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Pursuit-Evasion Games in Dynamic Flow Fields
via Reachability Set Analysis

Wei Sun1, Panagiotis Tsiotras2, Tapovan Lolla3, Deepak N. Subramani4 and Pierre F. J. Lermusiaux5

Abstract— In this paper, we adopt a reachability-based
approach to deal with the pursuit-evasion differential game
between two players in the presence of dynamic environmental
disturbances (e.g., winds, sea currents). We give conditions for
the game to be terminated in terms of reachable set inclusions.
Level set equations are defined and solved to generate the
reachable sets of the pursuer and the evader. The corresponding
time-optimal trajectories and optimal strategies can be readily
retrieved afterwards. We validate our method by applying it
to a pursuit-evasion game in a simple flow field, for which an
analytical solution is available. We then implement the proposed
scheme to a problem with a more realistic flow field.

I. INTRODUCTION

Pursuit-evasion games is a subclass of differential games
that has received a great deal of attention since the early
1960’s mainly owing to its application for air combat sce-
narios. Starting from the seminal work by Isaacs in his book
Differential Games [1], a large literature exists on the subject.
From a theoretical point of view, the optimal strategies of
both players (the pursuer and the evader) are given from
the solution a nonlinear, partial differential equation (the
Hamilton-Jacobi-Issacs equation). From a practical point of
view, the problem is far from being solved, solutions of HJI
equations are not readily available. This is especially the
case for problems with multiple players having non-trivial
dynamics. Much of the effort has been therefore devoted to
establishing numerical techniques for the solution of pursuit-
evasion problems under a minimal set of assumptions.

Despite the formidable character of the underlying HJI,
several pursuit-evasion problems admit closed-form solu-
tions. The solutions are often geometric in nature (thus are
limited to problems of just two players on the plane) and
involve the back-propagation of certain singular fronts from
the terminal surface. Such methods are outlined in great
detail in Isaacs’s book. The Homicidal Chauffeur game [1],
for instance, deals with a pursuit-evasion game between an
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evader having a finite maximum turning radius and an agile
pursuer. A converse version of the Homicidal Chauffeur
game, also known as the Suicidal Pedestrian game, was
studied in [2], [3]. The game between two players with
curvature constraints is studied in the Game of Two Cars
[4]. A general result for this problem was presented in [5].
Other pursuit-evasion games under some specific conditions
include the isotropic rocket problem [1] and the Lion and
Man problem [6]. An extension of the game of pursuit
with curvature constraints to the three-dimensional space was
addressed in [7]. Stochastic differential games of two players
have also been explored, including a stochastic version of the
Homicidal Chauffeur game, addressed in [8].

Another framework several researchers have used when
dealing with pursuit-evasion problems is based on reach-
able set analysis [9]–[11]. According to this approach, the
reachable state space of both players is utilized to find the
optimal controls of the pursuer and/or the evader. Reachable
set analysis has been applied for performing missile/sensor
trade-offs in homing guidance [12], for obtaining escape
strategy under pursuit [13], and for finding pursuer control
under control constraints [14].

Despite the previous work in this area, few approaches
have taken into consideration how dynamic environmental
conditions may affect the outcome of the game. For instance,
when either the pursuer or the evader (or both) is a small
autonomous underwater vehicle (AUV) or small unmanned
aerial vehicle (UAV), the presence of sea currents or winds,
respectively, may significantly affect the vehicle motion. As
a result, during pursuit-evasion, the optimal behavior of these
vehicles, as the solution of a differential game, may be
greatly affected by the existence of the external dynamic
flow field.

Some optimal control problems have taken into account
the effect of an external flow field. For example, in [15]
the authors address the problem of optimal guidance of a
Dubins vehicle [16] in a flow field to a specified position.
The minimum-time guidance problem for the isotropic rocket
in the presence of wind has been studied in [17]. The problem
of minimizing the expected time to steer a Dubins vehicle to
a target set in a stochastic wind field has also been discussed
in [18]. However, the same level of attention has not been
shared in the literature for pursuit-evasion games under the
influence of external disturbances.

In this paper, we consider a two-player pursuit-evasion
game in an external dynamic flow field. Due to the generality
of the external flow, Issacs’ approach cannot be readily
used. Instead, we find the optimal trajectories of the players



through the evolution of their reachable sets. We utilize the
level set method [19], [20] to generate the reachable sets
and retrieve the corresponding optimal control actions at
the current location of the players by backward propagation
of their respective reachable sets. Repeated application of
the procedure thus results in the calculation of the optimal
feedback strategies of both players. Since the computation
of the reachable sets can be performed independently for
each player, the proposed procedure leads to a decentralized
computation of the feedback strategies of all the players.

