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Heavy-Tailed Response of
Structural Systems Subjected to
Stochastic Excitation Containing
Extreme Forcing Events
We characterize the complex, heavy-tailed probability density functions (pdfs) describing
the response and its local extrema for structural systems subject to random forcing that
includes extreme events. Our approach is based on recent probabilistic decomposition-
synthesis (PDS) technique (Mohamad, M. A., Cousins, W., and Sapsis, T. P., 2016, “A
Probabilistic Decomposition-Synthesis Method for the Quantification of Rare Events Due
to Internal Instabilities,” J. Comput. Phys., 322, pp. 288–308), where we decouple rare
event regimes from background fluctuations. The result of the analysis has the form of a
semi-analytical approximation formula for the pdf of the response (displacement, veloc-
ity, and acceleration) and the pdf of the local extrema. For special limiting cases (lightly
damped or heavily damped systems), our analysis provides fully analytical approxima-
tions. We also demonstrate how the method can be applied to high dimensional structural
systems through a two-degrees-of-freedom (TDOF) example system undergoing extreme
events due to intermittent forcing. The derived formulas can be evaluated with very small
computational cost and are shown to accurately capture the complicated heavy-tailed
and asymmetrical features in the probability distribution many standard deviations away
from the mean, through comparisons with expensive Monte Carlo simulations.
[DOI: 10.1115/1.4039309]
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1 Introduction

A large class of physical systems in engineering and science
can be modeled by stochastic differential equations. For many of
these systems, the dominant source of uncertainty is due to the
forcing which can be modeled by a stochastic process. Applica-
tions include ocean engineering systems excited by water waves
(such as ship motions in large waves [1–4] or high speed crafts
subjected to rough seas [5,6]) and rare events in structural systems
(such as beam buckling [7,8], vibrations due to earthquakes
[9,10], and wind loads [11,12]). For all of these cases, it is com-
mon that hidden in the otherwise predictable magnitude of the
fluctuations are extreme events, i.e., abnormally large magnitude
forces which lead to rare responses in the dynamics of the system
(Fig. 1). Clearly, these events must be adequately taken into
account for the effective quantification of the reliability properties
of the system. In this work, we develop an efficient method to
fully describe the probabilistic response of linear structural sys-
tems under general time-correlated random excitations containing
rare and extreme events.

Systems with forcing having these characteristics pose signifi-
cant challenges for traditional uncertainty quantification schemes.
While there is a large class of methods that can accurately resolve
the statistics associated with random excitations (e.g., the
Fokker–Planck (FP) equation [13,14] for systems excited by
white-noise and the joint response-excitation method [15–18] for
arbitrary stochastic excitation), these have important limitations
for high dimensional systems. In addition, even for low-
dimensional systems determining the part of the probability

density function (pdf) associated with extreme events poses
important numerical challenges. On the other hand, Gaussian clo-
sure schemes and moment equation or cumulant closure methods
[19,20] either cannot “see” rare events completely or they are
very expensive and require the solution of an inverse moment
problem in order to determine the pdf of interest [21]. Similarly,
approaches relying on polynomial-chaos expansions [22,23] have
been shown to have important limitations for systems with inter-
mittent responses [24].

For system reliability, Monte Carlo and parameter estimation
based methods are another class of strategies. It is now well estab-
lished that anomalous diffusion leads to L�evy motion when parti-
cle jumps have power law tail probabilities (compared to
Brownian motion, where the particle jumps have finite first two

Fig. 1 (Top) Background stochastic excitation including impul-
sive loads in (vertical arrows) upward arrows. (Bottom) System
response displacement.
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moments) for which fractional calculus is the appropriate tool for
such problems [25]. Consequently, L�evy stable, Pareto, and
Mittag–Leffler distributions have all been utilized in methods to
understand and quantify non-Gaussian behavior in fractional-
order mechanics [26–29], including fatigue modeling in solid
mechanics [30], where it has been noted that the relatively simple
description of Brownian diffusion is not adequate to capture
observed non-Gaussian behavior.

Another popular approach for the study of rare event statistics
in systems under intermittent forcing is to represent extreme
events in the forcing as identically distributed independent
impulses arriving at random times. The generalized FP equation
or Kolmogorov–Feller equation is the governing equation that sol-
ves for the evolution of the response pdf under Poisson noise [14].
However, exact analytical solutions are available only for a lim-
ited number of special cases [31]. Although alternative methods
such as the path integral method [32–34] and the stochastic aver-
aging method [35,36] may be applied, solving the FP or
Kolmogorov–Feller equations is often very expensive even for
very low dimensional systems [37,38].

Here, we consider the quantification of the probability distribu-
tion of the response of linear systems subjected to stochastic forc-
ing containing extreme events based on recently formulated
probabilistic-decomposition synthesis (PDS) method [39,40]. The
approach relies on the decomposition of the statistics into a
“nonextreme core,” typically Gaussian, and a heavy-tailed compo-
nent. This decomposition is in full correspondence with a partition
of the phase space into a “stable” region where we do not have
extreme events and a region where nonlinear instabilities or
external forcing lead to rare transitions with high probability. We
quantify the statistics in the stable region using a Gaussian
approximation approach, while the non-Gaussian distribution
associated with the intermittently unstable regions of phase space
is performed taking into account the nontrivial character of the
dynamics (either due to an instability or external forcing). The
probabilistic information in the two domains is analytically syn-
thesized through a total probability argument.

1.1 Central Contributions. We begin with the simplest case
of a linear, single-degree-of-freedom (SDOF) system and then for-
mulate the method for multidegree-of-freedom systems. The main
result of our work is the derivation of analytic/semi-analytic
approximation formulas for the response pdf and the pdf of the
local extrema of intermittently forced systems that can accurately
characterize the statistics many standard deviations away from
the mean. In brief, the principal contributions of this paper are as
follows:

� Analytical (under certain conditions) and semi-analytical
(under no restrictions) pdf expressions for the response dis-
placement, velocity, and acceleration for single-degree-of-
freedom systems under intermittent forcing.

� Semi-analytical pdf expressions for the value and the local
extrema of the displacement, velocity, and acceleration for
multidegree-of-freedom systems under intermittent forcing.

The systems considered in this work are linear; however, the
general method is directly applicable to nonlinear structural sys-
tems (see Ref. [41] for nonlinear systems).

The proposed approach circumvents the challenges that rare
and extreme events pose for traditional uncertainty quantification
schemes, in particular the computational burden associated when
dealing with rare events in systems. We emphasize the statistical
accuracy and the computational efficiency of the presented
approach, which we rigorously demonstrate through extensive
comparisons with direct Monte Carlo simulations.

