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Abstract. This work presents a brief introduction to fractional calculus and its application to some problems in rheology. 
We present two different viscoelastic models based on fractional derivatives (the Fractional Maxwell Model – FMM and 
the Fractional Viscoelastic Fluid – FVF) and discuss their reduction to the classical Newtonian and Maxwell fluids. A third 
model is also studied (an extension of the FMM to an invariant form), being given by a combination of the K-BKZ integral 
model with a fractional memory function which we denote the Fractional K-BKZ model. We discuss and illustrate the 
ability of these models to fit experimental data, and present numerical results for simple stress relaxation following step 
strain and steady shearing. 

INTRODUCTION: FRACTIONAL CALCULUS AND VISCOELASTICITY 

In the last few decades, a special class of viscoelastic models has drawn the attention of both engineers and 
mathematicians. These models make use of fractional derivatives (integro-differential operators), instead of the 
classical integer-order derivative and classical integral operators. The reason for such success comes from the fact that 
these fractional operators naturally generalize the differential equations governing important physical processes 
(especially processes with memory), improving their range of applicability in quantitatively describing data [1,2]. 

The simplest model that considers both viscous and elastic behavior is the linear Maxwell model [3], 
/d dtd dt//d dt/σ σ γγwith σ the stress tensor, T( ( ) )u u T( ) )T(γ (γ  the rate of deformation tensor, u the velocity vector, 

 the relaxation time of the fluid and  the zero shear rate viscosity. This model can also be written in integral form 
as 
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where /
0( ) tG t G e0G e0

/te  is the relaxation modulus (the response of the stress to a step in deformation at time ' 0t 0 ), 
which exhibits an exponential decay, γ is the deformation tensor, and it is assumed that the fluid is at rest for t < 0. To 
represent the mechanical equivalent of this model we can assume a spring (elasticity) connected to a dashpot 
(viscosity), in series, with both elements subjected to the same stress, as shown in Fig. 1(a) below.  

The Maxwell-Debye relaxation of stress (exponential decay) is quite common, but there are other materials 
showing different types of fading memory, such as an algebraic or power law decay ( ) ~ , 0 1G t t 00 1 [4,5]. If we 
assume the relaxation modulus for an arbitrary loading history in such materials is given by 

1' ( (1 )) ( ')G t t t t( ( )( (1 )( ( )( (1 )( (1 )(1 ) , then we have that:  
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1( ) ( ') '
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t dt t t dt
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dddd111
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t ddddd

00

γσ ))( ')((( . (2) 

 

By recognizing that the Caputo fractional derivative of a general function ( )tγ  (in our case ( )tγ  is the deformation), 
is defined as [1,6]: 
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we obtain a generalized viscoelastic model [7,8], that can be written in the simple compact form: 
 

 ( ) , 0 1d t
dt
γσ ,

dt
( )d (γ( ) ,γ , (4) 

 

with a mechanical equivalent shown in Fig. 1(b). This model provides a generalized viscoelastic response, in the sense 
that when 1 we obtain a Newtonian fluid, and when 0  we obtain a Hookean elastic solid.  
 

  

 
(a) (b) (c) 

FIGURE 1. (a) A series combination of a spring and dashpot (total deformation is equal to the sum of the deformation obtained 
from the spring and the dashpot; the stress felt by each element is the same) – classical Mawell Model; (b) Series combination of 

springs and dashpots [7] – Springpot; (c) Combination of two springpots in series gives the – Fractional Maxwell Model. If 
1  we obtain the Fractional Viscoelastic fluid, a series combination of a springpot with a dashpot. 
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For specific conditions it is possible to obtain an algebraic relation between relationship  and , , 1,2,...i iG i
as shown by Schiessel and Blumen [9], for the particular case of n-1 dashpots and n springs, where the last element 
on the right (Fig. 1(b)) is a spring with relaxation modulus Gn. The finite arrangement shows a solidlike long-time 
behavior, and that relation  is given by: 
 
