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A Nonparametric Belief Solution to the Bayes Tree

Dehann Fourie, John Leonard and Michael Kaess

Abstract— We relax parametric inference to a non-
parametric representation towards more general solutions on
factor graphs. We use the Bayes tree factorization to maximally
exploit structure in the joint posterior thereby minimizing
computation. We use kernel density estimation to represent a
wider class of constraint beliefs, which naturally encapsulates
multi-hypothesis and non-Gaussian inference. A variety of
new uncertainty models can now be directly applied in the
factor graph, and have the solver recover a potentially multi-
modal posterior. For example, data association for loop closure
proposals can be incorporated at inference time without further
modifications to the factor graph. Our implementation of the
presented algorithm is written entirely in the Julia language,
exploiting high performance parallel computing. We show a
larger scale use case with the well known Victoria park mapping
and localization data set inferring over uncertain loop closures.

I. INTRODUCTION

Robots navigating in an unfamiliar world generally use a
front-end process to combine various sensor measurements
into a common data representation over which inference is
performed to recover the spatial relationships, also known
as state estimation. The inference process, referred to as the
back-end, often faces erroneous constraints in the problem
definition due to data association errors or sensor limitations
which become more likely over time. For example, an imag-
ing system might incorrectly identify two similar features as
the same object. Our work is aimed at improving robustness
and information efficiency in the presence of uncertain data
associations. The key difference in our approach is that
inference is performed over multi-modal posteriors using a
non-Gaussian approximation to portions or even the entire
system, and result in non-Gaussian posterior estimates.

Naive centralized processing over all sensory data would
quickly generate an intractably enormous inference task. Our
effort draws inspiration from the work of Tanner and Wong
[1], as well as the Bayes tree [2] (closely related to the
Junction tree), and extends their approaches to perform infer-
ence over multi-modal non-Gaussian constraints represented
in the factor graph. Our goal is to use approximate belief
propagation to enable multi-modal navigation.

We break away from previous unimodal parametric, i.e.
non-linear least squares optimization, by explicitly tracking

D. Fourie is with the MIT/WHOI Joint Program with J.J. Leonard at
the Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA. {dehann,
jleonard}@mit.edu

M. Kaess is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. kaess@cmu.edu

This work was partially supported by the National Science Foundation
under awards IIS-1318392 and IIS-1426703, and by the Office of Naval
Research under award N00014-14-1-0373 and N00014-16-1-2365.

Fig. 1. Illustration of a Bayesian clique operation as part of a larger
multi-modal belief propagation on a Bayes tree. Two incoming messages
are combined with local potentials to produce one outgoing message during
the upward pass procedure towards the root. Multi-modality is allowed to
exist amongst cliques, rather than selecting a single mode as a maximum-
product type algorithm would.

non-Gaussian belief in the joint distribution. Fig. 1 conceptu-
ally shows multi-modal belief propagation through a clique
as part of a larger Bayes tree. The proposed algorithm cap-
tures ambiguity as uncertainty in the belief space, allowing
consensus to be found through Bayesian computation across
all available data. The final solution may very well still have
several modes, which is in contrast to most existing SLAM
solutions that force the solution to adopt a single mode result.
Section III-D will explore these aspects in more detail.

In this paper we briefly present relevant background on
existing robust robot navigation techniques. We then develop
a methodology for finding consensus among all available
constraints. A one dimensional robot state estimation exam-
ple is used to illustrate concepts. We process the well known
Victoria park dataset with ambiguous associations amongst
(loop closure) tree detections.

II. PREVIOUS WORK

Most literature in simultaneous localization and mapping
(SLAM), bundle adjustment (BA) and structure from mo-
tion (SfM) have focused on using parametric optimization
routines to perform back-end inference. These use Gaussian
parametric representations with a Quasi-Newton iterative
optimization process to infer maximum likelihood estimates
(MLE) for variable assignments.

Several robustness efforts have focused on removing ”bad”
constraints from the factor graph, either through more intel-
ligent front-end, or preprocessing of the factor graph before
actual variable assignment is done. Latif et al. [3] show the
value of finding consensus at the front-end stage, delaying
loop closure constraints until several new constraints agree
and adding them to the factor graph as a batch of new
constraints.



