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Biased Information Passing
Between Subsystems Over Time
in Complex System Design
During the early stage design of large-scale engineering systems, design teams are chal-
lenged to balance a complex set of considerations. The established structured approaches
for optimizing complex system designs offer strategies for achieving optimal solutions,
but in practice suboptimal system-level results are often reached due to factors such as
satisficing, ill-defined problems, or other project constraints. Twelve subsystem and
system-level practitioners at a large aerospace organization were interviewed to under-
stand the ways in which they integrate subsystems in their own work. Responses showed
subsystem team members often presented conservative, worst-case scenarios to other sub-
systems when negotiating a tradeoff as a way of hedging against their own future needs.
This practice of biased information passing, referred to informally by the practitioners as
adding “margins,” is modeled in this paper with a series of optimization simulations.
Three “bias” conditions were tested: no bias, a constant bias, and a bias which decreases
with time. Results from the simulations show that biased information passing negatively
affects both the number of iterations needed and the Pareto optimality of system-level sol-
utions. Results are also compared to the interview responses and highlight several themes
with respect to complex system design practice. [DOI: 10.1115/1.4031745]

1 Introduction

Large-scale engineering systems require design teams to bal-
ance complex considerations using a wide range of design and
decision-making skills. Formal approaches for optimizing com-
plex systems offer strategies for arriving at optimal solutions in
situations where system integration and design optimization are
well-formulated. However, in practice suboptimal results are often
reached at the system level. This can be due to many factors: satis-
ficing decision-making [1], time or budget constraints, ill-defined
problems [2], or difficulties associated with human-to-human
interrelations [3].

Simulation tools can be used to explore the impact of the fac-
tors mentioned above. Simpson et al. presented a wide range of
problems that can be addressed through these mathematical mod-
els and associated algorithms [4]. Simulations are also used to
evaluate formal design approaches. Sobieszczanski-Sobieski and
Haftka’s survey [5] demonstrates the range of applications in the
aerospace industry. Common components studied by these simu-
lations are: (1) the team structure or roles, (2) the form of the in-
formation passed between subsystems, and (3) how each
subsystem makes decisions and tradeoffs.

This paper presents results from a dozen field interviews of sub-
system and system-level practitioners within one aerospace orga-
nization. The interviews focused on how real-world human
decision-making process differed from formal design strategies.
The intent was to understand how subsystem designers reach
agreement with each other as part of an overall system design, and
what strategies designers use in deciding how to share and pass
information.

This study consists of two distinct phases. The first uses an
interview-based methodology to develop insight and describe the
behavior of interdisciplinary design teams performing complex
system design in the aerospace industry. Based on the results of
the interviews, the second part utilizes formal multidisciplinary

optimization (MDO) techniques to simulate the described behav-
ior of subsystems negotiating to a system-level optimum.

This study seeks to answer the following questions:

(1) What strategies do real-world aerospace designers and
engineers use when negotiating design parameters with
other subsystems?

(2) What impact might these strategies have on system-level
optimality?

(3) What impact might these strategies have on the speed of
system optimization?

Speed and optimality are important criteria for comparing opti-
mization algorithms and can lead to a better understanding of the
impact of the real-world strategies described. The research ques-
tions aim to answer the broader questions of whether these strat-
egies are an issue that should be considered and if so can we
develop processes robust to this type of behavior?

2 Related Work

This paper draws on previous work in both formal mathemati-
cal models of the design process as well as more qualitative stud-
ies of team behavior. Perspectives from both are used to gain
insight into the effect of biased information passing.

2.1 Complex System Design Process Models. A rich body
of literature exists investigating the modeling of the complex sys-
tem design process. Game theory is one approach for modeling
the multidisciplinary design process and was first proposed by
Vincent [6] and further developed by Lewis [7] and Whitfield
et al. [8]. These traditional game theoretic approaches have also
been combined with decision-based design [9] and adopted in a
broad range of design research [10–13] to become a prominent
framework for the study of multidisciplinary design problems
[14]. Game theoretic design attempts to identify a rational design
(Nash equilibrium [15]) given limits to the amount and form of in-
formation being passed between designers. The complex system
design process can also be viewed as a multi-objective optimiza-
tion problem. MDO is one approach which utilizes this philosophy
[16]. MDO models generally rely on a system facilitator to make
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optimal tradeoffs that will benefit the overall system. Design
researchers draw from this literature to appropriately model their
particular instance of complex system design.