The paper is structured as follows: In Sec. 2, we provide a gen-
eral formulation of the probabilistic decomposition-synthesis
method for structural systems under intermittent forcing. Next, in
Sec. 3, we apply the developed method analytically, which is

possible for two limiting cases: underdamped systems with f� 1
or overdamped with f� 1, where f is the damping ratio. The sys-
tem we consider is excited by a forcing term consisting of a back-
ground time-correlated stochastic process superimposed with a
random impulse train (describing the rare and extreme compo-
nent). We give a detailed derivation of the response pdf of the sys-
tem (displacement, velocity, and acceleration) and compare the
results with expensive Monte Carlo simulations. In Sec. 4, we
slightly modify the developed formulation to derive a semi-
analytical scheme for the same linear system without restriction
on the damping ratio f, demonstrating global applicability of the
proposed approach. In Sec. 5, we consider multiple-degree-of-
freedom systems, and in Sec. 6, include the response pdf results
for the local extrema. Concluding remarks are made in Sec. 7.

2 The Probabilistic Decomposition-Synthesis Method

for Intermittently Forced Structural Systems

We provide a description of the recently formulated PDS
method adapted to the case of intermittently forced linear struc-
tural systems [40]. Consider the following vibrational system:

MxðtÞ þ D _xðtÞ þ KxðtÞ ¼ FðtÞ; xðtÞ 2 Rn (1)

where M is a mass matrix, D is the damping matrix, and K is the
stiffness matrix. We assume that FðtÞ is a stochastic forcing with
intermittent characteristics that can be expressed as

FðtÞ ¼ FbðtÞ þ FrðtÞ (2)

The forcing consists of a background component Fb of character-
istic magnitude rb and a rare and extreme component Fr with
magnitude rr � rb: The components Fb and Fr may both be
(weakly) stationary stochastic processes, while the sum of the two
processes is in general nonstationary. This can be seen if we
directly consider the sum of two (weakly) stationary processes x1

and x2, with time correlation functions Corrx1
ðsÞ and Corrx2

ðsÞ,
respectively. Then for the sum z ¼ x1 þ x2, we have

Corrzðt; sÞ ¼ Corrx1
ðsÞ þE½x1ðtÞx2ðtþ sÞ�

þE½x1ðtþ sÞx2ðtÞ� þ Corrx2
ðsÞ (3)

Therefore, the process z is stationary if and only if the cross-
covariance terms E½x1ðtÞx2ðtþ sÞ� and E½x1ðtþ sÞx2ðtÞ� are func-
tions of s only or they are zero (i.e., x1 and x2 are not correlated).

For the case where the excitation is given in terms of realiza-
tions, i.e., time-series, one can first separate the extreme events
from the stationary background by applying time-frequency anal-
ysis methods (e.g., wavelets [42]). Then, the stationary back-
ground can be approximated with a Gaussian stationary stochastic
process (with properly tuned covariance function), while the rare
event component can be represented with a Poisson process with
properly calibrated parameters that represent the characteristics of
the extreme forcing events (frequency and magnitude).

To apply the PDS method, we also decompose the response
into two terms

xðtÞ ¼ xbðtÞ þ xrðtÞ (4)

where xb accounts for the background state (nonextreme) and xr

captures extreme responses (due to the intermittent forcing)—see
Fig. 2. More precisely, xr is the system response under two condi-
tions: (1) the forcing is given by F ¼ Fr (i.e., we have an impulse)
and (2) the norm of the response is greater than the background
response fluctuations according to a given criterion, e.g., kxk > c.
However, as we will see in Sec. 3, other criteria may be used.
These rare transitions occur when we have a forcing impulse and
include a period where the system relaxes to the background state
xb. The background component xb corresponds to the response
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without rare events xb ¼ x� xr , and in this regime, the dynamics
are primarily governed by the background forcing term Fb.

We require that rare events are statistically independent from
each other. In the general formulation of the PDS method, we also
need to assume that rare events have negligible effects on the
background state xb, but in the current setup this assumption is not
necessary due to the linear character of the examples we consider.
However, in order to apply the method for general nonlinear struc-
tural systems, we need to satisfy this condition. Also, we require
ergodicity since the statistics we approximate correspond to long
time averages of trajectories [40].

Next, we focus on the statistical characteristics of an individual
mode uðtÞ 2 R of the original system in Eq. (1). The first step of
the PDS method is to quantify the conditional statistics of the rare
event regime. When the system enters a rare event regime, say, at
t¼ t0, we have an arbitrary background state uðt0Þ ¼ ub as the ini-
tial condition. The problem in this regime can be formulated as

€urðtÞ þ k _urðtÞ þ kurðtÞ ¼ FrðtÞ; with urðt0Þ ¼ ub

and F ¼ Fr for t > t0 (5)

Under the assumption of independent rare events, we can use Eq.
(5) as the starting point for analytical and numerical approxima-
tions for the statistical response during rare events.

The background component, on the other hand, can be studied
through the equation

M€xbðtÞ þ D _xbðtÞ þ KxbðtÞ ¼ FbðtÞ (6)

Because of the nonintermittent character of the response in this
regime, it is sufficient to obtain the low-order statistics of this sys-
tem. In the context of vibrations, it is reasonable to assume that
FbðtÞ is a Gaussian process or can be adequately approximated by
a Gaussian process, in which case the response statistics is readily
obtained from the associated Fokker–Planck equation. Conse-
quently, this step provides us with the statistical steady-state prob-
ability distribution for the mode of interest under the condition
that the dynamics “live” in the stochastic background.

After analysis of the two regimes is complete, we can synthe-
size the results through a total probability argument

f ðqÞ ¼ f ðqjkuk > c;F ¼ FrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rare events

Pr þ f ðqjF ¼ FbÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
background

ð1�PrÞ (7)

where q may be any function of interest involving the response. In
the last equation, Pr denotes the overall rare event probability.

This is defined as the probability of the response exceeding a
threshold c due to extreme event excitations

Pr � P kuk > c;F ¼ Frð Þ ¼ 1

T

ð
t2T

1 kuk > c;F ¼ Frð Þ dt (8)

where 1ð � Þ is the indicator function. The rare event probability
measures the total rare event duration.

The utility of the proposed decomposition is its flexibility and
effectiveness in cheaply capturing rare responses, since we
account for rare event dynamics directly by connecting their sta-
tistical properties with the original system response.