Recently in the SLAM community Graham [4] used
an expectation maximization (EM) approach to smoothly
transition poorly matched measurements to assumed out-
liers. The EM algorithm iterates between covariance weight
selection and optimal variable assignments and suppresses
“misbehaved” measurements by emphasizing the majority of
constraints with consensus.

The method of Graham is local, and an analog variant with
discrete switch variables is proposed by Sunderhauf et al. [5].
Switch variables introduce binary slack variables into the
optimization that can enable or disable each measurement.
Measurements which are inconsistent with the rest of the
graph are discarded through multiplication by zero. Switch
variables are comparable to a null-hypothesis approach [6],
and has the disadvantage of ignoring information and relying
heavily on tuning parameters.

Rather than retrofitting a single parametric solution with
null-hypothesis, as suggested by all the afore mentioned
methods, Huang et al. [7] and others propose parametric
multi-hypothesis methods. Here each possible hypothesis
is explicitly solved with a slightly different and distinct
underlying factor graph. If all possible permutations are
tracked, the correct solution will be contained by one out of
the many available solutions. It is important to note that using
a method like RANSAC on this collection of solutions is not
valid, since each solution represents a different problem and
not a Monte Carlo style variation on the same problem.

Olson et al. [6], [8] proposed the max-mixtures approach
which selects the local maximal weighted Gaussian from a
mixture of Gaussians before continuing with a parametric
optimization routine. Their approach is akin to max-product
inference, which greatly simplifies the inference problem
by discarding multiple hypotheses when neighboring nodes
share information. By analogy, the maximum-a-posteriori
approach does slightly better by selecting the maximally
weighted mode from each clique, i.e. connected grouping
of variables.

FastSLAM [9] is conceptually similar by emphasizing a
subset of permuted parametric solutions. FastSLAM is a
midway between belief methods and multi-hypothesis para-
metric solutions. For example, under correct data association,
a single particle can be used to recover the full SLAM
solution. However, FastSLAM does not exploit structure
within the joint probability distribution, unlike the Bayes tree
[2]. Critically, the Bayes tree precisely encodes the type of
structure needed for multihypothesis tracking, but this has
not previously been studied in detail.

Hybrid inference on the Bayes tree, by Segal et al. [10],
[11], used discrete states to enable or disable measurements
like switch variables, but encapsulated their assignment in
belief. By explicitly splitting posterior belief and optimal
variable assignment computations, a best fit solution is found
by searching local to the initialized state in the Bayes tree.
The work suggests an underlying synergy between ambiguity
through belief and consensus amongst multiple hypotheses.

Furthermore, other near parametric solutions use summa-
rizing statistics, such as the expectation propagation algo-

rithm [12], by propagating an estimate of the first two or
three statistical moments of the posterior. This option may
not be well suited for drawing accurate metric solutions from
multimodal distributions. Two modes imply two different
solutions are possible, but the mean of such a distribution
would collapses the two possibilities into a single parametric
value.

In turn, loopy belief propagation (BP) transmits belief
directly on the factor graph [13]. Loopy belief propagation
requires repeated iteration across the entire network, in
a seemingly random pattern, with little guarantee that an
acceptable solution will emerge. Guarantees that the correct
modes and covariances can be recovered from graphs with
cycles are difficult to find.

The work of Kuehnel [14] investigated Bayesian sampling
and inference techniques which focus on posterior estimation
for structure from motion, and points to the other major
alternative of non-parametric representations. Kernel den-
sity estimators (KDEs) [15] use either Dirac delta kernels
(particles) or piecewise smooth kernels such as Gaussian,
Laplace or Epanetchnikov to represent variable belief. Our
work builds on approximating the true posterior through
kernel density estimation.

III. DEVELOPMENT AND THEORY

By propagating belief on the Bayes tree, we are able to
encapsulate the multi-hypothesis solution in one computa-
tional methodology. Although exact Bayesian inference on
any tree remains exponentially complicated, inference over
the full joint may be avoided by exploiting sparsity in its
structure.