Design research has also considered uncertainty and its propa-
gation through complex systems. Takamatsu used the concept of
formal design margins to manage risk throughout the complex
system design process [17]. Margins are often defined as probabil-
istic estimates of the uncertainty of design parameters relative to
either worst-case estimates or performance goals. Formal design
margins are one replacement for heuristic margins and intuition
previously used by design teams. Thunnissen proposed methods
for determining these margins and using them to manage risk tol-
erances [18]. Other researchers have demonstrated the range of
applications of these concepts in supporting complex system
design [19–21].

2.2 Key Components of Formal Models. Simulations based
on these formal models have allowed researchers to observe the
effect of changes, at an abstract level, in team structure, informa-
tion passed, and individual decision-making on performance met-
rics, such as the speed and accuracy of the optimization. Yi et al.
[22], Honda et al. [23], and Martins and Lambe [16] compared
different team structures in both game theoretic and MDO
approaches. The studied MDO team structures vary from hierarch-
ical formulations where a system integrator makes system-level
decisions to nonhierarchical formulations where information flows
equally between all actors within the system. Information passing
has been studied from both a robustness perspective [24] and the
effect of the amount of information on system performance [25].
Collopy outlines a strategy for reaching an optimal design based
on passing of gradient information [26]. Lewis and Mistree pre-
sented a game theoretic approach, where each agent is involved in
the decision-making part of the optimizing task. Agents made
decisions using a compromise decision support problem [27]. Ro-
bust design also explores the use of uncertainty models in the
decision-making process [28]. Limits to the decision-making pro-
cess have also been described by researchers investigating
bounded rationality [29]. In doing this type of analysis, research-
ers have suggested best practices for design processes.

2.3 Negotiation in Complex System Design. Negotiation in
the context of engineering design is a topic with contributions from
a variety of fields including design research, management science,
economics, and psychology. Smith and Eppinger [30] presented a
method utilizing a work transformation matrix to help design teams
identify controlling features of a physical design and subsystems
that will require more iterations than others. Yassine and Braha [31]
presented a method using an information exchange model to help
subsystems represent complex task relationships better when negoti-
ating. Yassine et al. [32] examined the phenomena of information
hiding in complex system design. This occurs when local subsystem
optimization and system-level optimization occur asynchronously
and information gained from the local development is hidden from
the system-level process. Klein et al. [33] modeled the effect of the
team or network structure on the negotiations during the complex
system design process. Di Marco et al. [34] examined the effect of
individual team member culture on the negotiation process in com-
plex system design teams. This paper draws on these sources to help
model the negotiation between subsystems.

2.4 Team Communication. Literature from organizational
behavior, psychology, engineering, and sociology have all exam-
ined how communication affects team performance [35]. Nardi
and Whittaker [36] demonstrated that social communication
within a team requires a shared team understanding. Face-to-face
communication during distributed design was shown to be partic-
ularly important. In collocated teams, design quality was found to
be highly dependent on networking in the physical space [37].
Team cognition is a related area in which communication has also

been addressed. Cooke and Gorman [38] used team communica-
tions to measure the team decision-making process and ability to
accomplish high-level processing of information and reach an
optimal decision. These lessons have also been used to develop
design tools which support teams in communicating more effec-
tively and in different mediums [39]. This paper draws on these
works to provide a framework for understanding and modeling
team communication in a more effective manner.

2.5 Problem Selection. A key issue in validating and under-
standing results of simulations of the design process is the selection
of test problems. Coello Coello et al. [40] categorized the types of
multi-objective optimization test problems and provided an over-
view of existing test suites. This work is part of a larger body of lit-
erature addressing many of the issues involved in developing
appropriate test suites [41]. It should be noted that test suites can be
useful for comparing and evaluating optimization algorithms but
may not be representative of algorithm performance on “real-world”
problems. In order to gain the maximum insight from the simula-
tions, a test suite should be comprised of a variety of types of prob-
lems. This paper draws from several sources to incorporate as many
different types of test problems as possible.

