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1 Introduction

It is often taken for granted that investments in innovation underpin economic growth (Romer

1990; Aghion and Howitt 1992). In leading models and empirical studies, these R&D investments are

undertaken by private firms with the goal of creating new products or improving existing ones (Pakes

and Griliches 1980). While most studies of innovation focus on a firm’s own R&D investments,

and more recently on knowledge spillovers between firms (e.g., Bernstein and Nadiri 1989; Bloom,

Schankerman, and Van Reenen 2013), the impact of public sector research investments has received

less attention.

In many industries, private-sector innovations often have their roots in public-sector research

investments. The pharmaceutical firm Novartis, for example, made use of decades of government-

funded research on gene mutation and cell-signaling in the development of Gleevec, a revolutionary

treatment for chronic myelogenous leukemia (Wapner 2013). In the U.S., the belief that public-

sector research matters for private-sector innovation has fueled considerable federal investment in

R&D for at least the past seventy years—despite the fact that economists and policymakers have

acknowledged that little is known about the returns to these investments (Jaffe 2002; Marburger

2005). This paper aims to fill this gap in knowledge.

Assessing the impact of public-sector research is conceptually different from quantifying the

returns to private R&D, and in many ways more difficult. There are three issues. First, while private

R&D investments are typically targeted to specific applications in the hope of direct commercial

payoffs, public R&D investments—especially those in basic science—are often made with the op-

posite goal: to produce non-rival ideas that maximize potential spillovers. As a result, traditional

empirical approaches—which rely on foreseeable linkages between investments and outcomes—are

ill-suited to help trace the unpredictable and often convoluted path between public expenditures

and final commercial products (Griliches 1992). Second, analyses of the effects of public R&D on

outcomes are beset by potential endogeneity problems: public investments may target research areas

with the most potential for follow-on innovation, for example those where disease burden is rising

(Acemoglu and Linn 2004) or scientific opportunities are increasing (Lichtenberg 2001). Finally, re-

search on public R&D needs to account for the possibility that public research “crowds out” private

investment (David, Hall, and Toole 2000).
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This paper makes progress on each of these issues to provide causal evidence on the returns to

public investments in biomedical research.1 Our empirical setting is the biopharmaceutical industry,

an area where innovations are thought to be extremely important for health, productivity and

welfare, and where the US National Institutes of Health (NIH) is the single largest funder of research

in the world. We analyze the impact of NIH research funding on patenting by private sector firms,

from 1980 through 2012.

Our first contribution is to construct new measures of the commercial output associated with

publicly funded research. The most recent work in this area examines the effects of funding for

a disease on outcomes relevant for that same disease, typically using pre-specified lag structures

(Manton et al. 2009; Toole 2012), or selecting optimal lags based on goodness-of-fit criteria (Blume-

Kohout 2012). While these papers are an important step toward understanding the relationship

between public research inputs and practical outputs, a drawback to these approaches is that they

do not capture the impact of funding on other diseases or with other time lags. This concern is

particularly salient in our setting because the possibility of such unanticipated spillovers is among

the main rationales for the public funding of science in the first place.

To capture the potentially unanticipated impact of public funding, our paper takes a different

approach. We construct a dataset that uses bibliometric information to explicitly link NIH grants

with the publications they support and the patents that cite those publications—even if these

patent outcomes are in substantially different research areas, and regardless of the lags involved.

By letting the data reveal the relevant linkages, we are able to identify patents that build on NIH-

funded research without making a priori assumptions about the diffusion of scientific knowledge

over time and across diseases.

Our second contribution relates to identification. Public investments may target research areas

with the most potential for follow-on innovation, which could lead to a correlation between public

funding and private patenting even if public investments were unproductive. To address concerns

about the endogeneity of public investments, our paper begins by considering a finer-grained unit of

analysis: NIH funding for a given disease (D), relying on a specific set of scientific approaches and

methodologies (S), at a particular time (T). Organizing our analysis at the level of a DST captures
1Adams (1990) uses distributed lags and panel data to shed light on the effect of scientific knowledge stocks on

productivity growth at the industry level. Moretti, Steinwender, and Van Reenen (2014) use shocks to defense R&D
induced by the end of the cold war to identify the impact of government expenditures on TFP growth, once again at
the industry level.
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the notion of a biomedical research area as a collection of projects focusing on a particular disease,

that also share an interest in the same underlying scientific questions. Constructing funding flows

for a DST is also straightforward, since every NIH grant is funded by a specific Institute (e.g., the

National Cancer Institute), which tells us the disease area it is targeting, and evaluated for scientific

merit by a committee (e.g., Behavioral Genetics and Epidemiology), which informs us about the

science domain to which it belongs.

Using DST as the unit of analysis helps our identification strategy in two ways. First, it en-

ables us to include detailed pairwise disease/science, disease/time, and science/time fixed effects to

account for the most common potential sources of endogeneity in funding (e.g. differences in inno-

vative potential across diseases, changes in disease burden, and changes in scientific opportunity).

Second, it enables us to construct an instrument for total DST funding, by taking advantage of NIH

funding rules which specify how grant applications are prioritized across disease and science areas.

As an illustration, consider a grant application related to a specific disease/science area, say

cancer/cell signaling. This grant is evaluated by a group of cell signaling experts and is assigned

a raw score. One might decide whether to fund this application by comparing its raw score with

other cell signaling applications (its science rank) or by comparing it with other cancer applications

(its disease rank). The NIH does neither. Instead, it decides whether to fund an application based

on how its science rank compares with the science ranks of other applications in the same disease

area (its “rank of rank”). As we explain in detail in Section 3.2, a funding threshold based on

rank of ranks effectively means that DSTs can have the same number and quality of applications

based on peer review evaluations, but nonetheless differ in the total funding that they receive. We

operationalize this notion of “windfall” funding as the amount of funding for a DST that comes from

grants that fall just above an Institute’s funding threshold—holding constant its applications’ raw

scores and science ranks. Our IV approach thus compares patenting outcomes across DSTs that look

similar in terms of scientific quality, but differ in windfall funding arising from their applications’

rank of ranks. We demonstrate that these windfall funds do indeed look random at the DST level

and that grant applicants cannot anticipate these fluctuations and strategically submit applications

in response.

The third contribution of our paper is to account for the impact of crowd-out. We develop

a novel method to identify the set of private-sector patents intellectually related to a given NIH

research area—even if these patents do not build explicitly on NIH-funded work. By identifying
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private-sector patents in areas potentially influenced by NIH funding, we are able to measure the

impact of public research investments on total private-sector output in affected areas, net of potential

crowd-out.

Our results show that NIH funding increases total private-sector patenting. We obtain sim-

ilar estimates using both our fixed effects and IV estimation strategies. Our preferred empirical

specification suggests that an additional $10 million in NIH funding for a research area generates

2.3 additional private-sector patents in that area, or roughly one patent for every two to three

NIH grants. Not all patents are equally valuable; the distribution of patent value is highly skewed

(Harhoff, Scherer, and Vopel 2003). In a series of back-of-the envelope calculations (Section 5.4

and Table 10) we report a range of estimates for the private value of these patents using different

approaches.

The empirical approach we propound also sheds light on the path through which NIH in-

vestments influence private sector innovation by developing estimates of the cross-disease spillover

effects of NIH funding. We show that fully half of the patents resulting from NIH funding are for

disease applications distinct from the one that funded the initial research. The size of this effect

underscores the importance of our approach to linking patents with funding: by looking only within

the same disease area when measuring impact, the prior literature in this area appears to have

missed almost half of the total impact of basic research funding.

We proceed as follows. In Section 2, we discuss institutional background and the various

effects that NIH funding may have on private patenting. We describe our conceptual framework

and empirical strategy in Section 3. Sections 4 and 5 present our data and main results, respectively.

Section 6 concludes. Robustness checks and alternative specifications can be found in Appendices

F, I, J, K, and L. Appendix M discusses the impact of NIH funding for a given research area on

how firms reallocate investments to and from other areas.

2 Background

2.1 The NIH

The NIH was responsible for funding 28 percent of U.S. medical research in 2008. This com-

pares to 37 percent of research funded by pharmaceutical firms, 15 percent by biotechnology firms,
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and 7 percent by medical device firms (Dorsey et al. 2013).2 The bulk of NIH funding is for “ba-

sic” research that aims to extend the frontiers of medical understanding. About one-third of NIH

funding is for clinical research (including patient-oriented research, clinical trials, epidemiological

and behavioral studies, as well as outcomes and health services research) that is more applied in

nature. The agency also supports a range of training grants that help develop the U.S. scientific

and medical workforce.

The NIH comprises 27 Institutes or Centers (ICs) that are typically organized around body

systems (e.g., the National Heart, Lung, and Blood Institute), or disease areas (e.g., the National

Cancer Institute). Each Institute receives its own Congressional appropriation and is responsible for

funding research that is potentially relevant to its mission. Scientific evaluation of grant applications,

by contrast, occurs primarily in approximately 180 standing review committees known as study

sections. Each study section is organized around a scientific topic (for example, “Behavioral Genetics

and Epidemiology” or “Cellular Signaling and Regulatory Systems”) and is responsible for evaluating

the quality of applications in its area. Study sections review grant applications from multiple

disease areas with similar scientific underpinnings. In turn, ICs fund applications evaluated by

multiple study sections. As such, we construct total NIH funding for our unit of analysis, the

disease/science/year (DST), by identifying the amount of funding for all grants assigned to a given

NIH institute (which corresponds to a disease area) and study section (which captures the scientific

area) pairing, in any given year.

Study sections assign each application a raw score. During the timespan covered in our analysis,

these ranged from 5.0 (worst) to 1.0 (best). This raw score is meant to be a summary statistic for the

study section’s assessment of the quality of that application. Raw scores are then normalized within a

study section and converted into a percentile. We call this normalized score the application’s “science

rank.” Once a study section has evaluated an application, the NIH’s funding rule is mechanical: an

IC must fund the applications it is assigned in order of their science rank until its budget has been

exhausted. The worst score that is still funded is known as that IC’s “payline.” In summary, the

peer review process at NIH generates three separate scores for each application: (i) the “raw score”

given by the study section; (ii) the within-study section “science rank” immediately derived from

the raw score; and (iii) the within-IC ranking of science ranks. It is this final “rank of rank” that

determines whether an application is funded. As discussed in the introduction, the structure of the
2Other funders include foundations, accounting for 4 percent, other federal funders, about 5 percent, and state

and local governments, also about 5 percent.
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NIH and its funding rules will play an important role in our empirical work. Section 3.2.2 details

how we exploit these features to isolate exogenous variation in NIH investments across research

areas. Appendix A provides more details about the NIH and its funding rules.

2.2 Measuring the impact of publicly funded medical research: previous re-
search and challenges

Publicly-funded research can influence private innovation in numerous ways and through

diverse channels, including through increasing the stock of knowledge (which may suggest new

projects, or aid in completion of existing projects), training graduates, creating scientific instru-

ments and tools, creating networks, and creating new firms (Salter and Martin 2001; Cohen, Nel-

son, and Walsh 2002; Mansfield 1995; Bekkers and Bodas Freitas 2008). Public and private sector

biomedical research can be linked through all of these overlapping channels (Henderson, Orsenigo,

and Pisano 1999).

One channel which has attracted considerable attention from policy makers and economists

is the patenting and licensing of university inventions, which are then developed by private firms.

Academic patenting and licensing have become increasingly common in recent decades, encouraged

by the 1980 Bayh-Dole Act and other policies. This has led to an extensive set of studies focusing on

IP-based, academic entrepreneurship (Henderson, Jaffe, and Trajtenberg 1998; Mowery et al. 2004;

Azoulay, Ding, and Stuart 2009). Yet survey research (Cohen, Nelson, and Walsh 2000; Arundel and

Geuna 2004; Agrawal and Henderson 2002) as well as work by economic historians (Rosenberg and

Nelson 1994) suggest this channel may miss a potentially more important contribution to private-

sector innovation: the informational value of scientific research (typically communicated through

publication and other “open science” channels), which may suggest project ideas to firms and more

generally improve the efficiency of their R&D activities.

These potential benefits are more difficult to trace than inventions directly patented and li-

censed by academics. Previous research has examined the effects of public science spillovers on

private innovation in different ways, including surveys (Cohen, Nelson, Walsh 2002; Mansfield 1995)

and analyses relating variation in public funding (by geography, scientific area, disease area, and

over time) to outcomes (Jaffe 1986, Adams 1990; in medicine see Blume-Kohout 2012; Toole 2012;

Manton 2009). A common approach to measuring these spillovers from academic research is to look

at citations to university patents (Trajtenberg et al. 1997). However, a high share of patent-to-
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patent citations comes from examiners, not applicants (Alcácer and Gittleman 2006; Sampat 2010),

perhaps compromising these measures of knowledge flows. Moreover, previous research suggests

that patenting is a minority activity in academia (Azoulay, Michigan, and Sampat 2007), implying

that the patent-to-patent citation lens may have a narrow focus.

In the analyses below, we use patent-to-article citations instead. Building on the idea that

citations in journal articles can be used to track knowledge flows, the pioneering work of Francis

Narin and colleagues at CHI research in the 1970s used references on the front page of patents to

scientific articles (part of the “non-patent references” cited in the patent), to examine the “science

dependence” of technology (Carpenter and Narin 1983) and linkages between science and technology

(Narin and Olivastro 1992, 1998). This research also found that life science patents cite non-patent

references more intensively than do patents from other fields. In the economics literature, the count

of non-patent references (or the share of non-patent references in all citations) has been used a proxy

for the extent to which patents are science-based (e.g., Trajtenberg et al. 1997). Patent-to-article

citations are less likely to come from examiners than are patent-to-patent citations, and recent

validation against survey results (Roach and Cohen 2013) suggests they are more informative than

the latter in measuring the intellectual influence of public sector research. Our paper builds on and

extends this approach, by linking life science patents back to the articles that cite them, and the

specific NIH grants funding the production of these articles.3

A long-standing challenge in evaluating spillovers from publicly funded research is that effects

are realized with long and variable lags (Griliches 1992) and in potentially diverse fields. Another

major advantage of linking grants to articles to patents is that this allows the data reveal where to

look for impact in time and space. In addition, as discussed below, our paper goes beyond previous

work trying to assess the causal impact of public funding (Blume-Kohout 2012, Toole 2007, Jaffe

1986, Adams 1990) by using plausibly exogenous sources of variation in funding. (To our knowledge

the only paper to do this previously is Moretti et al. [2014]).

A research focus on spillovers implicitly assumes that NIH funding raises returns to private

R&D and thus “crowds-in” private research investments. It is possible, however, that public invest-

ments may “crowd-out” private-sector efforts.4 This could happen for a variety of reasons. Public
3The practical challenges encountered in order to systematically track and catalog patent-to-publication citation

linkages are described in Appendix D2.
4This concern is especially salient in the life sciences, since the organization of drug discovery research in the

biopharmaceutical industry has been greatly transformed to mimic that of academic labs in terms of size, intellectual
autonomy granted to researchers, and rewards linked to the production of high-impact publications (Henderson 1994).
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funds could simply be subsidizing the cost of a firm’s existing research. Alternatively, they could

lower the costs of entry for competitors, reducing the firm’s ability to reap market rewards from its

R&D investments. As explained in more detail below, our analysis also goes beyond previous work

in trying to account for potential crowd-out.

3 Empirical strategy

Our approach makes progress on addressing the key measurement and inference challenges

faced by the existing literature. Section 3.1 describes how we measure outputs associated with NIH

funding. Section 3.2 describes our OLS and IV approaches to inference, and provides support for

our identification strategy.

3.1 Measuring Biomedical Innovation Using Patents

We develop new ways to link public research investments with private patenting outcomes.

Our main outcome variable is patenting by private sector biopharmaceutical firms (see Appendix B

for more details on these patents). Patents may appear a surprising choice; researchers studying

medical innovation have typically focused on outcomes that are more immediately welfare-relevant,

such as reductions in mortality and morbidity (Manton et al. 2009), drugs entering clinical trials

(Blume-Kohout 2012), or new drug approvals (Toole 2012). However, these outcomes cannot be

readily linked to variation in public research expenditures without restrictive assumptions. By

contrast, biomedical patents can be linked to specific grant expenditures using the bibliographic

references they contain. Moreover, securing patents is the principal way that biopharmaceutical

firms appropriate the returns from their R&D investments (Cohen, Nelson, and Walsh 2000).

Our key methodological innovation is in how we link patents to NIH research investments. To

see this more explicitly, consider an innovation production function in which patenting output pντ

in a research area ν at time τ is determined by knowledge inputs krt from research areas r, at times

t. In theory, output pντ could be a function of inputs from many different research areas r 6= ν and

many different times t 6= τ . In practice, however, previous work generally places strong restrictions

on the nature of the relationship between inputs rt and outputs ντ : that investments in one area

Many biomedical scientists also search for positions in academe and industry simultaneously (Stern 2004), and the
patterns of mobility between the private and the public sector have been extensively documented (Zucker, Darby,
and Torero 2002).
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only impact outputs in that same area (r = ν) and with a fixed lag structure.5 Our approach differs

in that we use bibliometric data to trace the impact of a given investment krt on patenting in a

range of areas ν and time periods τ . This framework is formalized in Appendix H.

Using this approach, we construct two measures of patenting outcomes, which we describe

now. Figure 1 provides an overview of this process and Appendix G provides a detailed description.

Patents citing NIH-funded research. We first link NIH grants to the publications they sup-

port using grant acknowledgement data.6 Second, extending bibliometric approaches surveyed in

previous section, we link those publications to patents that build on their findings (Figure 1, second

column).7

Taking the acknowledgment and citation data together, we define Patents
d̃st

as the set of

patents that cite publications that in turn acknowledge funding from that DST. These patents need

not target the same disease as the original source of NIH funding with which they are linked. For

example, if a patent related to cardiovascular stents cites research funded with money allocated to

diabetes, we would associate this cardiovascular patent with diabetes funding. We also do not make

ex ante assumptions about the nature of time lags between the date of the original grant and the

date of the linked patent. A 2005 patent can be linked to a 2004 and 1994 grant if those grants

produce publications cited by that patent.

This approach has two important drawbacks. First, relying on direct publication-to-patent

citations limits the type of intellectual influences we can account for. We would not, for instance,

credit NIH funding if it led to patenting through more complicated citation patterns (e.g., a patent

that cites a publication that cites a publication that acknowledges the NIH), informal interactions

(e.g., two researchers meet and exchange ideas at a conference supported by NIH funding), or the
5One notable exception is Bloom, Schankerman, and Van Reenen, who consider spillovers associated with private

R&D investments.
6This is relatively straightforward because PubMed started capturing this information systematically starting in

1980. Appendix D1 provides more detail, and discusses the issues that may arise in our design if researchers inflate
their publication accomplishments to improve their odds of getting a grant renewed.

7In previous work, Sampat and Lichtenberg (2011) looked at marketed drugs citing NIH publications, finding that
over 40 percent of the drugs approved between 1988 and 2005 cite an NIH-funded publication. This paper builds on
the strategy of linking drugs to patents to publications to grants, but extends it in several ways. Most importantly,
rather than a retrospective approach examining what share of drug development can be linked back to NIH funding,
our analysis is prospective, examining how variation in NIH funding relates to subsequent innovation. This approach
allows for “failure” (grants that do not generate any innovation), and is relevant for policy makers considering changes
to NIH funding.
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hiring of NIH-funded trainees by private-sector firms. Omitting these channels may lead us to

underestimate the impact of NIH funding.

Second, by accounting only for patents that explicitly cite NIH-funded research, this measure

treats patents that do not exist and patents that do exist but which cite only privately-funded

research in the same way—neither are linked to a DST. As a result, if increased DST funding led to

an additional linked patent, we could not tell whether this patent would otherwise have existed or

not, i.e., whether private firms would have funded the necessary research instead. In other words,

this first measure asks whether NIH-funded research is useful to private firms. While informative,

this is not the same as asking whether NIH funding increases total private-sector innovation in a

research area.

Patents related to NIH-funded research. Our second outcome identifies all patents in the

intellectual vicinity of an NIH funding area, whether or not these patents actually cite NIH-funded

research. This allows us to account for a richer set of channels through which NIH funding may

impact private-sector patenting. These patents, hereafter referred to as simply “related patents,”

may be linked to NIH funding via a longer citation chain or belong to NIH-trained scientists who

join private-sector firms. Crucially, these related patents may also be the result of private sector

investments in related research areas; they need not be financially dependent on NIH at all.

Capturing the total number of private sector patents in an intellectual area is also important

because it allows us to address another issue complicating previous attempts to assess the impact

of science: the possibility of crowd-out. If all NIH funding did was crowd-out private research, we

would not expect NIH funds to increase the total number of patents in a given research area; it would

simply change the funding source for those patents. If, instead, NIH funding led to the development

of patents that would not have otherwise been developed, then we should see an increase in the

total amount of innovation in a research area. The impact of NIH funding on total innovation in a

research area thus captures the net effect of potential crowd-in and crowd-out.

To construct this measure, we define a patent to be related to an NIH research area if it cites

research similar to research that is actually funded by that area. In particular, we match each NIH

grant in our sample to publications that acknowledge its support and then link these publications

to a set of intellectually similar publications using a keyword-based similarity measure developed
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by the National Library of Medicine.8 The final step in our matching process is to identify the

set of patents that cite this broader set of publications (see Figure 1). The set of patents linked

to a DST in this way can be thought of as “related,” in the sense that they are part of the same

intellectual area as that DST. Again, this approach does not require that “related” patents be in

the same research area or issued at the same time as the original NIH disease/science area.

