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Abstract

We demonstrate a quantitative reflection-phase microscope based on time-varying speckle-field 

illumination. Due to the short spatial coherence length of the speckle field, the proposed imaging 

system features superior lateral resolution, 520 nm, as well as high-depth selectivity, 1.03 µm. Off-

axis interferometric detection enables wide-field and single-shot imaging appropriate for high-

speed measurements. In addition, the measured phase sensitivity of this method, which is the 

smallest measurable axial motion, is more than 40 times higher than that available using a 

transmission system. We demonstrate the utility of our method by successfully distinguishing the 

motion of the top surface from that of the bottom in red blood cells. The proposed method will be 

useful for studying membrane dynamics in complex eukaryotic cells.

Quantitative phase imaging (QPI) is a technique for accurately measuring the structure and 

function of transparent biological samples without requiring exogenous contrast agents [1]. 

In the last few years, QPI has proven to be a powerful tool for label-free quantification of 

pathophysiological processes at the single-cell level [2,3]. In particular, QPI systems have 

been used to study fast (> 100 Hz) dynamics of membrane motion in biological cells. 

Normally transmission phase images are acquired in time, and the measured phase variations 

are converted into height fluctuations. The phase measurements in transmission, however, 

do not decouple the physical thickness from refractive index variations in samples.

In contrast, configurations relying on reflection measurements have certain advantages. The 

interpretation of the measured reflection phase does not require the knowledge of refractive 

index distribution within the sample as long as we are interested in the outermost surface 

morphology. In addition, the reflection measurement provides 2n/Δn higher phase sensitivity 

compared to its transmission counterpart, where n is the refractive index of the host medium 

and Δn is the refractive index difference between the sample and the medium [4]. Since 
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water-based host media are usually used in most cases, n is typically 1.33, and Δn ranges 

from 0.03 to 0.06 for most biological samples [5]. Thus more than an order-of-magnitude 

phase gain, which can be up to about 90 for eukaryotic cells, can be easily achieved using 

reflection-type QPI configurations.

To take advantage of higher sensitivity of reflection phase measurements, the prerequisite is 

to attain depth selectivity. A general approach is to utilize a broadband light source and 

produce a temporal coherence gate at the target position. Using this strategy, light arriving 

from depths out of the coherence gate region can be effectively rejected [6–8]. Our lab has 

also demonstrated a single-shot wide-field reflection phase microscope based on temporal 

gating. The demonstrated axial resolution, however, was limited (several microns) due to 

rather narrow bandwidth of the source [4]. Yamauchi et al. have achieved higher axial 

resolution, ~1 µm, by using a white-light illumination [9]. Their instrument, however, is not 

appropriate for high-speed (>100 Hz) phase measurements since it requires multiple 

interferograms to obtain a single-reflection phase image.

Another approach to achieve depth sectioning is through complex speckle-field illumination. 

In the past, speckle fields have been mainly used to reduce noise and improve lateral 

resolution via coherent or incoherent averaging of multiple measurements [10–12]. 

Although single-shot full-field interferometric confocal imaging has also been demonstrated 

[13], the demonstrated spatial resolution has been limited to several microns. The 

enhancement of depth resolution assisted by the decorrelation nature of a speckle field has 

also been demonstrated via time-varying speckle-field in conjunction with interferometric 

detection [14]. However, the achieved depth resolution was again limited due to lack of 

speckle overlap as a result of reference wavefront tilt for off-axis configuration. Recently, 

we resolved this limitation by using a grating to form an off-axis setup (in transmission 

mode configuration) without physical tilting of the reference beam [15]. In this Letter, we 

present a wide-field reflection phase microscope based on dynamic speckle illumination that 

features single-shot quantitative phase measurements with high lateral and axial resolution. 

The quick decorrelation nature of 3D speckle-fields allows us to achieve confocal equivalent 

depth selectivity. We call this method speckle-correlation reflection phase microscopy 

(SpeCRPM).