2.1 Problem Formulation for Linear Single-Degree-of-
Freedom Systems. To demonstrate the method we begin with a
simple example and consider a single-degree-of-freedom linear
system

€x þ k _x þ kx ¼ FðtÞ (9)

where k is the stiffness, k is the damping, and f ¼ k=2
ffiffiffi
k
p

is the
damping ratio. For what follows, we adopt the standard defini-
tions: xn ¼

ffiffiffi
k
p

, xo ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

p
, and xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
.

The forcing F(t) is a stochastic process with intermittent char-
acteristics, which can be written as

FðtÞ ¼ FbðtÞ þ FrðtÞ (10)

Here, Fb is the background forcing component that has a charac-
teristic magnitude rb, and Fr is a rare and large amplitude forcing
component that has a characteristic magnitude rr , which is much
larger than the magnitude of the background forcing rr � rb.
Despite the simplicity of the system, its response may feature a
significantly complicated statistical structure with heavy-tailed
characteristics (large kurtosis) and asymmetry (skewness).

For concreteness, we consider a prototype system motivated
from ocean engineering applications, which models a base excita-
tion problem of a structural mode due to ocean wave impacts

€x þ k _x þ kx ¼ €hðtÞ þ
XNðtÞ
i¼1

ai dðt� siÞ; 0 < t 	 T (11)

Here, h(t) denotes the zero-mean background base motion term
(having opposite sign from x) with a Pierson–Moskowitz spectrum
(ocean wave spectrum, although any suitable spectrum may be
utilized)

Fig. 2 Schematic representation of the PDS method for an intermittently forced system
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Shh xð Þ ¼ q
1

x5
exp � 1

x4

� �
(12)

where q controls the magnitude of the forcing.
The second forcing term in Eq. (11) describes rare and extreme

events. In particular, we assume that this component is a random
impulse train (dð � Þ is a unit impulse), where N(t) is a Poisson
counting process that represents the number of impulses that
arrive in the time interval 0 < t 	 T, a is the impulse mean mag-
nitude (characterizing the rare event magnitude rr), which we
assume is normally distributed with mean la, variance r2

a and
independent from the state of the system. In addition, the arrival
rate is constant and given by �a (or by the mean arrival time Ta ¼
1=�a so that impulse arrival times are exponentially distributed
s 
 eTa ).

We take the impulse mean magnitude as being m-times larger
than the standard deviation of the excitation velocity _hðtÞ

la ¼ mr _h ; with m > 1 (13)

where r _h is the standard deviation of _hðtÞ. The factor m sets the
severity of the extreme impulse events, with respect to the back-
ground amplitude level, so that rr � rb.

The setup above is applicable to numerous applications in other
domains (with appropriate modifications on the forcing, e.g., the
background excitation spectrum shape), including structures under
wind excitations, systems under seismic excitations, and vibra-
tions of high-speed crafts and road vehicles [5,13,14].

3 Analytical Probability Density Functions of Single-

Degree-of-Freedom Systems for Limiting Cases

In this section, we apply the probabilistic decomposition-
synthesis method to derive analytical approximations for the pdf
of the displacement, velocity, and acceleration for two special
limiting cases: underdamped motion with f� 1 and overdamped
motion with f� 1. We first perform the analysis for the response
displacement and then derive the response pdf for the velocity and
acceleration.

3.1 Background Response Probability Density Functions.
Consider the statistical response of the system to the background
forcing component

€xb þ k _xb þ kxb ¼ €hðtÞ (14)

This is a linear system that is excited by a Gaussian process. The
response statistics is thus also Gaussian and is fully characterized
by the response spectrum. The spectral density of the displace-
ment, velocity, and acceleration is given by

Sxbxb
xð Þ ¼ x4Shh xð Þ

fk � x2 þ k jxð Þg2
;

S _xb _xb
xð Þ ¼ x2Sxbxb

xð Þ; S€xb€xb
xð Þ ¼ x4Sxbxb

xð Þ (15)

Using the spectral response, we compute the corresponding var-
iance values, which fully characterize the zero mean Gaussian
response in the background regime

r2
xb
¼
ð1

0

Sxbxb
ðxÞ dx; r2

_xb
¼
ð1

0

S _xb _xb
ðxÞ dx;

r2
€xb
¼
ð1

0

S€xb€xb
ðxÞ dx

(16)

Furthermore, the corresponding response envelopes are Rayleigh
distributed [43]

ub 
 Rðrxb
Þ; _ub 
 Rðr _xb

Þ; €ub 
 Rðr€xb
Þ (17)

whereRðrÞ denotes a Rayleigh distribution with parameter r.

3.2 Analytical Probability Density Functions for the
Underdamped Case f� 1. In the strongly underdamped case
with f� 1, due to the highly oscillatory nature of the response,
we focus on deriving the statistics of the local extrema. Conse-
quently, we present results in terms of the envelope of the
response statistics.

3.2.1 Rare Events Response. To estimate the rare event
response, we must take into account the nonzero background
velocity of the system _xb at the moment of the impulse impact, as
well as the magnitude of the impact, a. The actual value of the
response xb is considered negligible. For the present case, f� 1,
we have that the envelopes of the response (displacement, veloc-
ity, and acceleration) during the rare event are given by (see
Appendix A for details)

ur tð Þ ’ j _xb þ aj
xd

e�fxnt; _ur tð Þ ’ j _xb þ aje�fxnt;

€ur tð Þ ’ xdj _xb þ aje�fxnt (18)

Above, in Eq. (18), the two contributions _xb and a in the term
_xb þ a are both Gaussian distributed and independent, and there-
fore, their sum is also Gaussian distributed

g � _xb þ a 
 Nðla; r2
_xb
þ r2

aÞ (19)

Therefore, the distribution of the quantity jgj is given by a folded
normal distribution

fjgj nð Þ ¼ 1

rjgj
ffiffiffiffiffiffi
2p
p exp �

n� lað Þ2

2r2
jgj

 !
þ exp �

nþ lað Þ2

2r2
jgj

 !8<
:

9=
;;

0 < n <1
(20)

where rjgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

_xb
þ r2

a

q
.

3.2.2 Rare Event Probability. Next, we compute the rare
event probability: the total rare event period over a fixed time
interval, as defined in Eq. (8). This is done by employing an
appropriate definition of an extreme event in terms of a threshold
value. One possible option is to set an absolute threshold c. How-
ever, in the current context, it is far more convenient to set this
threshold relative to the value of the local maximum of the
extreme event response. Specifically, the time duration se a rare
response takes to return back to the background state will be given
by the duration starting from the initial impulse event time (t0) to
the point where the response has decayed back to qc (or 100qc%)
of its absolute maximum; here and throughout this paper, we set
qc ¼ 0:1. This is a value that we considered without tuning. We
emphasize that the derived approximation is not sensitive to the
exact value of qc as long as this has been chosen within reasonable
values.

