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1 Background

Skin cancer is the most common form of cancer in the U.S.,
resulting in one out of the five Americans developing skin cancer
at some point in their lifetime [1]. Though melanoma accounts for
only 2% of these cases, it is the leading cause of skin cancer
deaths; as with all cancer, early detection before metastasis is vital
for patient survival, stressing the need for effective diagnostic
devices [2]. While research progresses toward new skin cancer
detection devices, successful adoption of these technologies
requires a robust, repeatable method for large-scale validation.
Tissue mimicking phantom models have proven to be adequate as
they are able to accurately model the mechanical, optical, and
acoustical properties of skin.

Several types of bio-based and synthetic materials are used to
simulate tissue. Agar-based tissue phantoms at different concen-
trations were used to test ultrasound as a stiffness imaging tech-
nique for cancerous lesions [3]. Other groups have utilized
polydimethylsiloxane (PDMS) in combination with titanium oxide
(TiO,) and nanorose particles to mimic both the biochemistry and
optical properties of skin with incorporated lesions [4]. Specifi-
cally, they created a two-layer model consisting of a nanorose-
containing top lesion layer and an underlying skin layer with only
PDMS and TiO,. Other materials, such as porcine skin gelatin,
collagen, lipid scattering particles, polyacrylamide gels, and
epoxy resins have also been used to simulate skin tissue for opti-
cal spectroscopy, imaging, and dosimetry [5].

To adequately mimic the properties of skin tissue, it is impor-
tant that phantom tissue models be composed of layers that rep-
resent the three different layers of the skin: epidermis, dermis,
and hypodermis. The epidermis, the outermost, and stiffest skin
layer, serves as a waterproof barrier against the environment.
The dermis is comprised of hair follicles and sweat glands that
allow for sensory and temperature regulation. Finally, the hypo-
dermis, the innermost, and thickest layer consists mostly of con-
nective and adipose tissue for energy storage. Due to the
prevalence of adipose tissue, the hypodermis is the least stiff
layer. While some groups have developed phantoms resembling
the epidermis and dermis layers, phantoms composed of all three
layers are rare [6].

In addition to containing properties analogous to normal skin, a
phantom model needs to incorporate a model for the cancerous
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lesion. One important parameter that can be exploited to distin-
guish melanomas from surrounding normal skin tissue is stiffness.
When cells plated on polystyrene were allowed to adhere and
spread on an extracellular matrix, it was discovered that the elastic
moduli of normal melanocytes was 308 = 18 Pa while that of
metastatic melanomas increased to 10,001 =90Pa [7]. Analysis
of mechanical stiffness of normal melanocytes in comparison to
melanomas also revealed a 2.5- to 6-fold increase in stiffness, fur-
ther demonstrating elastic properties of the skin as a good meas-
uring tool for diagnosing melanomas [8,9].

Our research group is developing a skin cancer diagnostic
device for tissue characterization. This device measures the full-
field tissue elasticity to determine if a lesion is cancerous. To
determine elasticity, the device uses a weak vacuum to apply a
force and structured light to measure the tissue deformation. A
mass within the tissue with contrasting stiffness will cause the tis-
sue to deform differently. Thus, this paper will focus on the crea-
tion of a phantom tissue model that mimics the mechanical
properties of skin in order to drive mechanical design and validate
the measurement method prior to human clinical trials.

2 Methods

For the purpose of detecting melanomas, the design require-
ments of tissue-mimicking phantom models were twofold: (1)
achieving accurate thicknesses for each layer of the skin and (2)
modeling the elasticity of normal skin relative to melanomas.

The layer thickness is approximately 50 um to 1 mm for the
epidermis, 1-2mm for the dermis, and the hypodermis varies
from 1 mm to 5cm [10,11]. Different models have been used to
estimate the Young’s Modulus of the individual skin layers. The
Young’s Modulus of the epidermis is typically found to be 1 MPa
[12]. The value for the dermis is much less, ranging from
35-300kPa [10,12]. The hypodermis, composed of mostly fat, is
even lower, with values of 2-35kPa [10,12].

A malignant melanoma lesion initially grows horizontally
within the epidermis; after which it starts to penetrate into the der-
mis. Tumor thicknesses typically start at 0.25 mm for early stage
tumors and grow to 4 mm or more if left untreated. Thickness is
positively correlated with the stage of the cancer and inversely
related to the probability of survival [13]. The diameter of a lesion
can range anywhere from 1 to 5cm [14].

The elasticity and thickness of human skin is not constant, and
varies significantly depending on several factors, most notably,
location on the body. Design Circle, Inc., a medical product devel-
opment firm, fabricated the phantom models according to the
specifications for layer thickness, diameter, color, and stiffness
shown in Table 1. A proprietary synthetic rubber was poured into
a custom mold for each layer.

The property specifications for the initial prototype phantom
models reflected those for an average person’s abdomen. While
sufficient for an initial validation, future models will incorporate
varying stiffness and thickness values to simulate other body
regions. Due to the use of synthetic rubber for the material,
Young’s modulus values were converted to durometer according
to the method proposed by Mix and Giacomin [15].

3 Results

After the phantom models were fabricated, the stiffness of each
layer was quantified to determine how close the final model
matched the proposed specifications. An Admet Universal
Materials Testing system with a 1 N force transducer was used to
determine the stiffness of each layer. Each layer was measured
three times and the mean value was compared to the specification.

The epidermis and hypodermis were well outside the target
specifications. The epidermis was 74.4% stitfer than the specifica-
tion with a 1744 kPa mean measurement. The hypodermis was
63.8% less stiff with a mean measured value of 18.1kPa. How-
ever, the dermis and lesion were within 15% at 22 1kPa and
343 kPa, respectively.
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Table 1

Phantom tissue model specifications

Stiffness
Thickness (mm) Diameter (cm) Young’s modulus (kPa) Durometer (Shore OO)
Epidermis 0.25 12 1000 87
Dermis 2 12 200 55
Hypodermis 30 12 50 15
Melanoma lesion 1.5 1.5 400 73

Finite element analysis (FEA) was performed to predict how
the phantom model would deform. The measured properties and
dimensions were used to form custom materials within ANSYS
16.0. A pressure ramped from O to 100 mbar was applied to a
6 cm diameter area. The center deflection for a phantom model
with a lesion is 10.67 mm versus a model without a lesion at
9.98 mm, resulting in a 6.9% difference. The phantom models
were measured by the prototype device described at the end of the
Sec. 1. The average device measurement deviated from the FEA
results by 10.0% and 18.6% for the models with and without a
lesion, respectively.

4 Interpretation

Differences in the measured stiffness of the individual
layers of the phantom versus the specifications are likely due
to the conversion between Young’s Modulus and durometer.
Durometer is a nonlinear hardness measurement from 0 to
100, with 100 being equivalent to a material with infinite
hardness.

The epidermis was at the higher end of the Shore OO scale
so it was more sensitive to error. Since the phantom model is
used to validate a prototype diagnostic device with FEA
results, a stiffer epidermis is adequate as long as the increased
stiffness is taken into account. The hypodermis was well below
the specified stiffness value; however, this was advantageous.
The lowest possible stiffness of the synthetic rubber was
thought to be 50kPa and therefore, above the acceptable range
for the hypodermis. The measured value of 18.1kPa fits within
the actual range.

The phantom tissue model presented in this brief has shown ini-
tial promise as a viable solution to mimic human skin. The model
adequately validated the prototype system as the measured results
were within 20% of the FEA results. This model provides a low
cost, robust, and repeatable method to enable validation of a pro-
totype device that diagnoses skin cancer through the quantification
of tissue stiffness.
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