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ABSTRACT

Durotaxis refers to cell motion directed by stiffness gradients of an underlying substrate. Recent work has shown that droplets
also move spontaneously along stiffness gradients through a process reminiscent of durotaxis. Wetting droplets, however,
move toward softer substrates, an observation seemingly at odds with cell motion. Here, we extend our understanding of this
phenomenon, and show that wettability of the substrate plays a critical role: while wetting droplets move in the direction of lower
stiffness1, nonwetting liquids reverse droplet durotaxis. Our numerical experiments also reveal that Laplace pressure can be
used to determine the direction of motion of liquid slugs in confined environments. Our results suggest new ways of controlling
droplet dynamics at small scales, which can open the door to enhanced bubble and droplet logic in microfluidic platforms.

Introduction

The ability to generate and manipulate liquid droplets as well as to control how they interact with solid substrates has attracted
increased interest in the scientific community due to the number of applications in which droplet dynamics plays a fundamental
role. Understanding, predicting and controlling these processes is essential, for example, in the design of new materials and
devices at small scales2–5; droplets are present in optofluidic optical attenuators6, microfluidic electronic paper7 and, in general,
in bubble- and droplet-based microfluidic platforms8–10 that are used for industrial, biological and chemical applications, such
as high- and ultrahigh-throughput screening11–13, enzymatic assays14 and chemical synthesis15.

During the past few decades, important advances have been achieved in the study of droplet motion in solid substrates16–18.
Different mechanisms have been identified and explored to overcome the contact angle hysteresis and induce droplet motion,
ranging from the use of chemical, thermal and electrical gradients19–21 to the manipulation of the surface topography22 or the
application of external vibrations23. However, despite significant progress in recent years, droplet motion—especially in relation
to deformable substrates—is not fully understood. New mechanisms to control droplet motion on deformable solids have been
proposed recently. For example, droplet motion may be driven by gradients in strain of the substrate24—a process termed
tensotaxis by analogy with the behavior previously observed in cells25. Another cell motion mechanism—durotaxis—had
already inspired new ways of controlling droplet dynamics: wetting droplets deposited on substrates with nonuniform stiffness
tend to move toward the softer parts of the substrate1. This directed motion, however, is seemingly opposite to the behavior
observed in cells25.

As it turns out, a central element of droplet durotaxis has heretofore remained unexplored. Here, we show that the behavior
of droplets in substrates with nonuniform stiffness depends critically on the wettability of the substrate with respect to the
liquid: while wetting droplets move toward the softer parts of the substrate—in agreement with the experiments reported by
Style et al.1—nonwetting droplets exhibit the opposite behavior and move in the direction of greater stiffness—similarly to
the response of cells to rigidity gradients of the underlying substrate25. We also elucidate the role of Laplace pressure in this
mechanism, and our results suggest that Laplace pressure may be used to control the direction of motion of nonwetting droplets.

This improved understanding of the impact of wetting on droplet durotaxis stems from a computational model of the
interaction of deformable solids and multiphase fluids, which accounts for the dynamically coupled, nonlinear problem in
three dimensions. The proposed theory allows to make predictions via high-fidelity numerical simulations that elucidate the
phenomenon and inform future experimental designs.



Model of droplet durotaxis
When a small liquid droplet is deposited on a flat, rigid and chemically homogeneous solid surface, the droplet tends to adopt
a spherical shape and modify its contact angle until it reaches the mechanical equilibrium. The value of the static contact
angle α depends on the surface tension at the liquid–vapor γLV , solid–vapor γSV and solid–liquid γSL interfaces, and can be
approximated by taking the following balance of forces at the contact line [see Fig. 1(A)],

γSL + γLV cos(α) = γSV . (1)

This expression, known as the Young–Dupré equation, has been known for almost two centuries. Equation (1), however, is only
valid for ideal solid surfaces, where the solid is flat and infinitely rigid. When the Laplace pressure or the surface tension at the
liquid–vapor interface are sufficiently strong so as to deform the substrate, the Young–Drupré equation is no longer valid; see
Fig. 1. This may happen for slender structures26–28 but also when the droplet is small or when it is deposited on a sufficiently
soft substrate29, 30. The elastocapillary length scale LEC ∼ γLV/E, where E is the substrate’s Young modulus, allows to estimate
when the elastocapillary forces are relevant and the Young–Dupré equation breaks down.