A. Factor Graph to Bayes Tree

We use bipartite factor graphs [16] as a graphical model
to describe variables of interest through constraint relations
originating from sensor measurement likelihood functions.
Fig. 2 shows an example factor graph, with seven pose
locations xi, a new landmark sighting l1 and introduction
of prior knowledge through unary constraints. In general, a
factor graph encodes the joint probability function relating
all state variables Θ and sensor measurements Z:

[ Θ |Z ] = p (Θ |Z) ∝
N∏
i

ϕi (θi, zi)
∏
j

ψj (θj) (1)

If we can compute the posterior, we can find point vari-
able assignments at the most probable location: θ∗ =
argmaxθ p (Θ|Z), also known as maximum posteriori
(MAP) estimates.

A general factor graph contains cycles making inference
more difficult. We can discover cliques in cyclic factor graphs
through variable elimination, and construct an acyclic tree
model representing the same re-factored system. We follow
the Bayes tree algorithm [2] which successfully handles cy-
cles in a near optimal manner. The Bayes tree refactorization
of our example factor graph is also shown in fig. 2.



Fig. 2. Top, an example factor graph with seven poses Xi and one
feature of interest L1. Solid disks represent independent measurements
from different sensor types. The associated Bayes tree for elimination order
x3, x4, x1, x6, l1, x7, x2, x5 is shown below.

The belief over all variables can now be computed over
all r cliques using the tree factorization instead:

[Θ|Z] ∝ [ θfr,0 | z0 ]

r∏
k=1

[ θfr,k | θsp,k, zk ] . (2)

Each clique k consists of frontal variables θfr,k, separator
variables θsp,k and likelihood of sensor measurements zk.
Here k = 0 denotes the root clique.

The re-factorization is absolutely fundamental to find a
computationally tractable solution of the full joint density.
The heuristics used to construct the Bayes tree are special
in that they minimize modifications to the tree when the
underlying factor graph is modified. Modifications to the
factor graph are common in simultaneous localization and
mapping (SLAM)—as the system accrues more information
over time. Aside, this aspect has not been heavily considered
in other main stream Bayesian inference approaches.

B. Approximate Belief Propagation

Reminiscent of previous particle methods in SLAM, we
combine nonparametric representations with the Bayes tree
re-factorization to encapsulate multi-hypothesis inference.
We can use the symbolic structure of the Bayes tree to
represent the information flow of dominant modes in the
original graph. The conditional independence represented by
the Bayes tree factorization allows belief propagation (BP)
to consider only local interactions at each clique. Each clique
in the tree represents a posterior over the local frontal and
child clique variables. This local encoding has much lower
dimension than the full posterior distribution.

We can compute the partial posterior at each clique by
passing the required marginals first up, and then back down,
the tree. These posteriors and marginals encapsulate the
consensus from available measurements by maintaining dom-
inant modes and simultaneously eliminating low likelihood
modes through stochastic approximation. Information, in the
form of belief messages, is passed up from the leaves to the
root clique. The problem is essentially solved at the root,
and all marginals can then be recovered by passing messages
back down the tree.

The crux computation in belief propagation is efficiently
approximating the posterior density at each clique from
multiple incoming child messages and other local potentials.
Once we have the local posterior, the independent variables
are marginalized out before sending a new message to
the parent clique. This process is also referred to as the
Chapman-Komolgorov transit integral:

p (y) = [Y ] =

∫
R
p (x|y) p (y) dx (3)

This problem has been intensely studied by the statistics
community at large [17], [18], [19], [20] and is the subject
of ongoing research.

C. Kernel Densities and Their Product

We use kernel density estimation [15] to approximate non-
Gaussian and multi-modal belief in each of the continuous
state variables:

[
X̂
]

=

N∑
i=1

w(i)N
(
x; x(i), Λ(i)

)
. (4)

where
[
X̂
]

is the estimated probability density over X; x(i)

is the center of, and w(i) the weighting factor, for each of
the N kernels. Note that our intent is to use evenly weighted
particles throughout the Bayes tree belief propagation update
procedure. Lastly, Λ is a bandwidth parameter that deter-
mines the smoothness of the approximated belief.