3.2 Estimating equation and identification

In our empirical implementation, we define a research area r at time t to be a disease/science/time

combination, or DST. This is a finer-grained level of analysis than is customary in the literature,

which tends to aggregate the data up to the disease level (e.g., Toole [2012]). In turn, a DST is

intended to identify projects that share a similar disease application and benefit from an under-

standing of similar scientific methods and mechanisms at a given point in time.9 Given this unit of

analysis, we estimate the following:

Patents
d̃st

= α0 + α1Fundingdst + Controlsdst + εdst (1)

The main explanatory variable, Fundingdst, is the amount of funding allocated to grants that fall

in a particular disease/science/year combination. Our outcome variable, Patents
d̃st

, is the full set

of private-sector patents that rely on Fundingdst as an input, even if they do not directly relate to

the same disease or science area, and regardless of the lags involved.10

We address the potential endogeneity of public investments in R&D in two ways.

3.2.1 Fixed Effects Estimation

Our benchmark OLS specification is:

Patents
d̃st

= α0 + α1Fundingdst + β′Xdst + δds + γdt + νst + εdst (2)

8The PubMed Related Article (PMRA) algorithm analyzes keywords and keyword combinations that are assigned
to all life-science publications by the National Library of Medicine and defines similarity on the basis of how many
of these keywords overlap. This is discussed in detail in Appendix E.

9We discuss the practical details involved in assigning grants to particular DSTs in Section 4.1.
10An alternative approach would be to define a research area narrowly, for example at the level of the individual

grant. In Appendix C, we explain why we believe that exploiting grant-level variation in the funding process is less
useful to shed light on the main questions of policy interest.
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Equation (2) includes pairwise disease/science, disease/year, and science/year fixed effects that

account for many common sources of endogeneity. For example, diseases that affect more people

may receive more public and private interest. Further, some research topics may be more tractable

than others; the genetics of breast cancer, for instance, can be studied using a variety of animal

models, whereas the same is not true for the genetics of schizophrenia (Nestler and Hyman 2010).

To account for time-invariant differences in innovative potential among disease/science areas, we

include disease/science fixed effects (δds). The innovative or commercial potential of disease and

science areas may of course also change over time. We include disease/year fixed effects γdt to control

for potential confounders such as shifting disease burden or public perceptions of disease salience.11

NIH funding may also respond to scientific advances. The introduction of new DNA-sequencing

technologies in the late 1990s, for instance, may have increased both public and private research

funding for diseases with a genetic component. We include science/year fixed effects, νst, to control

for this type of variation. Finally, in our most detailed specification, we also include fixed effects for

the number of applications that a DST receives. These indicator variables proxy for time-varying

interest in a particular research area that may not be captured by our other controls. In our main

specifications, this regression is weighted by the average size of a DST, that is, the average yearly

number of grants in a disease/science area.12 To account for serial correlation, standard errors are

double-clustered at the disease and science levels (Cameron and Miller 2015).

The remaining funding variation in equation (2) comes from within-disease/year or within-

science/year changes. Why is it, for instance, that cancer/cell signaling may receive more funding

in 1995 than cancer/tumor physiology? After saturating our specifications with fixed effects, our

identifying assumption is that NIH funding for a specific DST is not correlated with changes in the

innovative or commercial potential for specific disease/science combinations.

This assumption would be violated if either Congress or NIH administrators allocated funding

to DSTs on the basis of their potential. In response to the success of Gleevec, for example, the

National Cancer Institute may have decided to devote a greater proportion of its budget toward the

study of cell signaling or gene expression, scientific topics that are particularly relevant for targeted

cancer therapies. If private firms were behaving similarly, then equation (2) would not be able to
11For instance, Congress may allocate more money to the National Cancer Institute in order to fight the “war on

cancer” (Mukherjee 2010), and the private sector may make similar investments, suggesting a causal relationship that
may in fact be spurious.

12Unweighted results are presented in Appendix K, Table K1.
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identify the impact of public funding, because we would expect changes in patenting for this area

even in the absence of additional funds.

In practice it is difficult for the NIH to direct funding to DSTs on the basis of their evolving

potential. As discussed in Section 3, applications are funded in order of their science ranks. This

means that if cell signaling was a particularly “hot topic in a given year, the NCI could not decide

to fund the top 20 cancer-related cell-signaling applications without first funding the top 19 cancer-

related applications in all other science areas. Most likely, it would not have the budget to do so.13

The rigidity of this system was cited in an NIH-commissioned report from 2000, urging reform:

“...Researchers perceive that...applications describing some of the most productive, highest impact
work may be assigned to too few study sections, causing too much of the ‘best science’ to compete
with itself; that the scope of some study sections is restricted to research with relatively low
impact, resulting in undeserved ‘entitlements’. . . ”14

3.2.2 Instrumental Variables Estimation

Even if the NIH cannot direct funding to specific DSTs, Fundingdst could still be endogenous if

study section reviewers assigned better scores to applications from DSTs with more potential. If, for

instance, the cell-signaling study section decides to give better scores to cancer-related applications

after the discovery of Gleevec, then the resulting funding allocation for the cancer/cell signaling

DST would reflect this unobserved enthusiasm.

To address this source of endogeneity, we construct an instrument for DST funding that is not

correlated with a DST’s potential. Our instrument works by isolating variation in DST funding

coming from procedural rigidities in the NIH funding process that can lead equally meritorious

grant applications to have different funding outcomes. These differences in grant-level funding then

translate into differences in DST-level funding.

To understand how this instrument works, and the type of variation it relies on, we first

consider a stylized example with two disease areas and two science areas. Having discussed how our

instrument works in this setting, we then define it more generally for our entire sample.
13The main way that ICs get around these rules is to either fund an application out of scoring order or to issue a

request for proposals (RFPs) or applications (RFAs) on a specific topic. RFPs and RFAs account for only a small
portion of NIH grant spending. Grants responding to these are evaluated in specially empaneled study sections,
which we exclude from our analysis. See Appendix J for a discussion of out-of-order grant funding.

14“Recommendations for Change at The NIH Center For Scientific Review,” Final Phase 1 Report, Jan 14, 2000.
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Stylized example. Figure 2 illustrates our identifying variation. We focus on the National Cancer

Institute (NCI) and label grants assigned to other disease areas as “Other.” The NCI is responsible

for funding grant applications from two study sections: Cell Signaling and Tumor Physiology. We

focus on the following two DSTs: Cancer/Cell Signaling and Cancer/Tumor Physiology (the time

dimension is fixed in a given year and suppressed for expositional convenience).

The top two panels of Figure 2 describe the scores of grant applications to study sections.

Each row represents a grant application. Study sections are science-based evaluation committees

that score grant applications, potentially from many disease areas. In the top left panel, the cell

signaling study section reviews applications related to cancer and other disease areas. In the top

right panel, the tumor physiology study section reviews cancer and other applications as well.

Recall from Section 2.2 that the NIH implicity assigns three scores to each grant application:

(i) a cardinal raw score directly given by peer evaluators in a science-based study section; (ii) an

ordinal science rank, which describes how an application’s raw score compares to other applications

evaluated in the same science-based study section; and (iii) another ordinal “rank of ranks” that

describes how an application’s science rank comes to the science ranks other applications evaluated

by different study sections but which share the same disease area. The top left panel of Figure 2 lists

raw scores and science ranks for all 15 applications evaluated by the cell signaling study section.

Similarly, the top right panel does so for applications evaluated by the tumor physiology study

section. For completeness, we have also included the dollar amount requested by each grant, which

we assume for simplicity is $2 million for all grants (requested funding amounts do not impact an

application’s score).

Study sections score grant applications within science areas, but do not fund them. Funding

is provided by NIH Institutes at the disease area. The bottom panel of Figure 2 illustrates funding

allocations for cancer-related grant applications. In order to decide which applications to fund, the

NCI ranks grant applications on the basis of their “rank of rank.” For example, G1-G5 have the five

highest science ranks of all cancer applications, so in this example the five top cancer applications

come from cell signaling. The cancer application with the next highest science rank is G21, a tumor

physiology application with a science rank of 6. Next, both G7 and G22 have science ranks of 7; we

list G7 first then G22, using their raw score as a tiebreaker. Application G8 has the next highest

science rank, 8, so it receives the next best priority rank, 9. The bottom left panel of this Figure
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illustrates the completed rankings for all 16 cancer applications across both the cell signaling and

tumor physiology study sections.

Such a priority ranking of applications is created for each NIH Institute and funding is allocated

based on this ranking. In our example, we assume that the NCI has enough resources to fund

the top 9 applications only. The bottom right section of this figure illustrates statistics for the

grant applications associated with our two DSTs of interest: cancer-cell signaling and cancer-tumor

physiology. Overall, research in the cancer-cell signaling DST is designed to potentially be of

higher quality: there are more applications, perhaps signaling more interest and on average these

applications receive both better raw scores and better within-study section science ranks. As a result,

the cancer-cell signaling DST receives more total funding: $14 million compared to $4 million.

In general, this funding difference could be correlated with unobserved scientific potential or

other factors that may also impact follow on private-sector patenting: cancer-cell signaling might

have more scientific potential, which leads to both more total DST funding and, independently,

more patenting.

We address this by using variation in DST funding within a tight window around an IC’s

payline, rather than using variation in total DST funding. In this example, we consider the 5 grant

window above and below the NCI’s payline: these are shaded darkly in Figure 2. Within this

window, the grant applications associated with cancer-cell signaling and cancer-tumor physiology

appear similar in quality: both DSTs have the same number of applications within this window,

and those applications receive the same average raw score and have the same average science rank.

Nonetheless, however, even within this window, our DSTs receive different amounts funding. Cancer-

cell signaling receives funding associated with G5, G7, and G8 for a total of $6 million while cancer-

tumor physiology receives funding for G21 and G22, for a total of $4 million.

This difference of $2 million comes from differences not in raw scores or rank scores (both of

which might plausibly be thought of as reasonable measures of application quality), but in “rank

of ranks” score. Holding constant average raw scores and rank scores as we do in this example,

the remaining variation in rank of ranks is driven by the relative quality of applications in other

disease areas. For example, the cancer-tumor physiology application, G24, is not funded because

the cancer-cell signaling application G8 has a higher science rank. This happens not because of the

quality of G24 relative to G8 (in fact, G24 receives a higher raw score), but because G8 faces weaker
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competition from cell-signaling applications in other disease areas (for example, G9-G11, G13, and

G15).

We believe that this type of variation is not correlated with underlying innovative potential:

the additional $2 million that cancer-cell signaling receives in this +/- 5 grant window around the

NCI’s payline can be thought of as a “windfall” because it is not correlated with the quality of

applications in this window. Our strategy is to instrument total DST funding (the $14 million that

cancer-cell signaling receives) with this windfall amount.

Generalization: Instrument construction for the entire sample. As in our motivating

example above, our main IV specification also examines funding for DSTs that have the same

number and quality of grant applications near an IC’s payline, but which receive different amounts

of “windfall” funding. Specifically, we estimate:

Patents
d̃st

= α0 + α1Fundingdst + Υ(#Applicationsdst) (3)

+Φ(RawScoresdst) + Ψ(ScienceRanksdst) + δds + γdt + νst + εdst

instrumenting Fundingdst with

WindfallFundingdst =
∑

g∈Wdt

Fgdst (4)

WindfallFundingdst is the amount of funding for a DST that comes from the set of grants, Wdt,

that are within a window around its IC’s payline. In our simple example from the previous section,

Wdt was the 5-application window on either side of the NCI’s payline. In our main specifications,

we define Wdt to be the set of 25 grant applications on either side of the funding threshold for

disease area d in year t; we construct the windfall funding amount to be the sum of funding for

grants within this set that are actually funded. On average, windfall funding accounts for 5.6% of

a DST’s total funding in that year. The median IC receives 750 applications in a given year (the

mean is 1,100), making this a relatively tight window. Our results are robust to a variety of other

bandwidths.

In general,WindfallFundingdst, as currently defined, may still be endogenous. This is because

what we call windfall funding is simply the marginal funding that a DST barely gets. Better

DSTs may have more applications that are highly scored and those DSTs would have a greater

representation of grants in the set Wdt of applications near an IC’s payline; if this were the case,
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these better DSTs would also be likely to have more funded grants within this set. Similarly, even

if two DSTs have the same number of grant applications near an IC’s payline, applications from

better DSTs may justifiably receive better scores and, as a result, better DSTs may have a greater

number of grants that are actually funded.

To address these concerns, we use WindfallFundingdst as an instrument for Fundingdst only

after including additional variables controlling for the quality of a DST’s applications. Specifically,

Equation (3) includes a full set of indicator variables for the number of grant applications any given

DST has near the threshold set Wdt (i.e., the function Υ in equation (3)), as well as separate cubics

in the average raw score and average science ranks of all DST applications within the threshold set

W (i.e., the functions Φ and Ψ in equation (3)). Controlling for both the raw score and science rank

accounts for any differences in quality among applications, meaning that the remaining variation

comes only from how science ranks translate into rank of ranks.15 In our earlier example, we show

how it is possible for two DSTs to have the same number of applications within a window, for those

applications to have the same average raw scores and science ranks, and for DSTs to nonetheless

receive different amounts of windfall funding.

3.2.3 Identification Checks

In this section, we investigate the extent to which DST funding may be correlated with other

factors that may also impact private sector innovation.

We first show that the NIH does not appear to be as sensitive to the scientific potential of

research areas as one might expect. If the NIH were directing funding to DSTs on the basis of

their time-varying scientific potential, we would expect that the amount of funding for DSTs that

share the same scientific interests should be correlated; for example, if the NIH were allocating more

money to genetics because of increased potential in that area, then we should weakly expect funding

for genetics–related research to be positively correlated across disease areas. Table 4 tests this by

examining the correlation between own-disease funding for a science area, Fundingdst, and funding

for that same science area from other diseases Funding−d,st. Column 1, which includes only year

15Jacob and Lefgren (2011) investigate the impact of receiving NIH funding on the publication output of individual
scientists using a regression discontinuity design and compare outcomes for grant applications just above and just
below an Institute’s payline. We cannot use the same design because the running variable—rank of rank—applies
to individual grants but not to DSTs. There is no DST-level discontinuity. Instead, we compare DSTs with similar
quality applications as judged by their raw and science rank scores, but which receive different levels of windfall
funding.
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fixed effects, shows a strong negative correlation between own and other funding. This, however,

is likely due to the mechanical relationship between the size of one’s own disease area in a given

science area, and the size of other disease areas. After controlling for disease by science fixed effects

in Columns 2 and 3, we find no remaining correlation. Columns 4 through 6 repeat this exercise

using the proportion of a disease area’s funding devoted to a particular science area as the variable

of interest; we find no correlation in these specifications either.

Our next tests deal with our IV specification in particular. Table 5 tests alternative first stages

using past or future windfalls as an instrument. If windfall funding for a DST is correlated with

time-varying observed potential in that disease/science area after conditioning on the number of

applications around the payline and their raw scores and science ranks, then we might expect past or

future windfalls to still be predictive of current funding; excitement about targeted cancer therapies

in the wake of Gleevec might, for instance, drive funding for cancer/cell-signaling for several years.

The results in Table 5 show, however, that this is not the case. While current windfalls (Column

2) are strongly predictive of total DST funding, past and future windfalls are not.

Figure 3 illustrates this point graphically. The first panel of Figure 3 plots past windfall

funding on the x-axis against current windfall funding on the y-axis and finds no evidence of a

relationship. The second panel does the same for current and future windfall funding. The final panel

examines the relationship between windfall funding and “non-windfall” funding, i.e., Fundingdst −

WindfallFundingdst. If windfall funding were truly random, then it should not be correlated with

the overall quality of the DST as given by the amount of non-marginal funding it receives. Again,

we find no relationship.

These results show that a DST’s windfall funding, controlling for these variables, is uncorre-

lated with non-windfall funding, previous and future windfall funding, and other measures of DST

output. Appendix J reports additional specification and robustness checks.

4 Data Construction and Descriptive Statistics

Our analysis combines data from several primary sources: (i) Administrative data on NIH grant

applications from the IMPAC II database; (ii) publication data from PubMed including information

on grant acknowledgements; (iii) patent data from the USPTO; and (iv) information on patents
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related to FDA-approved drugs from the FDA’s “Orange Book” and IMS-Health. Our final analytic

sample captures linkages between the universe of NIH-funded grants from 1980-2005 at both the

individual grant and DST levels, and the universe of biomedical patents granted between 1980 and

2012.16

4.1 Grant-level Patent Match

We begin with data on all 153,076 NIH grants from 1980-2005 that were evaluated in chartered

study sections (those that are associated with a specific science area, rather than convened on an ad

hoc basis). These grants were evaluated by 624 such study sections and funded by 17 Institutes.17

The characteristics of these grants are described in Table 1. In total, we have grant-level data that

aggregate up to the activities of 14,085 DSTs. This is a only a small fraction of the 624 × 17 ×

25 = 265, 200 potential DSTs. Many potential DSTs do not exist because they do not represent

intellectually coherent D-S combinations. Appendix F provides details about our disease-science

panel dataset and shows that our results are robust to restricting to a panel of disease-science areas

that receive non-zero funding for all years for which it is in existence.

The average award size for grants in our sample is approximately $1.6 million. Seventy four

percent of grants are R01s—the R01 is a renewable, project-based grant that constitutes the majority

of NIH’s grant spending—and most (60%) are for new research projects (as opposed to renewals of

existing projects).

Table 2 describes the patents in our sample and show how they are linked to NIH funding. We

begin with the universe of 315,982 life-science patents granted by the USPTO between 1980 and

2012. Of these, 232,276 (74%) are private-sector patents and 83,394 (26%) are what we call public-

sector patents, meaning those assigned to governments, universities, hospitals, and other institutions
16A patent is part of our universe if (i) it is in a relevant patent class and (ii) cites at least one article indexed

by PubMed. The relevant patent classes are the 92 classes belonging to categories 1 and 3 in the NBER USPTO
database (see Appendix B for a complete list). Note that in practice, the second requirement is almost always satisfied
for patents in these classes.

17The list of the included Institutes is described in Appendix A, Table A1. Briefly, we exclude three small ICs
(the National Institute on Minority Health and Health Disparities, the National Institute of Nursing Research, and
the National Library of Medicine), as well as six NIH centers which serve mainly administrative functions. Our
primary analyses do include three ICs that are not oriented towards a particular disease: the National Institute
of General Medical Sciences (NIGMS), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
and the National Human Genome Research Institute (NHGRI). Note, however, that these Institutes review grant
applications from several study sections, which is all that our identification strategy requires. In a robustness test,
we show that our results are robust to excluding ICs that are not primarily devoted to the study of specific diseases
or body-systems (Appendix K, Table K4).
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(see Appendix B for a description of patent types and definitions). Despite the large number of

patents we examine, Table 2 shows that only 4,718 private-sector patents (2%) are associated with

advanced drug candidates—drugs and biologics in Phase III trials and beyond—and even fewer,

1,999 (<1%) are associated with FDA-approved new chemical entities and new biological entities.

Table 2 also shows that NIH funding is relevant for organizations seeking patents. Forty-four

percent of life-science patents in our sample directly cite NIH-funded research. Among the subset of

private-sector patents, this figure is 39%. For public-sector patents, this figure is 57%. We further

document a greater role of NIH-funded research in the development of high value patents: 50%

of patents associated with advanced drug candidates—those that have entered clinical trials—cite

NIH-funded research (Sampat and Lichtenberg 2011).

Table 2 also shows that the vast majority of patents—265,741 patents or about 84% of the

universe—cite research that is similar to research funded by an NIH DST. This is true, moreover,

for private- and public-sector patents, as well as high value patents, and those from both large and

small firms.

According to Table 1, 66,085 or 43% of the NIH grants in our sample produce a publication

that is directly cited by a patent. This figure is a lower bound because our publication and patent

data are truncated in 2012. Figures 4, 5, 6 and 7 describe the lag times between NIH funding and

follow-on patenting. Each figure displays a curve graphing the cumulative probability that a grant is

linked to follow on patenting, over time. At a given point t on the x-axis, we plot the proportion of

t year old grants that have produced a publication that is cited by a patent. The curve is generally

increasing because a grant’s likelihood of being linked to a patent increases with age. In some cases,

these curves turn downward in later years because of changes in cohort composition: to compute the

proportion of grants linked to a patent at t, we exclude grants that are not yet t years old, meaning

that our calculations for higher t do not include more recent grants. This provides a graphical way

to examine the diffusion of knowledge stemming from NIH expenditures, and how this diffusion

process varies over time and across diseases.

Figure 4 documents substantial variation in the relevance of NIH funding for patenting across

diseases. Approximately 15 years after funding, over 60% of grants funded by the National Institutes

for Allergy and Infectious Diseases have produced research that has been cited by a patent. By

contrast, this is true of only 20% of grants funded by the National Institutes of Mental Health.
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We caution that these differences should not be interpreted as comparisons of the efficacy of NIH

funds, as they also reflect differences in the ease of biomedical innovation across disease areas and

the types of research funded by different Institutes.

Figure 5, meanwhile, shows that time-to-patent has been decreasing over time. Only 20% of

grants awarded between 1980 and 1985 produced research that is relevant for a patent in the ten

years following. For grants awarded between 1991 and 1995, this figure is on track to be almost

40%. One interpretation of this finding is that NIH efforts to encourage “translational research”

have been successful. An alternative view is that patentability has steadily moved upstream along

the biopharmaceutical R&D value chain (Eisenberg and Nelson 2002; Jensen and Murray 2005).