In the current context, this means that the rare event duration se

is defined by

urðse þ t0Þ ¼ qcurðt0Þ (21)

We solve the above using the analytically derived response enve-
lope equations from Sec. 3.2.1

se ¼ �
1

fxn
log qc (22)
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Due to the linear character of the system, the typical duration se is
independent of the background state or the impulse impact inten-
sity. Using this rare event duration se, we can compute the total
rare event probability from the arrival frequency �a (recall
�a ¼ 1=Ta) of the Poisson process that describes the frequency of
impulse events

Pr ¼ �ase ¼ se=Ta (23)

Note, since we naturally assume that extreme events are rare
enough to be statistical independent, the above probability is
smaller than 0.5.

3.2.3 Conditional Probability Density Functions for Rare
Events. We now proceed with the derivation of the pdf in the rare
event regime. Consider again the response displacement during a
rare event

ur tð Þ 
 jgj
xd

e�fxnt0 (24)

Here t0 is a random variable uniformly distributed between the ini-
tial impulse event time and the end time se (from Eq. (22)) when
the response has relaxed back to the background dynamics

t0 
 uniformð0; seÞ (25)

We condition the rare event distribution as follows:

fur
ðrÞ ¼

ð
fur jjgjðrjnÞfjgjðnÞ dn (26)

where we have already derived the pdf for fjgj in Eq. (20). What
remains is the derivation of the conditional pdf for fur jjgj.

By conditioning on jgj ¼ n, we find the derived distribution for
the conditional pdf given by

fur jjgj rjnð Þ ¼ 1

rfxnse
s r � n

xd
e�fxnse

� �
� s r � n

xd

� �� �
(27)

where sð � Þ denotes the step function, which is equal to 1 when the
argument is greater than or equal to 0 and 0 otherwise. Refer to
Appendix B for a detailed derivation of the above.

Using Eqs. (27), (19), and (26), we obtain the final result for the
rare event distribution for the response displacement

fur
ðrÞ¼

ð
fur jjgjðrjnÞfjgjðnÞdn (28)

¼ 1

rfxnrjgjse

ffiffiffiffiffiffi
2p
p

ð1
0

�
exp �

n�lað Þ2

2r2
jgj

 !
þexp � nþlað Þ2

2r2
jgj

 !�

� s r� n

xd
e�fxnse

� �
�s r� n

xd

� �� �
dn

(29)

3.2.4 Summary of Results for the Underdamped Case

3.2.4.1 Displacement envelope. Finally, combining the results
of Secs. 3.1, 3.2.3, and 3.2.2 using the total probability law

fuðrÞ ¼ fub
ðrÞð1�PrÞ þ fur

ðrÞPr (30)

We obtain the desired envelope distribution for the displacement
of the response

fu rð Þ ¼ r

r2
xb

exp � r2

2r2
xb

 !
1� �aseð Þ

þ �ase

rfxnrjgjse

ffiffiffiffiffiffi
2p
p

ð1
0

(
exp �

n� lað Þ2

2r2
jgj

 !

þ exp � nþ lað Þ2

2r2
jgj

 !)

� s r � n

xd
e�fxnse

� �
� s r � n

xd

� �� �
dn (31)

where se ¼ �logðqcÞ=ðfxnÞ and sð � Þ denotes the step function.

3.2.4.2 Velocity envelope. Similar to the derivation for the
displacement, we can also obtain the envelope distribution of the
velocity of the system. The statistical response of the background
dynamics for the velocity response was obtained in Eq. (17). Not-
ing that from Eq. (18), _ur ¼ xdur , the rare event pdf is modified
by a constant factor and thus

f _uðrÞ ¼ f _ub
ðrÞð1�PrÞ þ x�1

d fur
ðr=xdÞPr (32)

The final formula for the velocity envelope pdf is then given by

f _u rð Þ ¼ r

r2
_xb

exp � r2

2r2
_xb

 !
1� �aseð Þ

þ �a

rfxnrjgj
ffiffiffiffiffiffi
2p
p

ð1
0

(
exp �

n� lað Þ2

2r2
jgj

 !

þ exp � nþ lað Þ2

2r2
jgj

 !)

� fs r � ne�fxnseð Þ � s r � nð Þgdn (33)

3.2.4.3 Acceleration envelope. Finally, we also obtain the
envelope distribution of the acceleration. Noting that from
Eq. (18), €ur ¼ x2

dur , the rare event pdf for acceleration is also
modified by a constant factor

f€uðrÞ ¼ f€ub
ðrÞð1�PrÞ þ x�2

d fur
ðr=x2

dÞPr (34)

The final formula for the acceleration envelope pdf is then

f€u rð Þ ¼ r

r2
€xb

exp � r2

2r2
€xb

 !
1� �aseð Þ

þ �a

rfxnrjgj
ffiffiffiffiffiffi
2p
p

ð1
0

(
exp �

n� lað Þ2

2r2
jgj

 !

þ exp � nþ lað Þ2

2r2
jgj

 !)

� fs r � nxde�fxnse
� 	

� s r � nxdð Þgdn (35)

3.2.5 Comparison With Monte Carlo Simulations. For Monte
Carlo simulations, the excitation time series is generated by super-
imposing the background and rare event components together.
The background excitation, described by a stationary stochastic
process with a Pierson–Moskowitz spectrum (Eq. (12)), is simu-
lated through a superposition of cosines over a range of frequen-
cies with corresponding amplitudes and uniformly distributed
random phases. The intermittent component is the random
impulse train, and each impact is introduced as a velocity jump
with a given magnitude at the point of the impulse impact. For
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each of the comparisons, we generate ten realizations of the exci-
tation time series, each with a train of 100 impulses. Once each
time series for the excitation is computed, the governing ordinary
differential equations are solved using a 4th/5th-order Runge–
Kutta method (we carefully account for the modifications in the
momentum that an impulse imparts by integrating up to each
impulse time and modifying the initial conditions that the impulse
imparts before integrating the system to the next impulse time).
We ensured that the time series length and ensemble size lead to
converged response statistics (displacement, velocity, and
acceleration).

Furthermore, we utilize a shifted Pierson–Moskowitz spectrum
Shhðx� 1Þ in order to avoid resonance conditions. The other
parameters and resulting system statistical properties are given in
Table 1. As seen in Fig. 3, the analytical approximations compare
well with the Monte Carlo simulations many standard deviations
away from the zero mean. The results are robust to different
parameters as long as the assumption of independent (nonoverlap-
ping) extreme events is satisfied.