 1

0 0G1
0 0G0

1G  (5) 
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where 11 and 0 0 0c G0G0 0 . Notice that to obtain a relative error smaller than 0.01 with the relation given by 

Eq. 5, the time range should be limited to 1/ 2
0 0100 / , / (10 )t c n c  [9]. Moreover, by increasing the number of 

elements, n, the time range of the above relation validity is enlarged. 
Note that so far nothing has been specified regarding the choice of 1( (1 ))( (1 ))(1(1  as our new algebraic relaxation 
modulus. The parameter is a constant (for a fixed ), and is known as a quasiproperty [10]. It is best viewed as 
the numerical measure of a dynamical process rather than a simple material property. 1( (1 ))( (1 ))(1(1  was chosen for 
our algebraic relaxation modulus, because in this way a generalized fractional derivative is obtained, as shown in Eq. 
3, whose properties are well documented in the literature [1]. This generalization can be easily understood if we recall 
the following formula for the n-fold integral of a generic function ( )f t , 
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... aa a aa
f f...... a . (6) 

 

An obvious generalization to non-integer n  can be performed using the Euler Gamma function 1

0
: x tx t e dt , 

with 1 != nn for n . This leads to the Riemann-Liouville fractional integral, 
 

 
11 ' ' '

tn
a a

J f t t t f t dt , (7) 

 

where we have used  to represent the generalization of n  to non-integer values. A fractional derivative of any order 
can then be obtained by manipulating the number of integrations and differentiations of the function ( )f t . By 

performing the m - fold integration of the thm  derivative of ( )f t , ( )m m
aJ D f t  with m , we arrive at the 

generalized derivative formula (Caputo fractional derivative [6]) of order 1<m m , 
 

  1 '( ) 1 ( ') ', 1<
( ) '

t m
m

m
a

d f td f t t t dt m m
mdt dt

. (8) 

 

Note that Eq. 3 is a particular case of Eq. 8 with 1m . 
Returning to the generalized model (Fig. 1(b)) we see that its mechanical equivalent is composed of an infinite 

combination of springs and dashpots [7], known as a springpot [11]. Since the classical Maxwell model makes use of 
two elements, a spring and a dashpot in series, similarly the Fractional Maxwell Model (FMM) is the result of a 
combination of two linear fractional elements (springpots) in series (Fig. 1(c)). In a series configuration the stress felt 
by each springpot is the same, that is, 1 2( ) / ( ) / , 0 , 1d t dt d t dtσ γ γ1 2( ) / ,2 ( ) /) /2γ1d 1d t dt d t dtt dt d( ) / ( ) /) / ( ) / ,( ) /) /2dd 1( ) /) /( ) / ( ) /) / ( ) /d ( ) /) / , and the total deformation is 
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given by the sum of the deformation obtained for each springpot, 1 2( ) ( ) ( )t t tγ γ γ , (Fig. 1(c)). The FMM can then 
be written as, 
 

 ( ) ( )( ) d t d tt
dt dt

σ γσ d σ((t((( ( )(
dt
γ

dtdtt
( , (9) 

 

where it was assumed (without loss of generality) that 0 1 . 
This brief introduction to fractional calculus and the FMM is now followed by a general discussion on the 

properties and admissibility of the linear viscoelastic FMM in Section 2. Section 3 presents a brief discussion on the 
frame invariant Fractional K-BKZ formulation [2] suitable for large strains, Section 4 demonstrates the ability of 
fractional viscoelastic models to accurately and compactly fit experimental data, and Section 5 presents the numerical 
solution of a simple stress relaxation following step strain, and, steady shearing. The paper ends with the main 
conclusions of the work performed. 