We use leave-one-out likelihood cross validation
(LOOCV) of Silverman [15] to compute an appropriate
bandwidth for the KDE. We have found that in the
multi-modal case many of the heuristic methods drastically
oversmooth the bandwidth estimates. LOOCV produces
reliable bandwidth estimates with a minimum of ∼ 75
samples per mode in each dimension.

1) Multiscale Product Approximation: Products and con-
volutions are the core operations in Bayesian computation.
Sudderth and Ihler [21] developed an efficient method of
directly computing the product between two KDEs through
multiscale Gibbs sampling. Their method employs a KD-tree
representation over the kernels used in the density approxi-
mation. The product is computed using Gibbs sampling, but
iterations are staged across increasingly finer and finer scales
to promote sampling from all modes. We refer the reader to
their work at [21], [22].

We use the multiscale product computation to estimate
conditional beliefs within each clique as we progress in the
posterior approximation process. The original work of Sud-
derth and Ihler explicitly avoids belief propagation on trees;
they argue that the increased dimensionality within cliques of
a tree produce an exponential increase in complexity. While
this remains true, the Bayes tree performs well in finding
near optimal variable clustering, which minimizes the clique
sizes.



D. Algorithmic Goal

We are looking for the partial posterior to all clique
variables given local potentials and incoming message infor-
mation. We assume that an initial, and consistent, state for all
beliefs is available. The local belief propagation step at each
clique during the upward (forward) direction is depicted in
fig. 1. We seek to find the partial joint distribution (partial
posterior) over variables θ of clique C. We note that frontal
variables only contain information from this and cliques
lower down in the tree, denoted by Yz:

pC = [ θ |Yz ] (5)

where z implies all measurements from the current and lower
cliques of this branch in the tree. The root clique represents
the last step in the upward pass. The marginal posterior
beliefs for all variables are recovered during the downward
belief propagation pass.

Since the exact partial posterior at each clique [ θ | z ] has
exponential complexity, a practical algorithm must make an
approximation at some point during its computation. We
denote an approximated belief as:

p̂C
(i) =

[
θ̂ |Yz

](i)
(6)

at the ith iteration of some approximating process.
Finally, we want the accuracy of the approximation pro-

cess to improve based on some tunable parameter Q. There-
fore the error (measured by some distance or divergence) of
approximated belief from the exact belief should decrease as
computational load is increased via parameter Q,

D (p || p̂Q) < D (p || p̂Q′) Q′ ≺ Q. (7)

And since probability distributions integrate to one, we are
in the realm of convergent but infinite vector spaces.

E. A Possible Solution: Assuming Fixed Points

One approach, inspired by works such as [1], [20], might
involve an iterative procedure for approximating conditional
beliefs over clique variables. Consider that the joint proba-
bility of the clique occurs in the space (S, d) such that

S : R× R× . . .R×X (8)

up to clique variable dimension, along with augmented vari-
ables alphabet X , and distance d (f, g) between distributions.
While probabilistic distances are difficult to pin down, we
acknowledge the Wasserstein metric as one of the better stan-
dard definitions towards satisfying the triangle inequality. In
certain cases we can revert to using non-symmetric Kullback-
Leibler divergence as substitute for checking progression of
some algorithm, DKL (f ||g), i.e. we have:

d : S × S → R. (9)

Taking the current belief estimate of the joint partial
posterior as a function gi (θ) = p̂C

(i) (θ | yz:), we aim to

develop a transformation operator T to modify the belief
approximation towards the true belief:

gi+1 (θ) = (Tgi) (θ) (10)
s.t. D (pC ||gi+1) < D (pC ||gi) . (11)

Furthermore, if we know that a fixed point solution exists,

(Tg∗) (θ) = g∗ (θ) , (12)

which approaches the true belief g∗ → pC as Q → Qsup, we
can focus our algorithmic development on a generic operator
TQ. For such an approach to be reliable, we would also have
to show the operator T to be a contraction mapping:

T : S → S, (13)
D ((TpC)‖(Tgi)) < D (pC‖gi) ∀ g, pC ∈ S, (14)

along with a necessary condition that (T∞pC) = pC . A
more practical version is bounded approximation error i.e.
D
(
pC‖

(
TQ

kpC

))
≤ ε, ∀k ∈ N. If the above holds, we

further expect some relation between the operator fixed point
and detailed balance used in MCMC.