In Table 2, we include two quantitative error measures between
our analytical approximation and Monte Carlo simulations. They
include the Kullback–Lieber divergence (i.e., the relative entropy)
and the maximum absolute error, computed using

EKL xð Þ ¼
ð

fx;MC qð Þlog
fx;MC qð Þ

fx qð Þ

 !
dq;

Eabs xð Þ ¼
maxqjfx qð Þ � fx;MC qð Þj

fx;MC qð Þ

(36)

respectively.
Some of the discrepancies observed between the Monte Carlo

simulations and analytical results can be attributed to the envelope
approximation used to derive the conditionally rare event pdf.
Indeed, these discrepancies are significantly reduced (results not
shown) if we utilize the semi-analytical method presented in Sec.
4, where no simplifications are made for the form of the rare event
response.

3.3 Analytical Probability Density Functions for the Over-
damped Case f� 1. In Sec. 3.2, we derived the analytical
response pdf under the underdamped assumption f� 1. Here, we
briefly summarize the results for the response pdf in the over-
damped case with f� 1. The derivation follows the exact same
steps as in Secs. 3.1 and 3.2, but instead uses the corresponding
formulas for the rare event response in overdamped conditions
f� 1 (see Appendix A). An important difference in the over-
damped scenario is that the system does not exhibit oscillatory
response, hence we directly operate on the response instead of the
envelope of the response.

3.3.1 Displacement. The total probability law becomes

fxðrÞ ¼ fxb
ðrÞð1�Pr;disÞ þ fxr

ðrÞPr;dis (37)

and we obtain the following pdf for the displacement of the
system:

fx rð Þ ¼ 1

rxb

ffiffiffiffiffiffi
2p
p exp � r2

2r2
xb

 !
1� �ase;disð Þ

þ �ase;dis

r fxn � xoð Þrg

ffiffiffiffiffiffi
2p
p

se;dis � ssð Þ

ð1
�1

exp �
n� lað Þ2

2r2
g

 !

� s r � n

2xo
e� fxn�xoð Þse;dis

� �
� s r � n

2xo

� �� �
dn

(38)

where se;dis ¼ ðp=2xoÞ � log qc=ðfxn þ xoÞ.
3.3.2 Velocity. Similarly, we derive the total probability law

for the response velocity

f _xðrÞ ¼ f _xb
ðrÞð1�Pr;velÞ þ f _xr

ðrÞPr;vel (39)

The final result for the velocity pdf is given by

f _x rð Þ ¼ 1

r _xb

ffiffiffiffiffiffi
2p
p exp � r2

2r2
_xb

 !
1� �ase;velð Þ

þ �ase;vel

r fxn þ xoð Þrg

ffiffiffiffiffiffi
2p
p

se;vel

ð1
�1

exp �
n� lað Þ2

2r2
g

 !

� fs r � ne� fxnþxoð Þse;velð Þ � s r � nð Þgdn

(40)

where se;vel ¼ �ð1=fxn þ xoÞlog qc.

3.3.3 Acceleration. The total probability law for the response
acceleration is

f€xðrÞ ¼ f€xb
ðrÞð1�Pr;accÞ þ f€xr

ðrÞPr;acc (41)

and this gives the following result for the acceleration pdf:

f€x rð Þ ¼ 1

r€xb

ffiffiffiffiffiffi
2p
p exp � r2

2r2
€xb

 !
1� �ase;accð Þ

þ �ase;acc

r fxn þ xoð Þrg

ffiffiffiffiffiffi
2p
p

se;acc

ð1
�1

exp �
n� lað Þ2

2r2
g

 !

� fs r � n fxn þ xoð Þe� fxnþxoð Þse;acc

� 	
� s r � n fxn þ xoð Þð Þgdn

(42)

where se;acc ¼ �log qc=ðfxþ xoÞ.
Note that here, we do not have the simple scaling as in the

underdamped case for the conditionally rare component of the
pdf.

3.3.4 Comparison With Monte Carlo Simulations. We con-
firm the accuracy of the analytical results given in Eqs. (38), (40),
and (42) for the strongly overdamped case through comparison
with direct Monte Carlo simulations. The parameters and resulting
statistical quantities of the system are given in Table 3. The ana-
lytical expressions for the response show excellent agreement
compared to the Monte Carlo simulations, see Fig. 4 and Table 4.

4 Semi-Analytical Probability Density Functions of

the Response of Single-Degree-of-Freedom Systems

We now formulate a semi-analytical approach to quantify the
response pdf for arbitrary system parameters (including the
severely underdamped or overdamped cases considered previ-
ously). The approach here adapts the numerical scheme described
in Ref. [1] for systems undergoing internal instabilities.

Table 1 Parameters and relevant statistical quantities for
SDOF system 1

k 0.01 k 1
Ta 5000 f 0.005
xn 1 xd 1
la ¼ 7� r _h 0.1 q 1:582� 10�4

ra ¼ r _h 0.0143 rh 0.0063
r _xb

0.0179 rxb
0.0082

rjgj 0.0229 Pr 0.0647
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Whereas for the limiting cases that were previously studied,
where (time series) knowledge of the system trajectory (xrðtÞ or
urðtÞ) could be translated to information about the corresponding
pdf (fxr

or fur
), this is not always possible. In addition, nonlinear

structural systems, in general, have analytical expressions for the
rare event transitions. For these cases, we can compute the rare
event statistics by numerically approximating the corresponding
histogram, using either analytical or numerically generated trajec-
tories in the rare event regime.

4.1 Numerical Computation of Rare Events Statistics.
Consider the same SDOF system introduced in Sec. 3. Recall that
we quantify the response pdf by the PDS method via a total proba-
bility law argument

fxðrÞ ¼ fxb
ðrÞð1�PrÞ þ fxr

ðrÞPr (43)

In Sec. 3, the derivation consisted of estimating all three unknown
quantities: the background density fxb

, the rare event density fxr
,

and the rare event probability Pr analytically. However, in the
semi-analytical scheme, we will obtain the rare event density fxr

and the rare event probability Pr by taking a histogram of the
numerically simulated analytical form of the rare response. The
background density fxb

will still be obtained analytically as in Sec.
3.1.