The experimental setup is depicted in Fig. 1(a). A mode-locked Ti:sapphire laser (Mira 900, 

Coherent) with a center wavelength of λ0 = 800 nm and spectral width Δλ ≈ 17 nm is used 

as a light source. The collimated laser beam illuminates a rotating ground glass diffuser (D: 

DG1200, Thorlabs), which generates a dynamically varying speckle field. After passing 

through a polarizer P0, which defines an input polarization state for maximum interference, 

the speckle field is split into sample and reference beams via a polarizing beam splitter 

(PBS). A half-wave plate (HWP) is placed before the PBS to either balance or redistribute 

the input power in the two arms. A Linnik-type interferometer is constructed using two 

objective lenses in conjunction with two quarterwave plates (QWPs), one in each arm. The 

image of the diffuser is projected onto the object and reference mirror planes via two 4f 

imaging configurations that share the three lenses before the PBS and employ two matching 

objectives (1.0 NA, 60×, water immersion, Olympus), one in each arm. A mirror (M) is 

placed at the focal plane of the reference arm. During setup alignment and characterization, 
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a separate mirror is used as an object. The retardation axes of the QWPs are set so that the 

returning light from each arm is perpendicularly polarized to itself. Consequently, the 

returning beams are steered to the output port of the PBS with polarizations orthogonal to 

that of each other. For off-axis holography, a grating (G: Ronchi Rulings, Edmund Optics) is 

positioned at the first intermediate plane. To minimize aberrations introduced by different 

pathways through the optics, the zeroth-order beam is blocked and only the +1st and −1st 

diffraction orders are selected to pass. Since each of the diffracted orders contains both the 

sample and reference beams, two cross polarizers are placed in the Fourier plane (one in 

front of each diffraction order) to allow only one beam (sample or reference) to pass 

through. A CMOS camera (Flea3, Point Grey) is placed in the image plane such that both 

the object and the grating are in focus simultaneously. Another polarizer at 45° orientation is 

introduced in front of the camera to achieve interference between the orthogonally polarized 

sample and reference beams. For a stationary diffuser, a typical speckle pattern from the 

reference mirror is as shown in Fig. 1(b). For zero optical path-length difference (OPD) 

between the two arms, the sample speckle pattern shows a fairly good match with that from 

the reference arm as presented in Fig. 1(c). When the two speckle fields combine at the 

camera plane, an interference pattern (straight fringes) appears in addition to the speckle 

distribution as shown in Fig. 1(d). Furthermore, the interference fringes stay stationary and 

are not affected by different speckle patterns introduced by the diffuser. Therefore, when the 

diffuser is rotated fast enough within the camera exposure time, sufficiently large number of 

speckle patterns are generated and averaged out during the signal acquisition. In our 

experiment, the typical rotational speed of the diffuser is about 500–600 rpm, which 

generates about 400 different speckles within a 10 ms exposure time. This is 4–7 times 

larger than the minimum number of speckles required to average out the speckle-induced 

intensity variations [10,11]. When the local speckle formation is washed out, a clear 

interference pattern as shown in Fig. 1(e) becomes readily available for recording. When 

imaging a sample (biological or otherwise) with a nonplanar morphology, the interference 

pattern is modified accordingly such that it bears the information of the sample morphology 

as well as dynamics. By analyzing the measured single-shot interferograms, both the 

amplitude and phase information of the sample can be obtained [16,17].

The generated speckle field is composed of multiple plane waves illuminating the sample at 

various oblique angles limited by the numerical aperture (NA) of the objective lens. Thus 

the lateral resolution of SpeCRPM is twice as good as that available with coherent 

illumination. The spatial resolution of SpeCRPM is equivalent to the mean speckle size 

produced at the sample plane. We have quantified this parameter by measuring the 

autocorrelation length of the speckle field. From the sample speckle distribution shown in 

Fig. 1(c), we have calculated the autocorrelation function along lateral directions as shown 

in Fig. 2(a); the inset shows the corresponding 2D autocorrelation map. The full-width-half-

maximum (FWHM) of the autocorrelation is measured to be 520 nm, which is in good 

agreement with the value predicted by Van Cittert–Zernike theorem [18].

