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ABSTRACT 
This work uses an agent-based model to examine how 

installers of photovoltaic (PV) panels influence panel design 
and the success of residential solar energy. It provides a novel 
approach to modelling intermediary stakeholder influence on 
product design, focusing installer decisions instead of the 
typical solar stakeholder foci of the final customer 
(homeowners) and the designer/manufacturer. Installers restrict 
homeowner choice to a subset of all panel options available, 
and, consequentially, determine medium-term market dynamics 
in terms of quantity and design specifications of panel 
installations. This model investigates installer profit-
maximization strategies of exploring new panel designs offered 
by manufacturers vs. exploiting market-tested technology. 
Manufacturer design decisions and homeowner purchase 
decisions are modeled. Realistic details provided from installer 
and homeowner interviews are included. For example, installers 
must estimate panel reliability instead of trusting manufacturer 
statistics, and homeowners make purchase decisions based in 
part on installer reputation.  We find that installers pursue new 
and more-efficient panels over sticking-with market-tested 
technology under a variety of panel-reliability scenarios and 

two different state scenarios (California and Massachusetts). 
Results indicate that it does not matter if installers are 
predisposed to an exploration or exploitation strategy—both 
types choose to explore new panels with higher efficiency.  

1 INTRODUCTION 
The United States (US) residential solar energy market is 

more than 20 years old and beginning to mature. US penetration 
rates have increased from virtually zero to 0.8 percent of all 
U.S. households in the past ten years [1]. With maturity comes 
new challenges, and the Department of Energy (DOE) has 
recognized the need for novel approaches to pushing 
penetration rates higher, for example studying solar installation 
as a social phenomenon via the SunShot Initiative [2]. If the 
growth rate declines from currently optimistic industry 
projections, solar installation and equipment businesses built on 
an assumption of constant growth will fail, as perhaps 
foreshadowed by the recent restructuring and acquisition of 
SolarCity by Tesla [3].  

As the mechanical design community increasingly views 
products as systems, the design concerns of stakeholders in the 
system in addition to final consumers will receive increasing 
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attention in research. This paper provides such an investigation 
for the residential PV market using an agent-based model to 
understand the design concerns of different stakeholders. Here, 
we investigate a system that includes manufacturing design and 
positioning installers’ material-selection strategies with regard 
to the adoption of new technologies, and final consumer 
behavior.  

This paper details the structure of the agent-based model 
and the rationale for the decisions made on what to include and 
exclude. Explanation of model calibration to create reasonable 
behavior for the US PV market is also provided. The work then 
makes a number of assumptions in order to examine some 
broad-level conclusions and recommendations for increasing 
PV adoption rates. Levers manipulated include: technical 
properties (panel efficiency), environmental factors (level of 
solar irradiation), and economic factors (income levels). Future 
follow up work will include detailed consumer and installer 
surveys and will provide new layers on the foundation the 
agent-based model presented in this paper. The main questions 
asked in this study are: 

1. How are market outcomes shaped by different decision 
processes used by stakeholders? Specifically, how do panel 
installers decide what technologies to offer for sale? 

In a typical consumer-driver product design problem, 
growth stagnation would be addressed by designing new 
features that drive consumer (homeowner) demand. However, 
due to the complex nature of a residential PV panel, other 
stakeholders, such as panel installers, may control adoption 
from a push standpoint, rather than homeowners controlling 
adoption from a pull standpoint. Chen et al. [4] discovered that 
solar installers make system design choices in the majority of 
instances, not homeowners. Here, instead of creating a detailed 
expression of end-customer needs, we simplify these needs and 
focus on a detailed expression of installer decisions and 
interactions with manufacturers and homeowners. We expect 
that this will identify new recommendations for improving 
panel adoption.  

2.  How does the strategy of installers influence the behavior 
of the model and change with time and environmental 
conditions? 

In the model, installers can choose an exploration or 
exploitation strategy. The former is the risk-seeking behavior of 
choosing to sell a new technology, and the latter the risk-averse 
behavior of sticking with current offerings. Two scenarios 
represent a high level of solar irradiation with high PV 
penetration level, and a low level of solar irradiation with lower 
PV penetration level. We expect to reveal insights about 
stakeholder behavioral strategy changes in new and mature 
markets as  defined by the solar PV penetration level; and under 
different environmental conditions, defined by the levels of 
solar irradiation.  

The paper proceeds as follows: Section 2 reviews 
background information modeling efforts for PV market; 
Section 3 presents the simulation methods of decision processes 

modeling and engineering modeling; Section 4 presents the 
simulation results and discussion; and Sections 5 provides 
conclusions. 

2 BACKGROUND 
This paper does not focus on developing breakthrough 

technology for solar energy, but rather improving adoption with 
projections on currently-available equipment, for example, 
incremental increases in energy efficiency. For an overview of 
PV systems technology research see [5], and for improvements 
in manufacturing over the last decade see [6]. These studies 
discussed the efficacy of new processes, but the question 
remains: how does industry introduce new technologies and 
through what process do homeowners choose to adopt them? 

Stakeholders in the residential PV market other than 
homeowners include manufacturers, installers, and regulatory 
agencies. Manufacturers produce equipment for PV systems. 
Installers configure systems to satisfy needs of customers and 
install them on houses. Regulatory agencies are responsible for 
permitting, such as building requirements and grid-connection 
requirements.  

Research on residential solar PV adoption traditionally 
focuses on homeowners as final consumers of the product. But 
both Chen et al. [4] and  interviews of installers conducted by 
the authors at the Intersolar North America 2016 conference 
confirmed that installers make product design choices and offer 
homeowners only a subset of all panels available on the market 
[7]. Thus, installers are also consumers, in a business-to-
business relationship. They consume a manufacturer’s product; 
they specialize in specific designs from a manufacturer’s 
catalogue and offer a limited range of these selections to 
homeowners. As a result, manufacturers should direct their 
design efforts towards them as well as homeowners.   

More "traditional" modeling research focuses on 
homeowners as final choice agents. For example, Karakaya and 
Sriwannawit [8] identified barrier-to-adoption issues such as 
the high price of PV systems, complexity of interaction between 
people and the PV system, and ineffective policy measures. 
Islam and Meade [9] found that an educational campaign for 
homeowners might be effective at increasing adoption rates. 
But there are other barriers to adopting the latest technology and 
PV systems beyond homeowner decisions. For example, 
installers must be willing to offer the latest technology for sale. 
Installers serve as gate-holders for the new developments that 
are created by PV system manufacturers. Installer's choices are 
governed by the desire to maximize  profits and may not be 
perfectly aligned with the homeowners' preferences, the 
manufacturers' drive to push technology forward, or the 
government’s goals for increasing adoption at a manageable 
rate.  

While the installer's role in solar market dynamics is 
apparent, there is very little research into their actual decision 
patterns. Research concentrates on either general trends, such 
as report [1] which provided an overview of recent trends in 
market prices and volumes, or on modeling energy production, 
such as in [10,11], which created detailed models of energy 
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production that included renewable energy sources to assess 
impact on utility costs. Another example of this line of research 
is [12], where Janko, et al. focused on estimating effects on net 
loads under changing environmental factors. They found that 
the coverage area, direction, and time of day affected the net 
load differently. Frischknecht and Whitefoot created a static 
model that captures a single period of PV panel market 
sensitivities to changes in engineering parameters [13]. They 
found that an early-stage engineering design performance 
model could be incorporated into a decision framework. Chen, 
et al. [4] surveyed installers to determine preference 
information for residential solar panels and compared findings 
with past market data, but made no predictions for future 
behavior. We are exploring the role of installer choices in a 
working paper [7] using linked journey maps for installers and 
homeowners. We discover that installers’ decisions regarding 
their portfolio of products frame homeowners’ choices and 
effectively determine which technologies will be deployed on 
the market. 