Recall that the rare event density is given by

fxr
ðrÞ ¼

ð
fxr jgðrjnÞfgðnÞ dn (44)

where fgðnÞ is known analytically (Eq. (19)). It is the conditional
pdf fxr jgðrjnÞ that we estimate by a histogram

fxr jgðrjnÞ ¼ HistfxrjgðtjnÞg; t ¼ ½0; se;dis� (45)

where we use the analytical solution of the oscillator with nonzero
initial velocity n

xrjg tjnð Þ ¼ n

2xo
e� fxn�xoð Þt � e� fxnþxoð Þtð Þ (46)

The histogram is taken from t¼ 0 (the beginning of the rare event)
until the end of the rare event at t ¼ se. The conditional density of

Fig. 3 (Severely underdamped case) Comparison between direct Monte Carlo simulation and the analytical pdf for the SDOF
system 1. The pdfs for the envelope of each of the stochastic variables, displacement, velocity, and acceleration are presented.
The dashed line indicates one standard deviation.

Table 2 Error measures for SDOF system 1

EKLðuÞ 1:1� 10�4 EabsðuÞ 0.013
EKLðuÞ 5:3� 10�3 EabsðuÞ 0.024
EKLðuÞ 1:0� 10�3 EabsðuÞ 0.065

Table 3 Parameters and relevant statistical quantities for
SDOF system 2

k 6 k 1
Ta 1000 f 3
xn 1 xd 2.828
la ¼ 7� r _h 0.1 q 1:582� 10�4

ra ¼ r _h 0.0143 rh 0.0063
r _xb

0.0056 rxb
0.0022

rg 0.0154 Pr;dis 0.0140
Pr;vel 0.0004 Pr;acc 0.0004

Fig. 4 (Severely overdamped case) Comparison between direct Monte Carlo simulation and the analytical pdf for SDOF system
2. The pdf for the value of each stochastic process is shown. The dashed line indicates one standard deviation.

Table 4 Error measures for SDOF system 2

EKLðxÞ 2:6� 10�4 EabsðxÞ 0.016
EKLð _xÞ 6:5� 10�5 Eabsð _xÞ 0.024
EKLð€xÞ 1:9� 10�3 Eabsð€xÞ 0.028
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rare event response for the velocity and acceleration are, similarly,
given by

f _xr jgðrjnÞ ¼ Histf _xrjgðtjnÞg; t ¼ ½0; se;vel� (47)

f€xr jgðrjnÞ ¼ Histf€xrjgðtjnÞg; t ¼ ½0; se;acc� (48)

4.2 Numerical Estimation of the Rare Events Probability.
In order to compute the histogram of a rare impulse event, the
duration of a rare response needs to be obtained numerically.
Recall that we have defined the duration of a rare response by

xrðseÞ ¼ qc maxfjxrjg (49)

where qc ¼ 0:1. In the numerical computation of se, the absolute
maximum of the response is obtained from the numerical simula-
tions of the trajectories. Once the rare event duration has been
determined, we compute the total rare event probability, just as
before, from

Pr ¼ �ase ¼ se=Ta (50)

which is independent of the conditional background magnitude
value. The above procedure is applied for the rare event response
displacement se;dis, velocity se;vel, and acceleration se;acc.

4.3 Semi-Analytical Probability Density Functions. With
the modifications just described, we can readily compute the
response pdf using this semi-analytical strategy. For the response
displacement, this gives the formula

fx rð Þ ¼ 1� �ase;dis

rxb

ffiffiffiffiffiffi
2p
p exp � r2

2r2
xb

 !

þ �ase;dis

ð1
0

Hist xrjg tjnð Þ

 �

fg nð Þ dn (51)

The corresponding pdf for the velocity f _x and acceleration f €x can
be computed with the same formula but with the appropriate
variance for the Gaussian core (r _xb

or r€xb
), rare event duration

(se;vel or se;acc), and histograms ( _xrjgðtjnÞ or €xrjgðtjnÞ).

4.3.1 Comparison With Monte Carlo Simulations. For illus-
tration, a SDOF configuration is considered with critical damping
ratio, f¼ 1. The detailed parameters and relevant statistical quan-
tities of the system are given in Table 5. This is a regime where
the analytical results derived in Sec. 3 are not applicable. Even for
this f value, the semi-analytical pdf for the response shows excel-
lent agreement with direct simulations (Fig. 5 and Table 6). We
emphasize that the computational cost of the semi-analytical
scheme is comparable with that of the analytical approximations

(order of seconds) and both are significantly lower than the cost of
Monte Carlo simulation (order of hours).

5 Semi-Analytical Probability Density Functions for

the Response of Multidegree-of-Freedom Systems

An important advantage of the semi-analytical scheme is the
straightforward applicability of the algorithm to multidegree-of-
freedom systems. In this section, we demonstrate how the exten-
sion can be made for a two-degrees-of-freedom (TDOF) linear
system.

Consider the system (see Fig. 6)

m€x þ k _x þ kxþ kað _x � _yÞ þ kaðx� yÞ ¼ FðtÞ (52)

ma€y þ kað _y � _xÞ þ kaðy� xÞ ¼ 0 (53)

where the stochastic forcing FðtÞ ¼ FbðtÞ þ FrðtÞ is applied to the
first mass (mass m) and x, y are displacements of the two masses.

As before, FbðtÞ is the background component and FrðtÞ ¼PNðtÞ
i¼1 ai dðt� siÞ is the rare event component.
The background statistics are obtained by analyzing the

response spectrum of the TDOF system subject to the background
excitation component. Details of this derivation are provided in
Appendix C. The histograms for the rare event transitions can be
computed through standard analytical expressions that can be
derived for linear systems, under the set of initial conditions:
x0 ¼ y0 ¼ _y0 ¼ 0 and _x0 ¼ n:

Once the impulse response has been obtained, we numerically
quantify the rare event distribution, as well as the rare event dura-
tion, using the semi-analytical decomposition in Sec. 4. The pdf is
then given by

fz rð Þ ¼ 1� �asz
e

rzb

ffiffiffiffiffiffi
2p
p exp � r2

2r2
zb

 !
þ �as

z
e

ð1
0

Hist zrjg tjnð Þ

 �

fg nð Þ dn

(54)

where z can be either of the degrees-of-freedom (x or y) or the cor-
responding velocities or accelerations, while sz

e is the typical

Table 5 Parameters and relevant statistical quantities for
SDOF system 3

k 2 k 1
Ta 400 f 1
xn 1 xd 0
la ¼ 7� r _h 0.1 q 1:582� 10�4

ra ¼ r _h 0.0143 rh 0.0063
r _xb

0.0120 rxb
0.0052

ra ¼ rg 0.0187 Pr;dis 0.0122
Pr;vel 0.0075 Pr;acc 0.0032

Fig. 5 (Critically damped system) Comparison between direct Monte Carlo simulations and the semi-analytical pdf for SDOF
system 3. Dashed lines indicate one standard deviation.
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duration of the rare events, which is estimated numerically. For
each desired quantity z, the corresponding variance under back-
ground forcing, temporal duration of the rare events, and the rare
event histogram need to be utilized.