SOME PROPERTIES OF THE FMM 

The FMM (Eq. 9) with 1 shows unbounded stress growth following start-up of steady shear at 0 ( )H t0 ( )H(
(with ( )H t  the Heaviside function), that is, 0( ) lim ( ) /

t
t t 0  diverges as 1t . Therefore, it is not suitable to 

describe the steady flow of viscoelastic fluids. On the other hand, if we assume 1  (combination of a springpot and 
a dashpot in series as shown in Fig. 1(c)), the stress growth becomes bounded, and the model is suitable for describing 
the transient response of fluids. From now on, the FMM with 1  will therefore be referred to as the Fractional 
Viscoelastic Fluid model (FVF).  

It is important to understand how the FMM reduces to a Newtonain fluid, an elastic solid and to the classical 
Maxwell model. These limiting cases can be obtained by taking the limits 1, 1  (Newtonian fluid: two 
dashpots in series, in which case the total viscosity becomes 1 21/ 1/ 1/ ), 1,  (Newtonian fluid: 
one dashpot and an infinite rigid spring), 0, 0 (elastic solid: two springs in series, so that the total modulus 
is 1 21/ 1/ 1/G G G ) (see Figs. 2(a) and (b)). The classical Maxwell model can be obtained when 1, 0 as 
shown next. From the right-hand-side of Eq. 9, we have: 
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For the left-hand-side of Eq. 9, if we follow the same procedure shown in Eq. 11 we obtain the following: 
 

 (1 )

1 0
0

( ) 1 ( ') ( )lim lim ( ') '
( ) '

td t d t d tt t dt
dt dtdt

γ σ σ
. (12) 

 

This limit is indicated schematically in Fig. 2(b)-bottom. Assuming 1 (see Eq. 11), we can recover a Newtonian 
fluid by letting 1: 
 

 (1 )

1 1
00

( ) 1 ( ') ( ')lim lim ( ') ' ( ) (0)
( ) ' '

ttd t d t d tt t dt t
dt dtdt

γ σ σ σ σ  (13) 

 

Note that in this case we assume the fluid is at rest in the beginning of the experiment, with (0) 0σ  (see Fig. 2(a)-
top). All the special cases that can be obtained from the FMM are illustrated in Figs. 2(a) and (b). 

 

 
 

(a) (b) 

FIGURE 2. Different limiting cases that can be derived from the FMM. (a) The limit 1 : Newtonian fluid with either two 
dashpots in series (top 1 ), or a Newtonian fluid with a dashpot and an infinite rigid spring in series (bottom ); (b) 

The limit 0 : gives either a Hookean solid (top) with two springs in series, classical Maxwell model (bottom). 

A RHEOLOGICALLY INVARIANT FRACTIONAL K-BKZ MODEL  

The FMM is a good model for describing the linear viscoelastic response of many materials, but it is not frame-
invariant (as is also the case for the linear Maxwell model) [12] and therefore it is not suitable for describing the 
response of real materials under large deformations. In order to address this issue a few solutions have been proposed 
in the literature [2,13], and we will now explore the solution proposed by Jaishankar and Mckinley [2]. 

As we show in Section 4, the ability of the FMM to fit linear experimental data is strictly related to the form of the 
Mittag-Lefler function. Therefore, Jaishankar and Mckinley [2] proposed a model that is a combination of the Mittag-
Leffler function with the variation of the K-BKZ [15] model proposed by Wagner, Raible and Meissner [16,17]. A 
similar idea was proposed by Freed and Diethelm [14] where a viscoelastic model of the K-BKZ type is combined 
with the standard fractional order viscoelastic solid to model biological tissue.  

The model proposed by Jaishankar and Mckinley [2] (from now on referred to as the Fractional K-BKZ) is written 
in the general K-BKZ form as: 

 1
1 2 '

0

( ) ( ') ( , ) '
t

tt m t t h I I dt1 '11
222 )2

0

t

1( ) ( 1( ') ( ,( ') ( 1σ C , (14) 

where 1 1 T1 1 T
C F F  is the Finger tensor ( F  is the finite deformation tensor) [18], 1 2,I I  are the traces of 11C  and 

C , respectively and 1 2( , )h I I  is termed the damping function [16]. A large number of damping functions can be found 
in the literature (see the Drugstore of Rheology by D. Joseph [19] and also [17]). The term ( ')m t t ')  is known as the 
memory function and for the Fractional K-BKZ model it was proposed in [2] to be of the form: 
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,