Level set methods have been previously applied by Tomlin
et al. to solve pursuit-evasion games [21], [22]. The authors
of [21] first reduce the degrees of freedom of the problem
by reformulating it in terms of the relative distance between
the pursuer and the evader. Then the level set method is
applied to the corresponding Hamilton-Jacobi-Isaacs (HJI)
equation to back-propagate the backward reachable set to
solve the differential game directly. Our approach differs
from those in [21], [22] since we do not attempt to solve the
pursuit-evasion game directly by solving the HJI equation.
Instead, we generate the forward reachable sets of the players
separately and find the optimal time-to-capture as the first
time when the reachable set of the evader is fully covered
by the reachable set of the pursuer [10]. We then identify the
first rendezvous point of the players and retrieve the optimal
trajectories and controls of both players through backtracking
of their respective trajectories [23]–[25]. The reason we
choose this approach instead of the more direct approach
in [21], [22] is due to the dimensionality of our problem.
When we introduce dynamic environmental effects into the
system, the pursuit-evasion problem cannot be reduced to a
problem described solely in terms of their relative distance,
unless some very restrictive assumptions are imposed on the
structure of the external flow field [26]. We also note that
an advantage of the forward reachable set approach is that it
is efficient, even in realistic simulations with dynamic ocean
currents that can be much larger than vehicle speeds [27].
On the other hand, working directly with the HJI equation
is not easily generalizable to multiple players. The approach
can also be combined with distance-based coordination of
multiple vehicles and with dynamic obstacles [28].

II. PROBLEM FORMULATION

Consider a pursuit-evasion game in an external dynamic
flow field with a single pursuer P and a single evader E.
The dynamics of the pursuer P is given by

ẊP (t) = uP (t) + w(XP (t), t), XP (0) = XP0 , (1)

where XP (t) = [xP (t), yP (t)]T ∈ R2 denotes the position
of the pursuer, uP (t) ∈ R2 is the control input of the
pursuer that satisfies the piecewise constraint uP (t) ∈ UP ,
where UP = {u ∈ R2, |u| 6 ū}, and | · | represents the 2-
norm. In (1), w(X, t) ∈ R2 represents the external dynamic
flow. It is reasonable to assume that the magnitude of this
flow (e.g. winds or currents) is bounded from above by
some constant, hence there exists a constant w̄ such that
|w(X, t)| ≤ w̄, for all (X, t). Here we assume that the effects

of the external dynamic flow field on the pursuer and evader
are identical.

The objective of the pursuer is to intercept an evader,
whose kinematics is given by

ẊE(t) = uE(t) + w(XE(t), t), XE(0) = XE0 , (2)

where XE(t) = [xE(t), yE(t)]T ∈ R2 is the position of the
evader, and uE(t) is its control input such that uE(t) ∈ UE ,
where UE = {v ∈ R2, |v| 6 v̄}.

Let X̄ = [XT
E, X

T
P ]T ∈ R4 denote the state of the

game. Then the game begins at initial time t0 = 0 with
initial positions X̄0 = [XT

E0
, XT

P0
]T, and terminates when the

pursuer reaches the location of the evader. The terminal time
T of the game is defined by

T = inf{t ∈ R+ : XP (t) = XE(t)}. (3)

Let J(γP , γE) = T be the cost function of the game,
where γP , γE : R+ × R4 7→ R2 denote the feedback
strategies of the pursuer and the evader, respectively, such
that γP (t, X̄) = uP (t) and γE(t, X̄) = uE(t). We assume
that each player has perfect knowledge of the dynamics of
the system represented by (1) and (2), the constraint sets UP

and UE , the cost function J , as well as the initial state X̄0.
It is also assumed that the value V of the game [1] exists,
that is,

V = min
γP

max
γE

J = max
γE

min
γP

J. (4)

The objective of this paper is to find the open-loop repre-
sentation of the optimal strategies of the pursuer and the
evader. In particular, we utilize a reachability-based method
to obtain optimal controls u?P (t) = γ?P (t, X̄?(t)) and u?E(t) =
γ?E(t, X̄?(t)), with X̄?(t) denoting the corresponding opti-
mal state trajectory. Henceforth, we consider the control of
the pursuer uP ∈ UP , where UP consists of all piecewise
continuous functions, whose range is included in UP , and
call uP an admissible control of the pursuer. Similarly, the
control uE is an admissible control of the evader if uE ∈ UE ,
which consists of all piecewise continuous functions whose
range is included in UE .