Installers face complex decisions, not only while choosing 
from a limited range of offered technologies, but also when 
designing a PV system for homeowners. To be able to predict 
the effects of their choices on a market with complex offerings 
that are tailored to specific homeowners, we need to explicitly 
model the distribution of technological and socio-economic 
parameters that may influence installers’ choices.   

One of the analytical tools that can achieve this level of 
detail is the agent-based model. An agent-based model is a 
simulation-based model that explicitly models individual 
agents’ actions while also models the network of interactions 
and interdependencies between the agents. Simulation of the 
associated physical environment is customary.  Agents can be 
both stakeholders on the market of relevant technological and 
physical properties. For a brief introduction to agent-based 
models, see [14]. Some of their advantages are an ability to 
capture multiple complex distributions and naturally modeling 
network interactions. The latter is an integral part of 
environmental considerations as argued in [15]. Agent-based 
models have been successfully used for evaluating demand-
oriented policies, for example, by [16–20]. Zhao, et al. [16] 
concentrated on the multi-level modeling of energy generation 
for solar-panels and consumer decisions that step from detailed 
estimation of possible energy production given their 
geographical characteristics. They concluded that sensitivity of 
homeowners to changes in incentives is different for different 
regions. Robinson and Rai expanded on spatial agent-based 
modeling for the analysis of PV systems adoption rates [17]. 
They concluded that agent-level behavior and social 
interactions are important for explaining patterns of adoption. 
For other examples of this line of work see [21]. Robinson and 
Rai brought together multiple social, economic and 
environmental factors into complex agent-based model to 
analyze penetration rates arising from homeowners’ possible 
choices [17], suggesting that explicit modeling of agents 

characteristics is crucial for accurate policy analysis. However, 
none of this agent-based modeling work in solar adoption 
provided a high resolution articulation of the installer's role in 
the system, and we argue that this, in fact, underestimates the 
type and level of existing barriers to adoption.  

An engineer reading this work may feel uncomfortable 
with the level of uncertainty, or lack of precision in the 
parameterization of the model presented below. The developed 
model aims to keep the minimum level of complexity that is 
required to explore installer decisions. Inclusion of socio-
economic elements in the form of installer and homeowner 
decisions inevitably leads to a highly probabilistic model. It is 
simply not possible to be as precise about how a person might 
behave as it is to be about the amount of electricity produced by 
a solar panel. This approach of studying trends is valuable and 
useful for learning about socio-technical models. There are 
other reasons, such as the high level of unpredictability of the 
research process into new PV panels, that a probabilistic and 
trend-like model is needed. Note that this is not an optimization 
study that recommends one final design outcome. Instead, 
trends and changes of trends under model manipulations are 
reported for discussion and conclusion.  

3 MODEL DESCRIPTION 
3.1 General Flow of the Model 

The dynamic agent-based model represents simulated 
market dynamics for a number of years. The simulation is run 
for a fixed number of steps, each step representing 
approximately one year of actual time. This section provides an 
overview of important agent actions, with more-detailed 
descriptions given in the sections to follow. The overall flow of 
the model is described in Figure 1. Each agent in the model has 
a different goal. Manufacturers, represented by an icon of a 
factory, play a passive role in this model, representing 
exogenous technological progress. Homeowners, represented 
by a house icon, evaluate the financial viability of investing in 
PV systems given their specific set of parameters. Government 
decisions are not directly modeled, but instead are embedded in 
the pricing structure of the panels (current incentive structuring 
is modeled). 

The model focuses on installer decision behavior. At the 
start of each year (model step), installers choose what 
equipment to use in their installation bids to homeowners. 
Installers can choose to keep using their current technology or 
explore new options and switch to another design from the same 
or potentially new manufacturer. Some installers are more 
inclined toward exploration of existing offerings on the market; 
others are more likely to keep using their current design; and 
others may even switch to a new technology if the expected gain 
from switching is high enough. After an installer settles on a 
specific design, she customizes it to the homeowner needs, 
creating a specific PV system for the electricity demand level 
and house size. 

3 Copyright © 2017 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 01/14/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

 
FIGURE 1. MAJOR ATTRIBUTES OF THE MODEL AND AGENTS’ DECISION PROCESSES 

 
Available technologies for PV modules differ in their 

efficiency levels and reliability. The efficiency of the panel is 
its ability to convert a given amount of solar energy into 
electricity per square meter and is immediately known to 
everyone. The reliability, or probability of experiencing a 
break-down during deployment period, is revealed after the 
projects are deployed. Reliability in-part determines the 
production of energy for each project per year, if the system 
goes down it will require maintenance for a period of time, and 
it will not generate electricity for this time. 

Manufacturers price their current panel offerings on their 
expected efficiency. As the time goes by, manufacturers invest 
in research and development to improve the efficiency of their 
panels in a gradual manner. As they do not focus on improving 
reliability, it may either decrease or increase per model step.  

A fixed portion of all homeowners respond to marketing 
information during each year and decide to accept or reject 
installation offers from installers, depending on the offered rate 
of return of investment and the reputation of the installers they 
consider.  

Generally, manufacturers have access to actual 
performance information for PV panels. Installers have to rely 
on their field observation of the performance. They also have 
estimates of homeowner’s demand. Homeowners can only 
observe the reputation of installers and do not have access to 
raw efficiency and reliability data. A summary of availability of 
the information to each party is given below in Figure 2.   

 
FIGURE 2. INFORMATION AVAILABLE TO 

MANUFACTURES, INSTALLERS AND HOMEOWNERS 

The model was tested under two different scenarios 
corresponding to different cities within the US. General 
parameters of the agent-based model were set to represent two 
distinct local environments: CA scenario San Jose, California 
with high levels of solar irradiation and PV system penetration 
set at 5%; and MA scenario Massachusetts, with lower levels 
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of solar irradiation and PV penetration at 0.5%. Levels of 
irradiation were set to 4.0 kWh/m2/Day for MA and 6.0 for CA, 
taken from [22]. Other scenarios with varying levels of solar 
irradiation and PV system penetration are possible, but the 
choice was made to explore two different and realistic 
scenarios. 

In the following sections, we will provide details of the 
decision process for installers, manufacturers, and 
homeowners.   

3.2 Installer’s decision process 
Intelligent learning agents [14] are the best approach for 

modeling installers within an agent-based model, as they allow 
a way to represent constantly facing the decision and 
benefits/risks of changing PV offerings. Intelligent learning 
agents are agents that are allowed to update their beliefs in 
response to the observed dynamics of the environment. 

There are different approaches to modeling decision 
process for intelligent learning agents. Wilson and Dowlatabadi 
[23] provided an overview of existing approaches in the field of 
environmental research. In the case of installers, a reasonable 
choice is profit maximization. It is an appropriate decision 
procedure for learning agents in a highly volatile environment, 
as argued in [24]. The amount of information installers get from 
serving already installed PV systems allows for the use of 
Bayesian methods. As installers observe the actual output of the 
installed systems, they can update their estimates of reliability 
of the panel. Bayesian methods are used to provide a way of 
combining their initial guesses regarding reliability of the PV 
system and the observed data. 