To demonstrate lateral resolution of SpeCRPM, we imaged polystyrene beads (Polyscience, 

Inc.) on a glass plate. The 750-nm-diameter beads used for imaging formed several clusters 

in the field of view. First, the beads sample was illuminated with a plane wave. The 

measured amplitude image is shown in Fig. 2(c). Since the diffraction-limited resolution of 
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this coherent imaging is 1.22λ0/NAdet = 980 nm, where NAdet is the detection NA, multiple 

adjacent beads were not distinguishable due to the lack of resolving power. Next, the same 

site was imaged using the dynamic speckle illumination. Now the diffraction limited 

resolution of the system is expected to be 1.22λ0/(NAill + NAdet) = 490 nm, which was 

verified by the autocorrelation measurement as discussed above; NAill is the illumination 

NA. Figure 2(d) shows the corresponding amplitude image using the dynamic speckle 

illumination where the individual beads are now clearly distinguishable. Furthermore, Fig. 

2(b) shows the profiles along the dotted lines in Figs. 2(c) and 2(d).

Since the speckle distribution generated by the diffuser is 3D, the correlation along the axial 

direction quickly decays similar to that in the case of lateral directions. If the position of the 

sample mirror varies, for example, by 1 µm from the zero OPD position, the speckle 

distribution changes significantly as shown in Fig. 3(b). The resulting interference pattern, 

as shown in Fig. 3(c), is neither straight fringes nor stationary for varying speckle patterns. 

The interference contrast, therefore, substantially drops when different speckle patterns are 

averaged, as shown in Fig. 3(d). We have systematically investigated achievable optical 

sectioning via speckle correlation. Multiple interference images were acquired at different 

axial positions of the sample mirror. To determine the fringe contrast, complex amplitude 

maps were computed, converted into intensity images, and then averaged over the whole 

field-of-view. As shown in Fig. 3(e), the depth sectioning is about 6 µm for plane-wave 

illumination, which is mainly determined by the coherence length of the light source. Note 

that the mode-locked laser was used only because it offered more power required for 

obtaining enough reflection signal from biological samples. With the dynamic speckle 

illumination, however, the correlation length is significantly reduced. The FWHM of axial 

correlation was measured to be 1.03 µm, which is fairly close to the confocal limit of the 

objective lens. A similar decorrelation effect resulting from speckle formation was also 

observed when using a CW laser [15]. Since SpeCRPM does not require reference mirror tilt 

for off-axis configuration, a uniform interference contrast can be obtained over the entire 

field-of-view up to the maximum illumination NA.

Next, we used healthy red blood cells (RBCs) to demonstrate depth-resolved phase 

measurements in biological samples. Since the typical thickness of RBCs is about 2–3 µm, 

SpeCRPM successfully distinguishes each surface, top as well as bottom, due to its superior 

axial resolution. When the focus is placed at the bottom surface, the signal is dominantly 

generated from the glass substrate on which the RBC is rested. Figures 4(a) and 4(b) show 

the amplitude and phase images, respectively, of an RBC in double-pass mode. The actual 

phase map can be obtained by dividing the total measured phase by 2.

However, when the focus is placed on the top surface of the RBC, the signal from the 

bottom surface is effectively rejected due to optical sectioning. Figures 4(c) and 4(d) show 

the reflectance and phase maps, respectively, of the top surface. Since only the phase with 

certain strength of reflection signal is reliable, the measured phase from locations with 

corresponding amplitude below a certain threshold value is not considered. Furthermore, as 

there is no phase reference associated with the empty region, the overall phase offset in Fig. 

4(d) was removed by subtracting the mean value. We note that the reflection phase image in 
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Fig. 4(d) is attributed to the surface morphology of the RBC, and not to the phase retardation 

due to the refractive index contrast.