For most solids and typical values of liquid surface tension, this results in immeasurably small elastocapillary length
scales that are much smaller than the radius of the droplet. In these cases, the deformation of the solid is negligible and the
Young-Dupré theory is valid. For soft solids such as some gels, however, LEC can approach or even exceed the size of wetting
droplets. In such cases, in which small droplets wet soft substrates, the interfacial forces create a ridge at the contact line and
the Laplace pressure dimples the substrate under the droplet; see Fig. 1(B). As a consequence, there is a rotation of the contact
line30 and the apparent contact angle, that is, the angle formed by the liquid–vapor interface and the undeformed surface of
the substrate (ϕ in Fig. 1), differs from the angle predicted by the Young–Dupré equation. When a droplet is deposited on a
substrate with variable stiffness, the rotation of the contact line—and thus, the apparent contact angle—is different at each side
of the droplet, resulting in an imbalance of horizontal forces that may trigger the motion of the droplet.

Figure 1. Wetting on rigid and deformable substrates at small scales. (A) Liquid droplet (blue) deposited on a rigid substrate
(dark gray). The spherical shape adopted by the droplet depends on the surface tensions at the contact line: γLV , γSV and γSL.
The static contact angle α is given by the Young–Dupré equation. (B) Liquid droplet on a soft substrate (light gray). The
surface tension at the liquid–vapor interface γLV creates a ridge at the contact line and the Laplace pressure ∆p dimples the
substrate under the droplet. The contact lines rotate and thus, the apparent contact angle ϕ differs from the Young–Dupré
contact angle α .

Previous studies of the interaction of droplets and deformable substrates29, 31 are based on linear elastic solids and thin film
descriptions of the fluid that allow for the computation of minimum-energy configurations. To advance our understanding of
the impact of wettability—especially in the regime of nonwetting droplets—here we propose to model the interaction between
droplets and deformable solids using a three-dimensional theory that couples a two-phase fluid with a nonlinear solid. The
fluid is composed of a liquid and a gaseous phase separated by a diffuse interface that accurately captures surface tension32.
The proposed model is solved computationally using a spline-based finite-element method known as isogeometric analysis33,
ideally suited for the simulation of high-order partial differential equations that arise as a result of interfacial effects.

Results

Wettability and droplet durotaxis
The dynamics of wetting droplets (α < 90◦) on substrates with nonuniform stiffness has been studied previously30. However,
the role that liquid wettability plays in droplet durotaxis remains unexplored. To study this problem we start by mimicking the
experiments conducted by Style et al.30. We model a solid substrate (see Fig. 2) composed of two different layers; the lower
layer is a rigid material (dark gray) and the upper layer is a deformable solid (light gray). Both materials extend along the
solid substrate but their thickness varies in one of the horizontal directions so that the total thickness of the composite substrate
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Figure 2. Nonwetting droplets move in the direction of higher stiffness. A liquid droplet (blue) that forms a contact angle of
α = 120◦ with the solid surface is deposited on a substrate with nonuniform stiffness. The substrate is composed of a soft (light
gray) and a rigid material (dark gray). The initial position of the droplet is indicated by a semitransparent spherical cap. The
droplet moves to the right, where the thickness of the soft material is smaller. We plot the streamlines of the fluid velocity along
the mid-plane, which are colored with the velocity magnitude. The computational domain is a box of size 1.0×0.8×0.5. The
computational mesh is comprised of 100×80×50 C 1-quadratic elements. We have used the parameters ν = 0.125,
µ̂ = 1/200, γ̂ = 2/100, and θ̂ = 0.39. The stiffness of the substrate is Ê = 0.42 in the soft material and Ê = 124.2 in the rigid
material. The radius of the droplet is R = 0.11. See Methods section for the definition of these quantities.

remains constant. The rigid layer has a lenticular shape (see inset in Fig. 2) and is coated with the deformable solid, creating
a flat solid surface. This configuration results in a substrate that has a nonuniform rigidity. The solid is stiffer in the regions
where the thickness of the soft material is smaller.