Research into Bayesian learning effectively captures the 
learning dynamic [25,26]. Details of the implemented learning 
techniques are standard and can be found in [27]. While 
operating on the market, installers are constantly presented with 
new information that they incorporate into their decision 
process. We capture these features in our agent-based model by 
allowing installers to update their expectations after observing 
market outcomes of their decisions. 

We allow installers to pursue different decision processes 
that can be either explorative or exploitive. The former assumes 
that agents are more open to exploring new options if it seems 
that it might be beneficial to them. The later strategy describes 
agents that are less inclined to explore new options and prefer 
to stay with their current choices for longer. The exploration vs 
exploitation question has traditionally been a key part of 
learning. The classical approach uses multi-armed bandits, as 
explained in [28]. A multitude of methods for reinforcement 
learning are described in [29]. Experiments show that in 
conditions when the learning environment is not extremely 
noisy it is plausible to assume that people use dynamic 
optimization with Bayesian learning to arrive at optimal 
strategies for exploration versus exploitation [30], and this is 
the approach used here. We extend analysis to the case of 
applied problem solving in a distributed agents environment.   

3.2.1 An Installer’s PV module and Pricing Decisions 
Each installer has only one panel that they offer to 

homeowners. During every simulation step, each installer 
investigates replacing their current offering with a randomly-
selected PV module that is available from manufacturers. 
Whether or not they decide to adopt a new PV module depends 
on their propensity to explore (rather than exploit). If they 
decide to adopt, they estimate the expected profit of PV system 
designs for the panel under consideration. Expected profit is 
determined by expected revenue minus the costs of services. 
The former depends on the installation price that the installer 
decides to offer during each step. Next, we will describe this 
decision process in detail.  

Installers maximize their profit given the specific PV panel 
that they are offering as a basis for their design. 

𝑚𝑎𝑥𝑝𝑟𝑖𝑐𝑒Π𝑡 (1) 

The expected profit at time t is calculated over the 
forecasting horizon 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡: 

Π𝑡 = ∑ 𝑞𝑡+𝜏(𝑝𝑟𝑖𝑐𝑒)𝑝𝑟𝑖𝑐𝑒 −
𝜏=𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝜏=0

𝐶𝑡+𝜏(𝑝(𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒), {𝑞}𝑇0
𝑡+𝜏)  

(2) 

where demand 𝑞𝑡+𝜏(𝑝𝑟𝑖𝑐𝑒) = 𝑞 is estimated based on the 
offered rate of return and reputation of the installer. We will first 
explain this term in detail and then the cost term, C. Simple 
specification in the form of linear regression is used 

𝑞 = (𝒛𝑖𝑛𝑠𝑡𝜽𝑑 + 𝜖)N𝑚𝑎𝑟𝑘𝑒𝑡 (3) 

where 𝑍𝑖𝑛𝑠𝑡 = [𝒛𝑖𝑛𝑠𝑡,𝑡] is the collection of observations at 
time t that is used in sequential updating of Bayesian estimates 
of regression coefficients.  𝒛𝑖𝑛𝑠𝑡,𝑡  includes the main demand 
parameters that influence homeowner choice: internal rate of 
return for installer 𝑖, its reputation 𝑟𝑒𝑝𝑖 , internal rate of return 
(irr) of other installers 𝑖𝑟𝑟−𝑖, and reputation of other installers 
(excluding installer 𝑖 ) 𝑟𝑒𝑝−𝑖 . irr is calculated in the standard 
way. 

𝒛𝑖𝑛𝑠𝑡,𝑡 = [1, 𝑖𝑟𝑟𝑖,𝑡 , 𝑟𝑒𝑝𝑖,𝑡 , 𝑖𝑟𝑟−𝑖,𝑡 , 𝑟𝑒𝑝−𝑖,𝑡] (4) 

𝜽𝑑 are regression coefficients for estimated demand. They 
are assumed to be randomly distributed. Bayesian prior on 𝜽𝑑 
is assumed to be Normal-Inverse-Gamma. 

𝑝(𝜽𝑑) = 𝑝(𝜽𝑑|𝜎2)𝑝(𝜎2) 
= 𝑁(𝝁𝜃 , 𝑉𝜃)×𝐼𝐺(𝑎𝑑 , 𝑏𝑑) = 𝑁𝐼𝐺(𝝁𝜃 , 𝑉𝜃 , 𝑎𝑑 , 𝑏𝑑) (5) 

Under these assumptions, the posterior predictive 
distribution is 𝑀𝑉𝑆𝑡2𝛼∗(𝝁∗,

𝑏𝑑
∗

𝑎𝑑
∗ (1 + 𝑍

~

𝑉∗𝑍
~

𝑇))  (Multi-variate 
student distribution - MVS), the components of which are 
described in Appendix I. The mean of this distribution is used 
as a predictive: 𝑞

~
= 𝑍

~

𝝁∗ . Initial parameters are fixed at the 
levels (see Appendix I) that represent expectation of equal 
market shares for installers at the prevailing rates of return. 
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Profit is maximized under an assumption of no labor and 
equipment constraints. This assumption is reasonable because 
the time horizon for maximizing the expected profit is five 
years, and one step in the model is equivalent to one year. Over 
these time intervals, installers can use a flexible amount of labor 
and equipment. 

Now we will explain C from Eq. (2). Equation (6) 
introduces all costs that are incorporated: 

𝐶𝑡+𝜏(𝑝, {𝑞}𝑇0
𝑡+𝜏) = 𝑐𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑐𝑑𝑒𝑠𝑖𝑔𝑛 + 𝑐𝑝𝑒𝑟𝑚𝑖𝑡  

+𝑐𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 + 𝑐𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑐𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔 + 𝑐𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  
(6) 

Installers have both fixed per period costs and variable 
costs. Variable costs depend on the size and specifications of 
each installation. Details of cost calculations are given in Eq. 
(7) - (13):  

𝑐𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 = 𝜃𝑡,𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑖𝑛𝑠𝑡𝑎𝑙𝑙×𝑤𝑡×𝑞 (7) 

𝑐𝑑𝑒𝑠𝑖𝑔𝑛 = 𝜃𝑑𝑒𝑠𝑖𝑔𝑛×𝑤𝑡×𝑞 (8) 

𝑐𝑝𝑒𝑟𝑚𝑖𝑡 = 𝜃𝑝𝑒𝑟𝑚𝑖𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑙×𝑤𝑡 + 𝜃𝑝𝑒𝑟𝑚𝑖𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐×𝑤𝑡×𝑞 (9) 

𝑐𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 = 𝑁𝑝𝑎𝑛𝑒𝑙𝑠×𝑞×𝑝𝑟𝑖𝑐𝑒𝑚𝑜𝑑𝑢𝑙𝑒,𝑆𝐸𝑀  (10) 

𝑐𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜃𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛×𝑤𝑡  (11) 
𝑐𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔 = 𝜃𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔×𝑤𝑡 (12) 

𝑐𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 𝑓𝑐({𝑞}𝑇0
𝑡+𝜏, 𝑝(𝑚𝑎𝑖𝑛𝑡𝑒𝑛a𝑛𝑐𝑒)) (13) 

Maintenance costs in (13) depend on the expected 
probability of failure for the installed system 𝑝(𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒) 
and required labor costs to repair the systems 
𝑓𝑐({𝑞}𝑇0

𝑡+𝜏, 𝑝(𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)). 𝑝𝑟𝑖𝑐𝑒𝑚𝑜𝑑𝑢𝑙𝑒,𝑆𝐸𝑀 is the price of a 
PV module that is determined by the module’s manufacturer. 
𝑤𝑡  is the prevailing labor wage at time t. 𝑁𝑝𝑎𝑛𝑒𝑙𝑠   is the number 
of panels that is required by the specific design.  