2.6 Research Gap. This paper focuses on the interactions
between subsystems in complex system design. Current literature
either focuses on improving mathematical formulations of formal
models of the design process or developing qualitative frame-
works of team behavior. This paper seeks to bridge the gap
between the two and use the power of both approaches to gain a
better understanding of how subsystems interact in complex sys-
tem design tasks. In particular, this study hopes to both improve
the effectiveness of the simulations by more realistically modeling
the social component of human behavior and to improve the quali-
tative frameworks by quantifying the estimated effect of the
human factors.

3 Phase 1: Interviews With Practitioners

3.1 Interview Methods. The interview phase consisted of 12
interviews with lead subsystem designers and system integrators
within a large aerospace organization. Subsystem designers were
drawn from a diverse set of subsystems, such as structures, propul-
sion, avionics, guidance and navigation control, materials and manu-
facturing, systems integration, operations, liquid engines, and testing.

Each interview consisted of an hour of open-ended discussion on
system integration management and intersubsystem communication.
The primary question asked was, “How do you manage the integra-
tion of your subsystem with other subsystems?” Biographical infor-
mations, such as job title and description, were also recorded. The
interviews were not recorded due to confidentiality. Notes were
taken separately by two investigators. Select quotes and themes
from the interviews are presented below. These concepts were incor-
porated into and informed the second phase of the study.

3.2 Interview Results

3.2.1 Finding #1: Structure of Negotiations. The interviewees
described a number of modes of interacting with other subsys-
tems. The notable finding is that their patterns of interactions
could be characterized fairly well in the formal terminology of
MDO and game theoretic models depending on the level of agree-
ment between the subsystems. The basic mode of negotiation fol-
lowed a game theoretic model, with subsystem designers
connecting with their counterparts in other subsystems to manage
tradeoffs on an informal level. Larger disputes were negotiated
following a hierarchal MDO model with disagreements between
subsystems settled by a committee of upper management.

All ten subsystem designers and the two system integrators
mentioned direct personal relationships as a conduit for
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negotiation with designers in the other subsystems they interfaced
with regularly. One example of this type of negotiation is the
“volume envelope” mechanism. One subsystem set “envelopes”
or volumes other subsystems could use as a volume constraint
early in the design process. If another subsystem needed more
space, the subsystem designer first went to subsystem designers of
nearby envelopes to reach a compromise on the volume needed.

A similar negotiation was described with respect to power
requirements. Power requirements for one subsystem were negoti-
ated between the appropriate level of subsystem designer early on
and then adjustments and compromises were made throughout the
process. This was facilitated by the placement of personnel physi-
cally near each other. Engineers from other subsystems have offi-
ces or “sit” in the relevant subsystem office suite.

Compromises are also facilitated by engineers designated as
leads for integrating subsystems. These engineers are representa-
tives from the different subsystems and negotiate at a more formal
level during planned meetings. A three-level structure of negotia-
tion was proposed by several of the designers. The lowest level is
within the subsystem; this happens routinely on a daily basis and
focuses on optimizing the subsystem and setting requirements.
Most of the negotiation of tolerances and requirements happens at
a cross-cutting second level. Two engineers independently esti-
mated that 80–90% of issues raised were resolved at this level.
The third level involves upper management and a formal conflict
resolution process. For example, a disagreement between two sub-
systems which could not be resolved at either of the two lower
levels could be brought before the weekly chief engineers meeting
and a panel of upper management would then make a decision.
These levels were described by multiple participants as “down
and in” and “up and out” exemplifying the correlation between
level of formality and interaction within or without the team.

The higher level of parameter conflict resolution follows a hier-
archical model of negotiation used in some formulations of MDO.
Subsystems no longer negotiate between themselves, but bring it
to a system integrator who makes a decision. This view was sup-
ported in the interviews with the system integrators. One system
integrator described his role as “finding problems and fixing
them.” Another difference between the self-reporting on the levels
was the formality. The levels increase in formality with the third
level requiring documentation of the conflict and a presentation of
both sides of the issue before a panel of upper managers. All such
third level conflicts are tracked throughout the process and system
integrators are required to resolve them at different major mile-
stones. This is in stark contrast with the informality of the second
level at which subsystem designers simply make changes by talk-
ing to another subsystem designer. Estimates for the relative
amount of problems which reached the third level ranged from
2% to 5%. All subsystem designers expressed their trust in the
upper management board to resolve conflicts in an optimal way.

