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We show that thermocapillary-induced droplet motion is markedly enhanced when using
lubricant-impregnated surfaces as compared to solid substrates. These surfaces provide
weak pinning, which makes them ideal for droplet transportation and specifically for water
transportation. Using a lubricant with viscosity comparable to that of water and temperature
gradients as low as 2 K/mm, we observe that drops can propel at 6.5 mm/s, that is, at least
5 times quicker than reported on conventional substrates. Also in contrast with solids,
the liquid nature of the different interfaces makes it possible to predict quantitatively the
thermocapillary Marangoni force (and velocity) responsible for the propulsion.

DOI: 10.1103/PhysRevFluids.1.063902

Droplet mobility on solid surfaces is crucial for many applications including repellency [1,2], self-
cleaning [3], anti-icing [4], microfluidics [5], dropwise condensation [6,7], and fog collection [8]. The
mobility of drops can be lowered or even impeded by substrate heterogeneities that result in contact
line pinning [9–13]. Hence it is worth thinking of devices that simultaneously provide propulsion
and reduce pinning. Droplets tend to move towards more wettable regions [14], and substrates with
spatial gradients in surface energy [14–17], substrate stiffness [18], and/or temperature have been
used to drive liquids [19–25].

Thermocapillary effects have also been exploited to move, merge, and split drops through rapidly
changing heating patterns [25], with applications in biology and chemistry [26,27]. A thermal
gradient alters the surface tension of the liquid and induces a shear flow, which can contribute to the
propulsion of droplets [19]. Very commonly, imperfections of the substrate necessitate the application
of large temperature gradients on the order of several K/mm [21–24], rendering the technique energy
intensive and incompatible with many applications. For a given thermal gradient, the temperature
difference between the two ends of a drop and the corresponding driving force can be enhanced
by increasing the contact area between the liquid and the substrate [20], but this also increases
viscous resistance. As a result, the above-mentioned approaches constrain the choice and size of the
test liquids. In particular, transporting water droplets using thermocapillarity has been challenging
because of large contact angles or contact angle hysteresis. Hence there is a need for slippery surfaces
that can achieve thermocapillary motion at much lower temperature gradients. Here we propose a
solution consisting of a lubricant-impregnated substrate subjected to a temperature gradient.

Lubricant-impregnated surfaces (LISs) are textured materials imbibed by a lubricant [9,28–33].
A drop on a LIS can exist in one of twelve different thermodynamic states depending on the
properties of the droplet, impregnating liquid, solid texture, and surrounding environment [30]. Stable
impregnation requires the contact angle of the impregnating liquid to be less than a critical angle θc,
given by the expression θc = cos−1 (1 − ϕ)/(r − ϕ), where ϕ is the fraction of the projected area of
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FIG. 1. (a) Water drop on a lubricant-impregnated surface subjected to a thermal gradient. The substrate is
shining, owing to the presence of silicone oil imbibing its texture; oil also produces a ridge around the drop
and iridescence around the cap. (b) SEM picture of the laser-textured silicon substrate showing a hierarchical
surface with 80-μm-high posts covered with nanofeatures. (c) Chronophotography of water drops with volume
� = 10 μL exposed to a temperature gradient dT /dx = −1.8 K/mm on smooth hydrophobic surface and on
a LIS (with oil viscosity μo = 7.5 mPa s at 40 ◦C). (d) Corresponding droplet position X obtained from the
videos as a function of time t on a LIS (for μo = 40 mPa s) and on hydrophobic and superhydrophobic materials.
(e) Apparent contact angle θ on a LIS as a function of position X, as water self-propels under a thermal gradient.
Advancing and receding angles are found to nearly superimpose.

the surface that is occupied by the solid and r is the roughness of the substrate. The submergence or
exposure of texture tops under the droplet is dictated by the spreading coefficient of the impregnating
liquid (o) on the solid (s) in the presence of the droplet (w), given by Sos(w) = γsw − γos − γow,
where γ is the interfacial energy. In the case of complete spreading of the lubricant on the surface
(Sos(w) > 0), a thin van der Waals film submerges the tops of textures and weakens or even eliminates
pinning sites [30]. A drop in such a state [Fig. 1(a)] is highly mobile.