An empirical convergence test involves monitoring the
belief of each variable in the clique. The chain is as-
sumed to have converged to its stationary distribution
when the KL-divergence between consecutive approximated
marginal beliefs drops below the operator quality Q bound:
DKL

(
g′i (θj) ‖g′i+1 (θj)

)
≤ εQ. We refer the interested

reader to the analysis of Tanner and Wong [1].

F. Imputation with Gibbs Sampling Algorithm

We propose a Markov chain approach to draw samples
from the partial posterior of each clique. The samples are
used to produce new approximations of variable beliefs at
each iteration of the chain. The intuition is that samples will
iteratively pass through implicit constraint equations within
each clique.

To construct the Markov chain with Gibbs sampling, we
require samples from the conditional distributions of each
variable in a clique. Consider a clique with frontal variables
θ1, θ2 and separator variable θ3. At each iteration, we wish
to draw N samples from the approximated conditional dis-
tributions:

{θ1,1, θ1,2, . . . , θ1,N}(i+1) ∼
[

Θ̂1 |Θ(i)
2 ,Θ

(i)
3

]
{θ2,1, θ2,2, . . . , θ2,N}(i+1) ∼

[
Θ̂2 |Θ(i+1)

1 ,Θ
(i)
3

]
{θ3,1, θ3,2, . . . , θ3,N}(i+1) ∼

[
Θ̂3 |Θ(i+1)

1 ,Θ
(i+1)
2

]
(15)

In contrast, existing methods generally try to sample a
single event from the product of conditional potentials. We
construct each conditional distribution by taking the required
product between local likelihood, prior constraint and incom-
ing belief message functions involving that variable. In this
example, the conditional is[

Θ̂1 |Θ(i)
2 ,Θ

(i)
3

]
∝
[

Θ̂1

] [
Θ̂1 |Θ(i)

2

] [
Θ̂1 |Θ(i)

3

]
. (16)



The multiscale Gibbs sampling approach [21], presented
earlier, approximates the belief over Θ1 by taking samples
from the product of individual elements of the incoming
belief densities.

We focus on the belief
[

Θ̂1 |Θ(i)
2

]
, which we compute

directly from the sensor measurement likelihood model
ϕk (θ1, θ2; zk) in the factor graph. We find N values of θ1
that correspond to each of the N current θ2 particles:

solve implicit θ
(i)
1 , ∀i ∈ [1, N ]

s.t. zj,k ∼ ηj (z, α)

0 = δj

(
θ
(i)
1 , θ

(i)
2 ; zj,k

)
(17)

where ηj (·) represents the noise distribution of that con-
straint function, imposed through the residual δj which
depends on sensor parameters α. Note that the use of N
values of θ2 constitutes a further approximation and loss
of information, since we are essentially approximating the
convolution operation at the point. Larger values of N will
improve estimation accuracy.

By iterating the chain expressed in eqs. (15) and (17),
we obtain a series of samples from the approximated clique
joint density. Conditional function estimates are themselves
improved by enforcing all local constraint potentials and
incoming message information as the chain progresses.

The combination of tree re-factorization, and elimination
of low probability modes and approximating the convolution
through implicit equation solving is our mechanism for
reducing computational complexity.

Modeling multi-modal belief: The last component we
need is how to model data association uncertainty. While
several new avenues for modeling measurement uncertainty
are possible with a non-parametric solution, we show a multi-
modal loop closure where the likelihood function represents
a measurement originating from one of several ambiguous
landmarks:

zj ∼ [Z |Γ,Θj ] , γ ∼ [ Γ ]ρ = Cat (ρ) , (18)

where γ represents the data association selection based on
some weighting ρ. Our formulation differs from previous
methods in that the discrete variable is marginalized out:

[Z |Θj ] =

∫
[Z | γ,Θj ] [ γ ]ρ dγ. (19)

Fig. 3. Example of bi-modal loop closure proposal, modeled directly in the
factor graph with poses X and ambiguous data association for measurement
from a feature sighting.