3.2.2 Finding #2: Biased Information Passing Over Time. An
important aspect of negotiation that arose in the interviews was
the concept of biased information passing. This negotiation tactic
was used primarily at the cross-cutting second level between sub-
system designers from different subsystems as described above.
Interviewees reported using the tactic when deciding the value of
a single parameter during repeated negotiations over time.
Although this behavior was described by subjects for different
types of variables, it does not include negotiating tradeoffs
between multiple design variables.

The term “margins” was used by interviewees to refer to this
practice of reporting “conservative” parameters to other subsys-
tems during the negotiation process. The subjects’ definition of
margins is distinct from the formal definition of risk or perform-
ance margins detailed in the related work section. In these cases,
the “conservative” estimates of the parameters are used as a nego-
tiation tool between subsystems and do not reflect the level of
uncertainty attached to the design parameter. The phrase “keeping
something in my back pocket” was used independently by a

majority of the subsystem designers to describe this issue. For
example, one subsystem designer highlighted the use of conserva-
tive estimates in the development of the budget for a previous pro-
ject. The subsystem built an extra 30% cushion into their budget
estimate as insurance against future budget cuts. The cushion con-
sisted of “budget off-ramps” or extra tests and tasks that were not
strictly necessary and could be cut easily near the end of the pro-
ject. This structure was due to the subsystem designers belief that
they would be later asked to cut down their budget, thus the higher
budget at the outset offsetting future losses. One interviewee
reported that conservative estimates were one factor which con-
tributed to cost overruns and negative consequences for the pro-
ject. A similar practice was used with parameters that interfaced
between subsystems, such as mass, volume, and estimated time to
completion of a task. One of the engineers reported that estimated
mass was reported with a 30% cushion at the outset, which was
reduced over time to 10% near the final design review to allow for
negotiation, thus becoming a decreasing margin over time.

It should be noted that this practice is not necessarily subopti-
mal and can lead to highly robust systems. However, many of the
participants felt that the practice had some negative effects. The
most common example raised was both parties being conservative
in a negotiation and reaching a highly suboptimal compromise.
Some subsystem designers believed large design decisions, such
as the switch in the overall structure of one project to a substan-
tially different architecture, were based on overly conservative
estimates and led to major cost overruns. System integrators also
discussed the difficulty in obtaining accurate information from
subsystems. One system integrator discussed how conservative
estimates in both the inputs as well as the system models used by
the subsystems led to cost and schedule failures. They also
reported the use of formal risk mitigation procedures which can
be inaccurate when presented with conservative inputs.

4 Phase 2: Simulations of Real-World Behavior

4.1 Simulation Structure. The simulation phase consisted of
the development of a series of MDO simulations aimed at recreat-
ing and quantifying the themes introduced in the interview pro-
cess. The main purpose of the simulation phase was to simulate
the behavior of biased information passing and quantify the effect
on system optimization. Simulations were performed on a two-
player system because this represented the scenario in the nonhier-
archical second level in which biased information passing was
reported to occur and to simplify initial calculations.

The interview results suggested that the organization’s design
team uses a sequential design optimization architecture, also
known as fixed-point iteration [42]. In this portion of the study, a
series of optimization simulations were created to mimic this
design process. Interviewees reported that the vast majority of
resolved conflicts occurred during informal negotiations between
two subsystem designers and not in the formal hierarchical pro-
cess established within the organization. Thus, only a two-player
system was considered for demonstration of the core concept. The
two-player system consisted of two subsystems (subsystem 1 and
subsystem 2) each with their own objective function. Optimiza-
tion was performed sequentially with subsystem 1 optimizing its
design parameters and then passing point design information to
subsystem 2. Subsystem 2 then minimized its design parameters
based on this information, and subsystem 2 then passed point
design information back to subsystem 1 completing a single sys-
tem iteration. This is presented in Fig. 1.