III. PROBLEM ANALYSIS

A. Reachable Sets

A reachable (or attainable) set at a given time is defined
as the set of points that can be visited by the agent at a
particular time [29]. The boundary of the reachable set is
the reachability front. In particular, the reachable set of the
pursuer at time t ≥ 0, denoted byRP (XP0 , t), is the set of all
points X ∈ R2 such that there exists a trajectory satisfying
(1), with initial position XP0

and terminal position X at
time t. Similarly, the reachable set RE(XE0

, t) of the evader
at time t ≥ 0 is the set of all points X ∈ R2 such that
there exists a trajectory satisfying (2), with initial position
XE0 and terminal position X at time t. The reachability
fronts of the pursuer and the evader at time t ≥ 0 are
denoted by ∂RP (XP0

, t) and ∂RE(XE0
, t), respectively. We

also denote by R?E(XE0
, t) the usable reachable set of the

evader, which is the set of all terminal points (at time t) of



admissible trajectories of the evader that do not pass through
the reachable set of the pursuer at any time in the interval
[0, t]. In other words,R?E(XE0

, t) is the set of terminal points
of all the ‘safe’ evader trajectories.

These definitions with respect to the reachable sets lead to
the following proposition, which is an extension of Theorem
I in [10], where the authors derive the condition for capture
under the assumption of linear dynamics for both players
and a finite energy constraint for the controls.

Proposition 3.1: Let T = inf{t ∈ R : R?E(XE0
, t) = ∅}.

If T < ∞, then capture is guaranteed for any time greater
than T , while the evader can always escape within a time
smaller than T . That is, T is the optimal time-to-capture.
Moreover, let Xf denote the location where the evader is
captured by the pursuer. Then Xf lies on the intersection of
the reachability front of the pursuer ∂RP (XP0 , T ) and the
reachability front of the evader ∂RE(XE0 , T ).

Proof: Since UP is compact and convex, it follows
that, for each (t, x), the set {uP + w(XP , t) : uP ∈ UP}
is compact and convex. Also, since uP and w(XP , t) are
bounded by assumption, the solution of (1) exists on [0, tf ],
for all finite tf . Therefore, by Filippov’s Theorem [30], the
reachable set RP (XP0

, t) is compact, for all t ∈ [0, tf ].
Similarly, RE(XE0

, t) is compact, for all t ∈ [0, tf ]. Since
R?E(XP0 , t) ⊆ RE(XE0 , t), R?E(XP0 , t) is bounded for all
t ∈ [0, tf ].

Since R?E(XE0
, T ) = ∅, it follows that for any point

X ∈ RE(XE0
, T ) that can be visited by the evader at time

T through an admissible evading control uE ∈ UE , it is
also true that X ∈ RP (XP0 , T ). In other words, there exists
an admissible control of the pursuer uP ∈ UP such that
XP (T ) = X . Therefore, regardless of the strategy it picks,
the evader can be captured by the pursuer at time T . This
implies that capture is also guaranteed for any time greater
than T .

On the other hand, since t = T is the first time such that
R?E(XE0

, t) = ∅ is satisfied, it follows that R?E(XE0
, t) 6= ∅

for all 0 ≤ t < T . Hence, for all t ∈ [0, T ), there exists
Xt ∈ RE(XE0 , t) such that Xt /∈ RP (XP0 , t). That is, for
any time t ∈ [0, T ), there exist an admissible control for the
evader to reach Xt such that Xt cannot be visited by the
pursuer at time t through any admissible control. It follows
that the evader can always avoid capture before time T .

From the two previous statements, we can conclude that
T is the optimal time-to-capture.

Let X be the point that is the intersection of the reacha-
bility front of the pursuer ∂RP (XP0

, T ) and the reachability
front of the evader ∂RE(XE0

, T ). Then X is a point in
RE(XE0

, T ) that the pursuer cannot reach before time T
(by definition of R?E). This implies that X should be the
destination of the evader if the latter aims to maximize the
time-to-capture. On the other hand, the pursuer also needs to
reach X if (s)he would like to capture the evader. Therefore,
the location Xf where the evader is captured by the pursuer
must coincide with X , which completes the proof.

