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State-Space Adaptation of Unsteady Lifting Line Theory:
Twisting/Flapping Wings of Finite-Span

Jacob S. Izraelevitz ∗

Massachusetts Institute of Technology, Cambridge, MA 02139

Qiang Zhu†

UC San Diego, San Diego, CA 92093

Michael S. Triantafyllou ‡

Massachusetts Institute of Technology, Cambridge, MA 02139

We analytically derive a low order state-space adaptation of the unsteady lifting line model for a wing of finite
aspect-ratio, suitable for use in real-time control of wake-dependent forces. Each discretization along the span has
from 1 to 6 states to represent the local unsteady wake effects, rather than remembering the entire wake history
which unnecessarily complicates controller design. Sinusoidal perturbations to each system degree-of-freedom are
also avoided. Instead, a state-space model is fit to individual indicial functions for each blade element, allowing
the downwash and lift distributions over the span to be arbitrary. The wake geometry is assumed to be quasi-
steady (no rollup) but with fully unsteady vorticity. The model supports time-varying surge (a nonlinear effect),
dihedral, heave, sweep, and twist along the span. Cross-coupling terms are explicitly derived. We then validate
this state-space model through comparison with an analytic solution for elliptic wings, an unsteady vortex lattice
method, and experiments from the literature.
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Nomenclature
Aφ, AΓ, Aw = amplitude of exponential in φ(t̃), Γ̃(t̃), or wΓ,2D(t̃)
A = aspect ratioA = b2/S

bφ, bΓ, bw = exponent in approximation to φ(t̃), Γ̃(t̃), or wΓ,2D(t̃)
b = wing span [m]
ci = chord [m], measured perpendicular to wing sweep
i, j = indices of blade elements along span
kmid = reduced frequency of mid-span kmid = ωcmid/2U
Li = section lift [N/m]
n = number of blade elements
N = total number of states N = nNΓ + nNφ + nNw
Nφ, NΓ, Nw = lift, circulation, and downwash states per element
S = wing area [m2]
t = time [s]
t̃ = travel distance in half-chords
T = oscillation period [s]
U = steady wing velocity [m/s]
vin, v

i
⊥, v

i
s = wing velocity components [m/s] evaluated at 3⁄4-chord

vie = wing effective normalwash [m/s] (ve = vn + wn)
win,wn = wing downwash [m/s], as in lifting line theory
Wn = aerodynamic influence matrix [1/m], normal to wing
W0,W1,W2 = wake correction cross-coupling matrices
wΓ,2D = downwash for step increase in 2D circulation [1/m]
xiφ, x

i
Γ, x

i
w = lift, circulation, and downwash states [m/s]

αmax = maximum angle of attack at pitching axis
Γi,Γ = circulation [m2/s] of blade section i
Γ̃(t̃) = normalized circulation step response
∆s = blade section width [m]
λ = normalized velocity surge amplitude
ρ = fluid density [kg/m3]
φ(t̃) = Wagner function, normalized lift step response
ω = oscillation frequency [rad/s]
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I. Introduction
A. Motivation
Super-maneuverablity, expertly performed by many natural fliers, is
an increasingly desirable design goal due to growing popularity of un-
manned aerial vehicles [1]. Such vehicles call for maneuvering capabil-
ities well within their own length scales, creating strong wake-induced
effects that must be included in control design. Examples include ac-
tive flutter suppression, avoidance of densely-packed obstacles, evasive
maneuvers, or simply tracking aggressive trajectories.

Flapping-wing propulsion appears to be exquisitely adapted to pro-
viding such flight control [2]. The entirety of the wing can act as a
propulsion apparatus, an aileron, or a lifting surface. Biological wings
are often highly deformable, jointed, dynamic structures [3]. A bird
wing achieves over 7 degrees-of-freedom control [4] via 45 muscles
[5], in addition to the passive dynamics due to its structural flexibility.
Moreover, evidence also shows that birds actively control their wing
trajectories to compensate for changes in the environment [4].

The control of such complicated wings is inevitably nonlinear and
difficult. A critical step is to predict the unsteady forces. However, for
a prediction method to be useful for real-time control, the system infor-
mation must be compacted into a small number of states. Otherwise,
developing the control law becomes computationally intractable. Most
optimal nonlinear control algorithms suffer from Bellman’s ”Curse of
Dimensionality” [6] to explore the state space, and have runtimes that
scale exponentially with the number of states.

Therefore, while full computational fluid dynamics simulations
(millions of states) are physically accurate, they are infeasible in
control purposes. Alternatively, an unsteady vortex lattice method
(UVLM) on a modern computer is substantially faster, but still require
far too many states (thousands), given that the full wake history must
be recorded as individual vortex loops, and each loop constitutes a state
- a ”delay differential equation”.

Fortunately, simulation outputs such as lift, downwash, and cir-
culation appear to be easily represented by only tens of states. State
space methods have been thereby successful in the control of unsteady
aerodynamic phenomena, historically for the suppression of flutter [7].
A tremendous body of work in the flutter literature has fit linear, low-
dimensional state-space models to sinusoidal perturbations to UVLM
codes; for a thorough review, we refer the reader to [8]. Analytic solu-
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tions have also been derived [9, 10] which can readily be adapted from
frequency space into state-space for use in modern control frameworks.
Reduced order modeling illustrates that while the true dynamics of un-
steady wings are highly complicated, the outputs need not be.

Flapping flight modeling, while sharing a similar history to flutter,
differs in a number of important aspects [11].

• Wing velocity is generally not constant, as natural fliers often
move their wings fore-aft in addition to transverse to the flow
[12].

• Wing heave is generally large amplitude compared to the chord,
meaning that a linear analysis about a trim condition is not suf-
ficient [13].

• Wing flapping frequencies are generally faster than the
timescale of stall dynamics [14], lowering the importance of
trailing edge stall modeling (with the exception of soaring
flight), but increasing the importance of added mass terms and
leading-edge vortex (LEV) shedding.

In this work, we analytically derive and validate a low-order state-
space model that can be applied for use in the active control of flapping
wings of finite span. Added mass terms are included, but LEV shedding
is not. Analytic solutions to LEV modeling are still an active research
topic [15], and prior work in [2] illustrates that LEV shedding can be
controlled with an adequately robust control design. However, recent
work in [16] has seen some success in representing LEVs with only a
few states. Additionally, we also neglect trailing edge separation (dis-
tinct from trailing edge vortex shedding) given the high flapping fre-
quencies, but this effect can certainly be modeled with additional states
[17].

The most analogous work to this manuscript are Taha et. al. [18]
and Peters et. al. [19], who also derive state-space models for unsteady
3D wings. However, Taha et. al. assumes a lift distribution a-priori in
order to correct each blade element’s unsteady behavior for the finite
aspect-ratio. As noted by [10], the wing loading for an elliptic plan-
form is far from elliptical in the unsteady case, so the finite aspect-ratio
effects are not necessarily known. Dynamic wing loading is especially
pronounced for the root-flapping motions of flapping flight, but can yet
still be easily represented in state-space using our model.

Peters et. al. [19] also derive a state-space model for finite aspect-
ratio wings, including an arbitrary lift distribution, but unfortunately
limit the analysis to helicopter rotors of an assumed flat rotor plane.
However, Peters’s use of continuous spatial and temporal basis func-
tions for representing the wake is analogous to the method outlined in
this manuscript. Instead, we use a superposition of horseshoe vortices
and 2D unsteady blade-element theory to represent the full 3D wake.

Our model contributes a key element that is lacking in prior work:
we allow for a fully dynamic wing circulation over the lifting line using
a small number of states (ranging from one to six) per blade element.
Our model does not require recording the full wake history and does
not need to be calibrated by additional simulations to provide reason-
able predictions. Given the large state deviations from any lineariz-
able steady state, linearization has been avoided whenever possible,
although we do make a large assumption about the local flatness of the
wake near the wing.

B. State-Space Method Overview
The wake of a flapping wing, ignoring viscous effects and LEV shed-
ding, is usually modeled as a continuous vortex sheet. This wake ac-
counts for both changes in wing circulation along the span (trailers),
and changes in circulation over time (starting/stopping vortices). Our
proposed state-space model approximates the wake (Fig. 1a) as the
sum of two parts:

• Horseshoe vortices of infinite length located along the wing’s
lifting line, with trailers tilted tangent to the instantaneous ve-
locity of the originating vortex point.

• State-space systems that track the unsteady circulation and lift
for each blade element, as if it were an infinite span wing. The
integral effect of the wake is therefore recorded, instead of the
full time history.

Γ2D
(a) (b)

Γ2D

Γ2D

Bound
Vorticity

Wake
Vorticity

Figure 1. Wake Approximation - Left (a): State-space formulation, each
wing segment includes a 2D wing model along the lifting line, with inflow
modified by the vortex trailers. Right (b): Unsteady vortex lattice theory
for swept wings, discretized into vortex loops of constant circulation on both
the wing and wake. Animal art modified from public domain content at
https://openclipart.org.