The concept of biases is introduced in the passing of point
design information between subsystems. The proposed concept of
bias is distinct from the traditional use of margins from complex
system design literature. The new concept of biased information
passing proposed by the authors is described in the interviews as
occurring in addition to the traditional margins estimated by the
subsystem designers based on uncertainty. In this model, the
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original point design information before bias includes the subsys-
tem designer’s best estimate. This estimate includes all of the
probabilistic uncertainty or safety factors in the definition of mar-
gins from previous work, such as Thunnisen [18]. The bias pro-
posed here is in addition to these risk tolerances. The additional
bias is an excess capacity used over time as a bargaining chip and
is not related to physical reality of the system. A key assumption
is that the subsystem designers do not have sufficient information
about the behavior of the other subsystems to be able to discern
when the information is biased. This may be a poor assumption
when the subsystems have worked together for a long period of
time or are in closely related fields. Additionally, because this
negotiation is happening informally between subsystem designers,
the information is not passed to the system integrator who would
likely have a better understanding of the larger system behavior.

The simulations were performed in three different conditions:
no bias, static bias, and decreasing bias. In the first condition, no
bias was used and point design information was passed normally
as in traditional MDO processes. In the static bias condition, the
point design information was multiplied by 1.3 during the transfer
to the other subsystem to reflect an added bias of 30%. This num-
ber was chosen based on the estimates reported in the interviews.
Each subsystem was in effect biasing the information passed by
30% in the same direction at every iteration. In the decreasing
bias condition, the bias was decreased after each system iteration.
The design point information was multiplied by b ¼ 1:3� :1i for
i ¼ 0; 1; 2; 3… and b � 1. This again reflects information reported
during the interview process. Subsystem designers reported that
the bias was decreased from 30% to 0% in 10% increments at
each design review. There are many other negotiation strategies
that could be used to determine this additional bias. A propor-
tional method with a time dependence was modeled because it
was the strategy described in the interviews. Future work could
include investigating other behaviors or functions for this bias.

Additionally, the constant bias and decreasing bias conditions
were evaluated in asymmetrically biased systems. In these simula-
tions, only one of the subsystems biased the passed information.
For example, an asymmetric bias in subsystem 1 indicates that
subsystem 1 multiplied the passed information by the bias factor b
and subsystem 2 did not. These test conditions reflected interview
results which indicated that different subsystems could have vary-
ing levels of bias in their information passing strategies. In partic-
ular, less experienced subsystem designers may be less likely to
use this negotiation strategy.

All test conditions were simulated on a test suite of 15 two-
objective problems drawn from multi-objective evolutionary algo-
rithms by Coello Coello et al. [40] and from a test suite proposed
by Deb et al. [41]. This test suite was chosen for its variety in the
type of problems provided. It is well-understood that test suites do
not necessarily reflect real-world behavior. However, when com-
paring algorithms test suites can be used to provide a base level of
comparison. This was important in this study to allow for compar-
ison between the three conditions.

Comparison between the different conditions was made along
two metrics, optimality and speed. These are the two common
metrics used for comparing algorithms [40]. Optimality was meas-
ured using the normalized distance to Pareto frontier, which is the
shortest Euclidean distance between the Pareto frontier and the
final system design after satisfying the stopping condition, nor-
malized by the Euclidean distance between the Pareto maximum
and minimum [1]. The stopping condition was defined as either

convergence for both subsystems f1ðiÞ ¼ f1ði� 1Þ; f2ðiÞ ¼
f2ði� 1Þ or reaching a Nash equilibrium f1ðiÞ ¼ f1ði� 2Þ;
f2ðiÞ ¼ f2ði� 2Þ. The Pareto frontier for these test problems was
often given as an analytical solution in the test suite. If not avail-
able, the Pareto frontier was estimated using the MATLAB genetic
algorithm function GAmultiobj. Speed was measured by the num-
ber of iterations until the stopping condition was met. The minimi-
zation of each subsystem was performed using the MATLAB

optimization function f_min_con with the interior-point algo-
rithm. Therefore, a system whose final system design has a greater
Euclidean distance to the Pareto frontier or which uses more itera-
tions to reach a stopping condition is defined as “less optimal.”

Several parameters were varied at each condition. Each simula-
tion was tested using 100 random starting points to check for
robustness to initial conditions. The mode value of results from
the 100 random trials was used for analysis. The order of sequen-
tial optimization was also varied for each testing condition. This
checked whether starting each system iteration by optimizing the
first or second subsystem changed the behavior of the system.

The system optimization behavior was then analyzed to deter-
mine the effect of each testing condition on the performance met-
rics. The behavior was also compared to the specific problem
characteristics, such as types of constraints and objective func-
tions. This analysis is presented in Sec. 5.