Figure 6 underscores the fact that although 43% of grants are associated with patents, “impor-

tant” patents—those pertaining to advanced drug candidates, or to FDA-approved treatments—are

still relatively rare. Even twenty years after approval, less than 5% of NIH grants produce research

cited by a patent associated with an FDA-approved drug; this figure is only slightly higher for

advanced drug candidates, those at or beyond Phase 3 clinical trials.

Finally, Figure 7 shows that a grant is just as likely to produce research relevant for patents

primarily associated with other disease areas as it is for patents associated with its own disease area.

Our matching process allows a patent to be associated with more than one Institute (conditional on

being linked to a DST, the average patent is linked to 7 different ICs). For each patent, we define

its primary disease area as the IC responsible for funding the plurality of the publications that it

cites. Then we categorize each patent-to-grant linkage as being for the same disease or for a different

disease, where the reference disease is simply given by the funding IC for the focal grant. Figure 7

also shows that both private- and public-sector entities take advantage of NIH-funded research.

From here on, we focus on the impact of NIH funding on private-sector patents. This designa-

tion excludes patents to universities, governments, hospitals, and other non-profit institutions. Ap-

pendix Table K5 reports our main results with public-sector patents instead. Appendix N presents

results that circumvents the use of publication data by restricting the patent data to the set of

“Bayh-Dole” patents, i.e., patents held by the PIs of NIH grants and reported to NIH as products of

these grants. OLS estimates imply an elasticity only approximately half as large as that observed

in Table 7. The corresponding IV estimates are negative and imprecisely estimated. To summarize,

despite its prominence in policy discussion, academic entrepreneurship (as proxied by academic
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patenting) corresponds to only a small fraction of the impact of NIH-funded research on patenting

more generally.

4.2 DST-level Patent Match

Recall that our analysis is at the DST level: each observation is an Institute-study section

pairing at a point in time, and we are interested in how funding for this DST relates to later

patenting. Table 3 describes the characteristics of the DSTs in our sample. The average DST

supports 11 grants totaling $47 million in funding (weighted by DST size). Table 3 also indicates

that 13,027 or over 80% of DSTs produce research that is potentially relevant for patenting. In

contrast, 8,886 DSTs (63%) can be linked to patents through a direct citation link.

The correct attribution of patents to DSTs depends on the innovation production function and

the degree to which any particular piece of knowledge is instrumental in generating the patent. If

DSTs are pure substitutes in the production of patents and if a patent is linked to N DSTs, then

each DST should receive credit for 1/N th of that patent. Table 3 shows that the average DST in our

sample produces research that is directly cited by 12.8 private-sector patents and is intellectually

related to a total of 24.8 patents, using this “fractional” patent count. If, instead, the contributions

of various DSTs are complements, then a patent should count for more than 1
N ; in the extreme,

support from each DST is critical such that production is Leontief. In this case, DSTs should receive

full credit for each patent it is linked to, which we designate as a “unit” patent count. Applying

this assumption to our data, we find that the average DST is directly cited by 102 unit patents.

The distribution of patent counts at the DST level exhibits skewness, as can be observed in the

histograms displayed in Figure 8.

5 Main Results

Tables 6 and 7 present the fixed effects estimates of the impact of NIH funding on our two

measures of patent outcomes. The top panel of Table 6 describes the impact of NIH funding on

the number of patents that cite NIH-funded work, using fractional patent counts. Without any

controls, we find that a $10 million increase in funding for a research area (DST) is associated with

2.6 more patents. Adding fixed effects for research areas (disease/science groupings) reduces this

coefficient to 2.3. We add increasingly detailed fixed effects in each successive column; interestingly,
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our estimates remain relatively stable. One explanation for this is consistency is that, at the time

it makes funding decisions, the NIH may not be able to anticipate which DSTs have greater future

innovative potential. In this case, the amount of funding that a DST receives may be relatively

uncorrelated with its future patent output. With our full set of controls, we estimate that a $10

million increase in funding contributes to 2.5 additional patents. With an average grant size of $1.6

million, this is equivalent to about one patent for every 2 to 3 NIH grants.

The bottom panel presents an equivalent set of results using unit patent counts. Here, we

estimate that $10 million leads to 18.4 more patents in the specification that is saturated with fixed

effects (column 5). The difference in estimates between the top and bottom panels of Table 6 are

substantial and arise because using unit count assumes that publications are perfect complements

in patent production, as discussed in Section 4.2. Yet, the corresponding elasticities are very similar

in both cases. Since patents can cite many publications (14 on average), it may not be reasonable

to assume that all publications are required to produce a given patent. As such, in the remainder

of the manuscript we focus on the smaller and more conservative fractional counts as our preferred

outcome variable.

The estimates in Table 6 would not reflect the true value of NIH funding if public support

for science either crowds out private investment or if it spurs patenting in ways that cannot be

captured by a direct grant-publication-patent link. The top panel of Table 7 reports the impact

of NIH expenditures on the total amount of private-sector patenting in areas related to a DST,

whether or not these patents directly cite NIH-funded research. This specification is designed to

assess the net impact of NIH funding on private-sector innovation in an area, accounting for both

the possibility of crowd-out and the possibility that not all patents spurred by NIH funding can be

linked via direct citations. Column 5 of Table 7 finds that a $10 million increase in DST funding

results in a 3.2 net increase in the number of related private-sector patents, or about one patent for

every two NIH grants.

If NIH funding fully crowded out industry investments, we would expect the coefficients re-

ported in Table 7 to be zero. In fact, the magnitude of the impact of NIH funding on total patenting

is slightly larger than its effect on patenting that can be directly linked to NIH funds (see Table 6).

This is consistent with the absence of crowd-out. Alternatively, even if NIH funding crowds out
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some private investment, it is offset by increases in the number of patents related to NIH funding

through indirect citation channels, or by increases in the productivity of private R&D investments.18

The bottom panel of Table 7 reports these results with fractional patent counts, yielding

effect sizes that are an order of magnitude larger. These results, however, are unlikely to reflect

the true effect of NIH funding. Recall that this final outcome measure is designed to capture the

influence that NIH funding may have on patenting that does not require a direct citation linkage

between funding and patents. In this measure, patents are linked to study sections through shared

intellectual foci, reflecting the notion that public funding in a particular area produces knowledge

that enhances productivity of others working in that area. Each DST is associated with many more

patents in this way, thus driving a large wedge between fractional and unit impacts. Unlike the

direct method which connect patents to a small number of study sections, our indirect method often

yields connections to hundreds of study sections in related intellectual realms. While all linkages

may be important, it is harder to imagine that each unit of knowledge is instrumental, and thus

we favor the more conservative fractional approach in this case. Going forward, we will discuss

estimates of the effect of funding on overall patent production using only the more conservative

fractional counts.

Table 8 displays IV estimates using our instrumental variable for funding. Column 1 reports

the first stage estimate of the relationship between total DST funding and windfall DST funding,

controlling flexibly for raw scores and science ranks, as well as the number of applications that a

disease/science paring has in a 25-grant window surrounding that IC’s funding threshold for that

year. Because our IV strategy requires that we control for these additional variables, which we do

not use in Tables 6 and 7, we report both our IV estimates as well as OLS estimates using the

same set of first stage controls. Table 8 also reports tests of the strength of our windfall funding

instrument. We obtain a Cragg-Donald Wald F -statistic of 478 and a Kleibergen-Paap Wald F -

statistic of 37.5; both reject the null hypothesis that our instrument is weak. Comparing OLS and

2SLS specifications, we find similar effects of NIH funding on the number of directly cited patents

(2.5 vs. 2.0) and a slightly smaller effect for the total number of patents related to an NIH research

area (3.6 vs. 2.3). We take the 2.3 figure in Column 5 as our preferred estimate of the impact of
18This may occur, inter alia, because researchers trained with NIH funds find jobs in the private sector where they

go on to patent in the same area, or because NIH investments clarify the scientific potential of different research areas,
allowing biopharmaceutical firms to target their investments more efficiently. In both cases, total private patenting
in an area may still increase even if overall private investment decreases.
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NIH funding on private-sector patenting. Appendix Table J2 reports reduced-form estimates using

windfall funding as the explanatory variable; we find similar, or even slightly larger results.

Finally, we note that although we take our slightly smaller IV estimates as our preferred

specification, our OLS fixed effect and IV approaches should be considered complementary because

they identify slightly different sources of funding variation. In particular, our OLS estimates will

capture the impact of both anticipated and unanticipated changes in NIH funding. Increases in

funding for a research area may lead to more total patenting in this area both by providing support

for existing research ideas that would not have been funded otherwise, or by encouraging scientists

to enter or extend their research in this area. The latter effect depends on scientists being aware of

funding changes in advance. Our OLS estimates allow us to capture both these effects, especially

in specifications that control for fewer fixed effects. The downside of these estimates is that such

variation is also potentially endogenous to scientific potential although, in practice, our estimates

are not very sensitive to the inclusion of more fixed effects, suggesting that the impact we estimate

in the OLS is less likely to be purely driven by endogenous factors correlated with our fixed effects.

Our IV estimates, on the other hand, are driven by differences in windfall funding coming as a

result of the relative ranking of grant applications that have already been submitted. As such, they

only capture the impact of unanticipated increases in NIH funding for a given research area. Such

variation is more likely to be exogenous, but the tradeoff is that we identify a less comprehensive

source of variation. This may be another potential reason we find a slightly smaller impact of

funding using our instrument.

5.1 Patents related to NIH-funded research: stable keyword approach

In Table 7 and in Columns 4 and 5 of Table 8, we examine the impact of NIH funding on

the total number of intellectually related patents, whether or not these patents actually cite NIH-

funded research. We define a patent as intellectually related to an NIH DST if that patent cites any

publications that are intellectually similar (according to keyword overlap) to publications funded by

that DST (see Appendix E for details). A potential drawback of this approach is that our definition

of a DST’s “intellectual area” can vary over time. If funding allows a disease/science area to expand

the set of topics that it supports, then we may associate increased funding with more patents simply
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because higher levels of grant expenditures leads us to credit DSTs with patents over a wider slice

of technological space.

To ensure that our results are not driven by this phenomenon, we also reestimate our results

restricting to a definition of intellectual area that is stable for each disease/science (DS) area. To do

this, we categorize all MeSH keywords associated with a publication funded by a DS combination

into one of two types: “stable” keywords appear in publications funded by that DS across all years in

the observation window, whereas “peripheral” keywords appear only in a subset of years in the data.

We then restrict the set of related publications to those that match to a DS on stable keywords

only. This fixes the boundaries of an intellectual area over time and therefore breaks any mechanical

relationship that might exist between funding and the number of indirectly linked patents.

Appendix Table L1 examines the impact of NIH funding on the number of intellectually re-

lated patents, using a variety of ways to standardize the keywords that define a stable intellectual

area. The details of this approach are discussed in Appendix L. In general, two features of the

results presented in Appendix Table L1 deserve mention. First, the magnitudes of the coefficients

are slightly smaller than those observed in Table 8. This is to be expected since our “stable” linking

strategy shrinks the number of opportunities to associate patents with DSTs. The IV estimates are

more imprecisely estimated (statistically significant at the 10% level for three out of four specifica-

tions). Second, the elasticities are comparable in magnitude to those computed in Columns 4 and 5

of Table 8. We believe these results provide evidence that our main conclusions are not driven by

a potential mechanical linkage between DST funding and the size of its related intellectual area.

5.2 Additional Robustness Checks

We probe the robustness of our results using a variety of approaches, described in more detail

in Appendices F, I, J, and K.

Appendix F discusses the idea of “missing” DSTs, i.e., those DST observations that are absent

in our sample of 14,085 DSTs. Appendix Table F1 repeats our analysis on a balanced panel of 7,966

contiguous DSTs—those DS combinations that receive funding in all years between the first and

last year in which the DS is observed. Our estimates are almost numerically identical. Appendix I

compares traditional production function estimation with “fixed lags” to the estimates generated by

our approach. Appendix J provides additional tests of our identifying assumptions. For example,
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the NIH occasionally funds grant applications out of the order in which they are scored. If DSTs

that receive more out-of-order funding also have unobservably higher innovative potential, then this

may bias our estimates. We discuss a variety of specification checks that together demonstrate that

this threat to identification is not a concern empirically. Appendix J also provides evidence for the

plausibility of the exclusion restriction for the instrument, in addition to the tests already presented

in Section 3.2.3. We show that WindfallFundingdst is not correlated with past patent output in a

DS.

Appendix K considers alternative specifications and samples. We show that our results are

robust to not using weights in our regressions, so that each DST contributes to the same extent

to the results, regardless of how many grants it supports. We estimate non-linear specifications

using logs of funding and patenting, as well as a Poisson parametrization. Our main results also

hold when restricting our sample to NIH Institutes that are the most directly identified with disease

and body system areas and we also examine the impact of NIH funding on public sector patenting.

Finally, we also examine the impact of NIH funding on “embodied” versus “disembodied linkages

by separating the effect of funding on patenting by the same research team that receives the grant

from its impact on patenting by different research teams.

5.3 Heterogeneity

In addition to quantifying the impact of NIH funding on overall patenting, we also examine

which type of patents are most responsive to NIH expenditures. The impact of NIH funding on

the development of high-value patents need not be similar to its impact on overall patenting; if

firms direct their resources to the most promising projects, then the marginal patent that is created

because of NIH funding may be relatively low quality. Conversely, if it is unprofitable for firms

to invest in risky or early-stage research, then the marginal patent supported by the NIH may be

of high quality. Column 1 of Table 9 reproduces the estimates of the impact of funding on total

private-sector patenting from Table 8. Column 2 focuses on “important” patents, those that either

pertain to advanced drug candidates or to FDA-approved biopharmaceuticals (traditional “small

molecule” drugs as well as vaccines and biologics).

The OLS and IV estimates reported in Column 2 of Table 9 show that a $10 million increase

in DST funding leads to a net increase of 0.05 to 0.08 patents associated with advanced drug
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candidates (those that have entered clinical trials) and FDA-approved drugs. While this figure is

small in magnitude, it translates into an elasticity of patenting with respect to funding of between

0.4 to 0.6, comparable to the elasticity we estimate for private-sector patents in general. We will

discuss alternative measures of patent value in the next section, when we discuss the economic

magnitude of our results.

Our next set of results consider the impact of spillovers from funding in one disease area

on innovation in others. Many studies document cases in which existing medical treatments have

been successfully used to treat new conditions (Gelijns et al. 1998; Wurtman and Bettiker 1994).

Similarly, drug development efforts often build on research originally intended for other diseases,

reflecting the importance of knowledge spillovers across diseases (Henderson and Cockburn 1996).

Our results provide evidence on the magnitude of these cross-disease knowledge spillovers. To

measure spillovers, we assign a primary disease affiliation to each patent in our data by finding the

NIH Institute that is responsible for funding the plurality of publications cited by that patent. We

find that NIH funding directed toward one disease area is as likely—if not more likely—to translate

into patents that are primarily affiliated with other disease areas as it is to translate into patents

affiliated with its own. The IV estimate in Column 4 of Table 9 indicates that a $10 million increase

in funding for a DST generates 1.20 additional patents with the same primary disease affiliation.

Column 5, however, shows that this same funding also generates 1.89 additional patents with a

different primary disease affiliation. Part of the reason for such large cross-disease funding spillovers

may be due to the fact that much of the research that the NIH supports centers on scientific

questions that are relevant to many disease areas. The National Cancer Institute may, for instance,

fund a study of cell division in frog embryos; this research may also be relevant for the study of

tissue regeneration and aging-related disorders. These findings highlight the importance of using a

patent-linking strategy that does not assume that funding only impacts innovation in its intended

area. Had we made this assumption, we would have failed to account for over half of the relevant

innovative outputs.

Finally, Table 9 also shows that NIH investments increase patenting for both large and small

assignees. While larger assignees produce a larger number of patents in response to increases in

NIH funding, the response of small assignees is equally elastic. This finding is consistent with our

summary statistics in Table 2, which show that a greater proportion of patents assigned to small

firms cite NIH-funded research.
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5.4 Valuing the Impacts of NIH Investments

Our results suggest that a $10 million increase in NIH funding leads to a net increase of 2.3

weighted private-sector patents. Putting a dollar value on these patents is difficult, for several

reasons. It is well known that patent value distributions are highly skewed (Harhoff, Scherer, and

Vopel 2003). Moreover, only the private value of patents is typically calculated, and the social value

can be much larger. As such, we utilize a variety of approaches to monetize this return.

One approach to valuing the returns to NIH funding in dollars, rather than patents, is to rely

on estimates for the market value of patents taken from the literature. Bessen (2009) quantifies

the effect of patent stocks on Tobin’s q, and uses these estimates to derive the market value of a

patent across sectors of the economy. In the biopharmaceutical sector, his estimates imply that an

additional patent is valued by the stock market at about $11.2 million (2010 dollars). Combined

with our estimate in Table 6, Column 5, a back-of-the-envelope calculation indicate that a $10

million dollar increase in NIH funding would yield $34.7 million in firm market value. As Bessen

(2009) notes, a problem with this approach is that patents may be picking up the effects of other

factors correlated with market value; accordingly this figure probably represents an upper bound.

A different approach is to focus on patents associated with marketed drugs. Very few of the

patents in our sample are for drugs, let alone marketed drugs. However, for this set we have another

measure of private value, drug sales. DiMasi, Grabowski, and Vernon (2004) report that the mean

present discounted value (PDV) of lifetime sales for new drugs approved by the FDA between 1990

and 1994 was approximately $3.47 billion (2010 dollars). More recent research (Berndt et al. 2015)

shows similar orders of magnitude, although the returns appear to have been declining over time.

Table 10 presents implied drug valuation estimates of our results based on the DiMasi et al.

figure reported above. Column 1 reproduces our findings from Table 9 with respect to all advanced

drug candidates. Another variation is to restrict the outcome to patents associated with FDA-

approved drugs. Column 2 reports OLS and IV estimates using only these patents to construct the

outcome variables at the DST level and finds that a $10 million dollar increase in funding results

in approximately 0.034 more such patents. In this definition, we include all patents we can link to

a drug (including those listed in the Orange Book, as well as additional patents from IMS Patent

Focus); there are approximately eight patents associated with every FDA-approved drug on average

(see Appendix B). If the inventions associated which each of these eight patents are essential to
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the development of the corresponding drug, then we should fully credit each with the value of that

drug. In this case, we would expect $10 million dollar increase in funding to generate an expected

PDV of 0.034× $3.47 billion = $149.2 million dollars in sales.

If we instead assumed that the invention underlying each patent contributes equally to the

drug, we would expect this funding amount to translate into 0.034/8 = 0.004 drugs, with an expected

PDV of 0.004× $3.47 billion = $14.7 million.

However, even within drug, there may be heterogeneity in patent importance.19 Many “sec-

ondary” Orange Book patents are not even filed until well after the product is launched (Kapcynski

et al. 2012; Hemphill and Sampat 2013); IMS patents may be even more peripheral.20 Attributing

the same share of product sales to these patents as to the “main patent” associated with that drug

may lead to overstating the effect of NIH funding. To explore this heterogeneity, we ran several

additional models. The first looks only at “pre-approval” patents (from the Orange Book and/or

IMS), those filed before drug approval (on average, there are five such patents per drug). In Col-

umn 4, we are more conservative, limiting the outcome variable to the first patent associated with a

marketed drug, on the assumption that this is the main patent. (No scaling is required in this case

since we are only looking at one patent per drug.) Finally, Column 5 examines drug level outcomes:

in this case, we match the number of discrete drugs associated with a DST, rather than the number

of patents. In all three of these columns, the OLS estimates are statically significant and similar

in magnitude to those reported for FDA approved drugs, from Column 2, but the IV estimates are

smaller and statistically insignificant.21

There exists a vast literature estimating the rate of return to private R&D. These estimates

are highly variable, ranging between 0 and 100% (see Hall, Mairesse, and Mohnen (2001) for a

comprehensive summary). Two caveats must be kept in mind when comparing our results with

those previously reported. First, the level of analysis employed in our study (the research area) is
19The active ingredient patent is typically thought to be more important than other Orange Book-listed patents (on

average there is a single active ingredient patent per drug, and three total Orange Book patents). As an illustration
of this, generics typically are able to enter after the expiration of the active ingredient patent: later Orange Book
patents are often found to be irrelevant or invalid (Hemphill and Sampat 2012).

20On average, 5 of the 8 patents for each drug were in IMS only. These were patents that did not meet the FDA’s
standards for being relevant to the marketed drugs. Nevertheless, as discussed in Appendix B, we include IMS patents
since the Orange Book has very limited coverage for biologic drugs, even though it does introduce many peripheral
patents for traditional, “small molecule” drugs.

21In our data, there are only 332 drugs and 270 “main” patents that can be matched to NIH grants over the course
of our 25 year sample. Because the IV estimates rely on limited variation around an IC’s funding payline, there may
not be enough data to obtain reliable IV estimates when these extremely rare patents are used to construct outcome
variables at the DST level.
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very different from that typically encountered in the literature, which tends to analyze data collected

at the industry-, firm-, or plant-level. Second, we focus on a single industry, the biopharmaceutical

industry, rather than a wide cross-section of industries. That said, our implied rate of return (based

on the $14.7 million implied drug value of a $10 million investment seen in Table 10, column 2) is

quite similar to the middle of the range of estimates reported in the literature.

Assigning value to individual patents is notoriously difficult, and the different approaches above

yield different magnitudes for the effects of NIH funding. Accordingly, beyond presenting a range

of implied drug valuations, we are not in a position to report a specific rate of return. Any such

estimate would only capture the private (rather than social) value of the patented technologies.22

Finally, as we will emphasize in the conclusion, there are many effects of NIH funding that do not

result in patentable research at all.