The wake model is therefore a combination of a fully unsteady 2D
wake (state-space models), and a quasi-steady 3D wake (trailers) that
couples each 2D wake to its neighbor. An additional small correction,
described in Section II.D can further improve the accuracy of this ren-
dition by deriving a full 3D coupling as expected from unsteady lifting
line theory.

Our insertion of an unsteady 2D wake into the 3D lifting line ap-
proximation is based off the work of Jones [20], who performs a sim-
ilar analysis to determine the step response of elliptic planform wings.
Jones, however, assumes a circulation distribution a-priori to facilitate
an analytic solution, a problem which we mitigate using discrete horse-
shoe vortices. ∗

An overview of the model is therefore as follows. On each evalua-
tion at time t, four steps are taken in sequence:

1. The circulation is determined by solving the influence of both
the trailers and the circulation states that represent the unsteady
wake.

2. The instantaneous downwash is determined from the now
known circulation, thereby modifying the incident velocity.

3. The lift is determined from the downwash and lift states.

4. The time-derivatives of all states are determined, then integrated
in time to give the new states.

As is standard with state-space models, there is always a trade-
off between the number of states, i.e. computational complexity, and
accuracy of representing the response. To study the sensitivity of our
model to the number of states, two different cases are considered: a
six-state per wing segment (blade element) that almost exactly mimics
the output of an unsteady vortex lattice solution, and a one-state per
blade element model that is more suitable for early controller design.
We then validate this model against an unsteady vortex lattice method
(UVLM) code developed by Zhu et. al. [23], and experimental results
from Scherer [24].

C. Validation Method Overview - Unsteady Vortex Lattice
Method

Given that our state-space model is inviscid, UVLM (Fig. 1b) is a
natural validation choice for verifying the model. UVLM has long been

∗Despite this change, and unknown to Jones [20], the formulated unsteady
lifting line model is not strictly consistent due to conflicting lengthscales. It
attempts to represent a wake that has a wavelength λwake on the order of a few
chordlengths (λwake ≈ c), but only calculate the finite-span downwash on a
single line (λwake � c). A rigorous investigation using matched asymptotic
expansions of this issue can be found in [21, 22]. Nevertheless, the unsteady
lifting line model works satisfactorily given that the 3D unsteady wake features,
in contrast to each blade’s 2D wake, are typically large enough scale to not
promote induced flows that vary substantially over the chord.

https://openclipart.org/
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Figure 2. Component Velocities - Left (a): Origin is fixed in the global
frame, with aircraft moving to the left. Wing sections are indexed i from
the left wingtip, and horseshoe vortices are indexed j from the left wingtip.
Downwash wijn is summed over all horseshoe vortices Γj . Right (b): Wing
section velocity at 3⁄4-chord point is decomposed in components normal,
along sweep, and perpendicular to sweep.

used for the study of flapping flight [25, 26, 27, 28] and is discussed
in-depth in Katz and Plotkin’s textbook [29]. This method acts as an
almost exact comparison to our state-space model as it captures the
same physics with only the extra inclusion of lifting surface effects.
Our selected code, Zhu et. al. [23], has been successfully used in prior
work for the study of fish swimming.

In UVLM, the flow potential is separated into two parts, one at-
tributed to the influence of the body and the other to the influence of the
wake. Hereby the wake is represented by a zero-thickness sheet with a
distribution of dipole panels in it. Constant boundary elements are ap-
plied on both the body surface and the wake sheet, with each element
equivalent to a vortex ring, automatically satisfying Kelvin’s theorem
on the conservation of circulation and zero flow divergence [29]. At
every time step, new wake panels are shed from the sharp trailing edge.
The strength of the newly shed panels is determined through the Kutta
condition. Meanwhile the previously shed panels convect downstream
following the incoming flow (and the induced velocity from the body
and the wake itself; this induced velocity, however, is found to have
negligible effect on the results of the problems we study). Once gener-
ated, the strength of the wake elements remains unchanged due to the
lack of dissipation. Detailed description of this model is included in
Zhu et. al. [23].

Therefore, the differences between the state-space model and
UVLM can be attributed to lifting surface effects and a fuller wake
representation. Neither method includes LEV’s or trailing edge sepa-
ration.

II. Model for Arbitrary 3D Motion
We derive our state-space model using the indicial method, applied

to each blade section and then coupled using lifting line theory. Rele-
vant reference frames and velocities are presented in Section II.A. Next,
Section II.B enumerates the exponential approximations to the dynam-
ics required to develop a state-space model. The states themselves, and
their dynamics, are derived in Section II.C to give the scalar lift and
circulation.

Subsequently, we propose modifications to the derived state-space
model. Section II.D derives a small correction factor to consolidate
the assumed wake structure. A simplified model, with fewer states, is
given in Section II.E.

Finally, Section II.F calculates the vectorial lift, drag, and added
mass forces from the scalar state values.

A. Reference Frames and Wake Discretization
First, we divide the wing into n blade elements. According to the mod-
ern numerical lifting line theory of swept wings [30], each element
consists of a control point and a horseshoe vortex at 1⁄4-chord (Fig. 2a).
These elements are indexed i = 1 ... n from left to right wingtip. The
legs of each horseshoe vortex lie coincident with their neighbor’s legs,
thereby creating vortex filaments of strength equal to the difference in
circulation between blade elements. We do not discretize the wake in

the streamwise direction (or in time), as in UVLM. Instead, the state-
space model accounts for the unsteady wake effects of each blade.

Each leg of the horseshoe vortices are tilted to lie tangent to the
local direction of oncoming flow. We then sum the induced velocities
from all the horseshoe vortices to each control point as the downwash
w [29]:

wij = − Γj

4π‖rijL ‖
v̂jL × r

ij
L

‖rijL ‖ − v̂
j
L · r

ij
L

+
Γj

4π‖rijR‖
v̂jR × r

ij
R

‖rijR‖ − v̂
j
R · r

ij
R

,

(1)
where v̂jL and v̂jR are the instantaneous velocity directions at the left
and right trailer origin respectively, and rijL and rijR are the displace-
ments of the control point i to trailer j. We now turn Eq. (1) into an
aerodynamic influence matrix equation along the foil normal n̂i, where
matrix Wn is given element by element as (wij · n̂i)/Γj :

wn = WnΓ. (2)

Here, the vector notation is used to indicate a list of values, i.e.
wn = [wi=1

n , wi=2
n ...], Γ = [Γi=1, Γi=2...] rather than a spatial vec-

tor. We continue this notation throughout the paper: a vector without
an index, such asu, can be considered a list of scalar values to ease ma-
trix operations, while one with an index ui is a spatial vector located
at blade section i. Additionally, ûi is the unit vector in the direction of
ui.

In a swept wing, only the velocity perpendicular to the wing sweep
affects the lift, so the free-stream must be modified accordingly [31].
On each blade element, we therefore decompose the time-varying flow
velocity V i(t), defined as equal and opposite to the body velocity, into
three components in the body frame: vn(t), v⊥(t), and vs(t) (Fig. 2b).

Using the notation from [32], the velocity vn(t) is the component
normal to the foil camberline, vs(t) is the component parallel to the
wing sweep, and v⊥(t) is the magnitude of the velocity in the plane
perpendicular to the sweep:

vi⊥ = ||V i − ŝi(V i · ŝi)||, (3)

where ŝi is the direction following the wingsweep. Velocities v⊥(t)
and vn(t) are not necessarily perpendicular, as v⊥(t) can include a
component in the normal direction.

The origin of this body system is located at the wing section’s 3⁄4-
chord point, as consistent with the unsteady 2D theory of Theodorsen
[33] to include the lift proportional to pitch-rate and camber. For ex-
ample, given a 2D wing with a distance r between the pitching axis
and the 3⁄4-chord point, the pitch rate θ̇, angle of attack α at the pitching
axis, and no-lift angle of attack α0, the normalwash is given by:

2D Case: vn = V (α3/4 − α0) = V (α− α0) + θ̇r. (4)

For pitching about the quarter-chord, r = c/2.
Note that though the relevant unsteady velocities are taken about

3⁄4-chord point, we choose the wake downwash control point to be ap-
plied at the 1⁄4-chord point and ignore the flow induced by the bound leg,
as consistent with lifting line theory. Alternatively, one could move the
control point to the 3⁄4-chord point and include the bound leg, such as
in Weissinger extended lifting line [34], but this will both underpredict
the analytic solutions to the Prandlt lifting line problem [35] and lead to
possible singularities if the horseshoe legs intersect the control points.

B. Indicial Functions of 2D Airfoil
We will employ the indicial method, similar to the one used by Jones
[20], to derive the state-space representation of the system. In this ap-
proach, the step response of a 2D airfoil, and exponential approxima-
tions to that response, are critical to the success of the method.