4.2 Simulation Results. Simulations were performed on a
test suite of problems from evolutionary algorithms by Coello
Coello et al. [40] as well as from the test suite provided in Deb
et al. [41]. Solution paths for multi-objective problem 4 (MOP4)
under the three test conditions are presented as they display the
behavior exhibited by many of the test problems. MOP4 was cho-
sen as the display case for two reasons: (1) the number of itera-
tions was relatively small and (2) the Pareto frontier and solution
space had the same order of magnitude. These characteristics
make MOP4 easy to visualize. However, the behavior demon-
strated by MOP4 is representative of the system response to bi-
ased information passing shown by a large majority of the other
test problems. This is demonstrated in the overall performance
figures.

The normalized distances to Pareto frontier and number of iter-
ations from all of the test problems under the symmetric bias con-
ditions are shown in Figs. 2 and 3, respectively. For the
normalized distance measurements, a value of zero would indicate
a solution directly on the Pareto frontier and a value of 100%
would indicate a solution at the normalizing distance. In Fig. 2,
three of the problems have values above 100% of the normalizing
factor. Their values are displayed in text boxes to accommodate
the spread in chart values. Solution paths from the same starting
point for MOP4 under the different conditions are shown in the
three figures below. The Pareto frontier on each plot is shown as
circles. Figure 4 shows the solution path for the no bias condition.
Figure 5 shows the solution path in the static bias condition with
b¼ 1.3. The final system design in the static bias case was at a
normalized distance of 10%, while the no bias and decreasing bias
cases ended on the Pareto frontier. Figure 6 shows the solution
path in decreasing bias case.

The normalized distance to Pareto frontier and number of itera-
tions from all the test problems under the asymmetric bias condi-
tions is shown in Figs. 7–10. In these figures, the results for each
test suite problem with no bias, asymmetric bias in subsystem 1,
asymmetric bias in subsystem 2, and symmetric bias are shown.
This is done for the constant bias and decreasing bias conditions.
For example, Fig. 7 shows results for the normalized distance to
Pareto frontier for each test suite problem under those four condi-
tions for a constant bias strategy.

5 Discussion

Several themes emerge from analysis of the results presented
above. First, the interview data clearly demonstrate the use of

Fig. 1 System schematic for one iteration

011101-4 / Vol. 138, JANUARY 2016 Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 01/14/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



biases, and in particular decreasing bias, over time between sub-
systems in the organization studied. All of the negotiation struc-
tures in the organization, both formal and informal, are
susceptible to this type of error. However, based on the interview
reports, this study focuses on the informal negotiation strategies
because they comprise the majority of the resolved negotiations
and may also influence outcomes during the formal process. The
framework used in the simulations is derived from this informa-
tion. Second, the use of biases leads to both suboptimal and
increased number of iterations in simulations. Third, this behavior
was observed across a variety of MOP types and structures.

The use of a decreasing bias strategy was described by almost
all of the subsystem engineers and also by the system integrators
as a possible cause of system suboptimality. In practice, subsys-
tem engineers report that they provide conservative, worst-case
estimates of design parameter, and point design information in

discussions with other subsystems. Interviews indicated that this
was due to a desire to “underpromise and overdeliver.” It may
have also be driven by a competition for resources, such as per-
sonnel and money between the different subsystems. Decreasing
biases is one strategy for ensuring that the subsystem has the
resources it needs to complete the required tasks and be robust to
unexpected design constraints. Although a risk-averse strategy of
using conservative parameters was reported, there exist potential
benefits to subsystems which promise performance or delivery
times early on in the process even if they cannot meet it. This is
especially true in complex system development processes which
occur over long periods of time. In these cases, the bias factor
could have values which are less than 1. The use of an initial coef-
ficient of b¼ 0.3 and then decreasing over time was motivated by
interview results. This is only one possible strategy for biasing in-
formation passed. Subsystem designers could use a different

Fig. 3 Average number of system iterations for all three test conditions

Fig. 2 Normalized distance to the Pareto frontier for all three test conditions
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deterministic function for determining bias based on iteration
number such as starting at a different initial coefficient or using a
nonlinear decrease in bias. Designers could also choose to use a
probabilistic method in which the bias coefficient was chosen
with some probability of increasing or decreasing.