6 Conclusion

Modern growth theory highlights the importance of knowledge spillovers for long-run economic

growth. These spillovers mean that private firms will under-invest in the production of knowledge.

Two types of policies aim to ameliorate this “market failure”: patent policy and public funding of

research. While there is now a significant body of empirical research on the former, the effects of

public funding, and public funding of science in particular, have received less attention.

One reason for this paucity of evidence on the impacts of public research investments is that

it is difficult to measure the effects of knowledge that is both non-rival and difficult to appropriate

(Griliches 1992). While the idea that public science has large effects is central to U.S. policy—

going back to Vannevar Bush’s 1945 assertion that basic research is “the pacemaker of technological

progress”—economists emphasize that evidence in support of this claim is rather limited (Garber

and Romer 1996; Cockburn and Henderson 1998).

In this paper, we examine the effects of public science on private sector innovation in the life

sciences, focusing on funding by the largest funder of research in the world, the National Institutes
22For biopharmaceuticals, some estimates suggest that the social value of an innovation can exceed its private value

by a factor ranging from 4 to 20 (Lakdawalla et al. 2010; Philipson and Jena 2005, Goldman et al. 2010). Other
authors strike a more skeptical note, emphasizing that the enormous costs of adopting certain medical technologies
can sometimes drive social benefits far below the level of the surplus captured by their manufacturers (Murphy and
Topel 2003; Chandra and Skinner 2012).
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of Health. Our results show that NIH investments in a research area increase subsequent private-

sector patenting in that area; a $10 million increase in funding for an area leads to 2.3 additional

patents or, equivalently, we expect one private-sector patent generated for every two to three NIH-

funded grants. This result holds across a variety of OLS and IV specifications. This positive impact,

moreover, does not appear to be associated with lower private investments in other research areas.

We cannot perform a formal rate of return calculation since our analysis focuses on only one aspect

of the effect of NIH funding, that of sales associated with patented drugs. One rough calculation

suggests that $1 dollar in NIH funding generates around $1.40 in drug sales.

We find that over half of the patents that result from NIH funding flow across disease areas.

This has implications for measurement: had we looked only at patents in the same disease area,

we would have missed half the output. This finding speaks to a long-standing question in postwar

medical research policy: the feasibility and desirability of targeting research to diseases. Claims

that scientific research often flows across disease areas have been common from NIH Directors since

the agency’s founding, especially during Congressional debates about whether particular diseases

are over/underfunded or in response to advocates lobbying for a new Institute for “their” disease

(Sampat 2012). Our results support the view that there are strong cross-disease spillovers. The

organization of the agency around disease-specific Institutes, though useful for mobilizing funding,

may not reflect the importance of the interplay of ideas from different disease areas and fields in

shaping biomedical research progress.

Throughout the text, we emphasized numerous caveats. We highlight several here. First,

we are examining only one type of return to NIH funding, those that flow through patented in-

novations. This neglects a number of other socially important benefits of publicly-funded medical

research, including applied epidemiological and clinical research that changes medical practice or

health behaviors. Previous research (Cutler and Kadiyala 2003; Heidenreich and McClellan 2003)

suggests this research has high value. Ignoring these outcomes could lead to large underestimates

of the value of NIH funding.

A second potential limitation is the assumption that patent-to-publication citations reflect

real linkages between the cited grant/publications and citing patents. For the goal of measuring

knowledge spillovers from public research, these citations are much more meaningful than patent-

to-patent citations, for reasons already discussed. However, articles are cited in patents for legal

reasons, to denote “prior art” material to patentability, and decisions about how much to cite are
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influenced by factors including patent importance and applicant patent strategy (Sampat 2010).

Not all articles cited are crucial for the development of the citing patent. Citations that are not

real intellectual influences would lead to overestimates of the effects of NIH funding. (At the same

time there are false negatives—not all knowledge firms “build on” must be cited—which would lead

to underestimates of the effects of NIH funding.)

Third, our implied drug valuations were based on publicly available estimates on the distri-

bution of drug sales, and assumptions about how to divide a drug’s value across its many patents.

There is likely considerable heterogeneity in the private and social value of drugs (Garthwaite and

Duggan 2012), and individual patents (Hemphill and Sampat 2011), which our back-of-the-envelope

calculations could not fully incorporate.

Finally, our analysis implicitly assumes a “linear” flow from science to technology, and does

not account for the complementary investments made by other actors (e.g., the NSF, or venture

capital firms) in the path from laboratory to marketplace, or the feedbacks from technology to the

progress of science. This “linear model” of research is well known to be an oversimplification, but

even its detractors acknowledge that it is more reasonable in the life sciences than in other fields,

and that alternative models would be far less empirically tractable (Balconi et al. 2010).

Despite these limitations, our analysis uses novel data and a new source of identification to

provide estimates on an important but understudied component of the innovation production func-

tion: spillovers from public research. In future work, this framework could be extended to examine

a range of other questions of interest to economists and policymakers, including heterogeneity in

types of research (whether more or less targeted research has higher impact) and how the presence

or absence of intellectual property rights affects returns to public research investments.
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Figure 1
Overview of Data and Construction of Patent Outcome Measures
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Figure 2
Example of Windfall DST Funding

Grant ID Science Rank Disease Raw Score Grant ID
Science 
Rank

Disease Raw Score

G1 1 Cancer 1.0 G16 1 Other 1.1

G2 2 Cancer 1.1 G17 2 Other 1.2

G3 3 Cancer 1.2 G18 3 Other 1.3

G4 4 Cancer 1.3 G19 4 Other 1.4

G5 5 Cancer 1.4 G20 5 Other 1.5

G6 6 Other 1.6 G21 6 Cancer 1.6

G7 7 Cancer 1.7 G22 7 Cancer 2.1

G8 8 Cancer 2.4 G23 8 Other 2.2

G9 9 Other 2.5 G24 9 Cancer 2.3

G10 10 Other 2.8 G25 10 Cancer 2.8

G11 11 Other 2.9 G26 11 Other 2.9

G12 12 Cancer 3.2 G27 12 Other 3.1

G13 13 Other 3.4 G28 13 Other 3.3

G14 14 Cancer 3.6 G29 14 Cancer 3.5

G15 15 Other 3.7 G30 15 Cancer 3.6

G31 16 Cancer 3.7

Grant ID
Rank of 
Ranks

Science Rank Study Section Raw Score
Funding 
Granted

G1 1 1 Cell 1.0 $2M

G2 2 2 Cell 1.1 $2M

G3 3 3 Cell 1.2 $2M

G4 4 4 Cell 1.3 $2M

G5 5 5 Cell 1.4 $2M 9 7

G21 6 6 Tumor 1.6 $2M 1.88 2.8

G7 7 7 Cell 1.7 $2M 6.22 11

G22 8 7 Tumor 2.1 $2M $14M $4M

G8 9 8 Cell 2.4 $2M

G24 10 9 Tumor 2.3

G25 11 10 Tumor 2.8  5 5

G12 12 12 Cell 3.2 2.46 2.46

G29 13 14 Tumor 3.5 9.2 9.2

G14 14 14 Cell 3.6 $6M $4M

G30 15 15 Tumor 3.6

G31 16 16 Tumor 3.7

Cancer 
TP

Cell Signaling Study Section Tumor Physiology Study Section

Cancer Institute (NCI) Comparison of Outcomes: Cancer-Cell Signaling vs. 
Cancer-Tumor Physiology

# of Apps in Window

Mean Raw Score

Mean Science Rank

Windfall DST Funding

Cancer 
CS

In 5-grant window

All applications

# of Apps 

Mean Raw Score

Mean Science Rank

Total DST Funding
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Figure 3
Correlation Between Windfall DST Funding and Other DST
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Figure 4
Grant-Patent Lags by Disease Area — Top 10 ICs
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Figure 5
Grant-Patent Lags by Grant Cohort
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Figure 6
Grant-Patent Lags by Patent Quality
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Figure 7
Grant-Patent Lags by Patent Type
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Figure 8
Outcome Measures by DST
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Table 1: Grant Characteristics, 1980-2005

Full Sample Cited by Patents Related to Patents

Sample Coverage

# Grants 153,076 66,085 123,872

# Disease Areas (Institutes) 17 17 17

# Science Areas (Study Sections) 624 548 598

# DSTs 14,085 9,951 13,092

Grant Characteristics

% R01 equivalent Grants 73.74 77.46 74.33

% Center Grants 3.26 4.79 3.20

% Teaching or Fellowship Grants 11.43 10.12 11.27

% New 59.50 51.08 58.55

$1,556,969 $1,875,779 $1,568,881
(2,198,506) (2,783,272) (2,215,371)

1.41 3.27 1.75
(3.58) (4.86) (3.91)

84.80 166.10 104.90
(194.36) (271.34) (211.24)

0.43 1.00 0.54
(2.36) (3.51) 2.62

0.84 1.60 1.04
(2.21) (3.05) (2.41)

Grants Linked to
Private-sector Patents

Table 1: Grant Characteristics, 1980-2005

Note: Sample is the set of all NIH-funded grants from 1980-2005, excluding NINR, NLM, and NIMHD grants (see Appendix A for a full list
of ICs in the sample) and evaluated by chartered study sections. The sample is restricted to new and competitive renewal grants so that
there is one observation per successful grant application cycle. A grant is defined as cited by patents if there exists a patent that cites a
publication that acknowledges funding from that grant. A grant is matched with a publication if it acknowledges the project number of the
grant and is published within 5 years of the grant’s funding year. A patent is citation-linked to a grant if it cites a publication that is linked
to a grant. A grant is considered related to a patent if that grant produces a publication that is similar (as defined by the PubMed
Relatedness Matching Algorithm) to a publication that is cited by a patent. In this paper, we require that similar publications be published
within 5 years of each other. A grant is an R01 equivalent (e.g. a large project-based grant) if its NIH funding mechanism is either an R01,
R23, R29, or R37. Center grants are those grants whose mechanism starts with a “P” (e.g., a P01 grant containing multiple projects). A
teaching or fellowship grant is one whose grant mechanism designation begins with a “T” or an “F.” New grants are projects that have not
previously received NIH funding. Acknowledged publications are the unique count of PubMed publications which acknowledge the grant's
main project number and which are published within five years of grant receipt. Related publications include directly acknowledged
publications, in addition to all publications related to them, according to the PMRA algorithm discussed in the text, and published within a
5 year window.  

Funding Amount (total project allocation, 2010 
dollars; mean & s.d.)

Number of Acknowledged Publications

Number of Related Publications

# of Patents Citing Grant (weighted counts)

# of Patents Related to Grant (weighted counts) 
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Table 2: Patent Characteristics, 1980-2012

Full Sample
% Citing NIH 

Funded Research
% Related to NIH 
Funded Research

Sample Coverage

# Patents 315,982 44.00 84.10

Patent Characteristics: 
General

Private Sector 232,276 39.38 82.33

Public Sector 83,394 56.91 89.07

Patent Characteristics: 
Private Sector Only

Advanced Drug Candidates 4,718 49.92 88.22

FDA Approved Drugs 1,999 42.47 86.79

Large Asssignee 164,431 36.23 80.37

Small Asssignee 29,183 51.37 87.89

Table 2: Patent Characteristics, 1980-2012

Patents Linked to NIH Funding

Note: Sample is the set of all USPTO granted patents from 1980-2012 that meet the following criteria: (i)
they are either in NBER Patent Categories 1 (“Chemicals”) or 3 (“Drugs and Medical”) and (ii) they cite at
least one publication in the PubMed database. A patent is defined as citing NIH-funded research if it cites a
publication that acknowledges the project number of an NIH grant and is published within 5 years of that
grant’s funding year. A patent is considered related to NIH funding if it cites a publication that is similar (as
defined by the PubMed Relatedness Matching Algorithm) to a publication that acknowledges NIH funding.
We require that similar publications be published within 5 years of each other. A patent is labelled “Private
Sector” if it is assigned to a domestic US or foreign corporation (NBER assignee categories 1 and 2 minus
foundations, universities, and hospitals). A patent is labelled “Public Sector” if it is assigned to a US or
foreign goverment (NBER categories 5 and 6) or if it is assigned to a foundation, university, or hospital. A
patent is labeled an advanced drug candidate if it is associated with a drug or biologic in Phase III clinical
trials or beyond (these are listed in Orange Book and/or IMS Patent Focus); A patent is associated with an
FDA approved drug if that patent is associated with a marketed treatment accoding to IMS Health. A patent
is associated with a large assignee if its assignee employs over 500 employees; it is considered small otherwise. 
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Table 3: NIH Research Area (DST) Characteristics, 1980-2005

Full Sample Cited by Patents
Related to 
Patents

10.85 15.60 11.62
(16.58) (19.05) (17.01)

Output Characteristics

$40,631,460 $45,556,350 $41,397,230
(43,611,800) (44,448,260) 43,683,690

12.82 14.71 13.07
(19.17) (19.85) (19.28)

101.7 116.8 103.7
(153.6) (159.1) (154.4)

24.84 28.33 25.30
(27.95) (28.31) (28.00)

3,520 4,023 3,589
(3,742) (3,755) (3,745)

N 14,085 8,886 13,027

Table 3: NIH Research Area (DST) Characteristics, 1980-2005

DSTs Linked to Patents

Note: Sample is the same as that in Table 1, except aggregated to the NIH Disease/Science/Time level. See the notes
to Table 1 for additional definitions. The funding and patent variables are weighted by average DST size, i.e., the
average yearly number of grants in a Disease/Science research area. In fractional patent counts, a patent matched to N
distinct DSTs counts as 1/Nth of a patent for each DST. In unit patent counts, a single patent matched to N distinct
DSTs counts as one patent for each DST. Funding amounts are expressed in 2010 dollars (deflated by the Biomedical
R&D Producer Price Index).

# of Patents Related to NIH-Funded 
Research (Unit counts) 

# of Patents Related to NIH-Funded 
Research (Fractional counts) 

# of Patents Citing NIH-Funded Research 
(Unit counts)

# of Patents Citing NIH-Funded Research 
(Fractional counts)

Funding Amount (DST)

Average # of Grants
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Table 4: Relationship Between Own DST Funding and Funding
by Other Diseases for the Same Science Area

(1) (2) (3)

-0.446*** 0.009 -0.008
(0.017) (0.063) (0.060)

R2 0.134 0.732 0.771

Observations 14,085 14,085 14,085

Year FEs Incl. Incl. Incl.

Disease × Science FEs Incl. Incl.

Disease × Year FEs Incl.

DST Funding, Other Diseases, Same 
Science (×$10 mln.)

DST Funding ($10 mln.) 

Note: Each cell is a study section/IC/year. Funding is defined by the sum of project-cycle allocations for all Type I and
II grants reviewed by that study section. See notes to Tables 1 and 2 for additional details about this sample.

Relationship Between Own DST Funding and Funding by Other Diseases 

for the same Science Area

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 5: Alternative First Stages, Past and Future Windfalls

Past Windfall Current Windfall Future Windfall

(1) (2) (3)

0.067 1.251*** 0.085
(0.243) (0.232) (0.205)

R2 0.927 0.921 0.927

Observations 9,326 14,085 9,326

Dependent variable: Total DST Funding

Note: This table presents alternative first stages using past and future windfall funding. Current windfall funding is
the total amount of funding for awarded DST grants within 25 grants of an Institute specific award cutoff in the
same year T. Future windfall is this same amount, but defined for DS,T+1. Past windfall funding is similarly
defined, for DS,T-1. Controls include disease-science and disease-year fixed effects, linear science-year time trends, as
well as fixed effects for the number of applicants to a DST, the number of applicants within a 25-grant radius
window around the IC payline, as well as cubics in the average raw and rank scores of applications in the funding
window. The outcome variables are fractional patent counts.

Appendix Table C: Alternative First Stages, Past and Future Windfalls

Windfall Funding

Standard errors in parentheses, clustered at the disease/science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).

49



Table 6: Effect of NIH Investments on Follow-On Patenting
by Private-Sector Firms

(1) (2) (3) (4) (5)

2.595*** 2.281*** 2.242*** 2.550*** 2.450***

(0.220) (0.356) (0.359) (0.654) (0.568)

Elasticity 0.822 0.723 0.71 0.808 0.777

R2 0.417 0.600 0.641 0.918 0.933

21.830*** 17.831*** 17.842*** 18.626*** 18.412***

(1.731) (2.068) (2.067) (4.308) (3.648)

Elasticity 0.872 0.712 0.713 0.744 0.735

R2 0.447 0.674 0.710 0.944 0.956

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl.

Science × Year FEs Incl. Incl.

Incl.

Table 4: Effect of NIH Investments on Follow-On Patenting by Private-Sector Firms

Application Count FEs

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

Unit Patent Counts: Mean=101.7; SD=153.6

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

Fractional Patent Counts: Mean=12.82; SD=19.17

# of Patents Citing NIH-Funded Research

Note: Each observation is Disease/Science/Time (DST) combination. A patent is citation-linked to a DST if it cites
research that acknowledges funding from that DST. For more details on this sample, see the notes to Tables 1 and
3. Funding is defined by the sum of project-cycle allocations for all new and competing renewal grants that are
associated with that DST. The patent sample is restricted to those with private sector assignees, and weighted by
average DST size, i.e., the average yearly number of grants in a Disease/Science research area. See Table 2 for more
details. Year FEs are fixed effects for the fiscal year associated with a DST. NIH Institutes are taken to represent
diseases and NIH study sections (review committees) are taken to represent science areas. Elasticities are evaluated
at sample means. Application count FEs are indicator variables for the number of applications that a DST receives.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 7: Effect of NIH Investments on Total Related Private-Sector
Patenting

(1) (2) (3) (4) (5)

4.516*** 3.593*** 3.590*** 3.712*** 3.239***

(0.210) (0.512) (0.537) (0.601) (0.372)

Elasticity 0.738 0.588 0.587 0.607 0.530

R2 0.536 0.759 0.783 0.965 0.974

603.082*** 456.685*** 453.133*** 504.728*** 445.983***

(26.714) (53.002) (56.424) (80.237) (41.404)

Elasticity 0.696 0.527 0.523 0.583 0.515

R2 0.561 0.843 0.861 0.978 0.983

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl.

Science × Year FEs Incl. Incl.

Incl.Application Count FEs

Note: Each observation is Disease/Science/Time (DST) combination. A patent is considered to be in the same area as
an NIH grant if it cites a publication that is similar (as defined by the PubMed Relatedness Matching Algorithm) to
a publication that is linked to a patent. For more details on this sample, See the notes to Tables 1 and 2. Funding is
defined by the sum of project-cycle allocations for all new and competing renewal grants that are associated with that
DST. The patent sample is restricted to those with private sector assignees, and weighted by average DST size, i.e.,
the average yearly number of grants in a Disease/Science research area. See Table 2 for more details. Year FEs are
fixed effects for the fiscal year associated with a DST. NIH Institutes are taken to represent diseases and NIH study
sections (review committees) are taken to represent science areas. Elasticities are evaluated at sample means.
Application count FEs are indicator variables for the number of applications that a DST receives.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

# of Patents Related to NIH-Funded Research

Table 5: Effect of NIH Investments on Total Related Private-Sector Patenting

Unit Patent Counts: Mean=3,969; SD=3,918

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

Fractional Patent Counts: Mean=24.8; SD=28.0

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36
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Table 8: Effect of NIH Investments on Private-Sector Patenting
Windfall Funding IV

First Stage

DST Funding 
(× $10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

1.251*** 2.478*** 2.002* 3.615*** 2.329**

(0.194) (0.658) (1.106) (0.817) (1.159)

Elasticity 0.785 0.634 0.592 0.381

Cragg-Donald Wald F -stat 478

Kleibergen-Paap Wald F -
stat

37.51

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear 
Trends

Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

Table 6: Effect of NIH Investments on Private-Sector Patenting: Windfall Funding IV

DST 
Funding 
(×$10 mln.) 
Mean=4.06; 

Windfall Funding (×$10 
mln.) 

Note: See notes to Tables 6 and 7 for details about the sample. The outcome variables are fractional patent counts. The
instrument is the total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores
were marginal, i.e., were within 25 applications of the award cutoff for their specific disease area (Institute). Application
controls include (i) FEs for the number of applications that a DST receives; (ii) FEs for the number of applications associated
with a DST that are also in a 50-grant window around the relevant IC payline, as well as (iii) cubics in the average raw and
rank scores of applications associated with a DST that are also in a 50-grant window around the payline. Elasticities are
evaluated at the sample means.