Other costs are fixed at levels that correspond to average 
costs of operating in the US residential PV market for a large-
scale installer, as reported in Appendix I. Values were calculated 
from SolarCity Corporation's financial reports for 2015. Each 
𝜃𝑖 parameterizes part of overall costs as specified in Eq. (7)- 
(13). For each time period 𝑡 + 𝜏, where 𝑡 is current time period 
and 𝜏  is forecasting offset, total costs include all mentioned 
above parts as in Eq. (6). One of the parameters that defines a 
variable portion of the costs is 𝑁𝑝𝑎𝑛𝑒𝑙𝑠. It is the number of solar 
modules that is required to be installed to provide enough 
electricity to the homeowner. In profit calculations, this number 
is calculated for an average homeowner, targeting one-hundred 
percent of their electricity consumption, under the assumption 
that there is enough physical space on the roof for the 
installations. It is also assumed that other conditions are 
favorable for installing PV panels. When the actual design is 
offered to the homeowner, roof size considerations will become 
part of the actual offer.  

Exploration vs. Exploitation. Each installer has the 
option to switch to offering a new PV panel, untested in the 

market. The decision to switch is based on the expected 
difference in profit and the propensity to switch. The propensity 
to switch is specific to each installer, classified as either an 
explorer or exploiter. In this model simulation of three 
installers, one installer is assumed to be an explorer and the 
other two are exploiters. 

The probability for switching 𝑝𝑖𝑛𝑠𝑡,𝑠𝑤𝑖𝑡𝑐ℎ  is calculated 
using the logistic function: 

𝑝𝑖𝑛𝑠𝑡,𝑠𝑤𝑖𝑡𝑐ℎ =
1

1 + exp
−

Π𝑛𝑒𝑤
Π𝑜𝑙𝑑

−𝜃0,𝑒

𝜃1,𝑒

 
(14) 

and parameter values 𝜃𝑖,𝑒 are listed in Appendix I. Each set 
of parameters 𝜃{𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑟,𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑟}  (for explorer and exploiter) 
specifies propensity to switch to new design. Π𝑜𝑙𝑑  is calculated 
for expected maintenance, demand and efficiency of the current 
panel; Π𝑛𝑒𝑤  is calculated based on the expected maintenance 
for new panel and subject to the same demand estimations as 
the current panel.  

3.2.2 Installation and maintenance of PV panels  
Installation. The installer uses their currently-offered 

panel to create specifications for installation, given homeowner 
parameters. There are environmental parameters that are fixed 
for all agents and all simulations such as level of solar 
irradiation and difficulty in acquiring permits. There are 
homeowner-specific parameters such as roof size, electricity 
consumption, and household income. When a homeowner 
approaches an installer for a proposal, they design to provide 
enough electricity to cover demand under ideal conditions, 
constrained by the roof size. To determine the price, the installer 
works within the constraints of the cost of installation and, 
determined during profit optimization procedure, the price-per-
watt. Price-per-watt is multiplied by the total watt production of 
the system to calculate the price offered to the homeowner. If 
the homeowner accepts the proposal, then the project is 
installed. Regulatory agencies approve the project 
automatically.  

Maintenance. During each model step, installed projects 
might experience failure according to the probability 
distribution specific to each PV panel design. The complexity 
of the failure is also subject to the probability distribution. Both 
determine the cost of maintenance that is specified in Eq. (12).  

Reliability from Installer's Perspective. Unlike 
manufacturers, installers do not have perfect information on 
panel reliability (in the model). This is based on (a) 
conversations that authors' had with installers that suggested 
manufacturers' reliability statistics were sometimes unreliable 
and (b) reported solar panel failings, which are higher than 
warranty information would suggest. Additionally, reliability 
can vary with environmental conditions, such as solar radiation 
levels and grid stability. The installers must determine the 
reliability of two panels: (Current) the one they currently use 
and (New) the new one that a manufacturer offers them \ each 
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model cycle. For the current use panel they used the strategy 
described below. 

Once the number of failures 𝑛𝑓, period from one failure to 
another 𝑥𝑓,𝑖 for project 𝑖, and severity of failures 𝑥𝑐,𝑖 are known 
to the installer it can update its internal estimate for the 
probability distribution for failures and their complexity.   

It is assumed that reliability of the installation is 
exponentially distributed (it is standard distribution assumption 
for failure rates of the system). 

𝜆𝑓𝑒−𝜆𝑓𝑥 (15) 

The installer agent does not know the exact parameter of 
the distribution of Eq. (15) but learns it by observing the 
performance of installed systems during the simulation. The 
prior distribution for parameter 𝜆𝑓 is the Gamma distribution 

𝛽𝑓
𝛼𝑓

Γ(𝛼𝑓)
𝑥𝛼𝑓−1𝑒−𝛽𝑓𝑥  

(16) 

Prior parameters 𝛼0,𝑓 ,  𝛽0,𝑓   correspond to the optimistic 
assessment of an actual system reliability, such as estimated for 
the example [31], a study which investigated different sources 
and frequencies of PV module failures. To get some intuitive 
understanding for the parameter values in Appendix I it is 
possible to think about the prior values as describing a situation 
when 1 failure in 25 years is expected.  

For assessing the reliability of new panels, we investigate 
the results of installers using one of three estimation strategies. 
(1- Optimistic) Installers assume that panels fail only once 
every twenty five years; (2 - Self) Installers estimate that the 
new panel will have the same reliability as their current panel, 
by their own assessment (Eq. 15); or (3 - Average) Installers 
estimate that the new panel will have a reliability equivalent to 
the average installer-reported reliability of the panels on the 
market now. Each of the scenarios is explored and results are 
presented in Section 4. 

Regardless of the scenario, 𝛼𝑓  and 𝛽𝑓  in Eq. (16) update 
with new information using standard formulas for Gamma 
distribution. The resulting posterior predictive for the expected 
time before the next failure follows a Pareto Type II 
distribution.  Complexity of maintenance is assumed to have a 
normal distribution, with parameters 𝜇𝑚𝑎𝑖𝑛𝑡 , 𝜎𝑚𝑎𝑖𝑛𝑡

2 . The prior 
distribution for these parameters is Normal-inverse-gamma 
with the parameters 𝜇0 , 𝑣 , 𝛼 , 𝛽 ,  updated using standard 
formulas. The resulting posterior predictive is 

 𝑡2𝛼′(𝑥
~

|𝜇′,
𝛽′(𝑣′+1)

𝑣′𝛼′ ).  (17) 

a non-standard t-distribution with scale and location parameter:  

𝑋 = 𝜇′ +
𝛽′(𝑣′+1)

𝑣′𝛼′ 𝑇.  (18) 

Where 𝑇 ∼ 𝑡𝛼′ , which is a standard t-distribution with 
𝛼′ degrees of freedom. 

Prior parameters for the distribution 𝜇0 , 𝑣0  , 𝛼0 , 𝛽0  are 
fixed at the levels given in Appendix I. 