IV. RESULTS

We implemented the proposed algorithm in a new pro-
gramming language called Julia [23], for its efficient func-
tional syntax, high performance, and parallel computing
capabilities. We explain the process in more detail with a
modified robot door sighting localization example from [24],
chapter 8. Thereafter we apply the algorithm to the familiar,
and larger scale, Victoria Park dataset.

A. Illustrative Example

Fig. 4 illustrates the localization problem where a robot is
driving and sensing familiar landmarks. The robot instanti-
ates poses at points of interest along its trajectory that will
form the backbone of the inference task. Please see fig. 2
for the associated factor graph, as well as its re-factorization
into a Bayes tree.

Fig. 4. Pictorial of a robot moving in a one dimensional world, modified
from original example in [24].

Given a prior map containing four landmarks at zl ∈
{−100, 0, 100, 300}, the robot believes it must be at one
of these four locations when a sighting is made. We can
represent these four different landmark positions hypotheses
as four modes in the associated measurement factor:

ψl (x) =
[
X̂ | zl

]
=

1

4

{a:d}∑
k

N
(
x; µk, σ

2
)

(20)

1) First Three Poses: After the first landmark sighting at
pose x1, the robot moves forward 50 units to new pose x2.
After a further 50 units, a second landmark sighting is made
at pose x3. The odometry measurement is modeled with a
Gaussian likelihood function

zk ∼ [Zodo |Xi, Xi+1 ] = N
(
µ = fodo (·) , σj2

)
fodo (xi, xi+1) = xi+1 	 xi (21)

where 	 is used to denote the difference on the manifold,
which is important for generalization to higher dimensions.
The constraint functions ϕj (xi+1, xi), indicated by solid
filled factor vertexes in fig. 5, are denoted as

ϕj (xi, xi+1;σj) ∝ [Zodo |Xi, Xi+1 ] .

Finally, we construct the proposal sampling function as a
residual for use with eq. (17)

0 = δj

(
x
(k)
i+1, x

(k)
i ; zk

)
= zk − fodo (xi, xi+1) . (22)

The associated factor graph and Bayes tree at this point is
shown in fig. 5. Note multimodal landmark sightings, ψl (x),
are shown as red unary factors.



Fig. 5. A multi-hypothesis factor graph and Bayes tree representing 100
units driving distance and two independent sightings of four indistinguish-
able but known landmarks.

We know that the first three landmarks are each separated
by 100 odometry units. The exact belief over the three poses,
x1, x2 and x3, therefore have two major hypotheses. Fig.
6 shows the exact and estimated full marginal beliefs over
x1, x2 and x3 in red and black, respectively. While the
exact solution contains 43 = 64 modes, only the two shown
in fig. 6 are significant. This is a key aspect to reducing
computational complexity in multi-hypothesis tracking.

x3

-50 0 50 100 150

x2

-100 -50 0 50 100

x1

-150 -100 -50 0 50

Fig. 6. Estimated marginal beliefs, in black, of all variables of factor graph
in fig. 5 following one complete up and down belief propagation pass of the
the Bayes tree. Ground truth belief is shown in red. Notice how the posterior
has two significant modes as the final output of the inference process—a
key difference from parametric SLAM solutions.

We compute the estimated belief using the MCMC chain
methodology described in section III-F. Starting with the
upward pass of belief over the Bayes tree, as shown in fig. 5.
The joint probability of the leaf clique, which contains one
odometry and a landmark sighting factor, is computed with
Gibbs sampling:

{x1,1, . . . , x1,N}(i+1) ∼
[
X̂1 |X2

(i), zodo

]
[X1 | zl ]

{x2,1, . . . , x2,N}(i+1) ∼
[
X̂2 |X1

(i+1), zodo

]
. (23)

The transit conditionals were obtained through uniform prior
assumption on X2, and observation zodo:[

X̂1 |X2
(i), zodo

]
∝ [ zodo |X1, X2 ] [X2 ] , (24)

since we only have a uniform prior on each of the sensor
measurement terms. We approximate (24) using eqs. (22) and
(17) to construct the kernel density estimate with LOOCV

bandwidth[
X̂1|x(1:N)

2 , z2

]
∝ 1

N

N∑
i=1

N
(
X1; x

(i)
1 , Λloocv

)
. (25)

The second potential function on X1 is the multimodal
prior defined by eq. (20). The belief product is estimated
with the multi-scale product algorithm from section III-C.1.