Results are presented for the pdf of the displacement, velocity,
and acceleration of each degree-of-freedom, see Fig. 7. These
compare favorably with the direct Monte Carlo simulations. The
parameters and resulting statistical quantities of the system are
provided in Table 7 with error measures in Table 8. Further
numerical simulations (not presented) demonstrated strong robust-
ness of the approach to different system parameters.

6 Semi-Analytical Probability Density Functions of

Local Maxima

It is straightforward to extend the semi-analytical framework
for other quantities of interest, such as the local extrema (maxima

and minima) of the response, which is of interest in reliability
applications. In this case, the numerically simulated analytical tra-
jectories of rare responses can be used to compute the numerical
histogram for the local extrema instead of the full response. For
the conditionally nonextreme component, we can use known
results from the theory of stationary Gaussian stochastic processes
to describe the corresponding background pdf analytically.

6.1 Distribution of Local Maxima Under Background
Excitation. For a stationary Gaussian process with arbitrary spec-
tral bandwidth �, the probability density function of positive
extrema (maxima) is given by [44,45]

fmþ nð Þ ¼ �ffiffiffiffiffiffi
2p
p e�n2=2�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

ne�n2=2U

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

�
n

� �
; �1 	 n 	 1

(55)

where n ¼ x=
ffiffiffiffiffi
l0

p
, x is the magnitude of the maxima,

spectral bandwidth � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2

2=ðl0l4ÞÞ
p

, and UðxÞ ¼ ð1=
ffiffiffiffiffiffi
2p
p
ÞÐ x

�1 e�u2=2du is the standard normal cumulative distribution func-

tion. The spectral moments for the background response displace-
ment xb are also defined as

Table 6 Error measures for SDOF system 3

EKLðxÞ 2:8� 10�4 EabsðxÞ 0.018
EKLð _xÞ 2:0� 10�4 Eabsð _xÞ 0.023
EKLð€xÞ 7:2� 10�3 Eabsð€xÞ 0.048

Fig. 6 The considered TDOF system. The excitation is applied
to the first mass.

Fig. 7 (TDOF system) Comparison between direct Monte Carlo simulation and the semi-analytical approximation. The pdf for
the value of the time series is presented. Dashed line indicates one standard deviation.

Table 7 Parameters and relevant statistical quantities for the
TDOF system

m 1 ma 1
k 0.01 k 1

ka 1 ka 0.1

Ta 1000 rg 0.0199

la 0.1 q 1:582� 10�4

ra 0.0143 rFb
0.0351

Px
r;dis 0.0177 P

y
r;dis 0.0190

Px
r;vel 0.0098 P

y
r;vel 0.0209

Px
r;acc 0.0066 Py

r;acc 0.0082
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ln ¼
ð1

0

xnSxbxb
ðxÞ dx (56)

We note that that in the limit of an infinitesimally narrowbanded
signal ð� ¼ 0Þ, the pdf converges to a Rayleigh distribution. On
the other hand, for an infinitely broadbanded signal ð� ¼ 1Þ, the
distribution converges to the Gaussian pdf. For a signal with in
between spectral bandwidth ð0 	 � 	 1Þ, the pdf has a blended
structure with the form in Eq. (55).

Considering the asymmetric nature of the intermittent excita-
tion, we need to consider both positive and negative extrema of
rare events. While for the background response, the pdf is analyti-
cally given by

fx̂b
xð Þ ¼ 1

2
ffiffiffiffiffi
l0

p fmþ
x

l0

� �
þ fmþ �

x

l0

� �� �
; �1 	 x 	 1

(57)

where the x̂ notation denotes the local extrema of x. Similar
expressions can be obtained for the velocity and acceleration
extrema.

6.2 Statistics of Local Extrema During Rare Transitions.
The conditional pdf fx̂r jg for the local extrema can be numerically
estimated through the histogram

fx̂r jgðrjnÞ ¼ HistfMðxrjgðtjnÞÞg; t ¼ ½0; se;dis� (58)

whereMð � Þ is the operator that provides all the positive/negative
extrema. The positive/negative extrema are defined as the points
where the derivative of the signal is zero.

6.3 Semi-Analytical Probability Density Function for
Local Extrema. The last step consists of applying the decomposi-
tion of the pdf. This takes the form

f x̂ðrÞ ¼ ð1� �ase;disÞfx̂b
ðrÞ

þ �ase;dis

ð1
0

HistfMðxrjgðtjnÞÞgfgðnÞ dn (59)

The same decomposition can be used for the velocity and acceler-
ation local maxima. We compare the semi-analytical decomposi-
tion with Monte Carlo simulations. In Fig. 8, we present results
for the two-degrees-of-freedom system. The pdf is shown for local
extrema of the displacement, velocity, and acceleration for each
degree-of-freedom. We emphasize the nontrivial structure of the
pdf and especially the tails. We observe from these comparisons
that the semi-analytical scheme accurately estimates both the tails
of the response and the non-Gaussian structure of core of the
distribution.

7 Summary and Conclusions

We have formulated a robust approximation method to quantify
the probabilistic response of structural systems subjected to sto-
chastic excitation containing intermittent components. The foun-
dation of our approach is the recently developed probabilistic
decomposition-synthesis method for the quantification of rare
events due to internal instabilities to the problem where extreme
responses are triggered by external forcing. The intermittent forc-
ing is represented as a background component, modeled by a col-
ored stochastic processes with energy distributed across a range of
frequencies, and additionally a rare and extreme component that
can be represented by impulses that are Poisson distributed with
large interarrival time. Owing to the nature of the forcing, even
the probabilistic response of a linear system can be highly com-
plex with asymmetry and complex non-Gaussian tail behavior,
which would be expected if the forcing did not consist of intermit-
tently extreme events.