This can be an effective strategy at the subsystem level, but the
simulations demonstrated that it may lead to system-level issues.
For example, the system response to different bias conditions in
MOP4 shows suboptimal results for the static and decreasing bias
conditions. Fig. 4 shows the final system design for the no bias
condition to be directly on the Pareto frontier. In Fig. 5, the final

system design found using the static bias strategy from the same
starting point is further away from the Pareto frontier and clearly
less optimal. The decreasing bias condition shown in Fig. 6 did
not lead to suboptimal results but did take more iterations.
Although commonly used to compare optimization algorithms, the
number of iterations is also an important metric when considering
the design process. An increased number of iterations reflects a longer
overall design process and time is an important resource in any design
project. For example, time constraints can be viewed as constraining a
design team to a fixed number of design iterations. A team using the
decreasing bias strategy may reach a less optimal result given the
same number of iterations when compared to a team using no biases,
especially if the number of iterations required to reach the Pareto fron-
tier is large. However, given an infinite amount of time and other
resources, results from the test suite of problems suggest that the
decreasing bias strategy actually may be preferable to the no bias case
because it reaches the same level of optimality and the “refinement”
period near the end gives the design team more confidence when they
explore the area near the Pareto frontier extensively and that feasibility
of the results is not sensitive to small changes in inputs.

The system response to the test conditions demonstrated in
MOP4 was similar across many of the test suite problems tested.
Figure 2 shows how in most of the problems the static bias condition
was less optimal than the no bias and decreasing bias conditions. In
the two problems which do not fit this pattern, MOP6 and DTLZ7,
the structure of the problem caused the optimization algorithm to
find the edge of the design space in a single iteration. The boundary
of the design space was also on the Pareto frontier. Thus, all condi-
tions found this point and the optimality of the final system design
of these problems was insensitive to changes in the bias.

The system response demonstrated in MOP4 was also similar to
many of the other test problems with respect to the number of iter-
ations needed to reach a stopping condition, as shown in Fig. 3.
The number of iterations needed in the decreasing bias case was
also higher than in the other two cases for most of the test prob-
lems. In problems whose objective functions were conical, such
as MOP5, MOP7, MOPC1, and MOPC3, the behavior was more
sporadic. Although it is unclear exactly how the conical structure
caused the differences in behavior, the optimization algorithms
used many iterations to refine the final system design near the Par-
eto frontier in the overlap of the two conic sections. The relative
size of the static bias to the size of the overlap may have produced
a stopping condition either before reaching this refinement stage,
such as in MOP5, or kept it in the refinement stage longer as in
MOP7, MOPC1, and MOPC3.

The results from the tests of the asymmetric bias conditions
showed that the system response was for the test suite considered
least optimal in the symmetric case. This is to be expected, since
having both people bias the information passed between them would
suggest a less optimal scenario. However, it is interesting to observe
that many of the test suite problems were sensitive to biased infor-
mation passing from a particular subsystem. For example, in
DTLZ6, the no bias case converged to a solution of a normalized
distance of 19% from the Pareto frontier. In the symmetric constant
bias case, the normalized distance was 796% from the Pareto fron-
tier. In the asymmetric constant bias condition, subsystem 1 resulted
in a normalized distance of 773%, while subsystem 2 resulted in a
normalized distance of only 19%. This suggests that almost all of
the error in the symmetric case was due to bias in the information
passing from subsystem 1. Similar results were found in many of
the other test suite problems. This echoes result from the interviews,
in which subsystem designers felt that biased information passing
from particular subsystems greatly affected the system-level result.

Another notable finding from the asymmetric bias condition
results from this test suite is that iterations were not greatly
affected. In three of the problems, MOP7, MOPC1, and MOPC3,
a particular subsystem caused the optimization algorithm to con-
verge slowly. However, for the majority of cases, the results for
asymmetric biasing did not significantly change the number of
iterations required for convergence.

Fig. 4 Solution path in the no bias condition b 5 0

Fig. 5 Solution path in the static bias condition b 5 1.3

Fig. 6 Solution path in the decreasing bias condition
b51:32:1 � i
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In practice, subsystem engineers also reported that suboptimal
irreversible design decisions were made early in the design pro-
cess based on biased information from other subsystems. For
example, a complicated and expensive structure may be designed
and integrated into many subsystems based on mass constraints
that are reported early on. The scale of the effect is due to not
only the highly connected nature of the subsystems but also the
nonlinear nature of the subsystem response to design inputs. Small
changes in inputs can have large effects on performance and cost.