Citation Linked Total Related

Mean=24.8; SD=28.0Mean=12.82; SD=19.17

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table 10: Implied Drug Valuation of NIH Investments

Advanced 
Drug 

Candidates

FDA 
Approved

Pre-approval Main Drug-level

Mean=0.546; 
SD=0.864

Mean=0.316; 
SD=0.532

Mean=0.212 
SD=0.358

Mean=0.035; 
SD=0.084

Mean=0.059; 
SD=0.099

(1) (2) (3) (4) (5)

OLS

0.081*** 0.046*** 0.032*** 0.005*** 0.008***

(0.015) (0.012) (0.007) (0.001) (0.001)

Elasticity 0.602 0.591 0.613 0.580 0.551

Implied Drug Value ($ mln.) — $20.0 $22.2 $17.4 $27.8

IV

0.053 0.034 0.017 0.001 0.004
(0.040) (0.024) (0.019) (0.004) (0.005)

Elasticity 0.394 0.437 0.326 0.116 0.275

Implied Drug Value ($ mln.) — $14.7 $11.8 $3.5 $13.9

Observations 14,085 14,085 14,085 14,085 14,085

Note: See notes to Tables 6 and 7 for sample details. The outcome variables are fractional patent counts. All specifications include
disease-science FEs, disease-year FEs, science by year linear time trends, FEs for the number of applications to the DST, cubics in
the average raw score and average science rank received by applications in the 25-grant radius window around the IC payline, and
FEs for number of DST applicants in a 25-grant window around an IC’s funding cutoff. A patent is labelled “Private Sector” if it is
assigned to a domestic US or foreign corporation (NBER assignee categories 1 and 2 minus foundations, universities, and
hospitals). A patent is labeled an advanced drug candidate if it is included in IMS Patent Focus, which contains information on
patents on biopharmaceutical candidates in Phase III trials or further. We do not generate an implied value for these patents since
they are not necessarily associated with an approved drug/biologic. Within this set, patents are labeled as “FDA approved” if
linked to an approved drug/biologic. A patent is labeled “pre-approval” if it is “FDA approved” and was filed prior to the time at
which corresponding received marketing approval. A patent is labeled as “main” patent if it is the first patent ever filed associated
with a marketed drug. Column 5 aggregates results to the drug level, reweighting by the number of unique drugs associated with a
DST. Implied drug values are calculated assuming a mean lifetime discounted value of $3.47 billion, in 2010 dollars. This figure
comes from DiMasi, Grabowski, and Vernon (2004). All estimates assume that there is one pivotal patent per drug; FDA approved
patents are scaled by 8; pre-approval patents by 5; main patents and drug specific outcomes are not scaled. For instance, the OLS
estimate in column (2) imply that an additional $10 mln. in NIH funding for a DST would result in $22.6 mln. in downstream
pharmaceutical sales.

Table 8: Implied Drug Valuation of NIH Investments

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Appendix A: A Primer on NIH Funding

The National Institutes of Health (NIH) is the primary organization within the United States government
with responsibilities for health-related research. The NIH is the single largest funder of biomedical research,
with an annual budget of approximately $30 billion. According to its own web site, NIH’s mission is “to seek
fundamental knowledge about the nature and behavior of living systems and the application of that knowledge
to enhance health, lengthen life, and reduce illness and disability.”

NIH comprises 21 different Institutes (plus an assortment of centers that our analysis will ignore), each with
a distinct, though sometimes overlapping, research agenda. For example, the National Institute for Mental
Health, as the name suggests, focuses on mental health related research. It shares interests with the National
Institute of Aging on issues related to dementia. All Institutes receive their funding directly from Congress,
and manage their own budgets. Table A1 lists each of the agency’s component institutes.

Figure A1(i) provides an example of language from an appropriations bill for the National Cancer Institute;
here, Congress uses the disease burden associated with pancreatic cancer to underscore the need for more
research in this field. Figure A1(ii) compiles a list of the mostly commonly used words in the Congressional
appropriations documents for all NIH Institutes, for a sample year. The highest-frequency word in both House
and Senate appropriations is, unsurprisingly, “research.” The majority of the remaining list are medicine
or disease focused: “disease,” “health,” “child,” “behavior,” “patients,” “syndrome,” etc. This reasoning is
supported by research showing that funding levels for particular Institutes are more highly correlated with
disease burden than with scientific advances (Gillum et al. 2011).

Approximately 10% of the overall NIH budget is dedicated to the intramural research program, with almost
all Institutes providing some support. The program directly supports about 6,000 scientists working within
the federal laboratories on NIH Campuses. Unlike the intramural program, where allocation decisions are
relatively opaque, the operations of the extramural program are quite transparent. More than 80% of the total
budget supports extramural research through competitive grants that are awarded to universities, medical
schools, and other research institutions, primarily in the United States. The largest and most established
of these grant mechanisms is the R01, a project-based renewable research grant which constitutes half of
all NIH grant spending and is the primary funding source for most academic biomedical labs in the United
States. There are currently 27,000 outstanding awards, with 4,000 new projects approved each year. The
average size of each award is 1.7 million dollars spread over 3 to 5 years and the application success rate is
approximately 20 percent (Li 2016).

Requests for proposals identify priority areas, but investigators are also free to submit applications on
unsolicited topics under the extramural research program. All applications are assigned to a review committee
comprised of scientific peers, generally known as a study section (Table A2 lists the 173 study sections that
currently exist). Reviewers are asked to ignore budgetary issues, limiting their attention to scientific and
technical merit on the basis of five criteria: (1) Significance [does the project address an important issue?];
(2) Approach [is the methodology sound?]; (3) Innovation [is the research novel?]; (4) Investigator [are the
skills of the research team well matched to the project?]; and (5) Environment [is the place in which the work
will take place conducive to project success?]. Each reviewer assigns a two digit priority score ranging from
1.0 for the best application to 5.0 for the worst. At the study section meeting, three reviewers are typically
asked to discuss an application and present their initial scores. This is followed by an open discussion by
all reviewers and a brief period for everyone to revise their initial scoring based on the group deliberations
before anonymously submitting their final scores. The overall priority score for the proposal is based on the
average across all study section members. Those applications determined to be of the lowest quality by the
study section do not receive priority scores. Scores are then normalized within review groups through the
assignment of percentile scores to facilitate funding decisions.

Funding decisions are decoupled from the scientific review and determined by program areas within the
Institutes. In essence, each decision making unit (e.g., Division, Program, Branch) within an Institute is
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allocated a fixed annual budget. Units then fund new projects in order of their priority score until their
budget, net of encumbered funds for ongoing grants awarded in previous years, is exhausted. The highest
percentile score that is funded is known as the payline. A grant’s score is generally the sole determinant of
the funding decision,i irrespective of proposal costs (assuming they are deemed reasonable). Researchers who
do not receive funding are given the opportunity to respond to reviewer criticisms and submit an amended
application.

Institutes considered in the econometric analysis. We exclude from our analytic sample observa-
tions corresponding to the National Library of Medicine (NLM), the National Institute of Nursing Research
(NINR), and the National Institute on Minority Health and Health Disparities (NIMHD), which together
represent less than 3% of NIH’s total budget. We drop the NLM because it seldom supports extramural
researchers. We drop NINR and NIMHD because we found no instances of the grants funded by these
Institutes generating publications referenced in private-sector patents.

A cursory look at the names of the list of the 18 Institutes we do include in most of our analyses reveals that
some of these Institutes may not be strictly disease-focused. This is certainly the case for NIGMS (which
supports mostly untargeted laboratory research), for NHGRI (the Genome Institute), and NIBIB (which
focuses on imaging technology). In a sensitivity test, we will explore whether our main results are robust
to the exclusion of these three “science-focused” Institutes. Further, we will also investigate the effects of
dropping NIA, NIDCD, NIEHS, and NICHD who traditionally support research on a broad spectrum of
loosely related diseases.

Study sections. As mentioned above, the majority of grant evaluation occurs in approximately 200 standing
review committees, known as “study sections.” Each study section is organized around a scientific topic—for
instance, “Cellular and Molecular Immunology”—and is responsible for evaluating the quality of applications
in its area. Traditionally, the boundaries delineating study sections have changed only very slowly (too slowly
for many NIH critics). Additions and deletions of study sections is relatively rare, and often controversial.
In 2006, however, the NIH reorganized its standing study sections. This involved closing or consolidating
some study sections, splitting others, and creating new study sections, for instance one on data analytics, to
respond to new topics and tools. The overall review process stayed largely the same. This change happens
outside of our sample frame and, throughout our analysis, we refer to the old system.

Allocation of Applications to Study Sections. Could applicants improve their odds of funding by
sending their applications to study sections reputed to be “weaker”? Study section shopping of this type
would be almost surely unproductive, given year-to-year fluctuations in funding and the vagaries of the
reapplication process (most proposals are not funded at the first review).ii Formally, grant applicants do not
choose the study section that will review their proposals. Rather, each application is assigned by staff within
the Division of Receipt and Referral at the NIH to a study section based on the needed expertise to evaluate
scientific and technical merit.iii While many investigators ask to be reviewed by a specific study section,
the NIH grants such requests based on the scientific content of the proposal, a consideration of conflicts of
interest, and the administrative viability of the request (Chacko 2014). More importantly, the typical advice
received by new investigators is to petition to be reviewed in the study section that is most likely to have
members on their roster whom are familiar with their narrowly-defined field, and then to stick to this initial
choice. Consistent with this advice, an essential component of “grantsmanship” at NIH is to build a cordial
relationship with the Scientific Review Officer, the staff person within NIH’s Center for Scientific Review

iInstitute directors have the discretion to fund applications out of order if, for example, they are especially important to
the Institute’s mission. Since applications can only be submitted three times, Institutes may also choose to fund applications
on their last evaluation cycle instead of newly submitted applications that can be reconsidered later. These exceptions appear
rare (Jacob and Lefgren 2011).

iiEven grant administrators are usually unable to communicate to applicants how the score they received in committee is
likely to translate into a final funding decision. It is implausible that grant applicants could be better informed than these
knowledgeable insiders.

iiihttp://public.csr.nih.gov/ApplicantResources/ReceiptReferal/Pages/Submission-and-Assignment-Process.aspx,
accessed August 30, 2014
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who administers the logistics of the review process. These informal practices would seem to run counter any
temptation to “chase the money.”

We see this in the data, where there is considerable inertia in scientist-study section pairings. In a typical five
year-period, 88% of NIH grant recipients are evaluated by only one study section; eleven percent are evaluated
by two study sections; and only one percent are evaluated by three study sections or more. Why would a
given scientist’s grant applications ever be reviewed by multiple study sections? One reason is that study
sections are not immutable. Some are created; others are eliminated; yet others are merged. Intellectual
breadth may also explain the anomalies: In a sample of 10,177 well-funded investigators for whom we have
gathered a carefully curated list of publications (cf. Azoulay et al. 2012), intellectual breadth (as proxied
by the diversity of MeSH keywords that tag the publications produced by these scientists in rolling five-year
windows) is strongly correlated with the likelihood of having one’s work reviewed by multiple study section
(Table A3). This results holds even when controlling for the total level of funding received. This results hold
even when controlling for the total level of funding received. This suggests that scientists have their work
reviewed by two or more committees only to the extent that they are active in subfields that are sufficiently
distant in intellectual space.

Disease/Science as a level of analysis. As highlighted in the introduction, the organization of the
NIH into disease-based funding Institutes and science-based review committees plays an important role
in our empirical work, since our independent and dependent variables will be computed at the level of the
disease/science/year (DST, technically the IC/study section/year level). If applications evaluated by a study
section were always funded by the same Institute, the distinction we emphasize between the disease/science
level of analysis and disease-level variation over time would not be very meaningful. However, it is indeed
the case that study sections cut across diseases, in the sense that the grant applications they pass favorable
judgement on will go on to be funded by several different Institutes. Figure A2(i) shows that the majority, 75
percent, of study sections evaluated grants funded by at least two Institutes. Conversely, Figure A2(ii) shows
that the typical Institute draws on applications stemming from more than 50 study sections, on average.

Not only is the DST level of analysis policy-relevant, it is tractable by using the structure of NIH grant
review and mapping Institutes into disease areas, and study sections into science areas, respectively. And
because of the “intellectual promiscuity” documented above, in practice, increases in funding for one disease
can impact innovation in another by supporting research on the scientific foundations these two areas share.

Figure A3 plots residual variation in funding taking out, successively, fixed effects for calendar year, dis-
ease/science, disease/year, and science/year. These kernel density estimates make clear that there remains
substantial unexplained variation in funding after controlling for all these fixed effects. It is this DST-level
variation that we use to estimate the effect of funding on private-sector patenting.
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Table A1: NIH Institutes and Centers (ICs)

Institute Abbrev. Established Avg. Budget*

National Cancer Institute NCI 1937 $4,019,793
National Heart, Lung, and Blood Institute NHLBI 1948 $2,489,629
National Institute of Allergy and Infectious Diseases NIAID 1948 $2,070,634
National Institute of Dental and Craniofacial Research NIDCR 1948 $325,861
National Institute of Mental Health NIMH 1949 $1,378,636
National Institute of Diabetes and Digestive and Kidney Diseases NIDDK 1950 $1,491,613
National Institute of Neurological Disorders and Stroke NINDS 1950 $1,244,241
National Eye Institute NEI 1968 $562,126
National Institute on Alcohol Abuse and Alcoholism NIAAA 1970 $423,341
National Institute on Drug Abuse NIDA 1974 $960,637
National Institute of Arthritis and Musculoskeletal and Skin Diseases NIAMS 1986 $458,273
National Institute of Child Health and Human Development NICHD 1962 $1,043,447
National Institute of Environmental Health Sciences NIEHS 1969 $557,645
National Institute on Aging NIA 1974 $702,184
National Institute on Deafness and Other Communication Disorders NIDCD 1988 $347,646
National Institute of General Medical Sciences NIGMS 1962 $1,629,056
National Human Genome Research Institute NHGRI 1989 $375,451
National Institute of Biomedical Imaging and Bioengineering NIBIB 2000 $316,430
National Library of Medicine NLM 1956 $229,442
National Institute of Nursing Research NINR 1986 $106,880
National Institute on Minority Health and Health Disparities NIMHD 1993 $228,287
*Over the 1980-2005 time period, In thousands of 2010 dollars (amounts deflated by the Biomedical R&D PPI)
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Table A3: Intellectual Breadth and Study Section Affiliations

1 

(1) (2) (3) (4)

Two Study Sections 0.141** 0.124** 0.026** 0.011** 
(0.005) (0.005) (0.003) (0.003)

Three Study Sections 0.249** 0.222** 0.042** 0.018** 
(0.011) (0.012) (0.006) (0.007)

Four Study Sections 0.333** 0.297** 0.065** 0.035* 
(0.033) (0.034) (0.017) (0.017)

Five Study Sections 0.354** 0.313** 0.037 0.003
(0.084) (0.084) (0.055) (0.055)

Ln(NIH Funding) 0.030** 0.031** 
(0.005) (0.003)

Scientist Fixed Effects Not Incl. Not Incl. Incl. Incl.
Nb. of Scientists 10,177 10,177 10,177 10,177
Nb. of Observations 146,661 146,661 146,661 146,661
Adjusted R2 0.226 0.227 0.711 0.712

The dependent variable is the log odds of intellectual diversity, computed as one minus the herfindahl of MeSH keywords 
in a sample of 10,177 “superstar scientists.” The specifications in columns (1) and (2) include indicator variables for type of 
degree (MD, PhD, MD/PhD), year of highest degree, and gender. All specifications include a full suite of indicator variables 
for calendar year and for scientist age. 

Standard errors in parentheses, clustered by scientist (†p < 0.10, *p < 0.05, **p < 0.01) 
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Figure A1: Congressional Appropriations for NIH Institutes

(i) Example of Appropriations Language

58

mittee encourages NCI to further accelerate advances in breast 
cancer screening technology and to capitalize on existing and create 
new technologies that improve early diagnosis, health outcomes, 
and survival. 

Ovarian cancer.—The Committee remains concerned that sur-
vival rates associated with ovarian cancer have improved only 
slightly over the past 20 years. Ovarian cancer is the deadliest of 
all gynecological cancers. For all women diagnosed with ovarian 
cancer, the five-year survival rate is 45 percent. More than two-
thirds of the women have advanced disease at the time of diag-
nosis, and for this group, the 5–year survival rate is 29 percent. 
The Committee commends NCI for its recognition of the impor-
tance of studying this deadly women’s disease and appreciates the 
NCI’s recent investment that is helping to increase the under-
standing of the unique molecular pathways associated with ovarian 
cancer through its SPOREs program. The Committee encourages 
NCI to sustain and strengthen its commitment to and investment 
in ovarian cancer and maintain the specialized programs of re-
search excellence (SPORE) initiatives directed toward ovarian can-
cer in fiscal year 2006. 

Liver Cancer.—The Committee remains concerned with the in-
creasing incidence of primary liver cancer, which is in sharp con-
trast to many other forms of cancer where the incidence is declin-
ing and the treatment options are rapidly increasing. The Com-
mittee is aware that NCI, working with NIDDK, has convened an 
Experts Conference and is moving ahead with plans to increase re-
sources dedicated to this disease. The Committee urges NCI to 
make a strong commitment to research on primary liver cancer 
with particular focus on the development of drugs that target the 
cancer without killing healthy cells by interfering with the cellular 
pathways of the disease. The Committee further urges NCI to con-
tinue to support the NIDDK sponsored HALT–C clinical trial which 
has particular relevance to the NCI mission. 

Pancreatic cancer.—Pancreatic cancer is the country’s fourth 
leading cause of cancer death. Most patients present with advanced 
disease at diagnosis and the median overall survival rate for people 
diagnosed with metastatic disease is only about six months. The 
Committee is concerned that there are too few scientists research-
ing pancreatic cancer and compliments the NCI’s past efforts for 
increasing the research field through its program of a 50 percent 
formalized extended payline for grants that were 100 percent rel-
evant to pancreatic cancer. The Committee considers this an impor-
tant method for attracting both young and experienced investiga-
tors to develop careers in pancreatic cancer. In 2004, the NCI es-
tablished a new policy for awarding additional grants in pancreatic 
cancer research and extended this initiative to research that is 50 
percent relevant to pancreatic cancer. The Committee requests NCI 
to report in February, 2006 on how the two changes in policy have 
affected the pancreatic cancer portfolio, including the percentage 
relevancy of each grant to pancreatic cancer, and urges NCI to con-
tinue its commitment to fertilize the pancreatic cancer field. 

Lymphoma.—Lymphoma is the fifth most common cancer and 
the most common hematological cancer. Unlike many other can-
cers, lymphoma often strikes individuals in young adulthood and 
the middle years, significantly impacting their professional produc-

VerDate jul 14 2003 07:43 Jun 22, 2005 Jkt 021909 PO 00000 Frm 00058 Fmt 6659 Sfmt 6602 E:\HR\OC\HR143.XXX HR143

(ii) Word Frequency in Appropriations Documents
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Figure A2: Institute and Study Section Overlap

(i) Number of Institutes per Study Section  
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(ii) Number of Study Sections per Institute
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Figure A3: Residual Variation in DST Funding
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Appendix B: “Life Science” Patents

To assess the impact of NIH funding, we need to define a universe of life science patents. While we do not
want to impose strong restrictions on where NIH funding could have an effect (e.g., by looking in specific
disease areas) focusing on a specific subset of the universe of issued patents is necessary for two reasons.
From a substantive standpoint, it is important to assign most patents to one or more NIH research areas,
and this would be infeasible were we to focus on all patents granted by the USPTO.iv From a pragmatic
standpoint, linking NIH publications to patents requires probabilistic matching (see Appendix D2), and the
rate of false positives is much lower if we restrict the set of potential matches.

To do so, we started with the 5,269,968 patents issued by the USPTO between 1980 and 2012. Then,
using the NBER patent categorization described in Hall et al. (2001), we focused on patents in the classes
belonging to NBER Categories 1 (Chemicals) and 3 (Drugs and Medical). This left 1,310,700 patents. Of
these patents, 565,593 cite at least one non-patent reference. Using the algorithm described in Azoulay et
al. (2012) and Sampat and Lichtenberg (2011) we determined that 312,903 patents cite an article indexed in
PubMed. We refer to this set—patents in NBER Classes 1 and 3 that cite to at least one PubMed indexed
article—as “life science patents.” Classes 1 and 3 cover a range of subcategories, listed in Table B1.

To provide a better sense of what this set includes, we took a random sample of 1,000 in the universe described
above, and looked them up in the Thomson Reuters Innovation Database. This database includes information
on the expert classification of each patent to one or more codes in the Derwent World Patents Index (Derwent
World Patents Index 2012). Of the 1,000 patents, 656 had at least one DWPI “B” code, indicating they are
in the “pharmaceuticals” category. According to DWPI 2012 (page 5) these pharmaceutical patents include:

• Compounds and proteins of pharmaceutical (or veterinary) interest;

• Compounds used as intermediates in the manufacture of pharmaceutical products;

• Compositions used for diagnosis and analysis in pharmaceuticals;

• Technologies dealing with production of tablets, pills, capsules, etc.

• Devices for dispensing pharmaceuticals.

Importantly, the “B” classes also include a range of biotechnology research tools and processes.

What about those without a “B” code, about one-third of the life science patents? The majority of these
non-pharmaceutical patents are in five DWPI categories covering chemistry and medical devices: Class A
(Polymers and Plastics), Class D (Food, Detergents, Water Treatment, and Associated Biotechnology),
Class E (General Chemicals), Class S (Instrumentation, Measuring, and Testing), and Class P (General
Human Necessities, including diagnosis/surgery).

Private sector vs. public sector patents. We are primarily interested in the effect of NIH funding on
the rate of production of private-sector patents, excluding those assigned to public research entities such
as universities, research institutes, academic medical centers, or government agencies (e.g., the intramural
campus of NIH). This focus is justified by our desire to focus on disembodied knowledge flows. Since the
Bayh-Dole act, life science academics have considerably increased their rate of patenting (Azoulay et al.
2007; 2009). Previous scholarship has documented the growing importance of patent-paper pairs (Murray
and Stern 2007) where a given piece of academic knowledge gives rise to both an article and a patent
listing the authors of the article as inventors and their employer (often a public institution) as assignee.
Including these patents in our analyses would make the interpretation of our results (which emphasizes
indirect spillovers of knowledge) difficult. To separate private-sector from public-sector patents, we adapted

ive.g., class 150, “Purses, Wallets, and Protective Covers,” or Class 169, “Fire Extinguishers.”
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Bronwyn Hall’s patent assignee name matching algorithm to isolate private-sector assignees.v Using this
method, we restrict the sample to 232,276 patents, or 74% of the life science patents (see Table 2 in the main
body of the manuscript).