First, we normalize the lift and circulation of the 2D airfoil step re-
sponse by their steady-state values. The normalized lift step response
is notated as the Wagner function φ(t̃) [36]. The normalized circula-
tion response is notated as Γ̃(t̃), equivalent to Γ0/2π in Jones’s [20]
notation. The exact values of Γ̃(t̃) and φ(t̃) can be derived numerically
by solving the 2D unsteady vortex lattice problem, i.e. enforcing the
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Figure 3. Indicial Functions - Normalized lift φ(t̃) and circulation Γ̃(t̃) for
a step increase in 2D flat plate angle of attack, as dependent on distance
traveled t̃. Exponential approximations of 1 to 4 poles are given in Table 1
to derive the state-space system.

Kutta condition, conservation of circulation, and body boundary con-
ditions on an airfoil with discrete wake vortices.

Von Kármán [37] compactly summarizes this problem with a set of
differential-integral equations:

Γ̃(t̃) =
Γ(t̃)

Γ(∞)
= 1−

∫ t̃

0

(√ t̃− τ + 2

t̃− τ
− 1
)

˙̃Γ(τ)dτ, (5)

φ(t̃) =
L(t̃)

L(∞)
= 1−

∫ t̃

0

˙̃Γ(τ)dτ√
(t̃− τ + 1)2 − 1

, (6)

where L(∞) is the steady-state lift force, and Γ(∞) is the steady-
state airfoil circulation. Hereby t̃ is the dimensionless time, which co-
incides with the travel distance normalized by half the chord:

t̃ =
2

c

∫ t

0

v⊥(τ)dτ. (7)

In our notation, we use t̃ instead of the standard s for non-
dimensional time to avoid confusion with either the Laplace variable
or the spanwise coordinate. The body velocity v⊥ can be time-varying.

Next, we approximate the step response using a sum of exponen-
tials, which allows the model to be reduced to state-space representa-
tion. The lift φ(t̃) is given as:

φ(t̃) ≈ 1 +Aφ1e
bφ1 t̃ +Aφ2e

bφ2 t̃ + .... (8)

The circulation is approximated in a similar fashion:

Γ̃(t̃) ≈ 1 +AΓ1e
bΓ1 t̃ +AΓ2e

bΓ2 t̃ + .... (9)

Note that the lift and circulation are represented using different in-
dicial functions. While the lift and circulation of an airfoil are propor-
tional to each other in steady state, there is no such simple relation in
the unsteady case. Using the Wagner function φ(t̃) for circulation will
actually over-predict the circulation at high reduced frequency. How-
ever, Lomax [9] gives an approximate expression for the relation be-
tween lift and circulation for t̃ > 8:

φ(t̃) ≈ Γ̃(t̃) +
3

2

dΓ̃

dt̃
for t̃ > 8. (10)

Equation (10) implies that for the slower poles, we can approximate
bΓ ≈ bφ and AΓ ≈ Aφ/[

3
2
bφ + 1]. Reusing the same exponential

b for both lift and circulation allows the same state to be shared be-
tween both quantities, thereby simplifying the dynamics and reducing
the total number of states (see Section II.C). Furthermore, there is an
additional benefit to sharing lift and circulation states: if the two quan-
tities were kept artificially independent with nearly identical poles, the

state-space representation on each blade would no longer be minimal,
and would therefore contain an uncontrollable system mode.

Many exponential approximations of φ(t̃) and Γ̃(t̃) exist, depend-
ing on the tradeoff between number of states and accuracy of the re-
sponse. Approximations can additionally be determined from experi-
mental data [38] or corrected for airfoil thickness effects [39]. Jones
[20], in addition to approximations for φ(t̃), also includes an approxi-
mation to Γ̃(t̃) that unfortunately does not converge to the steady state
solution [40].

φ(t̃) Nφ Aφ bφ

Jones [20] 2 [−0.165,−0.335] [−0.045,−0.300]

Drela [32] 1 −0.5 −0.25

Γ̃(t̃) NΓ AΓ bΓ

Current
Method 4 [−0.177,−0.609,

0.170,−0.259]
[−0.045,−0.300,
− 0.433,−1.419]

Current
Method 1 −0.8 −0.25

Table 1. Exponential Approximations to Indicial Functions

In this particular study, we compare the following two approxima-
tions for φ(t̃) (Fig. 3) with constants enumerated in Table 1:

• For an Nφ = 2 states per blade element, we use Jones’s [20]
well known traditional values.

• For anNφ = 1 approximation, we use the values given by Drela
[32], which exactly match the initial value, initial slope, and
final asymptote of the true function.

Similarly, we also compare two approximations for Γ̃(t̃):

• For an NΓ = 4 approximation, we reuse the Nφ = 2 states
using Lomax [9] Eq. (10). Two additional states (fit using Mat-
lab’s system identification toolbox) then compensate the high-
frequency error between Eq. (10) and Eq. (5).

• For an NΓ = 1 approximation, we reuse the Nφ = 1 states
again using Lomax [9] Eq. (10), and ignore higher frequency
behavior.

C. State-Space Representation
By discretizing along the span, each section has independent circula-
tion and lift. These two quantities are simulated using low-order state-
space subsystems. Accordingly, rather than recording the full wake
history (i.e. in UVLM), we only track several integral quantities as
flow states and their rates of change, similar to [41, 17].

For the purposes of explaining the model, we will begin by em-
ploying the Nφ = 2 and NΓ = 4 state space approximations (Table 1).
Therefore, at each location i along the span, the following states track
the flow dynamics:

• Two states xiφ1 and xiφ2 represent the lift response of each blade
element, as a function of the instantaneous normalwash vin(t)
of the element and the downwash from all elements (and their
wakes).

• Additionally, four states xiΓ1, xiΓ2, xiΓ3, and xiΓ4 represent the
circulation Γi at each element. However, xiφ1 and xiφ2 have the
same eigenvalues and inputs as the lower frequency circulation
states xiΓ1, xiΓ2, allowing re-use of the lift states.

1. Lift

Following the standard Prandtl lifting line assumptions [35], we modify
the normalwash vn(t) on each section with induced velocity wn(t)
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Figure 4. Duhamel Integral along Locally Flat Wake - Left (a): Far wake is
rotated to lie along tangent to instantaneous motion vi⊥(t), thereby neglect-
ing the 2D unsteady wake directional information. A Duhamel integral is
then applied along the tilted flat wake. Right (b): Duhamel integral super-
poses differential variations in the effective normalwash vie, which includes
the downwash from all trailers. Each variation in vie is multiplied by the
Wagner function φ, then summed to give the section circulatory lift. A sec-
ond step response Γ̃ is similarly integrated for the unsteady circulation.

from the 3D trailing wake. Note that the downwash wn(t) is generally
negative:

vie(t) = vin(t) + win(t). (11)

Next, we briefly note the standard quasi-steady solution for lift of each
blade section as [31]:

Liqs =
1

2
ρciClαv

i
⊥(t)vie(t). (12)

In this formulation, the lift force is proportional to the streamwise and
normal velocity components of the body velocity, v⊥ and ve. Using
ve = vn + wn instead of vn accounts for 3D downwash, and v⊥(t)
instead of ||V (t)|| accounts for wing sweep.

A Duhamel integral allows us to determine the lift for arbitrary
motions by superimposing the step response φ(t̃) for differential vari-
ations in the effective foil normalwash vie. The lift and circulation at
each blade element therefore follow the unsteady 2D theory as devel-
oped by Wagner [36] and Theodorsen [33] for predicting the unsteady
response due to a time-changing normalwash vn(t). Based on the re-
sults from Leishman and Beddoes [17], Hansen et al. [41] further sug-
gest that this Duhamel integral can be represented in state-space, even
if the wing velocity is time-varying.

Unfortunately, the standard Duhamel superposition approach as-
sumes that the wake history effects are only dependent on the distance
traveled from the time that wake was shed, meaning φ(t̃) is the same
for any foil trajectory. This is not the case for large heave or pitch oscil-
lations, and technically only true for a flat wake located exactly down-
stream the airfoil (direction of U ). However, given that the downwash
due to each wake element dies as distance squared, the wake effects are
generally dominated by the near-wake. Consequently, as postulated by
Scherer [24], while wake superposition is technically inconsistent for
an non-flat wake geometry, an accurate geometry of the local wake will
reconstruct most of the unsteady 2D effects.

Therefore, in order to take advantage of superposition, we simplify
the wake physics. We assume that the unsteady wake lies along the
instantaneous motion vector of the blade element 3⁄4-chord vi⊥(t), com-
puted from both the free-stream flow and the wing heave/surge/pitch
(Fig. 4a), and follows a known decay rate with distance.

In other words, the wake is allowed to be unsteady, but with fixed
geometry and dynamics given from the kinematics (locally flat wake
geometry). Directional information of the far wake induced velocity
is thereby lost, as all vortices induce a flow along the same direction.
However, the induced flow can be at an angle to the free-stream, al-
lowing the lift and downwash to tilt vectorially. The reference frame
remains global, retaining the conservation of circulation.

