) or the epithelial program marker SPRR1B (C). Scale bar = 

100 μM.

(D) Scatter plot shows the Pearson correlation between the p-EMT program and other 

expression programs underlying HNSCC intra-tumoral heterogeneity (Figure 3). Blue 

circles depict the correlations within individual tumors; black circles and error-bars represent 

the average and standard error, respectively, across the different tumors.

(E) Bar plot depicts numbers of putative receptor-ligand interactions between malignant 

HNSCC cells and indicated cell types. Interaction numbers were calculated based on 

expression of receptors and corresponding ligands in scRNA-seq data. Outgoing interactions 

refer to the sum of ligands from malignant cells that interact with receptors on the indicated 

cell type. Incoming interactions refer to the opposite. CAFs express a significantly greater 

number of ligands whose receptors are expressed by malignant cells (hypergeometric test, 

p<0.05).

(F) Heatmap depicts expression of ligands expressed by in vivo and in vitro CAFs. Relative 

expression is shown for all in vivo CAFs, MEEI18 in vivo CAFs, and in vitro CAFs derived 

from MEEI18.
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(G) Heatmap depicts relative expression of genes that were differentially regulated when 

SCC9 cells were treated with TGFβ3 or TGFβ pathway inhibitors. Panel includes all genes 

with significantly higher expression upon TGFβ3 treatment and lower expression upon 

TGFβ inhibition, relative to vehicle (t-test, p<0.05). Heat intensity reflects relative 

expression of indicated genes in bulk RNA-seq profiles for nine samples in each group, 

corresponding to distinct dosage or time points (see STAR Methods). Selected genes are 

labeled and overlap with the in vivo p-EMT program (bold).

(H) Violin plot depicts distributions of the p-EMT gene expression score across SCC9 cells 

treated as in (G) and profiled by scRNA-seq. p-EMT scores were increased with TGFβ3 

treatment and decreased upon TGFβ inhibition, relative to vehicle (t-test, p<10−16)

(I) Bar plot shows relative invasiveness of SCC9 cells treated as in (G) (representative 

experiment; error bars reflect SEM; ANOVA, p<0.0001, n=3). In vitro treatment of HNSCC 

cells with the CAF-related ligand TGFβ causes coherent induction of the p-EMT program 

and increases invasiveness, while TGFβ inhibition has the opposite effect.

See Figure S5.
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Figure 5. Intra-tumoral HNSCC heterogeneity recapitulated in nodal metastases
(A) t-SNE plot of malignant cells (as in Figure 2) from five primary tumors (black) and their 

matched LNs (red). Malignant cells cluster by tumor rather than by site.

(B) t-SNE plot of non-malignant cells (as in Figure 2) from five primary tumors (black) and 

their matched LNs (red). Non-malignant cells are consistent across tumors but their 

representation and expression states vary between sites.

See Figure S6.
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Figure 6. HNSCC subtypes revised by deconvolution of expression profiles from hundreds of 
tumors
(A) t-SNE plot of malignant cells from ten tumors (as in Figure 2). Each cluster of cells 

corresponds to a different tumor. Cells are colored according to the TCGA expression 

subtype that they match. Black indicates no match. Each tumor can be clearly assigned to 

one of three subtypes: basal, atypical, or classical.

(B) t-SNE plot of non-malignant cells (as in Figure 2) from ten tumors. Each cluster of cells 

corresponds to a different cell type. Cells are colored according to the TCGA expression 

subtype that they match. Black indicates no match. Fibroblasts and myocytes highly express 

signature genes of the mesenchymal subtype, which likely reflects tumor profiles with high 

stromal representation.

(C) For each TCGA subtype (columns), heatmap shows relative expression of gene 

signatures for non-malignant cell types (rows), which were used as estimates of cell type 

abundances. Tumors classified as mesenchymal highly expressed genes specific to CAFs 

and myocytes, while atypical tumors were enriched for T- and B-cells.

(D) Heatmap depicts pairwise correlations between TCGA expression profiles ordered by 

their subtype annotations. This analysis included all genes and recovered all four subtypes.

(E) Schematic of linear regression used to subtract the influence of non-malignant cell 

frequency from bulk TCGA expression profiles, and thereby infer malignant cell-specific 

expression profiles.
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(F) Heatmap depicts pairwise correlations between TCGA expression profiles ordered by 

their subtype annotations. This analysis was based on the inferred malignant cell-specific 

expression profiles in (E). Classical and atypical subtypes are maintained. However, basal 

and mesenchymal subtypes collapse to a single subtype, which we term ‘malignant-basal.’

See Figure S7.
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Figure 7. p-EMT predicts nodal metastasis and adverse pathologic features
(A) PC1 and PC2 gene scores based on PCA of inferred malignant cell-specific profiles 

from all malignant-basal TCGA tumors (n=225). p-EMT genes (red) and epithelial 

differentiation genes (green) underlie variance among malignant-basal tumors.

(B) PC1 and PC2 gene scores based on PCA of inferred malignant cell-specific profiles from 

all classical and atypical TCGA tumors (n=156). p-EMT (red) and epithelial differentiation 

(green) genes are weakly associated with variance in these tumors.

(C) Plot depicts percentage of p-EMT high and p-EMT low malignant-basal tumors 

associated with each clinical feature. Higher p-EMT scores were associated with positive 

LNs, advanced nodal stage, high grade, extracapsular extension (ECE), and lymphovascular 

invasion (LVI) (hypergeometric test, p<0.05). Advanced local disease (T3/T4) as determined 

by T-stage did not correlate with p-EMT score.

(D) Volcano plot depicts gene expression differences between malignant-basal TCGA 

tumors with multiple LNs versus those without positive LNs. p-EMT genes (red) have 

increased expression, while epithelial differentiation genes (green) have decreased 

expression in metastatic tumors.

(E) Model of the in vivo p-EMT program associated with invasion and metastasis in 

malignant-basal HNSCC tumors.

See Figure S7.
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