We place a nonwetting droplet (α = 120◦) on one of the softer regions of the substrate and let the droplet evolve freely in
the absence of gravity/external forces. In Fig. 2 we show the configuration of the liquid droplet at time t = 181 (the isosurface
of dark blue color represents the liquid–vapor interface of the droplet). The initial position of the droplet is indicated in
semitransparent light blue color. We also plot the streamlines of the fluid velocity along the mid-plane. The streamlines are
colored with the velocity magnitude. The numerical experiment in Fig. 2 shows an important result. The nonwetting droplet
advances in the direction of higher stiffness with a time-decreasing velocity; in contrast with what had been observed for wetting
droplets. This observation shows that the direction of droplet durotaxis may be reversed by simply altering the wettability of the
liquid. To further study the mechanisms of durotaxis, in what follows we adopt a simplified configuration in two dimensions
and with solid substrates of constant rigidity gradients.

Mechanistic underpinning of droplet durotaxis
We start by comparing the behavior of wetting and nonwetting droplets on deformable substrates with nonuniform stiffness.
We use our nonlinear fluid–structure interaction model to simulate a solid substrate (gray in Fig. 3) with spatially variable
stiffness dynamically coupled to a two-phase fluid with surface tension. The rigidity of the substrate follows a linear profile
and is lower on the left boundary (light gray) and higher on the right boundary (dark gray) of the solid domain. We place
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Figure 3. Droplet motion driven by durotaxis. (A) and (B) show the initial configurations: a liquid droplet (blue) is deposited
on a substrate (gray) with nonuniform stiffness. On the left column, the droplet initially forms a contact angle of α = 60◦ with
the substrate. On the right column, the droplet is a nonwetting liquid with α = 120◦. In both cases, the rigidity of the solid
follows a linear profile reaching a maximum at the right end. Figs. (C) and (E) show the wetting droplet at two different
instants. Figs. (D) and (F) present the time evolution of the nonwetting droplet. The initial position of the droplets is illustrated
with a black solid line that represents the liquid–vapor interface at t = 0. Figs. (C)–(F) also show the streamlines of the fluid
velocity colored by velocity magnitude. The results show that wetting droplets move toward softer parts of the substrate with an
increasing velocity magnitude [(C), (E)]. Nonwetting droplets move toward stiffer areas with a decreasing velocity magnitude
[(D), (F)]. The computational domain is a box of size 1.0×0.5, discretized with a mesh of 256×128 C 2 elements. The
substrate thickness is 0.15 and its Poisson ratio ν = 0.125. The maximum value of the Young modulus is Êmax = 2.75. The
minimum value is Êmin = 0.1 for the wetting droplet and Êmin = 0.01 for the non-wetting liquid. For the fluid, we have adopted
the parameters, µ̂ = 1/512, γ̂ = 2/256, and θ̂ = 0.39. The radius of the droplets is R = 0.13.

a liquid droplet (blue) on the solid surface and let it move freely in absence of external forces. We analyze the behavior for
two different Young–Dupré contact angles. Figs. 3(A) and (B) show the initial configuration of the droplets. The left column
in Fig. 3 illustrates the time evolution of a wetting droplet (α = 60◦), and the right column the corresponding evolution of a
nonwetting droplet (α = 120◦).

The results of our simulations show a remarkable difference in the behavior of wetting and nonwetting droplets, consistent
with the three-dimensional results of Fig. 2. While the wetting droplet moves toward the softer part of the substrate, the
nonwetting droplet advances in the opposite direction, i.e., it migrates up rigidity gradients. Similar numerical experiments
were carried out for other linear stiffness profiles and other values of the Young–Drupré contact angle (data not shown). The
results unveiled that the value of the contact angle α for which the direction of the motion is reversed depends on the rigidity
of the substrate for a given liquid droplet and Poisson ratio. For the cases that we have analyzed, the motion is reversed for
α ∈ [105◦,108◦], where the larger values correspond to stiffer substrates. We have also observed that this value increases with
the Poisson ratio.

The streamlines of the fluid velocity, colored by velocity magnitude in Fig. 3, show that droplet motion is able to create a
vortical structure in the vapor phase. For the wetting droplet (left column), the magnitude of the droplet velocity increases
with time [Fig. 4(A)]. For the nonwetting droplet (right column), the velocity magnitude decreases with time [Fig. 4(B)]. This
indicates that droplets move faster in softer areas of substrates with constant stiffness gradients.