Installer Reputation. An installer's reputation relies on the 
uptime (productive energy creation) of their existing projects, 
as equipment failures result in downtime. Total production over 
all of an installer's projects, prod, is used to update estimates of 
reputation. The 𝛽𝑟𝑒𝑝  scale parameter of the distribution is 
assumed to be fixed at the level 1.0. Prior value for parameter 
𝛼𝑟𝑒𝑝 of shape is 1.0. For every other period, except the initial, 
shape parameter is updated in the following way: 

𝛼𝑡,𝑟𝑒𝑝 = 1 +
1

1
𝛼𝑡−1,𝑟𝑒𝑝

𝑁𝑝𝑒𝑟

𝑁𝑝𝑒𝑟 + 1
+

𝑝𝑟𝑜𝑑𝑡

𝑁𝑝𝑒𝑟 + 1

 
(19) 

Where 

𝑝𝑟𝑜𝑑𝑡 =
1

𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠

∑ 𝑝𝑟𝑜𝑑𝑡,𝑖

𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠

𝑖=1

 (20) 

is the average uptime production over all of an installer's 
projects. 𝑁𝑝𝑒𝑟  is the adjusted number of periods for estimation, 
which is equal to 𝑛0 + 𝑡 . 𝑡  is the current period of the 
simulation and 𝑛0 = 10 defines initial reputation "stickiness", 
meaning that realized failures affect estimated reputation with 
a weight of less than one.    

3.3 Manufacturer’s decision process (passive) 
The manufacturer researches, designs, and prices new 

panels, represented by the model as passive actions following 
rules for pricing and exogenous speed of technological 
progress.  

3.3.1 Researching and designing new PV panels 
Every period each manufacturer updates their PV panel 

design, if their research efforts are fruitful. The design of the 
new panel begins with drawing a randomly-determined 
efficiency improvement, as well as expected reliability (time 
between failures) and maintenance complexity. This 
assumption is a significant simplification of an actual design for 
reliability. For examples and discussion of problems that face 
designers that focus on the problem of designing for reliability 
see [32]. Even a simplified model can still provide insights into 
optimal design choices by manufacturers, as argued in [33]. 

Efficiency, ef, improves over all manufacturers at an 
individual random rate, so that in the time period 𝑡  for each 
manufacturer 

𝑒𝑓𝑡 = 𝑒𝑓𝑡−1𝑒𝜇𝑒𝑓+𝜎𝑒𝑓𝜖0,1  (21) 

and  

𝜖0,1 ∼ 𝑁(0,1) (22) 

The efficiency of the new panel is known to the 
manufacturer and installer. Expected reliability is formed in the 
same way as expected efficiency, but is only known to the 
manufacturer (see Section 3.2.2 and Eq. (15) for installer's 
equations): 
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𝜆𝑡 = 𝜆𝑡−1𝑒𝜇𝜆+𝜎𝜆𝜖0,1  (23) 

Generally, all panel design parameters can increase or 
decrease with each model step. The manufacturer decides to 
offer the panel to installers only if it offers a benefit over their 
existing offering, in terms of efficiency. Reliability does not 
affect this decision.  

Expected maintenance costs, known only to the 
manufacturer, are 𝑁(𝜇𝑚𝑎𝑖𝑛𝑡 , 𝜎𝑚𝑎𝑖𝑛𝑡

2 ) , and update with each 
model step in the same fashion as efficiency and reliability, with 
appropriate adjustment for multivariate generation. Let 
𝜃𝑚𝑎𝑖𝑛𝑡 = (𝜇𝑚𝑎𝑖𝑛𝑡 , 𝜎𝑚𝑎𝑖𝑛𝑡

2 )  be the combination of parameters 
for distribution of maintenance costs. 𝜃𝑚𝑎𝑖𝑛𝑡  is updated to new 
values in the following way:   

𝜃𝑡,𝑖,𝑚𝑎𝑖𝑛𝑡 = 𝜃𝑡−1,𝑖,𝑚𝑎𝑖𝑛𝑡𝑒𝜖𝑖,𝑚𝑎𝑖𝑛𝑡 (24) 

𝜖𝑚𝑎𝑖𝑛𝑡 ∼ 𝑵(𝝁𝜖𝑚𝑎𝑖𝑛𝑡
, 𝚺𝜖𝑚𝑎𝑖𝑛𝑡

) (25) 

Parameters of the distribution: 𝜇𝑒𝑓 , 𝜎𝑒𝑓
2  , 𝜇𝜆 , 𝜎𝜆

2 , 𝝁𝜖𝑚𝑎𝑖𝑛𝑡
 , 

𝚺𝜖𝑚𝑎𝑖𝑛𝑡
 are kept at the levels given in Appendix I. 

3.3.2 Manufacturer’s pricing scheme 
The model assumes that initial prices are fixed and 

calculated based on the estimated price per efficiency unit using 
the following equations: 

𝑝𝑟𝑖𝑐𝑒𝑤𝑎𝑡𝑡 = 0.65 (26) 
𝑝𝑟𝑖𝑐𝑒𝑚𝑜𝑑𝑢𝑙𝑒,𝑆𝐸𝑀 = 𝑝𝑟𝑖𝑐𝑒𝑤𝑎𝑡𝑡𝑁𝑤𝑎𝑡𝑡  (27) 

where 𝑁𝑤𝑎𝑡𝑡  pick production in watts under standard test 
conditions. After the initial period, 𝑝𝑟𝑖𝑐𝑒𝑤𝑎𝑡𝑡 is decreases along 
a learning rate, which is assumed at 8%, supported by data from 
[5]. 

3.4 Homeowner’s decision process 
In every model step, 10% of homeowners are randomly 

drawn to be contacted by one installer per homeowner. 
Installers present homeowners with a PV system proposal, 
which homeowners accept or not. The promised internal rate of 
return and installer's reputation guide this choice, which is also 
in-part determined by the income level of the homeowner. 
Higher income levels require lower levels of expected return, 
with the underlying assumption being that at a certain level of 
income, people choose PV systems for reasons other than 
financial, such as environmental concerns or propensity to be 
an early adopter. This nuance is included based on the results of 
the author's interviews with current PV system owners.  

The probability of a homeowner accepting any given 
proposal is a logistic function with the following specification: 

𝑝ℎ,𝑠𝑤𝑖𝑡𝑐ℎ =
1

1 + exp
−

𝑖𝑟𝑟×𝜃ℎ,3−
1

𝜃ℎ,1
(1+

𝜃ℎ,0
𝜃ℎ,1

𝐼
1000

)
−

1
1+𝜃ℎ,0

𝜃ℎ,2

 
(28) 

Figure 3 provides intuition regarding the response of this 
distribution to changes in income level and internal rates of 

return, from $10K to $100K. Note that the threshold value of 
the required rate of return depends on the homeowner's income, 
I. Other parameters for the logistic function are maintained at 
the levels specified in Appendix I. Figure 4 illustrates response 
of distribution to changes in other parameters. Homeowners 
will make a decision to adopt PV if the promised rate of return 
is high enough, with the caveat that homeowners with higher 
levels of income require lower rates of return to consider 
adoption. Parameters in Eq. (28) control general slope of the 
function and the location of the switch point.  