Scherer [24] uses a similar assumption, though assumes the wake
to lie tangent to the motion at 1⁄4-chord; in reality, the difference be-
tween such details is small for realistic angles of attack and the lifting
line approximation.

This assumption works surprisingly well, as validated in Section
III, even for large wake curvature. Both lift and bound circulation
of the wing are accurately predicted by the locally flat wake, for the
tested range of normalized rotation rates up to θ̇maxcmid/(2U) = 0.31
in the heave/pitch oscillations of Section III.D. The obvious exception
is wake-capture [42], where the wing intersects its own wake on sub-
sequent flapping cycles. Wake-capture, while important for hovering
flight of insects, cannot be modeled using this superposition and even
requires special treatment in UVLM to avoid singularities.

Using the locally flat wake assumption, we can now superimpose
an infinite number of step responses to reconstruct Li(t) from vie(t)
as a Duhamel integral (Fig. 4b). Each step response is scaled by the
change in ve at that instant, and the decay of φ(t̃) afterwards:

Li(t)

Liqs(t)
=

1

vie(t)

[
φ(t̃)vie(0) +

∫ t̃(t)

0

φ(t̃− σ)
dvie(σ)

dσ
dσ

]
. (13)

At this point, we still must record the entire history to calculate the
airfoil lift, as the integral bounds include t = 0. We have only replaced
recording the wake vorticity over time (as in UVLM) with recording
the foil effective normalwash vie(t) over time. The memory cost (and
number of states) is equivalent.

However, the number of states reduces dramatically when we re-
place the Wagner function with an exponential approximation from Ta-
ble 1, such as Jones’s approximation [20]:

φ(t̃) ≈ 1+Aφ1e
bφ1 t̃+Aφ2e

bφ2 t̃ = 1−0.165e−0.045t̃−0.335e−0.3t̃.
(14)

The Duhamel integral can now be integrated by parts, and exponentials
substituted in:

Li(t)

Liqs
=

1

vie(t)

[
φ(0)vie(t)−

∫ t̃(t)

0

dφ(t̃− σ)

dσ
vie(σ)dσ

]
, (15)

Li(t)

Liqs
=

1

vie(t)

[
φ(0)vie(t) +

∫ t̃(t)

0

Aφ1bφ1e
bφ1(t̃−σ)vie(σ)dσ

+

∫ t̃(t)

0

Aφ2bφ2e
bφ2(t̃−σ)vie(σ)dσ

]
. (16)

Finally, we can replace the two integral terms in Eq. (16) with xφ1(t)
and xφ2(t), explicitly giving the local lift on each wing section:

Li(t) =
1

2
ρciClαv

i
⊥(t)[φ(0)vie(t) + xiφ1(t) + xiφ2(t)]. (17)

The states xiφ1(t) and xiφ2(t) therefore represent the accumulated
effect of the wake, and their rates of change can be integrated over
time. Unlike in UVLM, the vortex loops from each timestep need not
be remembered. Furthermore, unlike in a standard linear Duhamel in-
tegral of the Wagner function, the wing velocity vi⊥ need not be con-
stant magnitude or direction, thereby constituting a linear time-varying
(LTV) system.

2. Circulation

The circulation of each blade section is derived similarly from the
Duhamel integral in Eq. (13), replacing the lift step response φ(t̃) with
the circulation step response Γ̃(t̃). For example, using the NΓ = 4
exponential approximation, the circulation reduces to:

Γi(t) =
1

2
ciClα[Γ̃(0)vie(t) + xiΓ1(t) + xiΓ2(t) + xiΓ3(t) + xiΓ4(t)].

(18)
We can now simultaneously solve Eq. (18) and Eq. (2), thereby

determining win and Γi, by performing a single n × n matrix solve to
determine the aerodynamic influence of the trailers:

Γ(t) =

(
diag

[ 2

ciClα

]
− Γ̃(0)Wn

)−1 [
Γ̃(0)vn(t) + xΓ1(t)

+ xΓ2(t) + xΓ3(t) + xΓ4(t)
]
. (19)
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Figure 5. Vortex Loop Wake - Downwash at point i along the span, due to a
single vortex loop of circulation Γj at location j.

3. State Dynamics

Using Liebnitz rule, the lift state dynamics can be found by the time
derivative of each integral in Eq. (16). The bound t̃(t) has rate of
change of 2vi⊥(t)/c.

ẋiφ1 =
2vi⊥(t)

ci

[
bφ1x

i
φ1(t) +Aφ1bφ1v

i
e(t)
]
, (20)

ẋiφ2 =
2vi⊥(t)

ci

[
bφ2x

i
φ2(t) +Aφ2bφ2v

i
e(t)
]
. (21)

The rates of change of the circulation states are given in a similar
form. However, rather than using only independent states for Γ̃(t̃),
we reuse the shared poles between the lift and circulation subsystems
to obtain better accuracy with the same number of independent states.
Given that bΓ1 = bφ1, bΓ2 = bφ2, and both systems share the same
input, we can directly convert xiφ1 and xiφ2 to xiΓ1 and xiΓ2:

xiΓ1 =
AΓ1x

i
φ1

Aφ1
, xiΓ2 =

AΓ2x
i
φ2

Aφ2
. (22)

The remaining two circulation states are used as a high-frequency cor-
rection to the approximation in Eq. (10). These extra states are only
important for fast dynamics, as characterized by the reduced frequency
k = ωc

2U
> 1. Their time evolutions are given by:

ẋΓ3 =
2vi⊥(t)

ci

[
bΓ3x

i
Γ3(t) +AΓ3bΓ3v

i
e(t)
]
, (23)

ẋΓ4 =
2vi⊥(t)

ci

[
bΓ4x

i
Γ4(t) +AΓ4bΓ4v

i
e(t)
]
. (24)

D. Unsteady Downwash Correction
Given the difference in wake representation highlighted in Fig. 1, we
now derive a small correction term that consolidates the true 3D un-
steady wake with the 3D quasi-steady and 2D unsteady wake. This
requires an additional state-space system for each blade, namely:

• Two final states xiw1 and xiw2 represent the downwash as if the
blade element were alone and of infinite span (Appendix A).
These states are later mapped to the full 3D wake using a cross-
coupling matrix, giving the downwash onto other elements.

This correction is currently only derived for unswept-wings, allowing
for a simpler scalar form.

The primary assumption in our correction is that the unsteady
downwash at one part of the wing i is proportional to the downwash
states on another part of the wing j (Fig 5). This allows us to record
states for every wing section, O(n), rather than every pair of wing
sections O(n2). The contributions of unsteady vortex loops are super-
imposed in space and integrated in time using a Duhamel integral. See
Appendix B for a full derivation.

The effect of this downwash correction is given by three cross-
coupling matrices: W0, W1, W2:

wn(t) = WnΓ(t) +wcorrection (25)
= WnΓ(t) + [W0Γ(t) +W1xw1(t) +W2xw2(t)]. (26)

MatricesW0,W1, andW2 (derived in Appendix B) relate the influence
of the unsteady wake at one blade element to the wake at another blade
element, and are fit accordingly to the 3D step response. Under steady
state, the W1xw2(t) and W2xw2(t) exactly cancel W0Γ(t), resulting
in the original downwash formulation in Eq. (2).

The state dynamics are given by:

ẋiw1 =
2vi⊥(t)

ci

[
bw1x

i
w1(t) +

2

ci
Aw1bw1Γi(t)

]
, (27)

ẋiw1 =
2vi⊥(t)

ci

[
bw2x

i
w1(t) +

2

ci
Aw2bw2Γi(t)

]
. (28)

The circulation of each element is then found by adjusting the cir-
culation from Eq. (18) with the downwash in Eq. (26):

Γ(t) =

(
diag

[
2

ciClα

]
− Γ̃(0)[Wn +W0]

)−1

[Γ̃(0)(vn(t)

+W1xw1(t)+W2xw2(t))+xΓ1(t)+xΓ2(t)+xΓ3(t)+xΓ4(t)].
(29)

E. Reduced State Representation
To avoid overfitting and further reduce the order of the model, we now
derive an alternative one-state representation. The simplification re-
quires approximating the step responses φ(t̃), and Γ̃(t̃) as single ex-
ponentials. In this case, we only include one state xiφ for each blade
element that tracks the blade’s lift. This single state is then applied to
calculate both the lift and circulation, namely:

• The lift is given by a 1-pole state-space system xiφ1, following
the Nφ = 1 approximation in Table 1.

• Next, the circulation state xiΓ1 is given as a multiplicative gain
on lift state xiφ1, following the NΓ = 1 approximation in Table
1.