Frontal variables of the clique are permanently stored as
the MCMC chain progresses, while separator values are
only cached. Once the MCMC chain of the leaf clique
has converged, we can construct the outgoing belief mes-
sage from the latest cached belief over separator variable,
m̂ (x2) = [X2 | zodo, zl ]. This message is sent to the root as
per usual belief propagation.

Once the algorithm completes at the root, the process is
repeated and new belief messages are passed back down the
tree to recover all marginal beliefs. All estimated marginal
beliefs are shown as black traces in fig. 6.

Note that the correct mode in each case may have a lower
probability, and is an artifact of the approximations used.
A sum-product belief propagation (as we use here) operates
correctly with the lower probability mode and is therefore not
a concern as would be in a max-product style approach. Max-
product style algorithms would have selected the dominant
mode at this point and failed.

2) A Third Landmark Sighting: Now the robot drives 200
more units through four more pose positions, to pose x7,
where a third and final familiar landmark sighting is made.
While passing through poses x3 and x4, sightings of a new
feature of interest, l1, is made. New feature l1 is included in
the factor graph also. The complete system factor graph and
tree was shown earlier in fig. 2.

The previous leaf clique x1 : x2 can be directly recycled,
as per [2]. Two new leaf, and a root clique are formed, each
with their own MCMC chains.

l1

155 160 165 170 175

x7

280 290 300 310 320

x6

220 230 240 250 260

x5

180 190 200 210 220

x4

140 145 150 155

x3

90 95 100 105 110

x2

-200 -100 0 100 200

x1

-20 -10 0 10 20

Fig. 7. Estimated marginal belief of all variables, as black traces, following
one up and down pass of the Bayes tree in fig. 2. Baseline marginals, shown
in red, computed via standard forward-backward solution over equivalent
Hidden Markov Model solution. Note the exact marginal of X1 can have
up to 1024 modes, but only one significant mode at 0 corresponds to ground
truth.



We note separate branches are known to be be independent
and can be computed in parallel. The estimated and baseline
marginals for all variables in the factor graph, following a
single upward and downward belief propagation pass of the
Bayes tree, is shown in fig. 7. Notice how consensus has
been reached, showing a single mode in the posterior belief.

B. Victoria Park

The Victoria Park dataset consists of a car with planar laser
scanner and automated tree trunk detection algorithm. We
processed the first 23 mins of driving and raw detection data
without any known data association amongst tree sightings.
We wish to recover the vehicle trajectory and local map
of trees. The factor graph contains around 3800 variable
dimensions and more than 8500 constraint dimensions. Fur-
thermore, the problem contains 482 bi-modal loop closure
proposal landmarks, which account for around 1700 bimodal
constraint functions in the factor graph. Needless to say,
the theoretic number of modes in the system is very large
(greater than 2482) and our focus is to estimate the much
smaller number of prominent modes.

The blue trace in fig. 8 represents the maximum a posteri-
ori point estimate extracted from variable beliefs after multi-
modal posterior estimation has completed (MM-MAP). The
magenta trace represents an equivalent maximum likelihood
estimate (MLE, iSAM1) with all loop closures as classical
unimodal constraints. Recovering all marginal beliefs for
this size problem with the current implementation, Incre-
mentalInference.jl available at [25], takes around 3 hours
on a dual Xeon, 64 Gb RAM computer, utilizing around 6
processing cores on average. Our implementation has room
for several significant speed-ups, and we expect to better
exploit multi-threaded operations for in-clique operations in
future versions.

Fig. 8 shows how MAP estimates remain consistent in
the presence of significant false proposals. Short of a few
poses where an alternate mode happens to be ”stronger”—
further inference passes over the tree, or addition of new
data will most likely emphasize the true mode. It is critical
to remember that the multi-modal solution, as used in this
example, does not throw out any information; we are not
allowing null-hypothesis to happen. We hope to illustrate that
each measurement is trusted, but their association to previous
landmarks in the map are uncertain. Here, data association
happens at inference time without modifying the structure
of the graph in any way. This allows us to exploit the full
structure of the problem throughout all back-end processes.