The main result of this work is the derivation of analytical and
semi-analytical expressions for the pdf of the response and its
local extrema for structural systems (including the displacement,
velocity, and acceleration pdf). These expressions decompose the

Table 8 Error measures for TDOF system

EKLðxÞ 2:5� 10�4 EabsðxÞ 0.033
EKLð _xÞ 3:6� 10�4 Eabsð _xÞ 0.019
EKLð€xÞ 2:9� 10�3 Eabsð€xÞ 0.014
EKLðyÞ 7:4� 10�4 EabsðyÞ 0.033
EKLð _yÞ 2:6� 10�4 Eabsð _yÞ 0.031
EKLð€yÞ 3:2� 10�3 Eabsð€yÞ 0.019

Fig. 8 (Local extrema for TDOF) Comparison between direct Monte Carlo simulation and the semi-analytical approximation.
The pdf for the local extrema of the response is presented. Dashed line indicates one standard deviation.
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pdf into a statistical core, capturing the response under background
forcing, as well as a heavy-tailed component associated with extreme
transitions due to rare impulse impacts. We performed a thorough
analysis for linear SDOF systems under various system parameters
and also derived analytical formulas for two special parameter ranges
(lightly damped or heavily damped systems). The general semi-
analytical decomposition is applicable for arbitrary system parame-
ters and we have demonstrated its validity through comprehensive
comparisons with Monte Carlo simulations. The general framework
is also directly applicable to multidegree-of-freedom systems, as
well as systems with nonlinearities. We demonstrated applicability
to a 2DOF linear system consisting of two coupled masses, where
the first mass is excited. Modifications of the method to compute sta-
tistics of local extrema have also been presented.

The developed approach allows for computation of the response
pdf of structural systems many orders of magnitude faster than a
direct Monte Carlo simulation, which is currently the only reliable
tool for such computations. The rapid evaluation of response pdfs
for systems excited by extreme forcing by the proposed method
paves the way for enabling robust design of structural systems
subjected to extreme events of a stochastic nature. In such cases,
it is usually not feasible to run Monte Carlo simulations for vari-
ous parameter sets during the design process owing to the compu-
tational costs associated with low probability rare events, let alone
perform parametric optimization. In different work [41], we dem-
onstrate application of the method to design and optimization in
ocean engineering applications and show that the approach is well
suited to predict optimal extreme-event mitigating designs and for
system reliability.
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Appendix A: Impulse Response of Single-Degree-of-

Freedom Systems

The response of the system

€xrðtÞ þ k _xrðtÞ þ kxrðtÞ ¼ 0 (A1)

under an impulse a at an arbitrary time t0, say t0 ¼ 0, and with
zero initial value but nonzero initial velocity (ðxr; _xrÞ ¼ ð0; _xr0Þ at
t ¼ 0�) are given by the following equations under the two limit-
ing cases of damping:

Severely underdamped case f� 1: With the approximation of
f� 1 (or xd � xn), we can simplify responses as

xr tð Þ ¼ aþ _xr0

xd
e�fxnt sin xdt (A2)

_xrðtÞ ¼ ðaþ _xr0Þe�fxnt cos xdt (A3)

€xrðtÞ ¼ �ðaþ _xr0Þxde�fxnt sin xdt (A4)

Severely overdamped case f� 1: Similarly, with the approxima-
tion of f� 1 (or xo � fxn), we can simplify responses as

xr tð Þ ¼ aþ _xr0ð Þ
2xo

e� fxn�xoð Þt (A5)

_xrðtÞ ¼ ðaþ _xr0Þe�ðfxnþxoÞt (A6)

€xrðtÞ ¼ �ðfxn þ xoÞðaþ _xr0Þe�ðfxnþxoÞt (A7)

Appendix B: Probability Density for an Arbitrarily

Exponentially Decaying Function

Consider an arbitrary time series in the following form:

xðtÞ ¼ Ae�at; where t 
 uniformðs1; s2Þ (B1)

where A; a > 0 and s1 < s2. The cumulative distribution function
of x(t) is

FxðxÞ ¼ PðAe�at < xÞ (B2)

¼ P t >
1

a
log A=xð Þ

� �
(B3)

¼ 1�P t <
1

a
log A=xð Þ

� �
(B4)

¼ 1�
ð1

alog A=xð Þ

�1
fT tð Þ dt (B5)

where fTðtÞ is expressed using the step function sð � Þ as

fT tð Þ ¼ 1

s2 � s1

s t� s1ð Þ � s t� s2ð Þ

 �

; s1 < s2 (B6)

The pdf of the response x(t) can then be derived by differentiation

fx xð Þ ¼ d

dx
Fx xð Þ (B7)

¼ 1

ax
fT

1

a
log Axð Þ

� �
(B8)

¼ 1

ax s2 � s1ð Þ
s x�Ae�as2ð Þ � s x�Ae�as1ð Þ

 �

(B9)

We utilize the above formula for deriving analytical pdfs. Note
that the step function with respect to x in the above has been
derived using

s1 < t < s2 (B10)

�as2 < �at < �as1 (B11)

Ae�as2 < x < Ae�as1 (B12)

Appendix C: Background Response for Two-Degrees-

of-Freedom System

Consider the statistical response of the system to the back-
ground forcing component

m€xb þ k _xb þ kxb þ kað _xb � _ybÞ þ kaðxb � ybÞ ¼ FbðtÞ (C1)

ma€yb þ kað _yb � _xbÞ þ kaðyb � xbÞ ¼ 0
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The spectral densities are given by

Sxbxb
xð Þ ¼ x4SFb

xð Þ

A xð Þ � B xð Þ2

C xð Þ

( )
A �xð Þ � B �xð Þ2

C �xð Þ

( ) (C2)

S _xb _xb
ðxÞ ¼ x2Sxbxb

ðxÞ (C3)

S€xb€xb
ðxÞ ¼ x4Sxbxb

ðxÞ (C4)

Sybyb
xð Þ ¼ x4SFb

xð Þ
A xð ÞC xð Þ
B xð Þ � B xð Þ

� � A �xð ÞC �xð Þ
B �xð Þ � B �xð Þ

� �
(C5)

S _yb _yb
ðxÞ ¼ x2Sybyb

ðxÞ (C6)

S€yb€yb
ðxÞ ¼ x4Sybyb

ðxÞ (C7)

where SFb
ðxÞ is the spectral density of FbðtÞ, and

AðxÞ ¼ ðka þ kÞðjxÞ þ ðka þ kÞ � mx2 (C8)

BðxÞ ¼ kaðjxÞ þ ka (C9)

CðxÞ ¼ kaðjxÞ þ ka � max
2 (C10)

Thus, we can obtain the following conditionally background
variances:

r2
xb
¼
ð1

0

Sxbxb
ðxÞdx; r2

_xb
¼
ð1

0

S _xb _xb
ðxÞdx;

r2
€xb
¼
ð1

0

S€xb€xb
ðxÞdx (C11)

r2
yb
¼
ð1

0

Svbvb
ðxÞdx; r2

_yb
¼
ð1

0

S _yb _yb
ðxÞdx;

r2
€yb
¼
ð1

0

S€yb€yb
ðxÞdx (C12)
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