The two necessary indicial functions - lift and circulation for a step
input in the effective normalwash ve, are therefore approximated as:

φ(t̃) ≈ 1 +Aφe
bφ t̃ = 1− 0.5e−0.25t̃, (30)

Γ̃(t̃) ≈ 1 +AΓe
bΓ t̃ = 1− 0.8e−0.25t̃. (31)

Again, we can derive xiΓ1(t) from xiφ1(t) as in Eq. (22). The lift,
circulation, and state dynamics are identical to Section II.C, but all
states beyond xiφ1 and xiΓ1 are neglected.

F. Lift, Drag, and Added Mass Forces
The scalar lift from Section II.C is rotated by both the blade element
motion and downwash to give vectorial lift and induced drag, as con-
sistent with lifting line theory [43]. The total effective wing motion is
given as:

vitotal = vi3/4 +wi + (v̂i⊥ × ŝi)[wi2D + wicorrection], (32)

where vi3/4 is the vectorial wing motion at 3⁄4-chord, wi is the spatial
vector downwash from the sum of the horseshoe trailers (Section II.A),
wicorrection is the optional downwash correction (Section II.D), and wi2D
is the additional downwash due to unsteady effects even if the wing
were of infinite span. wi2D is determined by the lift deficit predicted in
Eq. (17), and assumed to act normal to the local wake plane [41]:

wi2D = φ(0)vie(t) + xiφ1(t) + xiφ2(t)− vie(t). (33)

Finally, we assume that the lift force F iL acts perpendicular to both
vitotal and the wing sweep ŝi:

F iL(t) = Li(t)∆s[v̂itotal × ŝi]. (34)

Profile drag is neglected in the model for ease of comparison to the
UVLM code. However, quasi-steady profile drag is generally easily
incorporated as an additional force [32].
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The added mass force in full UVLM codes is usually found from
the unsteady Bernoulli equation; however, none of the presented states
directly translate into the unsteady flow potential. Added mass is there-
fore instead determined from pre-derived coefficients and known body
kinematics, as derived in matrix form by Fossen and Fjellstad [44]. We
assume the wing is a flat slender body, meaning that the added-mass
coefficients of each section i can be approximated by a flat plate. Co-
efficients may be derived for any origin point on the blade section.

As an example, the added-mass coefficients below assume body-
frame velocity vb = [v1 v2 v3]T aligned along the chord, span, and
chord-normal respectively, taken at the 3⁄4-chord point. Using the nota-
tion from Newman [45], the coefficients reduce to:

mi
33 = ρπKam

(ci
2

)2
∆s, mi

35 = mi
53 =

ci

4
mi

33, (35)

mi
55 =

π

8
ρ
(ci

2

)4
∆s+

(ci
4

)2
mi

33. (36)

Correction factor Kam compensates for finite aspect ratio effects on the
slender body assumption, which Munk [46] gives as Kam = 0.85 for
A = 3 and Kam = 0.95 forA = 6. The general mass matrix for the
blade section is given as:

M i
a =


mi

11 mi
12 · · · mi

16

mi
21 mi

22 · · · mi
26

...
...

. . .
...

mi
61 mi

62 · · · mi
66

 =

M i
11 M i

12

M i
21 M i

22

 . (37)

Block matrix sections M i
11, M i

12, etc. are all 3x3. The added mass
coriolis matrix is now derived from M i

a as:

Cia =

 0 −S(M i
11v

i
b +M i

12ω
i
b)

−S(M i
11v

i
b +M i

12ω
i
b) −S(M i

21v
i
b +M i

22ω
i
b)

 , (38)

where S is the skew-symmetric matrix operator, andωi
b = [ωi1 ω

i
2 ω

i
3]T

is the body-frame rotation vector. Finally, added mass force F i
a and

moment τ i
a are given in the body frame by:F i

a

τ i
a

 = −M i
a

v̇i
b

ω̇i
b

− Cia
vi

b

ωi
b

 . (39)

The added-mass torque τ ia includes a Munk moment [45] which
is non-physical for airfoils due to the Kutta condition’s elimination of
the rear stagnation point. This can be corrected by adding a canceling
moment about the spanwise axis:

τ ianti-Munk = −(mi
33 −mi

11)v
i
1v
i
3. (40)

III. Flat Elliptic Planform Results
To validate the state-space method, we will first examine four cases

and compare with the UVLM code from Zhu et. al. [23]. As the
UVLM is used as a validation ground-truth, we use an ultra-fine mesh
of 1558 panels, distributed over the top and bottom of the wing surface,
dividing the span into 41 blades (Fig. 6b). The state-space systems are
simulated in Drake [47], an open-source MATLAB nonlinear control
and optimization toolbox.

For ease of comparison with the literature [20], all cases are per-
formed on an elliptic planform wing ofA = 3, sheared to obtain a
straight 1⁄4-chord line (Fig. 6). The four cases are:

• Impulsively started wing

• Surge oscillations

• Pitch oscillations

• Large amplitude heave/pitch oscillations

(a) (b)

Γ2D

x
z

y

Figure 6. Elliptic Planform - Left (a): Model of elliptic planform wing, con-
sisting of 9 blade elements and their respective state-space systems. Right
(b): Unsteady vortex lattice method (UVLM) visualization for an impul-
sively started elliptic planform wing, wake colored as panel dipole strength.

A more complicated trajectory, with bird-like flapping, can be found
in Section IV, and a brief comparison to experiments in Section V. We
will compare three different models:

• A 6-state solution per blade element, using Nφ = 2, NΓ = 4
(with two φ states repeated), and the unsteady downwash cor-
rection Nw = 2.

• A 1-state solution per blade element, using Nφ = 1, NΓ = 1
(sharing the φ state), and no downwash correction.

• A quasi-steady/added-mass formulation (QS,AM): namely as-
suming that both the lift and circulation are at steady-state at
any given time (φ(t̃) = Γ̃(̃t) = 1, so no states required), but
including the added-mass forces from Section II.F.

For all cases, the number of blade elements is fixed at n = 9. However,
we also present convergence tests over n for the surge case. The blades
are spaced using cosine spacing [25], but other discretization choices
could be used: for example, the natural location of joints on a biological
wing.

A. Impulsive Start of Elliptic Planform
Figure 7 illustrates our first validation case, an impulsive start with
angle-of-attack of α = 5◦. For this case, our solution can be compared
exactly to the analytic work of Jones [20]. Jones provides two analytic
solutions - one derived from an assumed elliptic load distribution, and
another corrected for initial conditions. The error between Jones’s two
solutions gives a good estimate for acceptable variation. The predicted
lift from our proposed unsteady state-space models lie nicely between
Jones and UVLM, and almost exactly agrees in the steady state to Pran-
dlt’s analytic lifting line theory [35].

For the step response transient, rather than maintaining the lift de-
pendency on angle-of-attack, we normalize the total lift as wing lift
coefficient CLα(t):

CLα(t) =
Fz(t)

1
2
ρU2S sinα

, (41)

where Fz is the global frame vertical force. A lifting surface will gen-
erally have less lift than a lifting line, leading to an unavoidable dis-
crepancy between Jones/Prandtl and UVLM. Hoerner [31] proposes a
suitable correction factor:

CLα,surface

CLα,line
=

(2π)−1 + (πA)−1

(2π)−1 + (πA)−1 + Kπ
180
A2

. (42)

Hoerner claims K u 9 for best agreement with experiments. For con-
solidating the difference between analytic lifting line (Jones/Prandtl)
and the UVLM, we use K = 13.5. The circulation Γi and downwash
wi of each section are similarly scaled by the same gain. Once the
correction factor is applied, all solutions agree in steady state (Fig. 7).

In fact, the state-space model under steady state (t → ∞) reduces
to the numerical solution [29] of the Prandtl lifting line problem, with
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Figure 7. Impulsive Start - Two state-space solutions, using n = 9 blade el-
ements along the span, validated against Jones [20] and an unsteady vortex
lattice method (UVLM) [23]. Results are for an impulsively started wing of
ellipticA = 3 planform.

n steady horseshoe vortices. Specifically, when all states reach steady-
state, ẋφ = 0, from which we can derive:

xiφ1 = −Aφ1v
i
e, xiφ2 = −Aφ2v

i
e (43)

and similarly for the circulation states. Therefore, the steady-state lift
and circulation are reduced to their familiar expressions:

Li(t) =
1

2
ρciClαv

i
⊥v

i
e[φ(0)−Aφ1 −Aφ2] =

1

2
ρciClαv

i
⊥v

i
e, (44)

Γi(t) =
1

2
ciClαv

i
e[Γ̃(0)−AΓ1 −AΓ2 −AΓ3 −AΓ4] =

1

2
ciClαv

i
e,

(45)

which also happens to be the governing equations for a quasi-steady
model. If the unsteady downwash correction is included (Appendix B),
the aerodynamic influence matrix similarly reduces to lifting line under
steady state, so the steady downwash is equivalent. Our choice of n =
9 blade elements results in only 0.2% error as compared to the Prandlt
lift, and Prandlt’s solution is exactly reconstructed as n, t→∞.