The mechanistic explanation for the observed droplet velocity rests on the apparent contact angle at the front and rear
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Figure 4. Time evolution of the droplet velocity and the apparent contact angles for the wetting and nonwetting droplets
shown in Fig. 3. (A) The wetting droplet moves faster as it advances toward the softer part of the substrate. (B) The nonwetting
droplet decelerates as it advances toward the stiffer region. The velocity results are consistent with the evolution of the apparent
contact angle difference at both sides of the droplets. (C) and (D) show the time evolution of the apparent contact angles at the
front and the rear contact lines. (C) For the wetting droplet, the apparent contact angle on the left (front) side is smaller than the
contact angle on the right (rear) contact line. The difference between both contact angles increases as the droplet moves toward
the softer area. (D) The nonwetting droplet also moves in the direction of the smaller apparent contact angle (right contact line).
As the droplet moves toward the stiffer area, the difference between the front and the rear contact angles decreases.

contact lines of the droplets (relative to the displacement direction); see Figs. 4(C) and (D) for the wetting and nonwetting
droplets, respectively. In both cases, the droplet moves toward the contact line in which the apparent contact angle is smaller,
that is, the “softer” contact line in wetting droplets and the “stiffer” contact line in nonwetting droplets. For a wetting droplet,
the difference between the two apparent contact angles increases with time, as does the velocity magnitude [Fig. 4(A) and (C)].
In contrast, for a nonwetting droplet, the difference between the apparent contact angles at each side of the droplet decreases
with time. As the droplet moves to the stiffer region, the surface tension and the Laplace pressure produce a smaller deformation
of the substrate and a smaller rotation of the contact line. As a result, the apparent contact angle approaches the static contact
angle predicted by Young–Dupré equation. When both rear and front apparent contact angles reach the same value, the droplet
stops. These results indicate that the dynamics of the droplets seem to be primarily controlled by the apparent contact angles at
opposite sides of the droplet.

The wetting and nonwetting droplets analyzed in these simulations have the same radius and surface tension and, thus,
the Laplace pressure is also the same in both cases. If we assume that the droplets have the shape of a circular segment, the
distance between the two contact lines will be the same in both cases because the wetting and nonwetting contact angles are
supplementary. Since the Laplace pressure takes the same value in both cases and acts on the same length, the contact line
rotation produced by the Laplace pressure has the same sign for the wetting and the nonwetting droplet, that is, clockwise for
the left contact line and counter-clockwise for the right contact line. Note also that the apparent contact angle is smaller than
the Young–Drupré contact angle for wetting droplets [Fig. 4(C)]. For nonwetting droplets, the opposite is true [Fig. 4(D)].
This indicates that the rotation of the contact lines produced by surface tension has different sign for wetting and nonwetting
droplets. For example, in the left contact line the rotation seems to be clockwise for wetting droplets and counter-clockwise for
nonwetting droplets. This suggests that the rotation induced by the surface tension in nonwetting droplets has opposite sign and
greater absolute value than the rotation caused by the Laplace pressure.

To confirm this hypothesis we carried out several computations on substrates with uniform stiffness for a given droplet
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Figure 5. Apparent contact angle ϕ with respect to the contact angle α predicted by Young–Dupré equation for a given liquid
droplet and for substrates of uniform stiffness. In rigid substrates, the deformation produced by surface tension and Laplace
pressure is negligible and the apparent contact angle matches the Young–Dupré equilibrium contact angle (black solid line).
For sufficiently soft substrates, the Laplace pressure ∆p and the surface tension γLV deform the solid, inducing a rotation φ of
the contact line (gray solid line). When ϕ = 90◦, surface tension points vertical and induces no rotation of the contact line, i.e.,
φγ = 0. The rotation is entirely produced by the Laplace pressure, i.e., φ = φ∆p, which is constant for all the computations with
the same substrate stiffness (blue dotted area). The remaining contribution to the rotation (red striped area) is attributed to
surface tension. Note that for ϕ ' 105◦, φγ =−φ∆p and the apparent contact angle matches the Young–Dupré contact angle.
For ϕ & 105◦, | φγ |≥| φ∆p | and the final apparent contact angle exceeds the contact angle predicted by the Young–Dupré
equation. The computations were performed on a box of size 1.0×0.5 and using 256×128 C 2 elements. The droplet radius is
R = 0.13 and the substrate thickness 0.15. We have used the parameters ν = 0.125, Êso f t = 0.2, µ̂ = 1/512, γ̂ = 2/256, and
θ̂ = 0.39.

radius and surface tension; see Fig. 5. We measured the steady-state value of the apparent contact angle ϕ on a soft substrate
(gray solid line) for different Young–Dupré contact angles α . We compared our measurements with the values of ϕ on a
infinitely rigid solid (black solid line). Let us call φγ and φ∆p the contact line rotations produced by surface tension and Laplace
pressure, respectively. The total rotation of the contact line is φ = φγ +φ∆p. The results in Fig. 5 confirm that the rotation of the
contact line, φ , changes sign approximately when α ' 105◦. For ϕ & 105◦, φγ and φ∆p have opposite sign and | φγ |>| φ∆p |.
These observations suggest that a relative increase of the Laplace pressure with respect to surface tension could potentially
change the sign of the rotation at the contact lines and thus reverse the direction of droplet motion for nonwetting droplets.