( ')( ') ( ') ( ')
'

dG t tm t t t t E t t
dt

')')
'

dG((') ((
dt ,,

'))) ')(((( ')( ') 111 )( ')( )))')((((( , (15) 

 

where , ( )a bE z  is the generalized Mittag-Leffer function [1] (note that here the relaxation modulus ( ')G t t ')  is the one 
obtained for the FMM). This model was applied by [2] to describe the steady shearing flow of Xanthan gum solutions 
and provided a very accurate description of experimental data. For the case of steady shear flow the Finger strain 
tensor can be simplified to give 0( ')t t0( ')  (where 00  is the steady shear rate), and the model given in Eq. 14 becomes: 

 

 0
0

( ) ( ') ( ) ( ') '
t

xy t m t t h t t dt( )xy ) ) ') ( ')
0

t

( ) ( )( ') ( )( ') 0 ( )0 ( ')')0 , (16) 

 

The damping function, ( )h ) , was obtained from a fit to the relaxation modulus of the test materials obtained for 
different deformations/amplitudes. For many materials the relaxation modulus shows time-strain separability and can 
therefore be written in the form: 
 

 2

( , ) ( ) ( ) 1( )
( ) ( ) 1

G t G t h h
G t G t a

) ( ) ( )) ( )( ) 1
1

(
( )

h
(

( ) ( ) (( )( ) h 1)
1

)
aaaa 2 ,  (17) 

 

with 0.3a 0.3  for Xanthan gum solutions [2]. Note that 1( ) ( 2)h h I)) 1 2)11(((  for a 2D steady shearing flow, with 1I  the 
first invariant of the Finger tensor. Jaishankar and Mckinley [2] showed that this model could capture well the steady 
shear viscosity, first normal stress difference, along other properties of polymer solutions such as Xanthan gum, by 
only considering the flow parameters , , ,, , , obtained from a FMM fit to linear data (obtained in Small Amplitude 
Oscillatory Shear experiments) plus one additional nonlinear parameter ( 0.3a 0.3 ) determined from the damping 
function, Eq. 17. 

FITTING OF EXPERIMENTAL DATA – THE LINEAR REGIME 

Since the FMM (Eq. 9) can describe a wide range of fluid behaviors, and also forms the basis for the Fractional 
K-BKZ, we tested its ability to fit the storage and loss moduli obtained for a HDPE at 190ºC [20].  

As shown in Fig. 3, the quality of the fit increases with the number of parameters. To compare the quality of the 
different fits we have defined the total residual error 2 2' ' '' ''log log ( ) log log ( )i fit i i fit i

i i

G G G G
i i

2 22 2' ' 2

ii
f f

2' ' '' ''2
log log ( ) log log ( )' ' '' ''' ''

i fit i i fit ilog ( ) log log (log ( ) log log (log ( ) log loglog ( ) log loglog ( ) log loglog ( ) log( ) log log . 

 Note that the 3 parameter FVF already provides a good quality fit (the fit for high frequencies could be improved, 
but at the expense of losing some quality in the fit for small frequencies), but a better fit is obtained with the FMM 
and the 8-mode Maxwell model. The FMM only requires 4 model parameters to describe the data, whereas the 8-
mode Maxwell model requires 16. Therefore we may conclude that the FMM has a more parsimonious performance 
in the small amplitude oscillatory shear flows than the 8-mode Maxwell model (even though it shows an unbounded 
stress growth following start-up of steady shear). 
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FIGURE 3.  Fit of linear viscoelastic data for 'G  and ''G  obtained for a HDPE at 190ºC [20]: (a) Maxwell model fit; (b) 

Fractional Viscoelastic Fluid fit; (c) Fractional Maxwell model fit; (d) 8-mode Maxwell model fit (the parameters are given in 
[21]). 