B. Surge Oscillations
Surge oscillations, which directly vary the flow speed v⊥(t), showcase
the LTV (linear time-varying) nature of the model. We again start the
wing at α = 5◦, but give it a time-varying velocity of:

v(t) = U + Uλ sinωt, (46)

where λ is the normalized surge velocity amplitude, and ω is the an-
gular frequency. We non-dimensionalize ω as the mid-span reduced
frequency:

kmid =
ωcmid

2U
. (47)

Additionally, we normalize the relevant simulation outputs, total
force and mid-span circulation, as:

CDα(t) =
Fx(t)

1
2
ρU2S sinα

, (48)

CΓα(t) =
Γmid(t)

2Ub sinα
. (49)

The λ = 0.5 and kmid = 2 case is illustrated in Fig. 8a, with
time normalized by the oscillation period T . Note the significant phase
difference between the lift and circulation, indicating the importance
of added-mass forces. The lift is also clearly non-sinusoidal; the peaks
skew forwards in time, as expected from the LTV system. The lift
and drag match exceptionally well with the UVLM simulation for both
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a) Surge Oscillation Example - Surge oscillation frequency kmid = 2. Lift
scaled down for ease of comparison, as indicated by right y-axis.
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b) Parameter Sweep - Amplitude and phase in surge response, as compared
to vn(t) at mid-span.

Figure 8. Surge Oscillations - Lift, drag, and circulation for surge oscilla-
tions on a elliptic planform wing ofA = 3, with angle of attack α = 5◦,
and sinusoidal surge amplitude λ = 0.5.

state-space models, meaning the Nφ = 1 model is likely sufficient for
control.

In terms of circulation, there exists a small discrepancy between the
two state-space models, as the high reduced frequency requires better
fidelity of capturing the short-timescale circulation response. This is
especially pronounced at the peaks and troughs of each cycle, where
the wing velocity changes quickly, therefore sweeping a broader band
of the frequency spectrum of the state-space approximation to Γ̃(t̃).

A parametric study over kmid can be found in Fig. 8b, again λ =
0.5. While the response is not purely sinusoidal, we reduce the data
by comparing maximum peak value and peak phase offset as a stand-in
for magnitude and phase for ease of comparison and data reduction:

CLα,Peak = max[CLα(t)], (50)

CLα,Phase =
2kU

cmid

(
argmax[CLα(t)]− argmax[vn(t)]

)
mod 2π.

(51)
At higher reduced frequencies (kmid > 1), the added mass force

begins to compete with the circulation-based lift, as indicated by the
decreasing circulation magnitude and decrease in phase of the lift force
(Fig. 8b). Added mass force is proportional to acceleration, so we
expect the lift phase to reach −90◦ at kmid � 1.
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Figure 9. Surge Oscillation Convergence - Both state-space models converge
at second order for all three measured peak quantities CLα,Peak, CDα,Peak
andCΓα,Peak. Error compared against same calculation at n = 15, all axes
are logscale.

The parametric study confirms that both state-space methods are
roughly equivalent for force prediction, but the additional states are
required for predicting the circulation. For example, at all tested fre-
quencies both state-space methods have max phase error of roughly 3◦

on the predicted lift and drag forces. Including the extra states lowers
the maximum circulation phase error from 5◦ to 2◦ over the frequency
sweep.

The peak height error is also small over the tested frequency range.
The lift and circulation peak height error remains below 5% for both
state-space methods. The drag peak error, however, grows to 12% at
low frequencies as we approach the expected steady error between the
lifting line and lifting surface codes.

In robust control theory, a model with the stated 5◦ phase error and
12% gain are well within standard margins [48] for maintaining sta-
bility despite unmodeled dynamics. Therefore, in the surging case, the
state-space models and UVLM code can be considered interchangeable
for the purpose of control design.

The quasi-steady/added-mass model (QS,AM) unsurprisingly fails
at higher frequency to capture the circulation, and shows consistent er-
ror in the force predictions. However as the frequency increases, the
circulation-based lift is dwarfed by the added-mass forces, meaning
that the force performance is better than the circulation error would im-
ply. This is a general theme throughout oscillatory solutions for foils:
low and high reduced frequencies are easy to model (kmid � 1 and
kmid � 1), but the mid-range frequencies found in flapping flight
require detailed analysis of the wake, either as panel methods or state-
space solutions.

Finally, given that the state-space model and UVLM predict
slightly different maximum lift, drag, and circulation due to lifting sur-
face effects, the state-space model does not converge to UVLM as the
number of blade elements in increased. However, the solution does
converge stably to a fixed value at second order (O(n−2)), even in the
unsteady surge case. Figure 9 illustrates the error between the calcu-
lated CLα,Peak, CDα,Peak and CΓα,Peak and the same calculation per-
formed with 15 blade elements. The accelerating convergence beyond
n > 11 is likely due to the cosine spacing of the blades.

For the purposes of control, this additionally illustrates that the
number of states can be further reduced by changing the number of
blade elements. If a robust control algorithm can handle an additional
2% of magnitude error, the number of blade elements can safely be
reduced to only n = 5.
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b) Parameter Sweep - Amplitude and phase in pitch response, as compared
to vn(t) at mid-span.

Figure 10. Pitch Oscillations - Lift, drag, and circulation for pitch oscilla-
tions on a elliptic planform wing ofA = 3, with sinusoidal pitch amplitude
αmax = 5◦.

C. Pitch Oscillations
High frequency kmid = 2 pitching results can be found in Fig. 10a. In
this case, theA = 3 elliptic wing is towed at steady velocity while
pitching about its 1⁄4-chord axis:

θ(t) = αmax sinωt, (52)

where the amplitude of oscillation αmax = 5◦. Added-mass forces are
again a substantial portion of the force at this frequency, validating both
the unsteady lifting line and added mass formulations. We normalize
all global-frame forces Fx, Fz and circulation using αmax when calcu-
lating CLα, etc.

Similar to the surge cases, both state-space models perform equiv-
alently when predicting the lift force. The circulation is best captured
by the model with the additional states.

An analogous parametric study over kmid can be found in Fig. 10b.
Here, the circulation does not decrease with increasing kmid; the oscil-
lating airfoil has pitch-rate-dependent circulation [33] that increases
with frequency. Additionally, the lift phase asymptote at high fre-
quency is not −90◦, given that the added mass forces are proportional
to v̇n evaluated at 1⁄2-chord rather than at 3⁄4-chord.

In comparison to the surge study, the pitching wing predictions do
have slightly more error due to the breakdown of the locally flat wake
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b) Dynamic Circulation Distribution - Circulation distribution over the
wingspan at select timesteps, illustrating a quarter-cycle.

Figure 11. Heave-Pitch Oscillations - Heave-pitch oscillations with Str =
0.3, h/cmid = 0.75, αmax = 15◦ on an elliptic planform wing ofA = 3.

assumption. In both state-space models, the peak lift and drag errors
reach 6% and 9% respectively, with roughly 5◦ of phase error each.
Again, including the extra circulation states lowers the circulation error
from 25% at 9◦ phase error to 7% with 6◦ phase error.

Again, ignoring all wake states in a quasi-steady/added-mass
model performs worst; at mid-frequency kmid = 0.75, it over-predicts
the lift by 27% and thrust by 20%. Similar to the surge cases, quasi-
steady/added-mass fails to capture the circulation as frequency in-
creases.

D. Heave-Pitch Oscillations
Heave-pitch results on the elliptic planform can be found in Fig. 11a.
While not a truly three-dimensional flapping motion, this case illus-
trates the fidelity of the method in multiple aspects of flapping flight;
namely, high-amplitude heave and pitch on a finite aspect-ratio wing.

The heave and pitch motions are given as:

z(t) = h cosωt, (53)

θ(t) = θmax sinωt. (54)

(b)(a)

β

  (s,t)

Υ(t)

x
z

y

-s

θ

Figure 12. Flapping Trajectory - Left (a): Variable definition of spanwise
twist θ(s, t), time-varying dihedral Υ(t), and stroke angle β in state-space
model. Right (b): UVLM visualization of wake of a flapping wing with both
spanwise twisting and tilted stroke angle, wake colored as dipole strength.

Pitching amplitude θmax is determined by setting the geometric angle-
of-attack αmax = 15◦ at the middle of the downstroke:

θmax = − arctan
ωh

U
+ αmax. (55)

Instead of using the reduced frequency kmid, heave-pitch motions
are traditionally non-dimensionalized using the heave-to-chord ratio
h/cmid and the Strouhal number St:

St =
hω

πU
= kmid

h

cmid

2

π
. (56)

Flapping foils typically exhibit best thrust efficiency at 0.2 ≤ St ≤
0.4 [49]. For the purposes of validating the method, we will investigate
the case of St = 0.3 and h/cmid = 0.75, making kmid ≈ 0.628 and
θmax ≈ 28◦.