Controlling durotaxis by confinement
To study the role of Laplace pressure in droplet motion driven by durotaxis, we propose a system in which this quantity can be
easily manipulated. We place a liquid slug in between two identical planar surfaces forming a capillary bridge (see Fig. 6).
In this system, the Laplace pressure scales with the distance between the two solid surfaces. Thus, one can alter the relative
strength of the Laplace pressure with respect to surface tension by changing the distance between the solids while keeping the
Young–Drupré contact angle α constant.

We carry out two different simulations; see Figs. 6(A) and (B) for the initial configurations. In both cases, the solids have
a nonuniform stiffness that follows a linear profile. They are softer on the left boundary (light gray) and stiffer on the right
boundary (dark gray). Each simulation has a different distance between the two solids, while the Young–Dupré contact angle is
the same for both cases, α = 120◦, corresponding to a nonwetting liquid slug. For the larger separation between substrates (left
column of Fig. 6), the Laplace pressure is lower. In this case, the liquid moves toward the stiffer parts of the substrate. The
dynamics seems to be controlled by surface tension. The time evolution of the difference between the apparent contact angles
at both sides of the liquid bridge is similar to that observed for the nonwetting droplet analyzed in Fig. 4(D). When the gap
between substrates is 10 times smaller (right column of Fig. 6), the Laplace pressure is 10 times larger. In contrast with the
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Figure 6. Laplace pressure can be used to alter the direction of confined liquid slugs. A liquid droplet (blue) is placed in
between two identical solids (gray) forming a capillary bridge. The solids’ stiffness increases linearly from left to right. We
analyze two different cases for the same Young-Drupré contact angle (α = 120◦) and the same surface tension. We do modify
the distance between the solids. On the left column the gap is bigger, which results in a lower Laplace pressure. (A) and (B)
represent the initial configurations of the problem. (C)-(F) depict the configuration of the capillary bridges at different time
instants. The results show that for large Laplace pressures (right column) the droplet moves toward softer regions. For low
Laplace pressure, the liquid moves toward stiffer areas. The computational domain is a box of size 1.0×0.5 for the left
problem and a box of size 1.0×0.25 for the right problem. They are both discretized with 256×128 C 1 quadratic elements.
We use the parameters µ̂ = 1/512, γ̂ = 2/256, θ̂ = 0.39 and ν = 0.125. The rigidity of the substrate varies linearly between
Êmin = 0.34 and Êmax = 8.28. The thickness of the solids is 0.15 and 0.115 for the left and the right problems, respectively.
Note that for visualization purposes in the right problem we are only showing the central part of the domain.

previous case, here the capillary bridge moves toward the softer part of the solid, showing that durotaxis of liquid slugs can be
reversed by judiciously manipulating the Laplace pressure in confined environments.

Discussion
It is generally accepted that, when a droplet is deposited on deformable substrates, the surface tension at the liquid–vapor
interface and the Laplace pressure of the droplet produce a rotation of the contact lines29–31, 34. The numerical experiments
conducted here show that this rotation is remarkably different for wetting and nonwetting droplets. While in wetting droplets
the rotation induced by the surface tension and the Laplace pressure have the same sign, the opposite is true for nonwetting
droplets: the rotation produced by surface tension may outweigh the effect of the Laplace pressure, resulting in apparent contact
angles that are larger than the Young–Drupré contact angle. Our results also indicate that the total rotation of the contact line is
larger in softer substrates regardless of the wettability of the liquid. These observations explain why in our simulations the
apparent contact angle is smaller in the softer part of the substrate for wetting droplets, while the opposite is observed for
nonwetting droplets.