Patents on drug candidates and approved drugs. Though a substantial share of the life science patents
are “pharmaceuticals” not all are therapeutic molecules or proteins. Even among those that are, there is
substantial heterogeneity in value, since only a small share of drugs and biologics enter trials, and of these
a small share receive marketing approval.

To examine heterogeneity of the effects of NIH funding, and to assess the effects on drug development, we
isolated patents associated with important drugs and biologics. We began with all patents from current and
archival versions of the FDA’s Orange Book (officially named Approved Drug Product with Therapeutic
Equivalence Evaluations). Since the 1984 Hatch-Waxman Act, branded firms are required to list on the
Orange Book patent issued before drug approval with at least one claim covering a drug’s active ingredient,
formulation, or methods of use for approved indications. Though there is strong incentive to list patents
issued after drug approval as well (Hemphill and Sampat 2012), strictly speaking this is not required. More-
over other drug patents (methods of manufacture, formulations not covering the marketed product, methods
of use covering unapproved indications) are barred.

In parts of our analysis, we look at the effects of NIH funding on “important” life science patents associated
with drugs that have been approved or entered late-stage clinical trials. For doing so, the Orange Book is
restrictive, for several reasons. First, it does not list all patents on a drug, as already noted. Second, it
does not list patents for all biologic drugs (since these drugs were historically covered by a division of the
FDA exempt from Orange Book listing rules). Third, it does not include patents on drugs and biologics
in late stage trials. Accordingly, we supplemented the patent list from the Orange Book with those from
IMS Patent Focus, which includes patents on drugs and biologics in Phase III trials and above, and is less
restrictive about the types of patents it includes than the Orange Book.vi

Together 4,718 of the 232,276 life science patents were listed in the Orange Book and/or IMS. We call this
set of patents “Advanced Drug Candidates.”

For welfare calculations, we multiply the effects of NIH patenting with measures of the value of new drugs.
In order to do so, we need to isolate the patents associated with new molecular and biological entities
(NMEs and NBEs), eliminating patents on drugs that associated with other drugs (e.g., line extensions) and
unapproved drugs. This is not to say that drugs beyond NMEs and NBEs are unimportant. However, doing
so is necessary since our measures of private and social value of drugs are based on data on new drugs that
have been approved for marketing (as opposed to line extensions or unapproved drugs).

To construct this set, we used information on all NMEs and NBEs approved by the FDA between 1984 and
2012. Specifically, we collected information on all new molecular entities and biological license applications
approved by the FDA. We searched for patents on each of these in the Orange Book using application
numbers, and supplemented with searches in IMS patent focus using drug names. About 30 percent of these
patents were listed both in the Orange Book and IMS, 67 percent in IMS only, and 3 percent in the Orange
Book only. On average, there were 7.6 patents per drug in the dataset (7.3 for NME and 9.6 for biologics).
After limiting to private sector patents (see above), we were left with a set of 1,999 private sector life science
patents associated with new molecules and biologics.

vhttp://eml.berkeley.edu/~bhhall/pat/namematch.html
vihttp://www.imshealth.com/deployedfiles/imshealth/Global/Content/Technology/Syndicated%20Analytics/

Lifecycle%20and%20Portfolio%20Management/IMS_LifeCycle_Patent_Focus_Global_Brochure.pdf
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Table B1: Relevant Patent Classes

Cat. 
Code

Category Name
Sub-Cat. 

Code
Sub-Category Name Patent Classes

1 Chemical 11 Agriculture, Food, Textiles 8, 19, 71, 127, 442, 504

12 Coating 106,118, 401, 427

13 Gas 48, 55, 95, 96

14 Organic Compounds
534, 536, 540, 544, 546, 548, 549, 552, 554, 556, 
558, 560, 562, 564, 568, 570

15 Resins 520, 521, 522, 523, 524, 525, 526, 527, 528, 530

19 Miscellaneous

23, 34, 44, 102, 117, 149, 156, 159, 162, 196, 201, 
202, 203, 204, 205, 208, 210, 216, 222, 252, 260, 
261, 349, 366, 416, 422, 423, 430, 436, 494, 501, 
502, 510, 512, 516, 518, 585, 588

3 Drugs & Medical 31 Drugs 424, 514

32 Surgery & Medical Instruments 128, 600, 601, 602, 604, 606, 607

33 Biotechnology 435, 800

39 Miscellaneous 351, 433, 623

xii



Appendix C: Why use DSTs as our Unit of Analysis?

Our conceptual model motivates our approach of tracing the patenting impact of research investments in
each of r “research areas.” In theory, a research area can be defined in many ways: narrowly at the level of an
individual grant or broadly at the level of a disease. We choose to define research areas at the disease-science-
time (DST) level for two reasons. First, DSTs represent coherent research areas and therefore capture a unit
of funding variation that is policy-relevant. A more disaggregated level of analysis, such as the individual
grant, has a different interpretation. To see this, consider an analogous regression at the grant level:

Patentsg̃ = α0 + α1Fundingg + Controlsg + εg (c1)

In Equation (c1), α1 captures the impact of changes in funding for grant g on patenting outputs related
to g (the comparison is implicitly to a grant g′ that receives less funding). Since we typically only observe
outcomes for funded grants, α1 captures the intensive margin effect of budget increases for already funded
grants, but would not incorporate any extensive margin impacts of funding additional grants.vii

To capture the impact of NIH funding at the extensive margin, one would need to examine patenting
outcomes related to all grant applications, both funded and unfunded. This is challenging because unfunded
applications do not generate acknowledgement data, making it difficult to track downstream outcomes using
bibliometric linkages. Jacob and Lefgren (2011) circumvent this issue by studying the impact of NIH funding
on the publication output of individual scientists. By focusing on the individual, they are able to link
publications to scientists using authorship information rather than grant acknowledgements.

In our setting, however, estimating the impact of funding on individual scientists is of less policy interest.
Fundamentally, policy makers care about overall innovation in a research area, not about whether a given
applicant is funded. If an individual applicant is able to produce more research as a result of being funded,
it does not necessarily generate more innovation in a research area because funding for one applicant may
simply come at the expense of funding for other applicants with similar ideas: α1 may therefore misstate
the impact of NIH funding on overall innovation in a research area.

By aggregating to the level of a research area, we eliminate the concern that we simply identify the advantage
that funded individuals have over unfunded ones. While it is still the case that funding for one DST could
come at the expense of funding for other DSTs, this variation is more likely to impact the substantive
content of innovation, relative to funding variation at the investigator level. This is because different D-S
combinations correspond to different intellectual areas and are therefore less likely to support overlapping
research ideas.viii

Policy makers are perhaps more interested in the impact of funding at the disease level, rather than the
disease/science level. Our second reason for examining DSTs is that it is important for our identification
strategy. Funding for a DST is a byproduct of funding decisions for diseases—made at the Congressional
level—and scientific evaluations for individual grant applications—made by peer reviewers. Because no one
explicitly allocates funding to a DST, we are able to exploit funding rules that generate incidental variation
in funding across research areas. This is described in more detail in Section 3.4.

viiThis is problematic because the NIH has a stated policy of funding the anticipated cost of an accepted research proposal,
regardless of its peer review score. As as result, there is relatively less scope for increases in a grant’s budget, conditional on
being funded, to affect its innovative potential. More likely, when the NIH provides more funding for a research area, this
funding is used to support additional grant applications that would not have been funded otherwise. These grants go on to
produce publications that, in turn, later inspire commercial applications.

viiiThis does not address the concern that public funds may crowd out private investment. We discussed this form of crowd
out in Section 2.1. Section 3.3 discusses how we address this issue empirically.
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Appendix D1: Linking NIH Grants to Publications that
Acknowledge NIH Support

The NIH asks of its grantees to include acknowledgements to agency support in any publications resulting
from the grant, and to do so in a very specific format.ix Since the early 1980s, PubMed has recorded
these acknowledgements in a separate field, and we use this data to link every grant in the NIH Compound
Grant Applicant File (CGAF) with the publications that result. The process used to systematically map
publication-to-grant linkages is relatively straightforward, but may be prone to measurement error. We
discuss three potential issues below, and investigate the bias they might create for the reported results.

Dynamic linking inconsistency. In the vast majority of the cases, a grant acknowledgement provides
a grant mechanism, a funding institute, and a grant serial number (as in R01GM987654), but typically no
reference to a particular grant cycle. This limitation is potentially serious, since we need to be able to assign
each publication to a particular DST, and not simply to a particular DS. Our final dataset relies on 987,799
unique publications that acknowledge a grant funded by NIH. 100% of these acknowledgements occur in a
window of ten years before the year in which the article appeared in print. 93% of these publications are
linked to the same grant within seven years, 83% within five years, and 47% within two years. To find the
relevant grant cycle for each publication acknowledging a grant, we adopted the following procedure: (i)
look up the year of publication tpub for the acknowledging publication; (ii) create a five year “catchment
window” [tpub−5; tpub]; (iii) identify the most recent fiscal year tgrant in that window during which the grant
was funded either as a new grant or as a competitive renewal; and (iv) link the publication to the funding
institute identified in the grant acknowledgement, the study section that evaluated this grant according to
NIH records, in the year tgrant.

While we cannot directly observe whether a publication was funded by a different grant cycle, we have
verified that our benchmark results are robust to alternative choices for the length of the catchment window:
[tpub − 2; tpub], [tpub − 7; tpub], [tpub − 10; tpub].

Overclaiming of publications. NIH grant renewal is dependent on the research and publications stem-
ming from that stream of funding. To our knowledge, NIH does not audit the acknowledgement trail
systematically—this is left to the discretion of scientific review officers (the federal employees who manage
the flow of information between reviewers in a particular study section and the NIH funding apparatus).
Therefore, grantees may have an incentive to “over-attribute” publications—e.g., to credit some publications
to the support of a grant, even if they were in fact enabled by other streams of funding. This raises the
concern that increases in DST funding, even if exogenous, can lead us to identify more related patents, but
only through the spurious channel of false attributions.

We believe that our results are unlikely to be driven by this behavior for two reasons. First, the vast majority
of public biomedical research funding in the US comes from NIH, meaning that most scientists do not have
meaningful amounts of funding from other sources to support their research.x While scientists often use
grant funding to subsidize research projects that are not directly related to the topic of their grant, these
projects should still be counted as a product of grant funding.

Second, if misattribution were driving our results, we would expect to see that boosts in NIH funding increase
the number of patents directly linked to NIH funding (our “citation-linked” measure of patenting, see Table 6),
but it would not increase the total number of patents in a DST’s intellectual area (our “PMRA” measure of
patenting, see Table 7). Our PMRA measure is designed to capture, through related publications, patents
building on research related to a DST, regardless of whether that research is NIH-funded. If increases in

ixhttp://grants.nih.gov/grants/acknow.htm
xNIH accounted for 70% of the research budget of academic medical centers in 1997 (Commonwealth Fund Task Force on

Academic Health Centers 1999); within Graduate Schools of Arts and Sciences, who cannot rely on clinical income to support
the research mission, one would expect the NIH share to be greater still.
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DST funding merely induce scientists to acknowledge these grants, we would not see the overall increase in
innovation that we document in Tables 7 and 8.

Underclaiming of publications. Given the incentives created by the funding renewal decision, it seems
unlikely that researchers would err by failing to credit their grant upon publication when they legitimately
could. However, the number of NIH grant acknowledgements in PubMed jumps from 25,466 for articles
appearing in 1980 to 56,308 for articles appearing in 1981 before stabilizing on a slow upward trend that
correlates with the growth in funding thereafter. This is likely because the National Library of Medicine only
gradually moved to a regime where grant acknowledgement data was systematically captured. Although the
grants acknowledged in these early publications likely predate the start of our observation period (1980),
this is an additional source of measurement error to which we must attend. In contrast to the second issue,
however, there is no reason to suspect that erroneous capture of these data is related to the size of a DST.
Year effects, included in all our specifications, should deal adequately with any secular change in NLM’s
propensity to accurately capture information related to grant acknowledgment.

Example. We illustrate the procedure with the case of particular publication, Deciphering the Message in
Protein Sequences: Tolerance to Amino Acid Substitutions, by Bowie et al., which appeared in the journal
Science on March 16th, 1990 (see the left side of Figure D1-1). The publication credits grant support from
NIH, specifically grant AI-15706. Despite the fact that this acknowledgement appears at the very end of
the paper as the ultimate reference in the bibliography (reference #46 on page 1310), PubMed captures
this data accurately (see the right side of Figure D1-1). Note that the acknowledgement omits the grant
mechanism, as well as the leading zero in the grant serial number. These issues, which are typical in the
PubMed grant acknowledgement data, turn out to be unimportant. In particular, the National Institute of
Allergy and Infectious Diseases (NIAID, code-named AI) has only one grant with serial number 015706: A
project R01 grant first awarded to Robert T. Sauer, an investigator in the biology department at MIT, in
1979, and competitively renewed in 1982, 1987, 1992, 1997, and 2002. The grant was evaluated by the BBCA
(Molecular and Cellular Biophysics) study section; its title is Sequence Determinants of Protein Structure
& Stability, with a budget of $1,211,685 for the cycle that began in 1987, three years before the date of the
publication above (whose last author is also Robert Sauer). As a result, the publication is linked to the DST
corresponding to the combination AI (Institute)/BBCA (study section)/1987 (year).

Distribution of Grant Acknowledgement Lag. In order for NIH funding to have an impact on total
innovation, it must be that NIH funding enables the production of new knowledge. Yet, a common critique
of NIH funding is that it is based on nearly completed research. Under this view, NIH funding essentially
functions as “a prize for work well done” (Lazear 1997), rather than an input into future research effort.
Below, we show that this is not entirely the case. While some publications may have been more or less
complete at the time of grant application, there are many more publications that are based on research that
was likely enabled by receiving the grant. Figure D1-2 shows that, in fact, only 3.27% of publications occur
in the year of grant receipt (year 0), with an additional 13.81% occurring in year 1. Thus, the timing of
publications seems to suggest that while some research is very advanced when a grant is funded, the funding
is largely being used to generate new research.

Topic Drift. We can also examine the claim that NIH funding is generating new research by examining how
closely the publications relate to the specific aims of the research proposal they acknowledge. To do so, we
measure the extent to which the MeSH keywords used in publications that acknowledge the grant deviate,
or at least drift away, from the MeSH keywords that characterize the research proposed in the initial grant
application, based on its abstract. The Medical Text Indexer (MTI) developed by a team of researchers at
the National Library of Medicine is a natural language processing tool that enables researchers to map full
text paragraphs onto the MeSH controlled thesaurus.xi We batch process each grant abstract with the MTI
tool to identify the core concepts and themes within each proposal. On average, MTI maps a grant to 13
MeSH terms (the median is also 13; the number of mapped terms ranges from one to 101).

xihttps://ii.nlm.nih.gov/MTI/. MeSH is the National Library of Medicine’s controlled vocabulary thesaurus. It consists
of sets of terms naming descriptors in a hierarchical structure that permits searching at various levels of specificity. There are
27,455 descriptors in the 2015 MeSH edition used in this manuscript. See also Appendix E.
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We can then compute, for each grant/publication pair, the number of MeSH terms that overlap between the
grant and the publication, giving us a fine-grained measure of the similarity in content between the grant
proposal and subsequent publications that acknowledge that grant funding. To analyze that data, we run
count model specifications of the following type (which we estimate by Quasi Maximum Likelihood):

E [#OV RLP_KWRDSij |Xij ] = #TTL_KWRDSi × exp
[
γt(i) + δIC(i)ss(i)

+
∑5

k=1
βk1t(j)−t(i)=k

] (d1)

where #OV RLP_KWRDSij is the number of MeSH keywords that are common between grant i and
publication j (where j acknowledges i), #TTL_KWRDSi is the total number of MeSH keywords for
grant i (so that the outcome variable is effectively the proportion of keywords that overlap between i and
j), γt(i) is a series of indicator variables for the fiscal years t(i) in which grant i is funded, and δIC(i)ss(i)

is a series of indicator variables for the institute IC(i) that funded grant i and the study section ss(i) that
evaluated it. The coefficients of interest in this regression are the βk’s: they pin down the keyword drift for
publications that appear k years after t(i).

Table D1-3 shows the results. Figure D1-2 also provides the estimates of the βk’s in graphical form (corre-
sponding to Column 3 of Table D1-1). It shows that the work published in the first year of the grant is most
closely tied to the intellectual content of the grant proposal, and that the topic of publications in later years
increasingly deviate from the ideas laid out in the investigator’s original proposal. This is further evidence
that much of the output attributed to a grant represents new research that was not (nearly) complete at the
time of grant submission.

Figure D1-1: Example of Grant Acknowledgement
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Figure D1-2: Publication-Grant Acknowledgements Over Time
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Figure D1-3: Coefficient Estimates from Eqn. (d1)
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Appendix D2: Linking PubMed References to USPTO Patents

We use patent-publication citation information to identify patents that build on NIH-funded research. Patent
applicants are required to disclose any previous patents that are related to their research. Failure to do so can
result in strong penalties for the applicant and attorney, and invalidation of the patent (Sampat 2009). There
is a long history of using citation data as measures of intellectual influence or knowledge flows between public
and private sector research (Jaffe and Trajtenberg 2005). Recent work (Sampat 2010, Alcácer, Gittleman and
Sampat 2009), however, shows that patent examiners rather than applicants insert many of these citations,
casting doubt on their utility as measures of knowledge flows or spillovers (Alcácer and Gittleman 2006).

Building on the idea that citations in journal articles can be used to track knowledge flows, the pioneering
work of Francis Narin and colleagues at CHI research in the 1970s used references on the front page of
patents to scientific articles (part of the “non-patent references” cited in the patent), to examine the “science
dependence” of technology (Carpenter and Narin 1983) and linkages between science and technology (Narin
and Olivastro 1992, 1998). This research also found that life-science patents cite non-patent references more
intensively than do firms from other fields. In the economics literature, the count of non-patent references
(or the share of non-patent references in all citations) has been used a proxy for the extent to which patents
are science-based (e.g., Trajtenberg et al. 1997).

For our purposes, leveraging patent-to-publication citation information is appealing for two reasons. First,
publications, rather than patents, are the main output of academic researchers (Agrawal and Henderson
2002); second, the vast majority of patent-to-paper citations, over 90 percent, come from applicants rather
than examiners, and are thus more plausibly indicators of real knowledge flows than patent-to-patent citations
(Lemley and Sampat 2012; Roach and Cohen 2013). Our paper builds on and extends this approach, by
linking life-science patents back to the articles that cite them, and the specific NIH grants funding these
articles.

Determining whether patents cite publications is more difficult than tracing patent citations: while the cited
patents are unique seven-digit numbers, cited publications are free-form text (Callaert et al. 2006). Moreover,
the USPTO does not require that applicants submit references to literature in a standard format. For
example, Harold Varmus’s 1988 Science article “Retroviruses” is cited in 29 distinct patents, but in numerous
different formats, including Varmus. “Retroviruses” Science 240:1427-1435 (1988) (in patent 6794141) and
Varmus et al., 1988, Science 240:1427-1439 (in patent 6805882). As this example illustrates, there can be
errors in author lists and page numbers. Even more problematic, in some cases certain fields (e.g. author
name) are included, in others they are not. Journal names may be abbreviated in some patents, but not in
others.

To address these difficulties, we developed a matching algorithm that compared each of several PubMed
fields — first author, page numbers, volume, and the beginning of the title, publication year, or journal name
— to all references in all biomedical and chemical patents issued by the USPTO since 1976. Biomedical
patents are identified by technology class, using the patent class-field concordance developed by the National
Bureau of Economic Research (Hall, Jaffe, and Trajtenberg 2001). We considered a dyad to be a match if
four of the fields from PubMed were listed in a USPTO reference.

Overall, the algorithm returned 1,058,893 distinct PMIDs cited in distinct 322,385 patents. Azoulay, Graff
Zivin and Sampat (2012) discuss the performance of this algorithm against manual searching, and tradeoffs
involved in calibrating the algorithm.