Silicon substrates with hierarchical texture comprising 80-μm-high posts covered with
nanofeatures [Fig. 1(b)] were fabricated using laser ablation [34]. Hydrophobic treatment by
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FIG. 2. Steady-state velocity V of drop thermomigration as a function of the drop radius R for lubricant
(silicone oil) viscosities between 1.4 and 85 mPas (at 40 ◦C). Symbols are used for experimental values, while
solid lines show linear fits corresponding to Eq. (2). Videos of droplet propulsion on lubricant-impregnated
surfaces at various viscosities are available in Ref. [34].

octadecyltrichlorosilane (OTS) ensures complete wetting by the silicone oils used as lubricants.
Water meets the impregnated material with identical apparent advancing and receding contact
angles θa ≈ θr = 102◦ ± 5◦, showing a negligible contact angle hysteresis [30]. The lubricant forms
a wetting ridge around the contact line [Fig. 1(a)] to satisfy the balance of surface tensions. In
addition, a thin cloaking film covers the droplet if the spreading parameter S = γwa − γoa − γow of
lubricant on water is positive [30]. The spreading parameter S can be predicted: In our case, its value
decreases from 12 mN/m to 7 mN/m as temperature increases from T− = 20 ◦C to T+ = 65 ◦C.
We anticipate from its positive value the existence of a cloaking film in our system, as confirmed by
iridescences at the drop surface in Fig. 1(a).

When a thermal gradient (dT /dx = −1.8 K/mm) is applied along the x axis defined in Fig. 1(a),
we observe that water droplets propel from hot to cold regions [Figs. 1(c) and 1(d)]. The apparent
contact angle θ (and thus the drop shape) remains nearly constant along the motion, as visible
in Fig. 1(c) and reported in Fig. 1(e). Propulsion is maintained for multiple sequential droplets,
showing there is no significant depletion of silicone oil from the substrate during experiments, in
agreement with [32]. In contrast, no thermocapillary propulsion of water drops is observed on smooth
hydrophobic (OTS functionalized) surfaces, as shown in Figs. 1(c) and 1(d) [34]. The contact angle
hysteresis (∼14◦) on the smooth hydrophobic surface is large enough to oppose the thermocapillary
force. On superhydrophobic materials, no motion is observed either: Hysteresis is smaller (below
3◦) but the large water contact angle (153◦ ± 3◦) results in a 60% smaller droplet base radius than
that on LISs, which leads to a lower surface tension contrast and thus a weaker thermocapillary
force.

As shown in Figs. 1(c) and 1(d), droplets on LISs quickly reach a uniform velocity V (of about
0.25 mm/s in the plot), which suggests a steady state where a thermocapillary driving force balances
viscous resistance. We compare in Fig. 2 the velocity V obtained for droplet radii R = 1 − 4 mm
and lubricant viscosities μo = 1 − 100 mPa s (given at the average temperature of 40 ◦C), at fixed
thermal gradient. On the one hand, the velocity V increases with the radius R due to a higher
surface tension difference across the droplet and thus a higher thermocapillary force [20,21]. The
strong dependence on radius confirms that propulsion is based on thermocapillarity and not simply
lubricant migration due to the temperature gradient [20,21,32]. On the other hand, motion is faster
for smaller μo. By choosing a silicone oil with a viscosity μo = 1.4 mPa s (red circles in Fig. 2), an
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FIG. 3. (a) Sketch of a drop on a lubricant-impregnated surface exposed to a temperature gradient.
(b) Variations of the oil-water and oil-air surface tensions γow and γo as a function of temperature T [34].
The oil here has a viscosity μo = 7.5 mPa s at 40 ◦C. (c) Images from an infrared video showing the
thermocapillary-induced motion of a droplet of water (� = 30 μL) moving on a LIS impregnated with a
silicone oil (μo = 7.5 mPa s) and subjected to a temperature gradient dT /dx = −1.8 K/mm. See Ref. [33].

enhancement of more than one order of magnitude is achieved when compared to a silicone oil of
viscosity μo = 85 mPa s (black squares) or to solid substrates in Refs. [20–24].