Our results support the theory proposed by Style et al.1 which suggests that–analogously to droplet motion driven by
interfacial energy gradients24—droplet durotaxis is to a large extent controlled by the difference between the apparent contact
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angles at the rear and the front contact lines of the droplet. Droplets move in the direction of the contact line that presents a
smaller apparent contact angle. We have shown that for nonwetting droplets this may produce motion toward stiffer areas,
mimicking the behavior of cell durotaxis. For wetting droplets, the contact angle difference and the droplet velocity both
increase as the droplet moves toward softer areas of the substrate. In contrast, for nonwetting droplets, the contact angle
difference and the velocity both decrease as droplets advance toward stiffer areas. Droplets move faster in the softer areas of the
substrate for constant stiffness gradients.

Our study opens new possibilities to control the dynamics of droplets in soft substrates. The Laplace pressure may be used
to reverse the direction of durotaxis for nonwetting liquid slugs under confinement. Droplet motion can also be controlled by
simply altering the total wettability of the liquid, which can be accomplished, e.g., by using surfactants.

Several aspects of droplet durotaxis are still unexplored and should be the focus of future research. The interaction of
multiple droplets in substrates with nonuniform stiffness or the influence of variable stiffness gradients in droplet velocity could
unveil interesting behavior for a better understanding of this phenomenon. Droplet durotaxis appears to be a powerful way of
controlling not only the velocity but the direction of droplet motion.

Methods
We developed a model for the interaction of liquid droplets and deformable substrates, similar to the one presented in Bueno et
al.35. The model captures the coupling between a nonlinear hyperelastic solid and a multiphase fluid that permits the stable
coexistence of a liquid and a gaseous phase separated by a diffuse interface endowed with surface tension.

Solid mechanics
We use the momentum balance equation to describe the behavior of the solid, which in Lagrangian form can be expressed as

ρ
s
0

∂ 2uuu
∂ t2

∣∣∣∣
XXX
= ∇XXX ·PPP. (2)

Here, ∇XXX is the gradient with respect to the material coordinates XXX and |XXX indicates that the time derivative is taken by holding
XXX fixed; uuu is the solid displacement and ρs

0 is the mass density in the initial configuration; PPP is the first Piola–Kirchhoff stress
tensor. As constitutive theory we adopt a nonlinear hyperelastic material. We use the generalized neo-Hookean model with
dilatational penalty proposed by Simo and Hughes36. In this model, the second Piola–Kirchhoff stress tensor can be defined as

SSS = µJ−2/d
(

III− 1
d

tr(CCC)CCC−1
)
+

κ

2
(
J2−1

)
CCC−1, (3)

where III represents the identity tensor, d denotes the number of spatial dimensions and tr(·) stands for the trace operator; κ

and µ are the material bulk and shear moduli, which are expressed as a function of the Young modulus E and the Poisson
ratio ν using the relations κ = E/(3(1−2ν)) and µ = E/(2(1+ν)); J is the determinant of the deformation gradient, that is,
J = det(FFF), where FFF = III +∇X uuu. CCC denotes the Cauchy–Green deformation tensor, i.e., CCC = FFFT FFF . The first Piola–Kirchhoff
stress tensor is obtained by taking PPP = FFFSSS. The solid Cauchy stress tensor can be computed using σσσ s = J−1FFFSSSFFFT = J−1PPPFFFT .

Fluid mechanics
The behavior of the fluid is described by the isothermal form of the Navier–Stokes–Korteweg (NSK) equations. The NSK
system constitutes the most widely accepted theory for the description of single-component two-phase flows and it naturally
allows for phase transformations in the fluid due to pressure and/or temperature variations. Since we are only interested in
studying droplet motion on solid substrates, we select a parameter regime in which mass transfer between the liquid and gaseous
phase is negligible. Our approach is based on the diffuse-interface or phase-field method32, i.e., an alternative to sharp-interface
models in which interfaces are replaced by thin transition regions. This allows an efficient computational treatment of the
coupled multiphysics problem. In the Eulerian description, the NSK equations can be expressed as

∂ρ

∂ t
+∇ · (ρυυυ) = 0, (4a)

∂ (ρυυυ)

∂ t
+∇ · (ρυυυ⊗υυυ)−∇ ·σσσ f = 0, (4b)

where ⊗ represents the outer vector product, ρ is the fluid density and υυυ denotes the velocity vector. σσσ f is the Cauchy stress
tensor of the fluid, i.e., σσσ f = τττ− pIII + ςςς . Here, τττ stands for the viscous stress tensor, p denotes the pressure, and ςςς is known as
the Korteweg tensor. We consider Newtonian fluids, so the viscous stress tensor takes the form