Example. We illustrate the procedure with the case of particular patent, #6,687,006, issued on March 15,
2005 and assigned to the biopharmaceutical firm Human Genome Sciences, Inc. In the section of the patent
entitled Other Publications, we can find a citation to “Bowie, J.U., et al., Deciphering the Message in
Protein Sequences. . . ,” precisely the publication we took as an example in Appendix D1. Our text-parsing
algorithm identifies this reference and associates it with PubMed article identifier 2315699. As a result,
this patent will participate in the patent count corresponding to the DST AI/BBCA/1987 (see Appendix D1).
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Figure D2: Example of Patent-to-Publication Citation
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Appendix E: PubMed Related Citations Algorithm [PMRA]

One of our outcome measures (described in more detail in Appendix G) captures all patents in the intellectual
vicinity of an NIH funding area. A crucial input in the construction of this measure is the National Library of
Medicine’s PubMed Related Citations Algorithm (PMRA), which provides a way of determining the degree
of intellectual similarity between any two publications. The following paragraphs were extracted from a brief
description of PMRA:xii

The neighbors of a document are those documents in the database that are the most similar to it. The simi-
larity between documents is measured by the words they have in common, with some adjustment for document
lengths. To carry out such a program, one must first define what a word is. For us, a word is basically an
unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens,
spaces, new lines, and punctuation. A list of 310 common, but uninformative, words (also known as stopwords)
are eliminated from processing at this stage. Next, a limited amount of stemming of words is done, but no
thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words
from titles are also classified as text words, but words from titles are added in a second time to give them a
small advantage in the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term
with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is
starred (indicating a major concept in a document), the star is ignored. These three categories of words (or
phrases in the case of MeSH) comprise the representation of a document. No other fields, such as Author or
Journal, enter into the calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words
are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is
based on information that the computer can obtain by automatic processing. Automatic processing is important
because the number of different terms that have to be assigned weights is close to two million for this system.
The weight or value of a term is dependent on three types of information: 1) the number of different documents
in the database that contain the term; 2) the number of times the term occurs in a particular document; and
3) the number of term occurrences in the document. The first of these pieces of information is used to produce
a number called the global weight of the term. The global weight is used in weighting the term throughout the
database. The second and third pieces of information pertain only to a particular document and are used to
produce a number called the local weight of the term in that specific document. When a word occurs in two
documents, its weight is computed as the product of the global weight times the two local weights (one pertaining
to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a
term that occurred in most of the documents would really tell one very little about a document. On the other
hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of
documents of interest. A word that occurred in only 10 documents is likely to be even more informative and
will receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more
frequent a term is within a document, the more important it is in representing the content of that document.
However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word
increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be
considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two docu-
ments have in common. Once the similarity score of a document in relation to each of the other documents in
the database has been computed, that document’s neighbors are identified as the most similar (highest scoring)
documents found. These closely related documents are pre-computed for each document in PubMed so that
when one selects Related Articles, the system has only to retrieve this list. This enables a fast response time
for such queries.

In Table E1, we illustrate the use of PMRA with an example taken from our sample. Brian Druker is a
faculty member at the University of Oregon whose NIH grant CA-001422 (first awarded in 1990) yielded
9 publications. “CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL,
TEL-ABL, and TEL-PDGFR fusion proteins” (PubMed ID #9389713) appeared in the December 1997 issue

xiiAvailable at http://ii.nlm.nih.gov/MTI/related.shtml
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of the journal Blood and lists 16 MeSH terms. PubMed ID #8548747 is its fifth-most related paper accord-
ing to the PMRA algorithm; it appeared in Cancer Research in January 1996 and has 13 MeSH terms, 6 of
which overlap with the Druker article. These terms include common terms such as Mice and Pyrimidines as
well as more specific keywords including Oncogene Proteins v-abl and Receptors, Platelet-Derived
Growth Factor.

Table E1: PMRA and MeSH Terms Overlap — An Example

Source Article PMRA-Linked Article

Carroll et al., “CGP 57148, a tyrosine kinase 
inhibitor, inhibits the growth of cells expressing 
BCR-ABL, TEL-ABL, and TEL-PDGFR fusion 

proteins.” Blood , 1997.

Buchdunger et al. “Inhibition of the Abl protein-
tyrosine kinase in vitro and in vivo by a 2-
phenylaminopyrimidine derivative.” Cancer 

Research , 1996.

PMID #9389713 PMID #8548747
MeSH Terms MeSH Terms
Animals 3T3 Cells
Antineoplastic Agents Animals
Cell Division Cell Line, Transformed
Cell Line Growth Substances
DNA-Binding Proteins* Mice
Enzyme Inhibitors* Mice, Inbred BALB C
Fusion Proteins, bcr-abl* Oncogene Proteins v-abl*
Mice Piperazines*
Oncogene Proteins v-abl* Piperidines*
Piperazines* Proto-Oncogene Proteins c-fos
Protein-Tyrosine Kinases* Pyrimidines*
Proto-Oncogene Proteins c-ets Receptors, Platelet-Derived Growth Factor*
Pyrimidines* Tumor Cells, Cultured
Receptors, Platelet-Derived Growth Factor*
Repressor Proteins*
Transcription Factors*

Substances Substances
Antineoplastic Agents Growth Substances
DNA-Binding Proteins Oncogene Proteins v-abl
ETS translocation variant 6 protein Piperazines
Enzyme Inhibitors Piperidines
Fusion Proteins, bcr-abl Proto-Oncogene Proteins c-fos
Oncogene Proteins v-abl Pyrimidines
Piperazines imatinib
Proto-Oncogene Proteins c-ets Receptors, Platelet-Derived Growth Factor
Pyrimidines
Repressor Proteins
Transcription Factors
imatinib
Protein-Tyrosine Kinases
Receptors, Platelet-Derived Growth Factor
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Appendix F: Structure of the Disease/Science Panel Dataset

As explained in Section 3.1, the level of analysis chosen for the econometric exercise is the disease/science/year
level. With 17 NIH institutes (the “D” in DST), 624 standing study sections (the “S”), and 25 years (the
“T”), one might expect our analytical sample to 265,200 DST observations (and 10,608 distinct DS research
areas), but a quick perusal of the tables reveal only 14,085 DSTs, or 5.31% of the total number of potential
DSTs (respectively 2,942 actual DS, or 27.73% of the total number of potential DS). Why such a seemingly
high number of missing DSTs? This appendix (i) clarifies that there are different types of “missing DSTs”; (ii)
explains why most of these missing DSTs are missing for benign reasons; and (iii) investigates the robustness
of our results to the concern that some DSTs are missing for substantive reasons. Figure F1 provides a
graphical representation of the structure of our panel dataset. For example, the purple line corresponds to
the combination of the National Institute of Allergy and Infectious Diseases [NIAID] and the Molecular and
Cellular Biophysics [BBCA] study section. In every year between 1980 and 2005, NIAID awarded at least
three grants that were reviewed by the BBCA study sections. Therefore, in this case, all the 26 potential
DSTs are accounted for.

Missing DSTs: A Taxonomy. A full 191,650 DSTs (72.27%) are missing from our data because the
corresponding DS combinations are never observed. One can think of these instances as cases where the
pairing of a disease with a science area would be intellectually incongruous. Consider, for instance, the
pairing of the National Institute of Mental Health (NIMH) and the Tropical Medicine and Parasitology
[TMP] study section. Not only are there no grants awarded by NIMH that were reviewed by the TMP
study section, there is also no evidence of any unfunded grant application reviewed by TMP whose author
designated NIMH as the funding institute. This case is represented by the orange dotted line in Figure F1.

We are left with 2,942 disease/science research areas that awarded at least one grant in at least one year
during the observation period, or 2, 942 × 25 = 73, 550 potential DSTs. 55,058 of these 73,550 DSTs are
missing because many study sections are not in continuous existence between 1980 and 2005: our sample
is unbalanced. At regular intervals in the history of NIH, study sections have been added, dropped, split,
or merged to accommodate changes in the structure of scientific disciplines as well as shifting patterns of
momentum for some research areas, relative to others. DSTs that are missing because of the natural life
cycle of study sections need not concern us, as long as we make the reasonable assumption that every grant
application, at a given point time, has a study section that is fit to assess its scientific merits.

Figure F1 displays three examples that fall into this category. Consider first the red line, corresponding to
the combination of the National Heart, Lung, and Blood Institute [NHLBI] and the Physiology [PHY] study
section. The Physiology study section ceased to exist in 1998, so the NHLBI/PHY combination “misses”
seven DSTs. What happened to the applications received in 2000 that would have been reviewed by the
PHY study section had they been received in 1998? The answer is that newly created study sections, such as
Integrative Physiology of Obesity and Diabetes [IPOD] or Skeletal Muscle Biology and Exercise Physiology
[SMEP] almost certainly reviewed them. Similarly, the combination of NIDDK and the Biochemistry study
section (which was born in 1991) is “missing” observations between 1980 and 1990, while the combination
between NIA and the Neurology B-2 study section is missing observations between in 1980, 1981, 1982, and
observations from 1998 to 2005. Notice that in all three of these cases, DSTs are not missing “in the middle,”
but only at the extremities.

Potentially more problematic for our analysis is the case of DS combinations that display intermediate
sequences of starts and stops. Consider for example the blue line in Figure F1, which corresponds to the
combination of the National Cancer Institute [NCI] and the Reproductive Biology [REB] study section. Ten
of the potential 22 observations for this combination are missing between 1980 and 2001 (the REB study
section ceased to exist after 2001). The story is similar for the combination of the National Eye Institute
[NEI] and the Epidemiology and Disease Control 1 [EDC-1] study section. All together, out of the 2,942 DS
combinations in our dataset, 2,101 (71.41%) are contiguous, and 841 are “hole-y” (for a total of 4,407 missing
DSTs). We are concerned about these cases because it is possible that research was proposed in these areas,
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and that at least some of it got done (maybe thanks to alternative sources of funding), leading to patents
downstream which we have no way of linking back to publicly-funded research efforts. One piece of evidence
that allays these concerns is that in the great majority of cases (80%), we do not observe any application in
the corresponding DSTs—if no funds were awarded, it is because no research was in fact proposed to NIH
for funding consideration. In light of this fact, it seems harder to imagine that patents could be linked to
these areas via some alternative method which does not rely on bibliometric linkages.

Robustness check: Contiguous DSTs. In addition, we probe the robustness of our results by replicating
the main specifications while restricting the sample to the set of 2,101 intact, contiguous DS areas, for a total
of 7,966 DSTs (57 percent of our original dataset). In Table F1, we report the results of specifications modeled
after those used to generate the estimates in Table 6, our benchmark set of results. Using this approach,
we obtain coefficients that are numerically very similar to those presented in Table 6, and estimated very
precisely.

In summary, the great majority of the DSTs that appear to be missing from our data are not really missing,
but rather, not in existence. And the small minority of DSTs that could genuinely said to be “missing”
cannot be expected to change our conclusions, since limiting the analysis to the set of intact DS areas yields
identical results.

Figure F1: A Taxonomy of DSTs

1980 1985 1990 1995 2000 2005

NIAID/BBCA: Molecular and Cellular Biophysics

NIA/NEUB‐2: Neurology B‐2

NIDDK/BIO: Biochemistry

NEI/EDC‐1: Epidemiology and Disease Control 1

NCI/REB: Reproductive Biology

NIMH/TMP: Tropical Medicine and Parasitology

NHLBI/PHY: Physiology
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Table F1: Contiguous Disease-Science Categories Only

First Stage

DST Funding 
(×$10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

1.170*** 2.516*** 2.051* 3.661*** 2.114
(0.183) (0.802) (1.188) (0.982) (1.334)

Elasticity 0.796 0.649 0.604 0.349

R2 0.920 0.753 0.554 0.862 0.631

Observations 7,966 7,966 7,966 7,966 7,966

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear 
Trends

Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

Note: See notes to Tables 6 and 7 for details about the sample. The outcome variables are fractional patent counts. The instrument is the
total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were marginal, i.e., were within
25 applications of the award cutoff for their specific disease area (Institute). Application controls include (i) FEs for the number of
applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are also in a 50-grant window around
the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-
grant window around the payline. Elasticities are evaluated at the sample means. Only contiguous disease-science areas, as defined in the
text, are included. 

Appendix Table B: Contiguous disease-science categories only

Citation Linked Total Related

Mean=14.2; SD=19.89 Mean=27.2; SD=28.5

Windfall Funding (×$10 
mln.) 

DST Funding ($10 
mln.) Mean=4.49; 
SD=4.44
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Appendix G: Linking NIH Research Areas (DSTs) to Patents

We begin by linking the universe of funded NIH grants between 1980 and 2005 to the set of articles that it
supports using grant acknowledgement data from PubMed. We then link these publications to private-sector
patents using two alternative procedures; in turn, the outcome measures that build on these procedures are
designed to answer slightly different questions about the impact of NIH funding. The first measure asks
whether private firms build on NIH-funded research in their patented inventions. The second measure asks
whether NIH funding leads to the net creation of private-sector patents that would not have otherwise been
developed. We describe the two procedures below; the overall data and variable construction process is
summarized in Figure 1 in the main body of the manuscript.

Patents building on NIH-funded research: Direct linkages. We consider how many patents explicitly
build on NIH-funded research. Figure G1 illustrates the procedure with an example. In its first three years
of funding, the NIH grant CA-065823 was acknowledged by four publications, among which is the article
published by Thiesing et al. in the leading hematology journal Blood. We observe this link because grant
acknowledgements are reported for publications indexed in the National Library of Medicine’s PubMed
database. Next, the Thiesing et al. article is listed as prior art in patent number 7,125,875 issued in 2006 to
the pharmaceutical firm Bristol Myers Squibb.

Patents building on NIH-funded research: Indirect linkages. The second procedure links a patent
to a grant if this patent refers to a publication that is “intellectually similar” to a publication that does
acknowledge NIH funding. In other words, these linkages are indirect: from a grant, to a publication that
acknowledges it, to the publications that are proximate in intellectual space, to the patents that in turn
cite these related publications. The grant linked to patents in this way delineates the pool of research
expenditures that is intellectually relevant for the creation of these patents, even in the absence of a direct
linkage between the patent and the grant. Figure G2 illustrates this process. Patent number 6,894,051 was
issued to Novartis in May 2005, one of the five patents listed in the FDA Orange book as associated with
the drug imatinib mesylate, better known by its brand name, Gleevec. Patent 6,894,051 does not cite
any publications which are directly supported by the NIH so it would not be linked to an NIH DST under
our citation-linkage measure of innovative output. It does, however, cite PubMed publication 8548747,
published in Cancer Research in 1996. The PubMed Related Citation Algorithm [PMRA, see Appendix E]
indicates that this publication is closely related to PubMed article 9389713, which acknowledges funding
from NIH grant CA-0011422. Using these second procedure, we can link the vast majority of life science
patents to an NIH disease-science area. In other words, most patents cite publications that are similar to
publications that acknowledge NIH funding.

Under the indirect procedure, the same patent can be linked to many distinct grants through the inclusion
of related publications. In our regressions, we adjust for this by weighting patents in the following way:
regardless of what outcome measure we use, if a patent is linked to N grants, it counts as 1/N of a patent in
each NIH research area. This means that a patent is restricted to being counted once across all NIH research
areas to which it is linked.

Aggregation from the individual grant-patent linkage up to the NIH research area level [DST].
The procedures outlined above describe how to link patents to specific NIH grants. However, we do not per-
form the econometric analysis at the grant level. Rather, we aggregate grants up to the disease/science/time
(DST) level, as explained in Section 3. Understanding the impact of NIH funding at the DST level offers
conceptual advantages apart from its econometric ones. Because DSTs are defined to be intellectually coher-
ent units in which knowledge generated by one projects is likely to benefit other projects, our estimate of the
impact of NIH funding on DST-level outcomes, then, captures the benefits of potential complementarities
between research in the same area. This would not be true of an analysis of grant-level funding on grant-level
patenting.
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Appendix H: Conceptual Framework

We would like to identify how private-sector, patented innovations follow from public investments in funda-
mental knowledge. In this appendix, we present a stylized framework that motivates our empirical strategy.
Let the space of ideas < consist of R distinct fields indexed by the letter r. Our starting point is an innovation
production function in which patenting output in a research area ν at time τ is determined by knowledge
inputs from a variety of research areas r, at potentially different times t.xiii This can be summarized in
matrix notation as:

P = ΩK (h1)

where P is a vector with elements pντ , K is a vector of knowledge inputs krt, and Ω is a matrix with elements
ωντ,rt describing how knowledge inputs in research area r at time t impact innovation in area ν at time τ .
The number of patents in area ν at time τ can be expressed as a function of the relative importance of the
knowledge inputs krt:

pντ =
∑
r,t≤τ

ωντ,rtkrt (h2)

While Equation (h2) has the familiar look of a typical knowledge production function in log-linearized form,
it departs from it in one essential respect. The key inputs, investments in science, are public goods. Their
non-rivalrous nature means that each input can be “consumed” by multiple production processes. Indeed, one
insight can lead to patents in multiple areas. Their non-excludability, which obviates the need to “purchase”
inputs, makes it particularly difficult to ascertain which knowledge inputs are employed in the production
of any given innovation.

To overcome these challenges, the literature has traditionally made several restrictions on the structure of
the matrix Ω. First, innovation in area ν is assumed to draw on knowledge stocks related to the same area
only, ignoring potential spillovers. This means that the elements of the production matrix ωντ,rt = 0 for all
ν 6= r. Second, a fixed lag structure typically governs the relationship between the stream of expenditures
krt, kr,t+1, ..., krτ and prτ . Together, these assumptions entail that public investments may only impact
private innovation in the same area, within a well-defined time horizon.xiv A generic concern with this type
of approach is that it will fail to capture any benefits that may accrue to seemingly unrelated research areas
or with unexpected time lags. In the case of basic R&D, where the intent is to enhance the understanding
of building block relationships with often unanticipated, and potentially far-reaching implications, these
assumptions may be particularly limiting. For example, much of the research underlying the development
of anti-retrovirals used in the treatment of HIV infection in the 1990s was originally funded by the National
Cancer Institute in the 1950s and 1960s, at a time when research on the causes of cancer centered on viruses.xv

In this paper, we address these concerns by relaxing the traditionally restrictive assumptions about the
matrix Ω. Instead of focusing on all the research areas r that contribute to patenting in a particular area ν,
as described by Equation (h1), we trace the impact of a single knowledge input, krt on patenting in a range
of areas r̃ and time periods t̃. This can be thought of as the “dual” problem relative to the “primal problem”
described in Equation (h2):

Pr̃t = αrtkrt (h3)

where Pr̃t =
∑
p∈Srt

prt. Srt consists of all patents, regardless of area, that draw on research done in area r at
time t. The coefficient αrt describes the impact of a unit increase in research input on aggregate innovation.

xiiiThis approach is standard in the literature. See, inter alia, Pakes and Griliches (1980) and Hall et al. (1986).
xivToole (2012), for instance, regresses patenting in a given disease-year on 12 years of lagged funding for that same disease.
xvGleevec provides another example: Varmus (2009) recounts that that Ciba-Geigy was working with scientists of the Dana

Farber Cancer Institute to find drugs that would block the action of a tyrosine kinase that contributes to atherosclerosis in
blood vessels, a disorder that is very different from CML. The development of Gleevec also relied heavily on knowledge about
the genetic causes of CML that was established in the 1960s and 70s (e.g., Nowell and Hungerford 1960). In this case, the
availability of treatment lagged behind basic research by over forty years. In other settings, basic research percolates almost
immediately into applications work, such as when publications and patents are released in tandem (Murray 2002).
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We are interested in estimating the average of these αrt terms across all research areas and time periods. This
represents the average return to public investments in biomedical research, taking into account potentially
unanticipated spillovers across areas and over time.

The key to estimating Equation (h3) is defining the set of patents Srt that draw on krt as an input. Instead
of assuming a simple structure for Srt, we implement a flexible procedure relying on bibliometric linkages
to uncover the relevant connections. In Appendix I, we compare estimates using our approach with a more
traditional production function estimation approach.
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Appendix I: Impact of NIH Funding,
Traditional Fixed Lag Approach

Our approach differs from traditional estimates of the impact of public R&D funding in that, instead of
making ex ante assumptions about where and when to look for its effects, the structure of the bibliometric
linkages naturally reveals, ex post, where and with what kind of lags the effects are being felt.

Relative to the traditional approach, one might worry that our estimates reflect in part idiosyncrasies of
the linking process, rather than the effect of funding. For example, if scientists over-attribute publications
to their grants in order to appear productive, then DSTs with more grants will exhibit a higher number of
bibliometric linkages to patents, regardless of whether the funding in these DSTs actually contributed to the
development of those patents. This will artificially inflate our estimates of the impact of NIH funding on
citation-linked patents in Table 6 (though it should not increase the total number of patents in a research
area, as estimated in Table 7).

In this appendix, we repeat our empirical exercise using the traditional method of examining the relationship
between funding in a year and patenting in subsequent years, assuming a series of fixed lags between funding
and innovation. The results are broadly similar in magnitude to those obtained in the benchmark specification
using our preferred “ex post” methodology, with some important caveats that we detail below. We continue
to favor the ex post approach because bibliometric linkages offer a variety of benefits, including the ability
to track innovations across disease areas.

In order to follow the traditional approach, we must find a way to identify the research area(s) that is/are
likely to be responsible for a particular patented innovation. Toole (2012), for instance, assumes that funding
in a given disease area impacts drug development in the same disease area, and then goes on to examine the
impact of funding on new drug approvals using a distributed lag structure. Here we replicate the spirit of his
work, but with two important twists: (i) our outcome variable is patents, not drug approvals, and patents
are more challenging to associate ex ante with disease areas; (ii) we perform the exercise both using a more
aggregated disease level to partition funding into research areas (the unit of analysis used in Toole (2012)
and most of the literature to date), and also using a finer-grained disease/science level, which parallels the
level of analysis used throughout the main body of the manuscript.

Patent mapping. We create an ex ante mapping of patents to research areas by exploiting the fact that
NIH grants sometimes directly generate patented innovations. The 1980 Bayh-Dole Act created incentives
for researchers and their institutions to patent the discoveries derived from federal funding. The Act also
required that patents resulting from public funding acknowledge this fact and list specific grants in their
“Government Interest” statements. We obtained this information from the NIH’s iEdison database. In
total, 1,799 NIH grants generated 1,010 distinct patents.xvi We examine the three digit main patent class in
each of these 1,010 patents to create a probabilistic mapping of each patent class to research areas, where a
research area is defined as a funding institute (roughly isomorphic to a broad disease area, see Appendix A).
For each funding institute/patent class combination, we construct the fraction of that class’ patents that are
supported by funding for the institute associated with that disease:

Fcd =
# of class c patents acknowledging funding from NIH Institute d

# class c patents

So for instance, if a patent is part of a class that includes 100 patents, 10 of which are supported by the
National Cancer Institute (NCI) and 15 of which are supported by the National Heart Lung and Blood
Institute (NHLBI), then it will count as 0.10 of a patent to the NCI and 0.15 to the NHLBI. Note that this
mapping only relies on the empirical distribution of Bayh-Dole patents across funding institutes. Within our
universe of 315,982 life science patents, 269,839 (85%) have a main patent class that is represented in the

xviWhile these patents are also issued between 1980 and 2012, they do not overlap with those in our main analyses because
they are overwhelmingly assigned to universities or to the NIH intramural campus, as opposed to private-sector firms.

xxxi



much smaller set of Bayh-Dole patents. We use our class-to-research area mapping to allocate each of these
269,385 patents in one or more funding institute using the weights described above.