As sketched in Fig. 3(a), the reason why drops move under a temperature gradient arises from
the presence of multiple interfaces whose interfacial tension varies with temperature. We report
in Fig. 3(b) the variations of oil-air and oil-water interfacial tensions, respectively denoted by γo

and γow, which were measured using a tensiometer [34]. We base our model on the following
observations: (i) The drop constantly adopts the substrate temperature T (x), as observed in Fig. 3(c),
which shows successive infrared images along the motion, and (ii) the drop shape remains constant,
as shown in Figs. 1(c), 1(e), and 3(c); for the sake of simplicity, we treat the spherical cap as a
hemisphere (contact angle of 90◦), so that the drop base and spherical cap have a common radius R.

Owing to temperature differences between both sides on the drop, surface tensions do not balance,
which yields, as a resulting force F acting on the drop,

F ≈ πR2[(dγo/dT ) − (dγow/dT )](dT /dx). (1)

The temperature gradient dT /dx is negative, so the variation of oil surface tension with T

(dγo/dT < 0 [Fig. 3(b)]) is found to propel the drop to the right (F > 0): As water moves to
the cold region, it “erases” an area πR2 of oil of higher energy. The role of oil-water surface
tension is more ambiguous: At the beginning of motion (hot region), γow is quasi-independent of T

(dγow/dT ≈ 0 [Fig. 3(b)]) and it does not contribute to motion. Later, in cooler regions (below 4 ◦C
[Fig. 3(b)]), we have dγow/dT � 0 and both tensions γo and γow draw water to the cold region.

Despite the motion, the drop hardly changes its shape [Figs. 1(c), 1(e), and 3(c)]. The apparent
contact angle is given by Young’s formula, which can be written for a cloaked drop on the
LIS [Fig. 3(a)]: cos θ = (γo − γow)/(γo + γow), where both γo and γow are measurable. For γo ≈
20 mN/m and γow ≈ 42 mN/m, we get θ = 110◦, close to the observed value. As the drop moves, and
considering that γow hardly changes with temperature, we expect �θ ≈ −2�γo γow/(γo + γow)2,
that is −2◦ − 3◦, a small variation indeed, yet consistent with the data in Fig. 1(e).
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The quantity we access experimentally is the drop velocity V , which results from a balance
between the force driving the motion and hydrodynamic resistance. Reynolds numbers here are
small, even for the smallest oil viscosity where it is on the order of 10−2. Viscous friction can have
different origins. (i) For oil viscosity μo larger than water viscosity μw, the respective contributions
of viscous forces in the drop and in the oil film scale as (μwV/R)πR2 and (μoVi/t)πR2, where
t is the height of the texture and Vi is the slip velocity at the oil-water interface. Continuity of
stress at this interface allows us to express the slip velocity. We have Vi ∼ (μw/μo)(t/R)V , which
is much smaller than V and logically vanishing as μo diverges. Hence both viscous contributions
are equivalent and found to scale as μwV πR, an expression independent of oil viscosity. (ii) A
specific feature of LISs is the existence of a liquid ridge (of typical size h) at the contact line, as
can be observed in Fig. 1(a) and sketched in Fig. 3(a). This ridge moves with the drop, and it was
proposed in [30] to be the main source of dissipation for liquids running down inclined LISs. The
corresponding viscous force should scale as (μoV/h)πRh∼μoV πR, an expression independent of
the unknown distance h and proportional to both drop size R and oil viscosity μo. Hence the total
viscous resistance can be expressed as α(μo + 2μw)V πR, where α is a numerical factor. Balancing
this viscous force with the thermocapillary force expressed in Eq. (1), we find an expression for the
drop velocity V :