V. DISCUSSION

Previous histogram style Bayesian inference approaches,
such as in [24], approximate solutions in a finite, discretized
and fixed world grid. The proposed approach here aims to
work freely on the infinite continuous set.

The statistics community have long developed several tree
algorithms—analogues to the Bayes tree—for re-factoring
any factor graph into a more computationally tractable form.
Clique trees, cluster trees, rake-and-compress trees and most
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Fig. 8. Top: The blue trace shows Victoria park argmax p (Θ|Z) point
estimate, with 10% erroneous loop closure proposals. The magenta trace
shows the same result for naive maximum likelihood estimate. Alternative
modes, which were calculated, are difficult to visualize and not shown here.
Bottom: shows the distance between similar poses, using MM-MAP 0%
estimate as baseline, with varying levels of loop closure proposal corruption:
1%, 10% and 20% corruption. See legend for colors. The large values
correspond to an erroneous unimodal MLE equivalent. Notice the black trace
and dots representing equivalent MM-MAP estimates (for 1%, 10% and
20% corruption cases) which have much smaller errors. Keep in mind that in
this example corrupted data implies less loop closures are in effect, reducing
overall accuracy. Suspect minor error in baseline data association (visible
in ∼ 0% MLE), since 1%, 10% and 20% black traces are repeatable.

notably the junction tree, all re-factorize a “loopy” factor
graph into an acyclic representation [26]. Most of the existing
work consider trees much smaller than typically found in
SLAM problems.

We have chosen to approximate the posterior densities of
each clique in the Bayes tree with a set of samples. These
samples can be used to construct belief propagation messages
for inference across the entire tree. We limit the number
of samples according to available computational resources
and thereby concentrate computation around the prominent
modes in the system.

The sample approach simultaneously introduces loss of
information. Loss of information is a vital aspect in obtaining
a computationally tractable algorithm and corresponds to
discarding low likelihood modes, but may lose track of
smaller modes which remain important. Fortunately, if new
information is added the previously lost modes may be
”revived” across an updated tree.

The key advantage of our approach is that when more
information becomes available, the inference on the clique



is repeated and a new set of samples are generated which
may now focus computation on an altered subset of dominant
modes. Thereby data association is deferred into the back-
end inference process and assignment is available through
individual variable beliefs rather than factor graph structure.

Ambiguity in measurement data association can be mod-
eled as multi-modal belief between multiple variables in the
system. This would allow back-end solution to internally
find Bayesian consensus amongst ambiguous data without
modifying the structure of the factor graph. This is a vital
difference to previous approaches.

The ability to process minimum incremental updates to the
Bayes tree, which may now include multi-modality, is highly
desirable and part of our future work efforts. Furthermore,
the Bayes tree symbolically encodes the multi-hypothesis
belief of an otherwise obscure variable interaction shown by
the factor graph alone. We intend to further exploit the Bayes
tree structure by combining classic unimodal parametric
methods for portions of the tree which involve only uni-
modal belief, and switching to nonparametric methods when
multimodality is encountered. Finally, recent work on the
connection between reproducing Hilbert space embeddings
and conditional distributions [27], [28] offers a different
and potentially more efficient mechanism for approximate
Bayesian computations. Further methods, such as progressive
Bayes [29] might prove very powerful indeed.

VI. CONCLUSION

A nonparametric solution is more costly to compute, but
with increased computational power we can start looking to
solutions beyond unimodal parametric Gaussian solvers. The
advantage is that we can now start to solve more general
problems. For example, factor graphs should not be limited
to unimodal belief assumptions. If we are able to capture
data association uncertainty in our models, as we have shown
here, then we can focus development on solvers which adhere
to the factor graph representation as a common language.
The proposed method is unique in that data association
ambiguity can be modeled in the factor graph and left up to
the inference engine to solve. Most existing techniques use
heuristics and local approximations to simplify the inference
task, while the proposed method seeks to approximate the
true Bayesian posterior.
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