NUMERICAL SOLUTION OF LINEAR AND NON-LINEAR SHEAR FLOWS 

Although analytical and semi-analytical results exist for both models described before (FMM and Fractional K-
BKZ), they are limited to specific spatially homogeneous flows due to the complexity of the integro-differential 
equations involved. Therefore, it is useful to develop a numerical code that can compute the behavior of such material 
models in more complex unidirectional and time-varying flows. 

To tackle this subject using computational methods, we consider two different shear configurations, that were 
chosen due to the existence of an analytical solution in each case: a step-strain test for the FMM and a steady-shear 
test for the Fractional K-BKZ. These numerical codes do not yet allow the numerical solution of fractional models in 
generalized complex geometries, but, facilitate the understanding of the behavior of these fractional models in 
unidirectional time-varying shear flows, and, allow us to create a base of understanding for a future implementation 
of these models in a more general framework. 

We assume the fluid under study is confined between two infinite parallel plates (see [22]), as shown in Fig. 4. 

 
FIGURE 4. Schematic of the unidirectional shear flow geometry in which we have a stationary top plate and a moving bottom 

plate. 
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FMM Step-Strain flow 

In this subsection we seek to simulate the limit of a step-strain, 0( ) ( )t H t , with ( )H t the Heaviside step function,  

0 /L h , and L  the distance travelled by the bottom plate. For that we consider the top plate is fixed (the usual no-
slip boundary condition ( ) 0u h ) and that the bottom plate moves with a velocity profile (approaching a step-strain) 
given by (see Fig. 5(a)): 

 2( ,0) exp[ (( ) / ) ]d
Lu t t t . (18) 

 

Note that as ψ → 0, ( ,0)u t converges to the Dirac delta function multiplied by the distance, L , traveled by the plate 
(assuming 0dt ). The finite ( 0 ) delay time, dt , comes from the need to have an initial condition ( , ) / 0du t y dt  
at 0t . This is a requirement of the integro-differential equations governing this problem (this boundary condition 
is required when deriving analytical expressions for the stress relaxation, steady shear viscosity, etc [2]). The 
specification of a delay time dt , together with , allow us to get ( , ) /du t y dt  at 0t  to be as small as we want. This 
derivative converges to zero when t  or 0  (assuming 0dt ).  
 The equations governing this problem are the momentum equation [22] and the FMM constitutive equation,  

 

 
( , )( , ) xy t yu t y

t y
, (19) 

 ( , ) ( , )( , ) d t y d t yt y
dt dt

d t(((( y( ,
dtdtdt

( , (20) 

 

with the continuity equation being verified automatically for a unidirectional shearing flow. If we apply the operation 
1 ( / ) /d dt/ ) /d ///  to Eq. 19 and / y  to Eq. 20 we obtain the following velocity and shear stress equations: 

 

 
2

2
0

( , ) ( ', )1 ( ') '
(1 )

td u t y u t yt t dt
tdt y

2

( )
tu 22( , ) t

')')d u( , ),( , ), ((( , )d
dtdt

, (21) 

 ( )

0 0

( ', ) ( ', )( , ) ( ') ' ( ') '
(1 ( )) ' (1 )

t t
xy

xy

t y u t yt y t t dt t t dt
t y
( ' ) ( ', ) '

t t( ' )'' u( ',' )( ')') )u( ,( ,( ')( ')((( ))( ) ( ) ( , ),,(( ') ( ) ( , )xy ,,
') ( )) ( , )
') ( , )xy ,,( ') ( )

( ')'))( ') ( '( )

( (((1 ((1 (
. (22) 

 
 

A numerical method (based on finite differences) used in the solution of this system of equations is explained in detail 
in [23] for the case of pure tangential annular flow (the differences between this case and the one shown in [23] is that 
in this work we take the planar limit). The mesh size used in the simulations is 5/ 2.35 10y h  and 