Similar to the surging and pitching cases, the lift and drag predic-
tions by the two state-space models are largely equivalent, and reliably
predict the total force on the flapping wing. The mid-span circula-
tion is best reproduced by the additional states. The model performs
again reliably despite the large wake inclination and heave amplitude
of h/cmid = 0.75, given the locally linear wake geometry. Normalized
foil rotation reaches a maximum of θ̇maxcmid/(2U) = 0.31, or equiva-
lently, an additional 18◦ angle of attack between 1⁄4-chord and 3⁄4-chord.

A detailed look at the wing circulation distribution is presented in
Fig. 11b. Unlike the predictions by Jones [20], the heaving/pitching
elliptic planform wing does not maintain an elliptic circulation dis-
tribution. The wing tips exhibit faster dynamics than the mid-span,
most easily seen at t/T = 1.2. While both state-space models demon-
strate equivalent performance predicting the total lift and drag, the extra
states are clearly required to correctly track the circulation distribution
(and thereby the wing loading).

It is surprising that the 1-state model can correctly predict the drag
even with a poor circulation distribution. However, the dominant drag
in this case is not the induced drag due to downwash, but instead the
drag and thrust due to the lift tilted by the wing motion. Therefore, both
state-space methods can easily have similar lift and drag yet different
circulation distributions.

IV. Flapping/Twisting Results
Finally, we illustrate a complex bird-like flapping trajectory on a

wing of finite aspect ratio, fully showcasing the predictive performance
of the method. The wing consists of two independently flapping wings
(i.e. shoulder joints), with totalA = 6 and an elliptic planform with
straight quarter-chord line (Fig. 12).

First, we twist each wing about the y axis to keep the instanta-
neous angle of attack of each wing within the linear range. The twist is
sinusoidal in time, and linearly increases from midspan to tip:

θ(s, t) =
|s|
stip

θmax sin(ωt). (57)
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b) Dynamic Circulation Distribution - Circulation distribution over the flap-
ping wing at select timesteps.

Figure 13. Flapping Wing Trajectory - Flapping elliptic planform wing
ofA = 6. Flapping trajectory includes a tilted stroke angle β = 75◦,
wingtip maximum twist of θmax = 30◦, and flapping dihedral amplitude of
Υmax = 30◦.

Next, we apply a flapping rotation about x as a dihedral angle Υ:

Υ(t) = Υmax cos(ωt). (58)

Finally, we also tilt both the wing and stroke angle β [12] around the y
axis, such that the wing moves forwards during the downstroke, caus-
ing a surging motion of the wingtip. The flapping frequency, again
determined from a Strouhal number, is defined using the vertical ex-
cursion of the wingtip [50]:

St =
ω

πU
stip cos Υmax cosβ. (59)

Overall, the combination of large amplitude flapping Υmax and a
non-vertical stroke angle β means that the wing tip moves both verti-
cally (dynamic dihedral) and fore-aft (dynamic sweepback) relative to
the flow, similar to the motion investigated in [51].

An example case of St = 0.3, Υmax = 30◦, β = 75◦, and
θmax = −30◦ is illustrated in Fig. 13. For this trajectory, the maxi-
mum and minimum geometric angle-of-attack at 3⁄4-chord is 26.1◦ and
−8.5◦ respectively, well within reasonable range for previously per-
formed flapping flight studies [2]. To avoid placing a control point

at the discontinuity at mid-span, we increase the number of panels to
n = 10 and use a spline interpolant to recover the mid-span circulation.

The lift and drag of both state-space models agree exceptionally
well with the UVLM code (Fig. 13a), with the additional states only
marginally increasing the accuracy. The peak lift error reaches only
4.7% for the 6-state and 4.4% for the 1-state, and peak drag error of
7.9% for both state-space models.

The mid-span circulation peak error is slightly larger at 8.4% for
the 6-state and 9.6% for the 1-state model. Understandably, the cir-
culation distribution is difficult to capture directly at the mid-span dis-
continuity, and the error decreases closer to the wingtips (Fig. 13b).
Accordingly, at the node s = 1.06 the error drops to 3.6% and 5.6%
for the two models respectively.

In this flapping case, the reduced-order model of Nφ = NΓ = 1 is
therefore clearly sufficient for recovering the dynamics of the system.
The accuracy does not improve substantially by increasing the number
of states, indicating that the dominant error is likely unmodelled, and
therefore perhaps due to wake deflection or lifting surface effects.

V. Model Limitations and Comparison to
Experiments

As discussed throughout the previous sections, the presented model
is only accurate for at most a subset of the flows that are well-predicted
by UVLM. These flows must remain attached, must only shed vorticity
from the trailing edge, and must retain consistency with lifting line
theory. Therefore, the following effects are not included

• Flow separation from the trailing edge, a viscous effect.

• Leading edge vortex shedding, as the loss of leading edge suc-
tion and multiple vortex systems are not easily modeled with
classic UVLM.

• Wake-capture [42], where the wing intersects its own wake,
voiding the Duhamel formulation.

• Fast foil rotation beyond the tested range, where we expect the
Duhamel superposition to no longer accurately predict the force.
The wake history effects may decay at a rate other than φ(t̃),
given the rotated body boundary conditions, and thereby alter
the state dynamics.

• Oscillations approaching the scale of the chordlength, which re-
quire a lifting surface to resolve the downwash variations over
the chord [21].

• Wings of low aspect-ratio, where even in the steady case, a lift-
ing line approximation is unwarranted [35].

Therefore, the presented state-space model is well-suited for flows
where the flapping frequency is high enough to avoid separation, but
not hovering flight where stable LEVs become a dominant lifting
method and the wing advancement is too small justify evaluating the
downwash at a single point. Additionally, while the Duhamel integral
allows for an inclined wake, it still assumes low wake curvature.

As an example, we now compare the presented model to the fi-
nite aspect-ratio experiments results of Scherer [24]. Scherer himself
presents a model to predict the thrust from his experiments, but similar
to [20], does not account for a variable spanwise circulation distribu-
tion. Given that we are now comparing to experiment, we add simple
sectional viscous drag, oriented parallel to vi

⊥, of Cd0 = 0.057 as
reported by Scherer’s static foil tests.

Figure 14 illustrates the mean thrust for a heave-pitch motion of a
rectangular planform wing ofA = 3, with the pivot moved to the 3⁄4-
chord point. The phase delay ψ between heave and pitch, varied from
15◦ to 105◦, is defined by:

z(t) = h cosωt, (60)

θ(t) = θmax cos(ωt+ ψ). (61)

A phase delay of ψ = 90◦ and switching the sign of θmax recreates
the same motion as Section III.D. Scherer [24] limits his experiment
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Figure 14. Comparison to Scherer [24] Experiments - Mean thrust for a
rectangular planform wing ofA = 3, pitching and heaving about the 3⁄4-
chord line, for various phase offsets and pitch amplitudes. Model predicts
thrust accurately (top) given low peak angle-of-attack and minimal LEV
effects.

parameters to lower Strouhal numbers than typical for flapping flight
[52], so we compare against his highest Strouhal number St = 0.2
cases (kmid = 0.52), with heave amplitude h/c = 0.6.

For the cases of θmax = 15◦, the thrust coefficient is well-predicted
by both state-space models for phase shifts between 45◦ and 90◦,
which corresponds to trajectories with low peak angles of attack α3/4 <
25◦. Motions with phase shifts below 45◦, however, stall the wing, and
a dynamic stall model is therefore required.

At the larger pitch amplitude θmax = 25◦, the peak angle of attack
decreases as the wing roughly feathers to the flow. The thrust is there-
fore unsurprisingly smaller. However, the state-space model performs
poorly, as the increased wing rotation rate promotes LEV shedding [14]
and thereby a loss of leading edge suction.

In other words, the proposed state-space model captures the re-
duction in lift due to trailing edge vortex shedding but nothing more;
precisely as promised from unsteady lifting line theory. Augmentation
by other state-space models for LEV [18, 17] and trailing edge sepa-
ration [41, 17] would be required to successfully model full dynamic
stall.

In all experiment cases, the quasi-steady/added-mass analysis over-
predicts the thrust, and our model significantly improves the thrust pre-
diction. The attractiveness of our model is therefore its UVLM-like
performance, adapted to a state-space framework plausible for control,
in flapping wing regimes of important biological and engineering inter-
est.

VI. Conclusions
The proposed method integrates low-order state-space models, dis-

tributed over a wing, to adapt the well-known unsteady lifting line the-
ory into a minimal information framework. These models can be as
simple as a single state that adds wake-induced dynamics onto each
blade element, without requiring a full record of the wake history in
time. Unlike traditional flutter models, these state-space systems work
admirably even for situations that are clearly nonlinear, such as large
amplitude variations in heave, surge, and twist; provided that the wing
performance is well-predicted by the standard assumptions of unsteady
lifting line theory. Control of flapping wings, expertly performed by
nature, requires models that quickly and accurately predict the wake
effects of these large wing motions.