 
FIGURE 3. PROBABILITY OF HOMEOWNER ACCEPTING 

PV PROPOSAL, GIVEN RATE OF RETURN (IRR) AND 
LEVEL OF INCOME  

 

FIGURE 4. PROBABILITY OF HOMEOWNER ACCEPTING 
PV PROPOSAL, GIVEN RATE OF RETURN (IRR) AND 

DIFFERENT LEVELS OF PARAMETERS  

From the homeowner's perspective, who does not know the 
reliability of the panel, the reputation of an installer 𝑟𝑒𝑝𝑖  , is 
used to adjust expected rate of return for the offered design 𝑖𝑟𝑟𝑒 . 
The resulting rate of return is 𝑖𝑟𝑟𝑒 ⋅ 𝑟𝑒𝑝𝑖  . Under the 
assumptions of Section 3.2.2 and Eq. (19) reputation is 
calculated as a mean of the estimated distribution: 

𝑟𝑒𝑝𝑖 =
1

𝛼𝑡,𝑟𝑒𝑝−1
𝛽𝑟𝑒𝑝  (29) 
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Internal rate of return is allowed to be negative in the 
model. [0,1] range in the figures was chosen to simplify visual 
presentation. Negative internal rate could happen when savings 
on electricity bill are not offset to a high enough degree by the 
purchasing price of the PV system, or when net-metering prices 
will result in low realized savings.  

Preferences parameters were set to represent past 
installation dynamics, for example from [1], given the observed 
rates of return on installed PV systems. 

Other parameters that affect specific configuration of the 
proposed PV system installation are the homeowner's income, 
roof size, and electricity bill. These parameters are generated 
from the empirical distribution specified in the dataset 
Residential Energy Consumption Survey (RECS) conducted by 
U.S. Energy Information Administration [34]. RECS provides 
information about homeowners and renters, but in the model 
data only for homeowners was used.  

3.5 Model Calibration and Validation. 
When the available data is limited or, as is the current case, 

non-stationary, the choice between stronger validation or 
calibration has to be made. Limited historical data and fast 
changes that characterize the market do not provide enough 
information to permit simultaneous calibration and validation 
of results. In this work, the choice was made to give more 
weight to calibration efforts and less to validation of results.  

The model was calibrated using multiple sources of 
information. Installer’s profit function parameters were 
estimated based on the financial statements from SolarCity 
Corporation. Market size was inferred from the total number of 
installations given in [1]. Expected market shares were initiated 
at the level that describes equal split between installers. 
Incentives to explore and exploit were calibrated to reflect 
moderate risk aversion.  

Manufacturer parameters that describe research into new 
panels were calibrated to replicate historical process for 
research, described in [5]. Parameters governing reliability of 
the panels were calibrated to match that observed in [35]. It 
should be noted that the research process for developing new 
panels is highly unpredictable for a time horizon over 5 years. 
While results of the simulation provide insights into market 
dynamics, their precision significantly decreases over time. 
Future prices for new PV panels were calibrated to match 
historical data and existing predictions, information in [5] was 
used to that purpose. Forecasts of PV panel prices beyond mid-
term horizon have wide error bands.  

Homeowner preferences were calibrated to reflect current 
market returns on investment with adjustment for perceived risk 
of investing in PV panels. Physical and socio-economic 
parameters for homeowners were generated to replicate 
distributions given in RECS [34]. Electricity price was fixed at 
15 cents per kilowatt hour, level of government incentive at 
30%, labor wage at $20 per hours, and inflation rate at 2%.  

In general, parameters were subjected to sensitivity tests.. 
The model simulation results on the medium horizon were 
validated in a sense that they continue to observe past 

installation dynamics. But this type of model can be only 
validated in a limited way. The PV market is relatively young 
and rapidly developing, limiting amount and quality of 
information available for validation and calibration.  

 
4 RESULTS AND DISCUSSION 

The agent-based model was run for each scenario (CA, 
MA) under a number of different conditions, and for 15-year 
cycles. For each scenario, there were 7 manufacturers, 3 
installers, and 1000 homeowners. The number of installers was 
fixed at the historical levels for the number of "big" installers in 
the market. It is assumed that small installers will mimic 
strategies of the big ones. Each 15-year run took 5 minutes to 
complete. Each run was completed 100 times using different 
seeds. C++ was used to create custom program and run the 
model. Results presented here are an average of those runs. 

There are three main indicators which give a sense of market 
conditions over the years: 

1) Hit %. Percent of homeowners that adopt a PV system each 
year. Note that Hit % is constrained to a maximum of 10%, 
the number of homeowners approached by installers each 
year. Hit % indicates PV penetration for a given year.  

2) Accumulated % Installations, Total Number of 
Installations. The percentage (or number) of all the 
homeowners that have ever installed PV systems on their 
roof, which indicates the accumulated PV penetration level. 

3) Price per Watt. The average purchase price per watt for 
systems installed in a given year.  

There are two additional indicators that are useful to follow, 
while noting that they are partially determined by model 
parameters, as indicated in Section 3.1: 

4) Efficiency. Efficiency is the percentage of energy from the 
sun that a panel converts into electricity. The efficiency of 
modern panels in the US currently hovers around 20%.  

5) Reliability. In the results, reliability is reported as the 
number of years with one failure, from the manufacturer's 
point of view (as opposed to the installers' and homeowners' 
estimates). For example, a reliability of "20" means that the 
panel is predicted to fail once in 20 years.  

An overview of the market behavior is shown in Figure 5. 
Hit %, for both CA and MA, fluctuates year over year and does 
not show a definitive trend, although it seems to in general 
decrease for CA however peak and then decline for MA. The 
total number of installations trends slightly higher in the CA 
scenario compared to MA. For both scenarios, penetration level 
increases to around 14% by the end of the simulation. Overall, 
roof sizes present a physical limitation on the number of 
possible effective installations, but this should be at least 
partially offset by increases in panel efficiency, which decrease 
the effective size of installations. 
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FIGURE 5. OVERALL MARKET BEHAVIORS IN BOTH CA 

AND MA SCENARIOS 

Figure 6 shows that efficiency increases over time. It 
presents the three different scenarios that installers can use to 
gauge panel reliability: market average, same-as-current 
offering, and optimistic. While these three strategies do affect 
the actual reliability of the panels offered by manufacturers, the 
strategies have no effect on the push for efficiency. 
Manufacturers have a strong tendency to switch to designs with 
a higher level of efficiency, evident from the upward trend in 
efficiency presented in the figure. Installers that are explorers 
(er) and exploiters (el) both pursue panels with higher levels of 
efficiency, as effects of lower reliability are very limited. 
Installer reputation has little effect on homeowner decisions. 
The growing market provides a good incentive for adopting 
new technology and decreases its risks. 

Thus, when the benefits of improving efficiency are well-
known to all market participants, and the knowledge (or reality) 
of system-failure is low, it pays for manufacturers to invest in 
efficiency improvements. For installers, it is better to pursue an 
exploration strategy when benefits are high and general risk 
levels are low—even for installers assigned to prefer an 
exploitation strategy. This is a promising model behavior, as it 
matches both intuition and actual industry performance.  

Figure 7 presents results for price-per-watt dynamics and 
penetration level by income category and by level of electricity 
consumption in the CA scenario. It can be observed that the Hit 
% decreases gradually while price per watt remains steady. 
Homeowners with more income and electricity consumption 
make up the majority of that opt to install.  