Since SpeCRPM offers single-shot and wide-field imaging, it is capable of high-speed 

reflection phase measurements. Multiple interferograms were acquired for a total of 10 s at 

100 fps, which was limited only by the camera speed. If we were to increase the camera 

speed further, we would need to speed up the diffuser rotation proportionally to achieve the 

same speckle decorrelation effect and hence image quality. Corresponding phase maps were 

computed by analyzing the measured interferograms. Figure 4(e) shows the measured phase 

fluctuations at a lateral position indicated by an arrow for both top (reflection measurement) 

and bottom (double-pass transmission measurement) surfaces. The black line shows the 

phase jittering measured without any sample. The rms amplitude of this empty fluctuation is 

5.2 mrad, representing the system stability. The blue line shows the time-varying phase 

measured in double-pass transmission mode. The rms amplitude of the fluctuation is 32.4 

mrad, which corresponds to RBC thickness variation of 34.4 nm; here the refractive index 

difference Δn is assumed to be 0.06. In this case, the measurement sensitivity is determined 

to be 0.94 mrad/nm. In contrast, the phase fluctuation measured in reflection mode is shown 

by the red line. The rms amplitude of the fluctuation is 533 mrad, which corresponds to the 

motion of the top surface by 25.5 nm. We note that this measurement does not require the 

knowledge of the refractive index of the sample. The measured phase sensitivity is 20.9 

mrad/nm, which is 22 times better than that of the double-pass transmission measurement. 

When compared with a typical single-pass transmission phase imaging setup, SpeCRPM has 

an additional factor of 2 phase measurement sensitivity.

In conclusion, we have demonstrated a wide-field reflection- phase microscope based on 

dynamic speckle illumination. The depth selectivity of our setup is determined by the 

speckle decorrelation as a function of optical path length. Due to the short correlation length 

of the speckle field along the axial direction, 1.03 µm depth selectivity was achievable. 

Furthermore, due to the short autocorrelation length of the speckle-field, the proposed wide-

field reflection-phase microscope offers superior lateral resolution as well as significantly 

reduced diffraction noise. With the improved depth selectivity, we have successfully 

distinguished and quantified the motion of a top surface of a healthy red blood cell. The 

measurement sensitivity of our system is 44 times higher than that achievable with a typical 

transmission approach. Since this technique features single-shot high-speed phase 

measurements with improved sensitivity and axial sectioning, it will be useful in many 

biological studies including measurement of nuclear membrane stiffness in laminopathies.
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Fig. 1. 
(a) Schematic diagram of the experimental setup. D, diffuser; M, mirror; PBS, polarizing 

beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; OLR and OLS, objective 

lenses for reference and sample arms; G, grating; Pα, polarizer with α-deg rotation. Multiple 

diffraction orders generated by G except ±1 are omitted. (b), (c) Intensity distribution of the 

speckle field from reference and sample arms, respectively, with no path length difference. 

(d), (e) Interference pattern at the camera with stationary and rotating diffuser, respectively. 

Inset is 3× zoom view of the interference.
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Fig. 2. 
(a) Section profile of the autocorrelation map obtained from the speckle distribution in the 

sample plane. The FWHM of Gaussian fit, represented with a red line, is 520 nm. The inset 

shows the 2D autocorrelation map. Scale bar: 1 µm. (b) Section profiles of the bead cluster 

along the black dashed line in (c). Black and blue curves correspond to (c) and (d), 

respectively. (c), (d) Amplitude image of bead clusters on a glass substrate using plane-wave 

and dynamic speckle illuminations, respectively.
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Fig. 3. 
(a), (b) Speckle-field distributions at the camera from reference and sample arms, 

respectively, with 1 µm path-length difference. (c) Interference of the two speckle fields 

shown in (a) and (b) with a stationary diffuser. (d) Corresponding interference pattern at the 

camera plane with the spinning diffuser. Inset shows 3× zoom view of the interference. (e) 

Interference strength as a function of axial shift of the sample mirror; blue and black lines 

represent plane-wave and dynamic speckle illumination. The FWHM (using Gaussian fit), 

shown by the red line is 1.03 µm for the dynamic illumination case.
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Fig. 4. 
(a), (b) Double-pass transmission images of an RBC for (a) amplitude and (b) phase, 

respectively. (c), (d) Reflection images of the same RBC for (c) amplitude and (d) 

corresponding phase image. Only the phase values corresponding to the region with strong 

reflection are shown. (e) Fluctuation of phase values. Blue line: transmission phase 

fluctuation measured at the point indicated by the arrow in (b). Red line: reflection phase 

fluctuation measured at the point indicated by an arrow in (d). Black line: background 

fluctuation. Scale bars in (b) and (d): phase in radians.
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