τττ = µ̄
(
∇υυυ +∇

T
υυυ
)
+ λ̄∇ ·υυυIII, (5)
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where µ̄ and λ̄ are the viscosity coefficients. We assume that the Stokes hypothesis is satisfied, that is, λ̄ =−2µ̄/3. In order to
allow for the stable coexistence of liquid and gas phases we derive the thermodynamic pressure from the Helmholtz free-energy
of a van der Waals fluid37, 38. The resulting van der Waals equation is expressed as

p = Rb
(

ρθ

b−ρ

)
−aρ

2, (6)

and gives the pressure p in terms of density and temperature θ . a and b are positive constants and R is the specific gas constant.
The Korteweg tensor39, 40 is defined by

ςςς = λ

(
ρ∆ρ +

1
2
|∇ρ|2

)
III−λ∇ρ⊗∇ρ. (7)

where λ > 0 is the capillarity coefficient and | · | denotes the Euclidean norm of a vector. The Korteweg tensor gives rise to the
capillary forces that are withstood by the liquid–vapor interfaces.

For the fluid problem we adopt the classical solid-wall boundary conditions. Additionally, the third-order partial spatial
derivatives of the fluid equations require an extra condition to render a well-posed boundary value problem. To do so, we
impose ∇ρ ·nnn f = |∇ρ|cosα , where nnn f is the unit outward normal to the fluid boundary, and α is the contact angle between the
liquid–vapor interface and the solid surface (see Fig. 1). Note that this boundary condition allows the imposition of the contact
angle α at the fluid–structure interface. The apparent contact angle ϕ , however, is determined as part of the solution of the
problem.

Coupled problem
The partial differential equations and boundary conditions associated with the fluid and structure problems must be satisfied
simultaneously. The two systems are coupled at the fluid-–structure interface in order to ensure compatible kinematics
(υυυ = ∂uuu/∂ t) and transmission of tractions (σσσ f nnn f −σσσ snnn f = 0) between the fluid and solid domains.

Computational method
We solve the coupled system consisting of Eq. (2) and Eq. (4) subject to the kinematic compatibility and traction balance
constraints. Equation (2) is solved in the reference (undeformed) configuration of the solid domain. Equation (4) is solved in the
spatial domain occupied by the fluid, which changes over time. This requires the use of geometrically flexible algorithms, such as
the finite element method. Here, we use isogeometric analysis, which is a spline-based finite-element-like method that combines
geometric flexibility with smooth basis functions33, 41. The use of smooth basis functions allows for a direct discretization
of higher-order partial differential equations such as the NSK equation. To enable the use of classical finite-difference-type
methods for time integration, we recast the NSK equations in an arbitrary Lagrangian Eulerian (ALE) formulation:

∂ρ

∂ t

∣∣∣∣
x̂xx
+
(
υυυ− υ̂υυ

)
·∇ρ +ρ∇ ·υυυ = 0, (8a)

ρ
∂υυυ

∂ t

∣∣∣∣
x̂xx
+ρ

(
υυυ− υ̂υυ

)
·∇υυυ−∇ ·σσσ f = 0. (8b)

Here, υ̂υυ is the fluid domain velocity and x̂xx is a coordinate in a reference domain that is used for computational purposes.
Equations (2) and (8) can then be written in variational form and discretized in space using isogeometric analysis. We use the
generalized–α method42 as a time integration scheme. The nonlinear system of equations is solved using a Newton–Raphson
iteration procedure, which leads to a two-stage predictor–multicorrector algorithm. The resulting linear system is solved using
a preconditioned GMRES method.

We express the problem in nondimensional form by rescaling the units of measurement of time, length, mass and temperature
by L0/

√
ab, L0, bL3

0 and θc, respectively. Here, L0 = 1 is a length scale of the computational domain and θc = 8ab/(27R) is
the so-called critical temperature. Using this nondimensionalization, the problem can be characterized by five dimensionless
numbers, i.e., the Poisson ratio ν and the dimensionless Young modulus Ê = E/(ρs

0ab) for the solid problem and the
dimensionless surface tension γ̂ =

√
λ/a/L0, viscosity µ̂ = µ̄/(L0b

√
ab) and temperature θ̂ = θ/θc for the fluid equations.
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