4
min / 4.5 10t (with 1/(1 )( / )1/(1 )/ ) )  the relaxation time of the fluid [2]). We used graded meshes when 

discretizing time [23]. We have used the parameters ψ/τ = 2.68×10−3 and td/τ = 1.12×10−2 (see Eq. 18). 
 Two different deformations 0 /L h  were considered, 0 0.05 and 0 1 (i.e. 100% strain), and the model 
parameters were the ones obtained for the FVF – Fig. 3(b).  
The results obtained for the stress relaxation are shown in Fig. 5(b). In Figs. 5(c) and (d) we show the influence of the 
fractional exponents , . Note that the power law slope at small times is β and for long times is α, meaning that 
these models are suitable for describing processes with more than one relaxation time [2]. 
As expected the maximum stress increases with increasing strain amplitude and a convergence to the analytical 
solution is observed (see Fig. 5(b)). The analytical solution is given by [7,8] (we consider 1), 
 

 ,1
0

( ) ( )t G t t E t( )

0

))(G(( )G( )G( 11 tt EEEEEE ,11 ttttt , (23) 
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and is used as the relaxation function (the integral of Eq. 15) in the integral model proposed in Section 3. Note that 
Eq. 23 provides the appropriate normalization ( ) for the shear stress relaxation shown in Fig. 5(b) [2]. 

FIGURE 5. Normalized shear stress relaxation obtained for the special FVF limit (with 1 ), ψ/τ = 2.68×10−3 and td/τ =
1.12×10−2: (a) FVF with parameters shown in Fig. 3(b) and 0 0.05,1(the inset shows the normalized velocity profile, Eq. 18,
with max ( ,0) / ( )du u t L ; (b) influence of ( 0 100% ). The inset shows the slope of the normalized shear stress 
expected for t ; (c) influence of  ( 0 100% ).

The good agreement between analytical and numerical solutions supports our assertion that the numerical code is 
robust and can be used in the prediction of real fluid behavior, modeled both by the FVF and FMM.

The potentiality of the fractional model can be seen for the case where different fractional exponents are considered, 
as shown in Fig. 5(c) for a deformation of γ0 = 100%, and β = 0.1,0.3. By looking at Fig. 5(c) we see that as β decreases 
the springpot converges to a spring (see Fig. 2) and the model starts to approach the linear Maxwell limit, that is 
obtained when α → 1 and β → 0, and therefore, the peak of the stress is smaller, but, it takes more time to relax 
(smaller rate of relaxation). As we increase the value of β, the FVF evolves towards a Newtonian fluid, since each 
springpot converges to a dashpot when α → 1 and β → 1.

Fractional K-BKZ steady-shear flow

In this subsection we seek to simulate the limit of a steady shear deformation, 0( ) ( )t H t0( ) ( )0) () (0( )) with 0 /U h0 U h/ (U is a 
constant velocity imposed on the bottom plate), for a fluid modelled by the Fractional K-BKZ. For that we consider 
that the top plate is fixed ( ( , ) 0u t h ) and that the bottom plate moves with a velocity profile given by (see Fig. 6(a)):

( ,0)
1 exp( ( ) / )d

Uu t
t t

, (24)
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mimicking the start up if a steady shear experiment. Note that as ψ → 0, and 0dt ( ,0) /u t h  converges to 

0 ( )dH t t0 ( )dH( . For this study we have considered the HDPE material at 190ºC, described before. Since the objective is 
to test non-linear deformations, we considered the same damping function as the one used in [2], which showed a 
good fit to the experimental data for the shear viscosity up to shear rates of 1 s-1 (see Fig. 6(b)). A better global fit 
could be obtained with different values of the parameter a, but the fitting quality in the transition from the linear to 
the nonlinear behavior would decrease. 