Remark 1: In cases when ū ≥ v̄, the safe reachable set of

the evader R?E(XE0
, t) satisfies

R?E(XE0
, t) = RE(XE0

, t)\RP (XP0
, t), (5)

for all t ≥ 0. In such cases, the condition R?E(XE0
, t) = ∅

is equivalent to the condition RE(XE0
, t) ⊆ RP (XP0

, t).
Then, the optimal time-to-capture is the first time when the
reachable set of the pursuer RP (XP0 , t) completely covers
the reachable set of the evader RE(XE0 , t).

Proposition 3.1 is valid under the assumption that capture
is guaranteed at some finite time. We provide a sufficient
condition for this to occur in the next theorem.

Theorem 3.2: Assume w(X, t) satisfies the triangle in-
equality in X and its norm is bounded from above by a
constant λ > 0, where λ < ū− v̄. Then the game terminates
in finite time regardless of the initial positions between
the pursuer and the evader. Furthermore, the time-to-capture
satisfies the upper bound

T ≤ |XE0 −XP0 |
ū− v̄ − λ

. (6)

Proof: Let ∆X = XE −XP . We have that

d|∆X|
dt

=
d∆X

dt

T ∆X

|∆X|

=
(
uE − uP + w(XE, t)− w(XP , t)

)T ∆X

|∆X|
. (7)

Since w(X, t) satisfies the triangle inequality and is bounded,
it follows that

|w(XE, t)− w(XP , t)| ≤ |w(XE −XP , t)| ≤ λ.

Therefore,

d|∆X|
dt

=
(
uE − uP + w(XE, t)− w(XP , t)

)T ∆X

|∆X|

≤
(
uE − uP

)T ∆X

|∆X|
+ |w(XE, t)− w(XP , t)|

∣∣∣∣ ∆X

|∆X|

∣∣∣∣
≤ min

uP

max
uE

{(
uE − uP

)T ∆X

|∆X|

}
+ λ

≤ v̄ − ū+ λ. (8)

Note that (8) implies that the right-hand side of (7) is strictly
negative, since it is assumed that λ < ū− v̄. Thus, |∆X| can
be driven to 0 in finite time, for all initial conditions of the
pursuer and the evader. Finally, (6) follows after integrating
both sides of (8).

IV. NUMERICAL SOLUTION

A. Level Set Method

In order to construct the forward reachable sets of the
pursuers and the evader, we utilize the level set method. The
level set method is a convenient tool to track the evolution
of the reachability front. It evolves an interface (front) by
embedding it as a hyper-surface in a higher dimension, where
time is the augmented dimension. Automatic handling of
merging and pinching of fronts and other topological changes
are made possible by such higher dimensional embedding.
Level sets provide an implicit representation of the front,



which offers several advantages over an explicit representa-
tion.

For any c ∈ R, the c-level set of a function φ : R2 → R
is the set {X ∈ R2|φ(X) = c}. We consider the signed
distance function

φ(X) =

 min
Y ∈∂R

|X − Y |, if X is outside the front,

− min
Y ∈∂R

|X − Y |, if X is inside the front.

(9)

The signed distance function is one of the most commonly
used implicit functions in level sets. It is smooth and
monotonic across the interface. It also keeps fixed amplitude
gradients in the field. For all X ∈ ∂R, we have φ(X) = 0.
That is, the zero level set implicitly represents the reachabil-
ity front. Moreover, the reachable set can be represented by
{X ∈ R2|φ(X) ≤ 0}.

The reachability front ∂RP (XP0
, t) of the pursuer is

governed by the viscosity solution of the Hamilton-Jacobi
(HJ) equation [24], [25], [31]

∂φP (X, t)

∂t
+ ū |∇φP |+ w(X, t)∇φP = 0, (10)

with initial condition φP (X, 0) = |X − XP0 |. Moreover,
the reachable set of the pursuer coincides with the region(s)
where φP is non-positive. Similarly, the reachability front
∂RE(XE0

, t) of the evader is given by the HJ equation

∂φE(X, t)

∂t
+ v̄ |∇φE|+ w(X, t)∇φE = 0, (11)

with initial conditions φE(X, 0) = |X −XE0 |.
In the case when v̄ > ū, we need to track the propagation

of ∂R?E(XE0
, t). Its reachability front can be computed by

solving the following modified version of the Hamilton-
Jacobi equation (11):