The presented state-space system can be derived from exponential

fits to the step response of each blade section, later combined to give
the 3D wake. Many such approximations exist, depending on the fitting
parameters or specific airfoil section. This paper derives two models
and validates their performance in detail:

• A simple one-state per blade element (Nφ = NΓ = 1, with the
single state repeated for both lift and circulation), and

• A six-state model (Nφ = 2, NΓ = 4, with two states repeated,
and a Nw = 2 wake correction).

These models are then compared to an unsteady vortex lattice
method (UVLM), presented in Zhu et. al. [23], which includes both
lifting surface and full wake history effects. We analyze four simple
cases to validate the method: a step increase in velocity, surge oscil-
lations, pitch oscillations, heave/pitch oscillations. Subsequently, we
analyze a complex wing trajectory that includes flapping, surging, and
twisting in combination. Finally, we compare to the flapping wing ex-
periments of Scherer [24] to illustrate the limitations of the model as
dependent on the wing motion.

For most of the inviscid cases presented, the single-state method
captures enough of the system dynamics for confident control system
design. For example, assuming a large robustness tolerance of 20%
magnitude and 10◦ phase, a single-state method adequately predicts the
lift, drag, and circulation for the tested cases of surging, heave/pitching,
and flapping. The additional states, and the unsteady downwash cor-
rection, improve the accuracy of the dynamic circulation distribution,
but have little effect on the total lift and drag predictions and are only
truly necessary for fast pitching motions at kmid > 1. As the state-space
models require no fit to provide predictive results (purely analytic), the
models can also be used for early system design.

In comparison to experiments, the model predictions hold for well-
behaved flows without LEV shedding, stall, or wake-capture. Similar
to UVLM, these phenomena are not captured by the model, and require
integration with other state-space systems from the literature [16, 17,
18].

Overall, simplifying the unsteady wake into a compact state-space
model along the lifting line provides a starting point for active con-
trol of flapping wings. We expect even better results by allowing the
system matrices, such as added-mass, blade lift behavior, and wake
cross-coupling, to be fit to experiments and the inclusion of new devel-
oping models for dynamic stall, thereby enabling further refinement of
model-based control schemes.

Appendix
A. State Space Model for 2D Downwash
First, we track the downwash from a single starting vortex on a wing of
infinite span, later correcting the wake to be 3D. This requires an expo-
nential approximation to the 2D step response wΓ,2D(t̃), equivalently,
the downwash due to a single wake vortex:

wΓ,2D(t) =
dw2D

dΓ
= − 1

2πl(t)
≈ 2

c

(
Aw1e

bw1 t̃ +Aw2e
bw2 t̃

)
.

(62)
The length l(t) is defined as the distance between the effective control
point and the wake vortex (Fig. 5). Jones approximates l(t) as l(t) u
Ut+ c/2 [20].

The extra inclusion of 2/c in Eq. (62) allows Aw1 and Aw2 to
independent of the local chord. Constants Aw1 and Aw2 are derived
from Garrick’s [53] approximation to φ(t̃):

φ(t̃) ≈ 1− 2

4 + t̃
(63)

Solving for t̃ and plugging into wΓ,2D(t) we achieve:

Aw1 =
1

4π
Aφ1 exp(−3bφ1) = −0.0150 (64)

Aw2 =
1

4π
Aφ2 exp(−3bφ2) = −0.0656 (65)

bw1 = bφ1 = −0.0450, bw2 = bφ2 = −0.3000 (66)
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Figure 15. Unsteady 3D Wake Correction - (a) Exponential fit for the un-
steady wake-induced downwash on a 2D wing, given a step input in airfoil
circulation. (b) Scaling constants for each exponential to map to a full 3D
wake. (c) Downwash from the 3D wake, as appoximated by a separable
sum of exponentials.

The exponential approximation to wΓ,2D(t̃) is illustrated graphically
in Fig. 15a. Constants Aw1, Aw2, bw1, and bw2 could alternatively be
taken as an exponential fit towΓ,2D(t̃), but the re-use of the exponential
fit to φ(t̃) ensures similar time-scale behavior as other parts of the state-
space system.

The states tracking the 2D wake now represent a new Duhamel
integral:

wi2D(t) = wΓ,2D(t̃)Γi(0) +

∫ t̃(t)

0

wΓ,2D(t̃− σ)
dΓi(σ)

dσ
dσ(67)

= wΓ,2D(0)Γi(t)−
∫ t̃(t)

0

dwΓ,2D(t̃− σ)

dσ
Γi(σ)dσ(68)

≈ 2[Aw1 +Aw2]

ci
Γi(t) + xiw1(t) + xiw2(t). (69)

The rate of change of these wake states are again given by Duhamel
integral, as stated in Eq. (27) and Eq. (28).

B. Unsteady 3D Downwash Correction
We now discretize the wake along each blade element, creating a set
of rectangular vortex loops (Fig. 5). The downwash of one such loop
j, with the left and right legs offset to location i by ∆yL and ∆yR is

given as:

wΓ,loop =

√
l2 + ∆y2

R

4πl∆yR
−
√
l2 + ∆y2

L

4πl∆yL
. (70)

If we isolate the terms due to each of the two ∆y coordinates:

wΓ,loop = wΓ,half(∆yR)− wΓ,half(∆yL). (71)

We can now substitute into the Duhamel integral to obtain the down-
wash at the specified offset for arbitrary changes in Γj(t), summing
over all such loops j to obtain the downwash at location i:

win(t) = −wi2D(t) +

N∑
j=0

(
wΓ,half(t̃,∆yR, c

j) Γj(0)

+

∫ t̃(t)

0

wΓ,half(t̃− σ,∆yR, cj)
dΓj(σ)

dσ
dσ

)

−
N∑
j=0

(
wΓ,half(t̃,∆yL, c

j) Γj(0)

+

∫ t̃(t)

0

wΓ,half(t̃− σ,∆yL, cj)
dΓj(σ)

dσ
dσ

)
. (72)

Note how similar to [20], we have to correct the determined down-
wash by subtracting the 2D wake wi2D(t). Subracting wi2D(t) is
counter-intuitive, but can be elucidated by the following example. Re-
ferring back to Fig. 5, the downwash at point i is due the influence
of all vortex loops j. If the wing were instead the special case of
infinite span (and therefore circulation is constant over the span), all
chordwise-oriented vorticity in the wake would cancel to zero, leav-
ing only the influence wi2D(t) of the starting vortex. However, the
downwash from 3D effects win(t) must be zero in this case to enforce
vie = vin as in standard blade element theory. As such, win must be
carefully defined as only the downwash required to correct the blade
element inlet velocity to include 3D effects.

Next, we make a separable assumption, namely that the downwash
wΓ,half can be given as a product of two functions. One function is
dependent on the travel distance t̃ (or vortex length l(t̃)), and the other
is dependent ∆y:

wΓ,half(t̃,∆y, c) ≈
2

c
Aw1e

bw1 t̃C1(∆y, c)

+
2

c
Aw2e

bw2 t̃C2(∆y, c) +
1

4π∆y
. (73)

The constants C1(∆y, c) and C2(∆y, c), illustrated in Fig. 15b, are
solved by least squares analysis to best matchwΓ,half (Fig. 15c), and the
term 1/(4π∆y) is the standard aerodynamic influence of an infinitely
long horseshoe vortex leg. The inputs can be non-dimensionalized by
the semichord to remove the chord length dependence of the result,
allowing the utilization of a simple lookup table.

Finally, we can organize the constants C1 and C2 into a matrix
equation, replace 1/(4π∆y) with the quasi-steady aerodynamic influ-
ence matrix Wn, and substitute the states xiw1(t) and xiw2(t) into the
Duhamel integrals of Eq. (72):

wn(t) = WnΓ(t) +W0Γ(t) +W1xw1(t) +W2xw2(t), (74)

wherewn(t) is the vector list of win(t), Γ(t) of Γi(t) etc. This down-
wash correction does not necessarily act exactly along the foil normal
n, but instead at a right angle to the oncoming flow v⊥ as the vor-
tices are convected downstream, but the difference between those two
components is a cosine error that is negligible for realistic angles of
attack.
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The three matrices of interest W0, W1, and W2 are given element-
by-element form as:

W ij
0 = −δij

2

ci
[Aw1 +Aw2]

+
2

cj

[
Aw1C1(∆yijR , c

j) +Aw2C2(∆yijR , c
j)

]

− 2

cj

[
Aw1C1(∆yijL , c

j) +Aw2C2(∆yijL , c
j)

]
, (75)

W ij
1 = C1(∆yijR , c

j)− C1(∆yijL , c
j)− δij , (76)

W ij
2 = C2(∆yijR , c

j)− C2(∆yijL , c
j)− δij , (77)

where δij is the Kronecker delta.
In summary, the states xiw1(t) and xiw2(t) track the 2D downwash

of each element on itself, and the matrix equation maps these states to
the downwash at other elements. This process required only two ap-
proximations from the full unsteady lifting line: exponential decaying
wake effect and separable equations in t̃ and ∆y.
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