 
The equations governing this flow are then the momentum and Fractional K-KBKZ constitutive equations: 
 

 
( , )( , ) xy t yu t y

t y
, (25) 

 1 1
, '

10

1( , ) ( ') ( ') ( , ) '
1 0.3( 2)

t

tt y t t E t t t y dt
I

1 '1( ))1111t t E( ') ,,,
1

111
y( ,,' (

10.3( 2)10.3( 110 3(00

( )
t

σ C( )( ) 111( ') 1 )))')(((( , (26) 

 

with the continuity equation being automatically satisfied again for this unidirectional time varying flow.  
We still need another equation to track the evolution of the Finger tensor 1

' ( , )t t y1(C  in time, for each 0 't t't t' . 
The extra equation comes from the fact that the Finger tensor has zero upper convected derivative [24]. The evolution 
equation is then given by: 
 

 
1

1 1 1 1'
' ' ' '

( , )
( , ) ( , ) ( , ) ( , ) ( ) 0Tt

t t t t
t y

t y t y t y t y
t

C
C u C u C C u  (27) 

 

where u  is the velocity gradient tensor. Based on the flow considered in this work (Fig. 4), Eq. 27 can be further 
simplified and the four components of the 2D Finger tensor 1 1

' '( , )t tt yC C  can be obtained upon integration, being 
given by: 
 

 

''

1 1
' ' '', ',1

' 1 1
', ',

'

( '', ) ( ''', ) ( '', )1 2 ''' '' ''

( '', ) '' 1

t t t

t t tt xx t xy
t t

t yx t yy

t

u t y u t y u t ydt dt dt
y y y

u t y dt
y

C C
C

C C
. (28) 

 

Note that to perform the integration of Eq. 27 we have used the initial condition 1
' ',t t yC 1 , with 1  the identity 

matrix (meaning that there is no deformation when a new deformation field is created at instant 't ). In this case we 
have a continuous evolution of all the Finger tensors for each element in the flow, and this allows us to gain knowledge 
on the implementation of this method in more general codes [24]. As expected, for steady shearing ( 00 ) we obtain: 
 

  
2

1 0 0
'

0

1 [ ( ')] ( ')
( ') 1t

t t t t
t t

C
2( ')] ( ')2')] (')]2( ')] (')] (2

0(0 ')]2
0 0 ( )000 ( )0 (00 (00

( ')0 ( ')( ')
, (29) 

 

and the first invariant 1
1 '( )tI tr C  becomes 2

1 02 [ ( ')]I t t 2
0 ( ')]0 (0 (0  leading to 1( 2) ( )h I h2) (2) ) . With some algebra 

the equations governing this flow can be further simplified. The momentum equation only depends on the velocity 
field, and, we calculate the shear stress based on this velocity field. The normal stress xxxx  is then calculated based on 
the velocity and shear stress fields. The normal stress yyyy  depends on the velocity field through 1I . 
 

 
2

1
, 2

10 '

( , ) 1 ( '', )( ') ( ') '' '
1 0.3( 2)

t t

t

u t y u t yt t E t t dt dt
t I y

( ))(( ')') 11111( )( )( ) ( )( )( )( )( ')( ')((( )( ) , (30) 
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1
,

10 '

1 ( '', )( , ) ( ') ( ') '' '
1 0.3( 2)

t t

xy
t

u t yt y t t E t t dt dt
I y

( , )xy y, ), '
t

dt dt''( '', )y( '',( '' d111111
11110

t

EEEEEE , 'dt dt''
y'

d
1 2)1 2)110.3( 110 3(0 3(00

')(( ')(( ')t t( ') 11 )( )))')(((( , (31)
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1 0.3( 2)

t t t

xx
t t

u t y u t yt y t t E t t dt dt
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( , )xx y, ),
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tt t

( '' )t '' ( ''' )t ( '''( '''1 t y( , )( '' )u( '', )'',111 u1 1 21 2 u ''''''d)y( , dt ''')( , dt ''')( ,( , d '''1 1 2
1111

''dt dtdt '''1 2
10.3( 2)1 2)0.3( 110 3(0 3(0 3(

1 2
yy

dt dt
't '

1 21 2 dt dt
t y't y't0

t

t t EEEEEE ,, ')(((( ')t t( ') 11 )( ')( )))')(((( , (32)