V ≈ (1/α)R(dγ̂ /dT )(dT /dx)/(μo + 2μw), (2)

where we denote by γ̂ = γo − γow the effective tension driving the motion. Equation (2) qualitatively
agrees with our observations in Fig. 2: The velocity V increases with the drop size and the variation is
indeed close to being linear; in addition, motion is slower on more viscous substrates, for a fixed size
R. A quantitative agreement seems difficult to establish at first glance: As deduced from Fig. 3(b), the
driving force can increase as motion proceeds, but oil simultaneously becomes more viscous in the
cooler regions. On the one hand, the quantity dγo/dT is about −0.06 mN m−1K−1 and −dγow/dT

in the cool region can be on the same order [Fig. 3(b)], so the driving force typically doubles in this
region; on the other hand, viscosity of silicone oil increases by a factor 2 between 65 ◦C and 20 ◦C.
Hence drop velocity can remain roughly constant [as shown in Fig. 1(d)], the increase of driving
force being compensated for by the increase of viscous resistance.

In order to compare our data to Eq. (2), we consider a mean gradient of surface tension dγ̂ /dT ≈
−0.06 mN m−1K−1 and a mean viscosity μ = μo, both determined at the average temperature of the
substrate (around 40 ◦C). For cases where the viscosity of oil compares to that of water, we add to
the oil viscosity twice the water viscosity, corresponding to dissipation in the drop and in the film, as
discussed earlier. We draw in Fig. 2 the corresponding line and find satisfactory agreement with all
the data provided we choose α ≈ 22 (same value for all fits). This numerical coefficient is close to
the one determined for water drops running down inclined liquid-impregnated materials, for which
the driving force is the known weight of drops, and the coefficient in the viscous force is similarly
treated as an adjustable parameter and found to be ∼27 [30].

It was found that propulsion is triggered by differences of surface tension [Eq. (1)], which
implies that the direction of motion (hot to cold here) might be reversed by choosing an appropriate
lubricant-droplet pair. Since the tension of oil decreases with temperature, obtaining the reverse
motion (from cold to hot) would require dγow/dT to be larger in absolute value than dγo/dT . In the
same vein, motion can be stopped for pairs of liquids with dγow/dT ≈ dγo/dT , which is the case if
tetradecane is used as a lubricant, as variations of both the interfacial tensions are −0.09 mN m−1K−1.
Indeed, we found that water does not propel anymore when placed on a tetradecane-impregnated
solid with a similar temperature gradient. These remarks emphasize that thermocapillary motion
on LISs allows one to have an explicit, predictable form for the driving force, which involves
measurable quantities only, unlike on solids. It also provides a control of the drop velocity along
the motion, since both the driving force and the lubricant viscosity can be temperature dependent.
This system thus appears highly tunable, exploiting the unique characteristics of liquid-impregnated
surfaces.
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In summary, we showed that lubricant-impregnated surfaces promote thermocapillary motion of
liquids for several reasons. Pinning is strongly reduced on LISs, rendering droplets very mobile.
On a regular solid substrate, thermocapillary forces must overcome pinning, and even above the
corresponding threshold in temperature gradient, angle hysteresis opposes the motion, whose speed
remains quite modest. An at least fivefold increase in velocity can be achieved on LISs compared
to solid substrates for the same temperature gradient and droplet volume [21,22]. Specifically,
propulsion of water at appreciable velocities is made possible. In addition, the apparent contact
angle on LISs is typically around 90◦, that is, low enough to provide significant contact with the
substrate and thus significant temperature differences between both edges of the deposited droplet,
unlike what is observed on superhydrophobic surfaces for which contact is minimized.
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