The simulated results for MA scenario are shown in Figure 
8. Over time, partially-controlled by parameterization, price-
per-watt remains stable in CA scenario but decreases in MA 
scenario. Prices stabilize at higher levels in CA scenario as 
compared to the MA case. High CA energy prices allow 
homeowners to accept higher prices and still receive reasonable 
return on their investment. In the MA scenario, price-per-watt 
stabilizes at lower levels than in CA, because less solar energy 
means homeowners require a higher rate of return. 

 

 
FIGURE 6. (CA SCENARIO) THREE APPROACHES TO 

ESTIMATING PANEL RELIABILITY AND THE EFFICIENCY 
CHOICES INSTALLERS MAKE 

Agent-based modeling allows us to look at the dynamics of 
penetration level by income group and electricity bill. As results 
in Figure 7 and Figure 8 are averaged across simulation runs 
with different seeds, it is instructional to investigate the general 
dynamics of increasing penetrations shares for higher income 
and electricity bills groups. Each bar in Figure 8 below, for 
example, has lower income (electricity bill) groups at the 
bottom and high income (electricity bill) at the top. It is of no 
surprise that relative penetration level is much higher for high 
income groups and those families that have high electricity bills 
for both CA and MA scenarios. 
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FIGURE 7. (CA SCENARIO) THE CHANGES OF HIT %, 
PRICE PER WATT (ABOVE), AND ACCUMULATED % 

INSTALLATIONS (BELOW) OVER TIME 

 
FIGURE 8. (MA SCENARIO) THE CHANGES OF HIT %, 
PRICE PER WATT (ABOVE), AND ACCUMULATED % 

INSTALLATIONS (BELOW) OVER TIME

5 CONCLUSION 
The matrix in Figure 9 summarizes, in qualitative form, the 

sensitivity analysis results of the model. All factors that have 
influence on the current penetration level ("immediate 
characteristics") or expected future sales could be divided into 
different categories, such as physical characteristics (including 
design characteristics), market characteristics and preferences 
characteristics.  

We explicitly model the design parameters of the solar PV 
systems as their efficiency and reliability. We find that 
efficiency dynamics shape the market outcomes the most, while 
reliability parameters only guide some of the decision-making 
with less profound effect. Maintenance costs, tied to the 
reliability of the system, do not represent a major decision 
factor for homeowners or installers, due to relative rarity of 
maintenance events and their low-cost impacts.  

We also find that the roof sizes introduce restrictions on the 
possible system sizes and, as such, potential market sizes. But 
this can be partially-mitigated by improvements in panel 
efficiency. Changes in the level of solar irradiation, as exhibited 
in CA vs. MA scenarios, alters the realized market price-per-
watt. In both scenarios, the tendency to follow exploration 
strategy dominates.  

As for market characteristics, the potential market size 
determines financial viability of any strategy and thus is 
important to the decision-making agents. However, costs (hard 
and soft) are more important factors since they directly decide 
the expenses and determine the profitability of the systems and 
at what price point. Hard costs are particularly important in the 
analyzed scenarios, representing the economics of currently-
available panels. This explains why installers track efficiency 
levels so closely. Also important are the model's assumptions 
on the preferences of installers (exploration vs. exploitation) or 
homeowners (rates of return on investment). Future work will 
explore more sophisticated models here. 

As the model cycles to maturity, the dynamics of the 
balance between exploration and exploitation change and the 
reliability are weighted more-heavily by homeowners. Another 
factor that continues to shape these dynamics are low-price, 
low-quality competition from manufacturers that specialize in 
such systems. Observed dominance of the efficiency of the 
panel in the decision-making is thus the result of both model 
assumptions and the existing cost and information structure of 
the market. 
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FIGURE 9. FACTORS THAT DETERMINE MARKET OUTCOMES IN THE PRESENCE OF DIFFERENT DECISION PROCESSES  

 
The assumptions and generalizations do impose limitations 

on the implications of the work. These include not explicitly 
modelling manufacturers' research priorities. Explicit modeling 
of these might change the unanimous dominance of the 
efficiency as a major deciding-factor for installers. Restrictions 
on choice also limit conclusions. For example, installers can 
only consider one manufacturer each cycle, and homeowners 
can only consider one installer, who offers only one panel type, 
each cycle. These choice restrictions provide clarity on the 
agent-based model conclusions, with too many "moving parts," 
it is difficult to perform basic validation of the results and 
explore high-level trends, as presented here. As the basic 
behavior is now intuitively validated as reasonable, future 
versions of the model will provide more choice options.  

Another potential issue lies with imposing specific 
functional forms on the reliability and complexity distributions. 
While assumptions made in the paper are conservative, it could 
be argued that investigation of other possible approaches might 
be advisable. There are also limitations of the selection 
procedure employed by the installer for choosing potential PV 
panels for new proposals. But it is unclear if more explicit 
modeling of this procedure would alter the results, while the 
level of model complexity would significantly increase.  

To summarize, the analysis investigated the dynamics of 
PV system penetration in the US residential solar energy market 
using an agent-based model. In particular, it focused on the 
intermediary agent of installers, which was articulated in the 
model as guiding design developments of PV panels, rather than 
the more traditional approach of directly modeling homeowners 
as guiding these developments through their preferences / 

choices. The model articulated the installer's decision process 
as one of exploration vs. exploitation, while maximizing their 
profits. Whether exploration or exploitation technology 
adoption strategies dominates depends on the specifics of the 
market, such as effect of reputation, which was possibly under-
represented in the model.  

As represented, the installers explore new panel offers 
more than they exploit existing, and this drives technological 
development (panel efficiency). This has potential implications 
for policy-makers at the state and national level, if policies can 
alleviate risks from new panel technologies, perhaps by 
financially compensating homeowners for system downtime, 
efficiency should be highly-sought over reliability, which 
would be a boon to the progress of the solar industry. 
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NOMENCLATURE 

  
PV  Photovoltaic 
𝑁𝑚𝑎𝑟𝑘𝑒𝑡  Market size 
𝑁𝑝𝑎𝑛𝑒𝑙𝑠   Number of panels in PV system 
𝑁𝑝𝑒𝑟   Number of periods for estimating reputation. 
𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠  Number of active projects for installer 
𝑁𝑤𝑎𝑡𝑡  STC power rating for PV module 
𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  Forecasting horizon for expected profit 
𝑽𝟎,𝜽  Bayesian prior for the variance of the 

distribution for demand function 
𝒁𝟎,𝒊𝒏𝒔𝒕  Prior values for demand function estimation 
𝑏0,𝑑  Initial value for parameter for prior for demand 

function distribution 
𝑏𝑑  Parameter of a Bayesian prior of the demand 

function distribution 
𝑐𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛  Administrative costs for installer 
𝑐𝑑𝑒𝑠𝑖𝑔𝑛  Cost of designing PV system 
𝑐𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛  Costs of installing PV system 
𝑐𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  Maintenance costs for installer 
𝑐𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠  Cost of material for PV system 
𝑐𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔  Marketing costs for installer 
𝑐𝑝𝑒𝑟𝑚𝑖𝑡  Cost of obtaining permits for PV system 
𝐶𝑡+𝜏(𝑝(𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒), {𝑞}𝑇0

𝑡+𝜏)  Design costs at time 𝑡 + 𝜏, 
given 

𝑒𝑓0  Initial level of efficiency 
𝑒𝑓𝑡  Efficiency of a PV module 
𝑓𝑐({𝑞}𝑇0

𝑡+𝜏 , 𝑝(𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒))  Estimated labor costs of 
maintenance 