This study was limited by several factors. The simulations were
performed over a large number of problem types in the two test
suites used. However, test suite problems do not necessarily accu-
rately represent algorithm behavior in real-world problems. As
such it is difficult to determine what the exact meaning of the
increase in the distance from the Pareto frontier or the increase in

the number of iterations. However, this simulation does reflect
insights provided by the interviewees. This study also only
describes behavior reported by members of one organization. The
information may not be representative of all design teams working
on engineering complex systems.

Finally, this study presents results of a simplified two-player
system. Since the two-player case shows that biased information
affects the quality of design outcome, it could be argued that bi-
ased information passing in a multiplayer system would also have
adverse affects on design outcome. However, since the informa-
tion passing model developed in this study cannot be directly
adapted to a multiplayer system, these results may not indicate
trends in simulations of larger systems. The suboptimal system-
level results reported in the interviews may not be directly or
wholly due to biased information passing. The two-player system

Fig. 8 Normalized distance to Pareto frontier for asymmetric decreasing bias conditions

Fig. 7 Normalized distance to Pareto frontier for asymmetric constant bias conditions
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model is an initial step in expanding the concept of information
biasing to larger systems. For a multi-agent system, a more com-
plex model would need to be developed. The team structure, or
how and in what order the subsystems communicate the biased in-
formation, would need to be defined. The majority of problems in
the test suite used in this study can be easily extended to a multi-
agent system. In addition, there may be issues of computational
complexity or time with very large multi-agent systems.

6 Conclusions and Future Work

Interview results from a large aerospace organization demon-
strated the use of biased information passing at the subsystem
level as a negotiation tactic. This behavior reportedly led to

suboptimal system-level results. Simulations of three bias condi-
tions showed significant changes in system behavior. Two types
of errors were observed regarding speed and optimality

(1) What strategies do real-world aerospace designers and engineers
use when negotiating design parameters with other subsystems?
Practitioners interviewed reported using both MDO and
game theoretic structures for negotiating tradeoffs between
subsystems. Lower-level negotiations were done informally
in a game theoretic structure, while higher-level negotiations
were done formally in front of upper management commit-
tees. Interviewees also reported the use of biased information
passing between subsystems during negotiations at all levels.
The biased information passing was reported as starting at
approximately 30% and decreasing over time. Practitioners

Fig. 10 Number of iterations for asymmetric decreasing bias conditions

Fig. 9 Number of iterations for asymmetric constant bias conditions
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also reported asymmetric situations in which the subsystems
were biasing the information unevenly.

(2) What impact might these strategies have on system-level
optimality?
Although the size of the effect was problem-dependent, biased
information passing negatively affected system-level optimal-
ity across all problem types tested. Solutions that resulted
from strategies incorporating fixed biased information passing
negatively affected system-level optimality to a high degree.
Solutions resulting from strategies incorporating a decreasing
bias had the same level of optimality as those with no bias.
Asymmetric bias conditions also negatively affected system-
level optimality, but system performance was highly sensitive
to which subsystem biased the information.

(3) What impact might these strategies have on the speed of
optimization?
The speed as measured by number of system iterations was
not affected by the use of a fixed bias in most test problems.
However, a decreasing bias strategy increased the number
of iterations significantly and the amount increased for
more complex problem types. Asymmetric bias conditions
had the same affect on the number of iterations as the corre-
sponding symmetric bias condition.

Future work should involve investigating more organizations to
see if the use of biased information passing as defined in this study
is widespread. Second, the simulations investigating the size of the
effect were simplified to a two-player system. The structure within
the company for managing negotiations between subsystems seemed
to follow a “hybrid MDO–game theoretics” model in which the
larger organization follows a hierarchal MDO model, but lower
level subsystems adopt a game theoretic approach [43,44]. Braha
and Yaneer provided a framework for examining information flow
between design tasks and teams in a distributed design environment
[45]. Future work should involve simulations of this type to investi-
gate the effect of biased information passing on larger systems.
Results found in this study may not reflect the system behavior for
the described negotiation strategy across many nodes. Future work
should also include real-world problems in which domain knowl-
edge may more heavily impact the decision-making process.
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