1
,

10

1( , ) ( ') ( ') '
1 0.3( 2)

t

yy t y t t E t t dt
I

( , )yy y, ), 111EEEEEE ,,
11

1111
'dt

10.3( 2)10.3( 110 3(0 3(000

t

')((( ')(( ')t t( ') 11 )( )))')(((( , (33)

This system of equations is then numerically solved (see [25] for more details) using a numerical approximation based 
on finite differences for the time and spatial derivatives and a discretization of the integrals with the trapezoidal rule.
The boundary conditions for velocity were already presented (see Eq. 27) and we have also considered:

1(0, )yC 1 . (34)

Note that to calculate the velocity field (Eq. 29) we assume the invariant 1I is known (from the previous iteration).

The mesh size used in the simulations is 4/ 2.35 10y h and 4
min / 4.5 10t (we used again graded meshes 

when discretizing time). We have also used the parameters ψ/τ = 2.68×10−3 and td/τ = 1.12×10−2.
In order to compare the numerical results with results from the literature (the semi-analytical solution presented in [2]) 
we numerically computed the shear stress at the upper wall (numerical solution of Eqs. 30 and 31), and calculated the 
shear viscosity for different shear rates with (( ) /) ,xy t h( ) /,(xy h, . The numerical results are shown in Fig. 6(b), together 
with the experimental data gathered from [21] for the HDPE at 190ºC. We see two sets of numerical/semi-analytical 
results. The semi-analytical results are obtained from the formula given in Eq. 29 of [2] and the numerical results are
provided by the numerical solution of Eqs. 30 and 31.

FIGURE 6. (a) Velocity profile obtained from Eq. 24. (b) Shear viscosity versus shear rate. Comparison of experimental data
[20] and numerical results. The parameters used are 5 α 4 β10 [Pa.s ] .70 101.24 , 6 , 1, 0.234, 0[Pa.s .] 3a5 α 410 [Pa.s ] .70 105 α1.24 10 [Pa.s ]5 α [Pa.10 [Pa10 [Pa s ]1 24 .707070 .

The numerical solution of Eqs. 30 and 31 is expensive in terms of computational time since at each instant 't a new 
Finger tensor is created and the past Finger tensors are not eliminated (we accumulate all the deformation along all 
previous times), and by using the analytical expressions for the Finger tensor (Eq. 28) we obtain a discretized nested 
sum. This consumes the time and memory of the computer, with the simulation becoming slower and slower as we 
evolve in time. This is a price we must pay to obtain an invariant model with the same linear viscoelastic properties 
of the FMM and FVF models (that are much easier to implement numerically). The method can be improved by 
numerically solving Eq. 27 to obtain the Finger tensor [24], avoiding in this way the time consuming nested sums.
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CONLUSIONS 

We have shown how to obtain, using fractional calculus concepts, the fractional viscoelastic models of differential 
and integral types. We mainly studied and compared three different models, the Fractional Viscoelastic Fluid (FVF), 
the Fractional Maxwell Model (FMM) and a frame-invariant K-BKZ formulation (Fractional K-BKZ). It was also 
demonstrated that, depending on the model parameters, the FMM can be reduced to the appropriate limits of a 
Hookean solid, a Newtonian fluid and the classical Maxwell Viscoelastic fluid. 

The fitting of the FVF and FMM models to the rheological data obtained for an HDPE, evidenced the ability of 
the fractional viscoelastic models to provide better results with a small number of parameters. 

Numerical methods to solve simple unidirectional time-dependent shear flows with the three studied models were 
also described and verified with existing analytical solutions available in the literature. The results provided show that 
with these numerical approaches it is possible to deal both with fast transients and steady shear flows. The code has 
adaptive time stepping and can simulate for 0 / 1000t . However, due to the amount of information that has to 
be handled, the numerical calculation process is quite heavy, especially for the Fractional K-BKZ model, which is 
frame invariant. Consequently, improvements are required to be able to use those numerical approaches in more 
general calculation frameworks. 
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