𝑖𝑟𝑟𝑖  Internal rate of return offered by design by firm 
i 

𝑖𝑟𝑟−𝑖  Internal rate of return offered by design by other 
firms  

𝑛0  Parameter for reputation stickiness 
𝑛𝑓  Number of failures 
𝑝𝑖𝑛𝑠𝑡,𝑠𝑤𝑖𝑡𝑐ℎ  Probability of switching to new design for 

installer 
𝑝(𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)  Probability distribution for expected 

maintenance costs given current and expected 
portfolio of projects 

𝑝ℎ,𝑠𝑤𝑖𝑡𝑐ℎ  Probability of accepting design for homeowner 
price Price of a PV system 
𝑝𝑟𝑖𝑐𝑒𝑚𝑜𝑑𝑢𝑙𝑒,𝑆𝐸𝑀  Manufacturer’s price of a PV module  
𝑝𝑟𝑖𝑐𝑒𝑤𝑎𝑡𝑡  Price per watt for PV module 
𝑝𝑟𝑜𝑑𝑡,𝑖  Production for project i in time t 
𝑞𝑡+𝜏(𝑝𝑟𝑖𝑐𝑒)  Demand for current design at time 𝑡 + 𝜏   for 

price p 
𝑟𝑒𝑝𝑖  Reputation of a firm i 
𝑟𝑒𝑝−𝑖  Reputation of other firms 
𝑤𝑡  Prevailing labor wage 
𝑧𝑖𝑛𝑠𝑡   Demand function parameters 
𝛼   Parameter of a Bayesian prior for probability 

distribution for maintenance 
𝛼0  Initial value for prior for probability distribution 

for maintenance 
𝑎0,𝑑  Initial value for parameter for prior for demand 

function distribution 
𝛼0,𝑓  Initial value for prior for failure distribution 

 

 
 
 

𝑎𝑑  Parameter of a Bayesian prior for demand 
function distribution 

𝛼𝑓  Parameter of a Bayesian prior for failure 
distribution 

𝛼𝑡,𝑟𝑒𝑝  Parameter of installer reputation at time t 
𝛽   Parameter of a Bayesian prior for probability 

distribution for maintenance 
𝛽0  Initial value for prior for probability distribution 

for maintenance 
𝛽0,𝑓  Initial value for prior for failure distribution 
𝛽𝑓  Parameter of a Bayesian prior for failure 

distribution 
𝛽𝑟𝑒𝑝  Fixed in time parameter of installer reputation 
𝜃𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛  Parameter for administrative costs 
𝜃𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑖𝑛𝑠𝑡𝑎𝑙𝑙   Parameter for complexity of installation 
𝜃𝑑𝑒𝑠𝑖𝑔𝑛  Parameter for design costs 
𝜃𝑖,𝑒  Parameter values for explorer/exploiter 

decision process 
𝜃𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔  Parameter for marketing costs 
𝜃𝑝𝑒𝑟𝑚𝑖𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑙  Parameter for cost estimation of permitting, 

general part 
𝜃𝑝𝑒𝑟𝑚𝑖𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐   Parameter for cost estimation of permitting, 

design specific part 
𝜃𝑑  Parameters of an estimated demand function 
𝜃ℎ,𝑖  Parameter i of homeowner’s decision function 
𝜆0  Initial value for reliability 
𝜆𝑓  Parameter for failure distribution 
𝜇   Parameter of a Bayesian prior for probability 

distribution for maintenance 
𝜇0  Initial value for prior for probability distribution 

for maintenance 
𝜇0,𝑚𝑎𝑖𝑛𝑡  Initial value for parameters for complexity of 

maintenance distribution 
𝝁𝟎,𝜽  Bayesian prior for the mean of the distribution 

for demand function  
𝜇𝑒𝑓  Parameter for efficiency distribution 
𝜇𝑚𝑎𝑖𝑛𝑡  Parameter of probability distribution for 

maintenance 
𝝁𝝐𝒎𝒂𝒊𝒏𝒕

  Parameters for complexity of maintenance 
distribution 

𝜇𝜆  Parameter for reliability distribution 
𝜎0,𝑚𝑎𝑖𝑛𝑡

2   Initial value for parameter for complexity of 
maintenance distribution 

𝜎𝑒𝑓
2   Parameter for efficiency distribution 

𝜎𝑚𝑎𝑖𝑛𝑡
2   Parameter of probability distribution for 

maintenance 
𝜎𝜆

2  Parameter for reliability distribution 
𝑣   Prior for parameter of probability distribution 

for maintenance 
𝑣0  Initial value for prior for parameter of 

probability distribution for maintenance 
Π𝑡  Total expected future profit at time t 
𝑥𝑐,𝑖  Complexity of the failure 
𝑥𝑓,𝑖  Time between failures for project i 
𝚺𝝐𝒎𝒂𝒊𝒏𝒕

  Parameters for complexity of maintenance 
distribution 
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APPENDIX I 

Parameter values for the model.

Parameter Value 
Initial parameter values for the installer's 

demand estimation procedure. 

𝝁𝟎,𝜽 

(-0.002375 
5.9375, 

0.002375 
-2.375, 

-0.002375) 
𝑽𝟎,𝜽 0.5𝑰6 
𝑎0,d 1.0 
𝑏0,d 1.0 

𝒁𝟎,𝐢𝐧𝐬𝐭 (1.0,0.1,1.0,0.1,1.0) 
𝑁𝑚𝑎𝑟𝑘𝑒𝑡  50000 

Parameter values for the installer's decision 
procedure: cost function. 

𝜃𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑖𝑛𝑠𝑡𝑎𝑙𝑙  100 
𝜃𝑑𝑒𝑠𝑖𝑔𝑛 350 

𝜃𝑝𝑒𝑟𝑚𝑖𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 200 
𝜃𝑝𝑒𝑟𝑚𝑖𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 50 
𝜃𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 2000000 

𝜃𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔 2500000 
Parameter values for the installer's 

decision procedure: propensities to switch. 
𝜃0,𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑟  1 
𝜃1,𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑟  0.25 
𝜃0,𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑟  1.5 
𝜃1,𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑟  0.5 
Parameter values for the installer's 

decision procedure: priors for reliability 
distribution. 

𝛼0,𝑓 1 
𝛽0,𝑓 25 

Parameter values for the installer's 
decision procedure: priors for complexity 

distribution. 
𝜇0 50 
𝑣0 1 
𝛼0 1 
𝛽0 50 

Parameter values for the design of PV panels 
for manufacturers. 

𝜇𝑒𝑓 0.01 
𝜎𝑒𝑓

2  0.01 
𝑒𝑓0 0.16 
𝜇𝜆 0.01 
𝜎𝜆

2 0.01 
𝜆0 0.2 

𝝁𝝐𝒎𝒂𝒊𝒏𝒕
  (0.0,0.0) 

𝚺𝝐𝒎𝒂𝒊𝒏𝒕
  [

0.01 0.01
0.01 0.02

] 

𝜇0,𝑚𝑎𝑖𝑛𝑡 160 

𝜎0,𝑚𝑎𝑖𝑛𝑡
2  400 

Parameter values for the homeowner's 
decision procedure. 

𝜃ℎ,0 1.5 
𝜃ℎ,1 2 
𝜃ℎ,2 0.02 
𝜃ℎ,3 0.5 
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