∂φ?E(X, t)

∂t
+ ṽ(t) |∇φ?E|+ w(X, t)∇φ?E = 0, (12)

where

ṽ(t) =

{
v̄, if φP (X, t) ≥ 0,

ū, otherwise.
(13)

The main idea is to propagateR?E(XE0 , t) with the maximum
speed of the evader v̄ when it is outside the reachable
set of the pursuer, and to keep pace with the propagation
of ∂RP (XP0

, t) when the front of the evader enters the
reachable set of the pursuer to make sure that it never
grows out of the reachable set of the pursuer again. Note
that R?E(XE0

, t) is represented by {X ∈ R2|φ?E(X, t) ≤
0 and φP (X, t) ≥ 0}.

B. Time-Optimal Paths

As was shown in Proposition 3.1, the location Xf where
the evader is captured by the pursuer is the first intersection
of ∂RP (XP0

, T ) and ∂RE(XE0
, T ) when RE(XE0

, T ) ⊂
RP (XP0 , T ). An example is presented in Figure 1. After we
have identified the (common) terminal position of the pursuer
and the evader, we can retrieve the optimal trajectories and

optimal controls of both players by backward propagation
along the reachable sets.
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Fig. 1: Level sets of the pursuer in red and the evader in blue at time T ,
which is the first time such that RE(XE0 , T ) ⊆ RP (XP0 , T ). Xf is
the point common to both fronts, ∂RP (XP0 , T ) and ∂RE(XE0 , T ). The
initial positions of the pursuer and the evader are depicted by red and blue
dots, respectively.

In particular, the time-optimal trajectories X?
P and X?

E

satisfy the following differential equations [24], when φP
and φE are differentiable:

dX?
P

dt
= ū

∇φP

|∇φP |
+ w(X?

P , t), (14)

dX?
E

dt
= v̄
∇φE

|∇φE|
+ w(X?

E, t). (15)

Hence, the corresponding time-optimal controls of the pur-
suer and the evader are

u?P = ū
∇φP

|∇φP |
, u?E = v̄

∇φE

|∇φE|
. (16)

C. Numerical Implementation

In this section, we present an algorithm to solve the
pursuit-evasion game in an external flow field.

The algorithm contains the following three steps:
1. Evolution of Forward Reachable Sets: In cases when

ū ≥ v̄, the forward reachable sets of the pursuer and the
evader are evolved by computing the viscosity solutions
to the unsteady HJ equations (10) and (11) respectively.
These evolutions are carried out until the reachable set
of the evader is fully covered by that of the pursuer.
Otherwise (v̄ > ū), , we propagate ∂RP (XP0 , t) and
∂R?E(XP0

, t) with (10) and (12) until R?E(XP0
, t) = ∅.

2. End Point Identification: When ū ≥ v̄, find the location
of Xf where the pursuer captures the evader by iden-
tifying the intersection of the reachable fronts between
the pursuer and the evader. Another numerical way to
find Xf is by identifying the point on the reachability
front of the evader at the terminal time that has the
highest value of the pursuer’s signed distance function.
Otherwise (v̄ > ū), , Xf can be approximated by the
point in R?E(XP0 , t) one time step before becomes the
empty set.
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Fig. 2: (a) Optimal trajectories of the pursuer and the evader in magenta
and dotted green respectively, generated from the analytical solution. (b)
Optimal trajectories of the pursuer and the evader in red and dotted blue
lines, respectively, generated from the reachable set approach. The red and
blue curves on the right of the figure are part of the reachable fronts of the
pursuer and the evader at the terminal time, respectively.

3. Backward Trajectory Tracking: When ū ≥ v̄, and after
the reachability fronts of the pursuer and the evader
meet at Xf , the optimal controls of the pursuer and
the evader can be achieved through (16). Also, we can
compute the optimal trajectories X?

P and X?
E of the

pursuer and the evader, respectively, by solving (14)
and (15) backwards starting from Xf at time t = T .
Otherwise (v̄ > ū), we simply replace ∇φE with ∇φ?E
and follow the same procedure to find the optimal
trajectories.

For more details about the numerical schemes for the prop-
agation of level sets and for backtracking of the optimal
trajectories, please refer to [23], [24], [31]–[33].

V. SIMULATION RESULTS

In this section, we present simulation results of the pursuit-
evasion problem under an external flow field. We first verify
our numerical solution with an analytical solution under an
affine flow field. We then apply our method to a problem
with a more realistic representation of the flow field. Note
that in both cases, we assume ū > v̄.

When the external wind field is approximated by an affine
function w(X) = A(X − S0) + b, where A ∈ R2×2

and S0, b ∈ R2 are constant matrix and constant vectors,
respectively, then the problem can be solved through the
standard Isaacs’ differential game approach [26]. This wind
field can be seen as a flow generated from a single singularity
point located at S0, with its characteristics captured by A and
b. We set

A =

[
0.2 0.3
−0.15 0.1

]
, S0 =

[
5
5

]
, b =

[
0
0

]
.

The initial conditions of the pursuer and the evader are
given by XP0 = [2, 2]T and XE0 = [4, 4]T. The maximum
speeds of the pursuer and the evader are set to ū = 2 and
v̄ = 1, respectively. The optimal trajectories of the pursuer
and the evader calculated from [26] are presented in Figure
2a, and the result generated by the method in this paper is
shown in Figure 2b. They are identical to each other, as
expected.
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Fig. 3: (a) Red and blue curves represent the reachable fronts of the pursuer
and the evader at the terminal time, respectively. They intersect at Xf ,
where the pursuer captures the evader eventually. (b) Optimal trajectories
of the pursuer and the evader in red and dotted blue lines, respectively,
generated from the reachable set approach. The wind field is depicted in
the background.

Next, we consider a wind field approximation generalized
from the Rankine model of vortex [34]:

w(X) = w0 +

ns∑
i=1

ωiAi(X − xsi), (17)

where ωi = 1/max{r2si , ‖X − xsi‖2}. In (17) ns is the
number of flow singularities, xsi is the location of the i-th
flow singularity and rsi denotes the singularity radius. Ai is a
2×2 matrix, whose structure captures the local characteristics
of the i-th flow singularity. The model approximates the
velocity field of a vortex with a linear vector field inside
a disk and the velocity outside of the disk decreases as the
inverse squared distance to the center of the disk.

For our numerical simulation, we set the number of flow
singularities to ns = 3. The locations of the flow singularities
are xs1 = [18, 18]T, xs2 = [12, 19]T, xs3 = [14, 12]T, and
the corresponding radii are rs1 = 3, rs2 = 2, rs3 = 3,
respectively. The local wind field matrices are given by

A1 =

[
0 0.3

−0.15 0

]
, A2 =

[
0.4 0.2
0 −0.2

]
, A3 =

[
0.2 0.1
−0.2 0.2

]
.

We also choose w0 = [0.2,−0.3].
The reachable fronts of the pursuer and the evader at the

terminal time are shown in Figure 3a. The corresponding
optimal trajectories of the pursuer and the evader are shown
in Figure 3b.

In order to demonstrate that the proposed numerical pro-
cedure results in feedback strategies that take advantage of
a suboptimal play by either one of the players, in Fig. 4 we
show the resulting trajectories of a game in which the evader
follows a constant bearing strategy.

On the other hand, the pursuer determines its control
action at each instant of time using the reachability set
analysis outlined in Section III. Capture occurs at T = 0.93,
whereas if the evader had acted optimally, capture would
have occurred at T = 1.08, which is the value of this game.
For this example, the maximum speeds are ū = 4 and v̄ = 1
and the initial conditions are XP0 = [2, 2]T and XE0 = [4, 4]T

for the pursuer and the evader, respectively.
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Fig. 4: Evolution of the reachability fronts and optimal trajectories at the
optimal time-to-capture. Evader plays suboptimally. The red and blue closed
curves represent the reachable fronts of the pursuer and the evader in distinct
time steps.

VI. CONCLUSION

In this paper, we consider a differential game between a
pursuer and an evader in an external dynamic flow field. It is
shown that the game terminates when the usable reachable
set of the evader is the empty set for the first time. A
sufficient condition for the existence of finite termination
time is presented. The level set method is adopted to generate
the reachable sets of both players, and the optimal trajecto-
ries and controls of both agents are retrieved by backward
propagation of the corresponding reachable sets. We have
tested our method on a pursuit-evasion game whose optimal
controls and trajectories can be computed analytically. We
then applied our scheme to a more realistic flow field.
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