We proceed in a similar fashion to create a mapping between disease/science areas and patent classes:

Fcds =
# of class c patents acknowledging funding from NIH Institute d and reviewed by study section s

# class c patents

The next step is to construct the number of patents in a research area issued in a particular year t. In the
case of research areas defined at the disease level:

Patentsdt =
∑
c

Fcd ·# of patents in class c issued in year t

In the case of research areas defined at the disease/science level:

Patentsdst =
∑
c

Fcds ·# of patents in class c issued in year t

i.e., the number of patents issued in a particular year t as the proportion of class c’s patents that can be
mapped to the NIH research area defined by disease d and science area s. Since the weights Fcd and Fcds
are time-invariant, the allocation of patents to research areas is not influenced by changes in funding and
other potentially endogenous factors.

Estimation. Using these outcome variables, we estimate the following regressions:

Patentsd,t+k = α0 + α1kFundingdt + δd + γt + εdt for k = 1, . . . , 20 (1)

at the disease level, and

Patentsds,t+k = β0 + β1kFundingdst + δds + µdt + νst + εdt for k = 1, . . . , 20 (2)

at the disease/science level. The coefficients of interests are α1k and β1k for k = 1, . . . , 20, and we display them
graphically in Panels A and B of Figures I1, together with their 95% confidence intervals. For comparison,
we represent our benchmark result—from Table 6, column (5)—as an horizontal line (since this estimate
does not depend on pre-specified lags).

Results. Figure I1, Panel A shows that, averaged over all the possible lags, the ex ante approach using the
disease level of analysis yields effects whose magnitudes are quite comparable to our main ex post benchmark
(2.33 patents for a $10 million boost in funding), and in fact surprisingly similar to it for lags of 11 to 14 years.
Interestingly, however, the ex ante approach appears to “overshoot” in the short run, and “undershoot” in
the long run. For instance, we estimate that a $10 million boost in funding to an institute would increase
private-sector patenting by about 10 patents in the next year. Given the time needed both to perform
the research and to complete the patent prosecution process, a near-term return to public funding of this
magnitude seems highly implausible. This highlights some of the concerns with the fixed-lag approach; by
assuming different lag structures, one could get very different estimates of the impact of funding, not all of
which appear plausible. For this reason, we prefer the ex post approach.

Figure I1, Panel B, repeats the fixed lag approach using the DST as unit of analysis, paralleling our primary
specifications. Here, the ex ante approach yields smaller estimates relative to the ex post benchmark (though
the differences are not statistically significant for lags 11 to 14). The lack of congruence between the results
in Panel A and Panel B makes sense in light of the different levels of analysis used to generate these figures.
In Panel B, we do not capture in the outcome variable any patent that can be mapped ex ante to the
same disease area unless it can also be mapped to the same science area. This is obviously very restrictive.
Panel B therefore highlights another benefit of the ex post approach: it allows one to track innovation across
research areas where ex ante mappings would simply assume the lack of any relation between funding and
downstream innovation.
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To explore the hypothesis that our disease/science level regressions yield smaller coefficients because they
restrict associated patents to be ones in a narrow disease/science area, we reproduce Figure I1 using a slightly
broader measure of “science area.” Study sections are organized into slightly broader categories known as
integrated review groups (IRGs). In our data, there are 624 study sections, and 327 IRGs. Figure I2 plots
coefficients from a version of Equation (2), with patents matched to the relevant IC-IRG. Here, we find larger
estimates, within range of our ex post results for at least some of the lags.
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Figure I1: Effect of NIH Funding on Private-Sector Patenting
ex ante Approach with Fixed Lags
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Note: Research areas correspond to NIH funding institutes.

A. Disease Level of Analysis
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Note: Research areas correspond to NIH funding institutes by study sections combinations.

B. Disease/Science Level of Analysis

Estimated Coefficient 95% Confidence Interval

Effect from Table 6, column (5)

Figure I2: Reprise of Figure I1, Panel B but with broader,
IRG-based level measure of science area
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Note: Research areas correspond to NIH funding institutes by independent review groups (IRGs) combinations.
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Appendix J: Identification Robustness Checks

The fixed effect estimation strategy outlined in Section 3 identify the causal impact of NIH funding under
the assumption that NIH funding for a DST does not respond to changes in the specific innovative potential
of a disease/science area combination. In the main body of the paper, we showed that funding for a given
DS does not appear correlated with funding for the same science area in different diseases. We also showed
that windfall funding does not appear to be correlated with past or future windfalls, nor with non-windfall
funding. In this Section, we present several further tests of our identifying assumptions.

First, in Figure J1, we provide descriptive evidence that there is wide variation in windfall funding across
DSTs: 28% of the 14,085 DSTs in our sample receive windfall funding. Table J1 tests whether, after
controlling for our primary set of regressors, our instrument for funding is correlated with any measures of
lagged application quality or lagged patent output. Column 1 reports the F-test of the joint significance of
10 year lags in the number of patents that acknowledge NIH funding from a disease/science area, as well as
the number of patents that cite publications supported by that area or which cite publications related to
those funded by that area. We also examine whether windfall funding is correlated with lagged applicant
scores or lagged windfall funding. Again, we fail to reject the null hypothesis in all these cases.

Next, Table J2 presents the IV estimates and the corresponding reduced-form estimates side-by-side. We
find that the reduced-form coefficient estimates for windfall funding (Columns 1 and 3) are quite similar in
magnitude with the IV coefficient estimates for actual funding in a DST, instrumented by windfall funding
(Columns 2 and 4).

One potential concern is that the NIH occasionally funds grant applications out of the order in which they
are scored. As discussed in Section 3.2 and Appendix A, peer review rules at the NIH make it difficult for
NIH’s component Institutes to direct resources to DSTs. ICs, however, do have the discretion to fund grant
applications as exceptions to the standard scoring rules; approximately four to five percent of grants are
funded in this way. While this usually occurs in response to the emergence of new data to strengthen the
application, grants are also sometimes funded out of order if they were evaluated in an exceptionally strong
committee and received a lower relative score than their absolute quality should indicate.xvii This practice
has the potential of generating a correlation between DST funding and its unobserved potential.

Another way to address the possibility that out-of-order scoring matters is to instrument for DST funding
using funding from grants that are not funded out of order. Ideally, we would add up requested funding
amounts for the top ranked applications, regardless of whether they were actually funded, but we do not have
data on funding requests for unfunded applications. Instead, we sum funding amounts for the subset of DST
grants that are funded in order. Table J3 presents our findings using this alternative strategy. Columns 1
and 2 indicate that we have a strong first stage and, using this instrument, we find that an additional $10
million in ordered funding increases net patenting by 3.7, compared with 2.8 in our main OLS specification
and 2.9 in our preferred IV specification.xviii The implied elasticities of all these estimates are similar.

xviiAuthors’ conversation with Stefano Bertuzzi, NIH Center for Scientific Review.
xviiiNote that our original windfall funding instrument does not include the amounts corresponding to grants funded out-of-
order.
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Figure J1: Distribution of Windfall Funding
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Table J1: Correlation Between Windfall Funding
and Measures of DST Quality

RHS includes 10 Years of Lags for: F -stat of Joint Significance

# of Patents Citing Research Acknowledging NIH Funding 0.908

# of Patents Citing Research Similar to NIH-Funded Research 0.697

Raw and Rank Scores 0.156

All of the Above 0.188

Appendix Table D: Correlation of Instrument with Measures of DST 

Quality

Note: Each observation is a disease/science/time (DST) combination. Each column reports a regression of our windfall
funding instrument on measures of DST input and output quality. We controls for the same set of variables as in our most
detailed specification in Tables 6 and 7. Column 1 reports probabiities associated with an F -test for the joint significance of
one to ten year lags of past DST patent production: citation-linked and PMRA-linked (20 variables).
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Table J2: Reduced Form and IV Estimates

Reduced Form IV Reduced Form IV

(1) (2) (3) (4)

2.504 2.914
(2.224) (2.287)

2.002* 2.329**

(1.106) (1.159)

R2 0.713 0.515 0.838 0.623

Observations 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

Appendix Table B: IV Reduced Form

Note: See notes to Table 6 for details about the sample. The outcome variables are fractional patent counts. The instrument is the
total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were marginal, i.e., were
within 25 applications of the award cutoff for their specific disease area (Institute). Application controls include (i) FEs for the
number of applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are also in a 50-
grant window around the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications associated
with a DST that are also in a 50-grant window around the payline. 

DST Funding ($10 mln.) 
Mean=4.06; SD 4.87

Citation Linked Total Related

Mean=12.82; SD=19.17 Mean=24.8; SD=28.0

Windfall Funding ($10 mln.) 
Mean=0.20; SD 0.52
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Table J3: Instrumenting DST Funding with Funding
for Grants Funded in Order Only

First Stage

DST Funding 
(×$10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

0.629*** 2.478*** 2.545*** 3.615*** 3.733***

(0.078) (0.658) (0.386) (0.817) (0.415)

Elasticity 0.785 0.806 0.592 0.611

R2 0.949 0.738 0.519 0.863 0.634

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear 
Trends

Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

DST Funding, Grants in 
Order Only (×$10 mln.) 

DST Funding ($10 
mln.) Mean=4.06; 
SD=4.36

Note: The outcome variables are fractional patent counts. The instrument is the total amount of funding for awarded DST grants that are
funded in order of score (i.e., which are not exceptions). For more details on this sample, see the notes to Tables 6. Application controls
include (i) FEs for the number of applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are
also in a 50-grant window around the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications
associated with a DST that are also in a 50-grant window around the payline. 

Appendix Table B: Grant applications funded in order of score only

Citation Linked Total Related

Mean=12.82; SD=19.17 Mean=24.8; SD=28.0

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Appendix K: Alternative Specifications and Samples

Another set of robustness checks explores the implications of using alternative specifications and/or samples.
All of the results in the body of the manuscript rely on sample weights, where each observation is weighted
by the yearly average of awarded grants for a disease-by-science combination. Weighting is justified by our
desire to prevent small DSTs from influencing the results too strongly, relative to large DSTs. Table K1
replicates the benchmark results of Table 8, but without weighting the sample. The difference in results
between the weighted and unweighted version are minor. Though we believe that weighting by average DST
size (measured by yearly number of grants in a DS) is appropriate, this choice does not affect our substantive
conclusions.

Our main results rely on linear fixed effects and IV models; this may be problematic because patenting
outcomes tend to be very skewed. Table K2 shows that our results hold in logs as well. Columns 1 and 2
rerun our main results for our first outcome measure, the number of patents that cite research funded by that
DST; Column 1 uses the same set of controls as our main fixed effects estimates from Table 6 and Column 2
uses our IV controls. On the subsample of DSTs with nonzero patenting under this measure (63% of our
main DST sample), we show that a one percent increase in DST funding increases patenting by between
0.8 and 0.9 percent. This is similar, though slightly higher, to the elasticities we find in our main results.
Columns 3 and 4 repeat this exercise using our second outcome measure, the total number of related patents.
Again, we find elasticities between 0.8 and 0.9, which are slightly higher than in our main results.

A shortcoming of the log-log parametrization is that it entails dropping 1,062 DST observations that are
not linked to any private-sector patent. Many researchers have dealt with the problem of excess zeros
through the use of ad hoc transformations of the dependent variable, such as log(1 + y). Because of Jensen’s
inequality, the estimates corresponding to the transformed outcome are difficult to compare numerically
to the estimates when the dependent variable is left untransformed. A better approach in our view is to
estimate our specifications using Quasi-Maximum Likelihood Poisson, which is consistent under very mild
regularity conditions and allows us to deal with the skewness of the outcome variable as well as with its
mass point at zero (Wooldridge 1997; Santos Silva and Tenreyro 2006). Table K3 estimates our benchmark
specifications using the QML-Poisson approach, with one important caveat. The likelihood function fails to
converge when we fully saturate the model with disease-by-science fixed effects, disease-by-year fixed effects,
and science-by-year fixed effects. We are able to achieve convergence and to generate QML estimates when
including disease-by-year fixed effects (columns 1 and 3), and when we combine disease-by-year and disease-
by-science fixed effects (columns 2 and 4). While these specifications are not strictly analogous to the most
saturated models presented in Tables 6 and 7, they remain very close to them in spirit. The magnitudes
obtained with the Poisson parametrization, and the elasticities they imply, are numerically similar to the
elasticities computed in Tables 6 and 7.

Next, we restrict our sample to only a subset of NIH’s component institutes (ICs). In our paper, we refer
to Institutes as representing diseases or body systems. In practice, however, not all ICs are organized in
this way. The National Institute on Aging, for instance, does not focus on diseases in the same way as the
National Cancer Institute. Other Institutes are even more difficult to think of as representing a disease or
body system. For instance, the National Human Genome Research Institute (NHGRI) focuses on particular
scientific techniques rather than on a set of related diseases. The fact that ICs do not always correspond to
diseases does not impact the validity of our instrument, which relies only on the fact that ICs span study
sections and vice versa.

It does, however, raise the concern that the IC by year fixed effects in our specifications may not, for some
grants, be capturing changes in the innovative or commercial potential of their actual disease areas. For
example, if the NHGRI funds research on cancer genetics, the IC by year FE associated with this grant will
control for time varying potential in genetics, but not in cancer more generally. In Table K4, we restrict
our sample to ICs that are more closely affiliated with disease and body system areas. Columns 1 and 2
reproduce our main results; Columns 3 and 4 exclude three science-focused ICs (general medicine, genome
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research, and biomedical imaging), and Columns 5 and 6 keep only ICs clearly associated with a disease or
body system.

We also replicate our design using public-sector patents—rather than private-sector patents—as the outcome
variable. Public-sector patents are patents assigned to universities, non-profit foundations and research
institutes, government entities (including the intramural research campus of the NIH), and academic medical
centers. There are fewer such patents: only 47,461 can be linked “directly” through a publication they cite
to a DST, compared with 91,462 private-sector patents. Our analysis focuses on the private sector because
the meaning of citations to publications contained in patents is likely different for biopharmaceutical firms,
and corresponds more closely to the idea of a knowledge spillover. Life science academics sometimes patent,
and yet other times found biopharmaceutical firms, typically with a license to a patent assigned to the
researcher’s academic employer. In other words, the same individuals might obtain NIH funding, publish
results from research made possible by this funding, and choose to apply for a patent whose claims will cover
these very same results. We might still be interested in assessing the magnitude of the patent-to-funding
elasticity in this case. Although the question of crowd-out arises in the case of public-sector patents as well,
it is probably capturing a different dynamic.

These objections notwithstanding, Table K5 replicates our benchmark results with public-sector patents as
the outcome. Though the coefficient estimates differ from those displayed in Table 6, the elasticities are
quite similar.

A final set of robustness analyses separates linkages that rely on the circulation of human capital at the
interface between academia and industry, from those where the mechanism for knowledge transfer is the
mere availability of research results in the scientific literature. We do so by examining the overlap between
(i) the names of the PIs for each grant (typically a single individual); (ii) the names of the authors on
publications that acknowledge the grant (this will pick up the names of trainees whom we would not expect
to be PIs but could be the carriers of the knowledge produced by the grant); and (iii) the roster of inventor
names on the patent. We call a linkage “disembodied” if there is no overlap between the inventor names on
the patent and either the PI of the grant or any author of a publication that acknowledges that grant.

Overlap between the name of the PI on the grant and the list of inventor on the patent is vanishingly rare
(less that 0.2% of linkages); however, overlap between the authors of papers that acknowledge the grant and
names of inventors of the patent is less rare (about 7.5% of linkages with private-sector patents). Table K6
breaks down our benchmark set of results according to a name overlap split. Excluding the cases of linkages
that involve author/grantee/inventor name overlap produces elasticities very close to those we obtain when
ignoring the distinction between embodied and disembodied linkages. When we focus exclusively on the set
of “embodied” linkages, the magnitudes of the OLS estimates are much smaller, but this simply reflects that
the pool of patents with name overlap eligible for linking is also smaller. In contrast, the elasticities are quite
similar (column 2a vs column 1a; column 4a vs. column 3a). The IV estimates for patents with embodied
linkages are smaller and imprecisely estimated.

Table K7 provides a version of our benchmark results excluding from the universe of patents eligible to
be linked any of the following: (i) Bayh-Dole patents (patents with a government interest statement); (ii)
patents with author/grantee/inventor name overlap; and (iii) “hybrid” patents, i.e., patents assigned to a
private sector firm as well as a public sector/non-profit/academic organization, or even a private individual
(so-called “unassigned” patents). The results are once again quite close numerically to those presented in
Table 6 and 7.xix

xixThe remaining patents should be immune to Thursby et al.’s (2009) observation that up to a third of “academic” patents
(in the sense that the team of inventors are academics) are not assigned to a university, but rather unassigned, or assigned to
a private-sector firm, maybe in contravention to the formal rules adopted by most academic institutions.
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Table K1: Benchmark Results with No Weights

First Stage

DST Funding 
(× $10 mln.)

OLS IV OLS IV

(1) (2) (3) (4) (5)

1.184*** 2.155*** 2.367*** 3.405*** 2.667***

(0.262) (0.476) (0.548) (0.734) (0.649)

Elasticity 0.894 0.762 0.559 0.438

Cragg-Donald Wald F-stat 508

Kleibergen-Paap Wald F-stat 37.86

R2 0.907 0.641 0.302 0.853 0.475

Observations 14,085 14,085 14,085 14,085 14,085

Year FEs Incl. Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl. Incl.

Science × Year Linear 
Trends

Incl. Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl. Incl.

Mean=4.72; SD=12.56 Mean=9.25; SD=18.68

Windfall Funding (×$10 
mln.) 

DST Funding 
(×$10 mln.) 
Mean=1.52; 
SD=2.91

Table 6: Effect of NIH Investments on Private-Sector Patenting: Windfall Funding IV, Unweighted

Citation Linked Total Related

Note: See notes to Tables 6 and 7 for details about the sample. The outcome variables are fractional patent counts. The instrument is
the total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were marginal, i.e.,
were within 25 applications of the award cutoff for their specific disease area (Institute). Application controls include (i) FEs for the
number of applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are also in a 50-grant
window around the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications associated with a
DST that are also in a 50-grant window around the payline. Elasticities are evaluated at the sample means.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table K2: Log Patents-Log Funding Parametrization

(1) (2) (3) (4)

0.790*** 0.874*** 0.899*** 0.899***

(0.129) (0.093) (0.034) (0.029)

R2 0.937 0.837 0.954 0.909

Observations 8,880 8,880 13,013 13,013

Full OLS Controls Incl. Incl.

Full IV Controls Incl. Incl.

Appendix Table A: Log patent-Log funding parametrization

Log(# Citation Linked Patents) Log(# Related Patents) 

Log(DST Funding)

Note: The dependent variable in Columns 1 and 2 is the log of citation-linked fractional patents, with zeros treated
as missing. There are 14,085-8,880=5,205 DSTs that do not produce research ever cited by a patent. Full OLS
controls are the controls used in the most saturated specification of Tables 6 and 7 (see notes to those tables). Full
IV controls are those used in Table 8. Log(#Related Patents) is the log of the number of fractional patents related
by our second outcome measure, using PMRA. There are 14,085-13,023=1,062 DSTs that do not produce resarch
that is related to a patent in our sample. 

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).
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Table K3: Poisson Specification

(1) (2) (3) (4)

0.091*** 0.084*** 0.088*** 0.074***

(0.007) (0.013) (0.007) (0.009)

% Change in Dep. Var. for 
additional $10 mln. in DST 
Funding

9.53% 8.76% 9.20% 7.68%

Pseudo-R2 0.776 0.537 0.886 0.630

Observations 14,085 14,085 14,085 14,085

IC × Year FEs Incl. Incl. Incl. Incl.

IC × Study Section FEs Incl. Incl.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

Appendix Table A: Poisson parametrization

# Citation-Linked Patents # Related Patents

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

Note: See notes to Tables 6 and 7 for details about the sample. 
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Table K4: Disease- or Body System-Specific ICs Only

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

3.615*** 2.329** 3.378*** 2.918*** 3.331*** 1.943
(0.817) (1.159) (0.348) (1.017) (0.051) (2.125)

R2 0.863 0.623 0.899 0.678 0.898 0.673

Observations 14,085 14,085 12,432 12,432 10,382 10,382

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

Appendix Table B: Grant applications from Disease-specific NIH Institutes (ICs)

All ICs
Excluding Science-

based ICs
Core Disease/Body 

System ICs

Mean=23.81; SD=26.80Mean=24.10; SD=27.82Mean=24.8; SD=28.0

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

Note: Columns 1 and 2 reproduce the results from our primary sample. Columns 3 and 4 remove three IC based on methods or
scientific topics. These are the National Institute of General Medical Sciences (NIGMS), the National Human Genome Research
Institute (NHGRI), and the National Institute of Biomedical Imaging and Bioengineering (NIBIB). Columns 5 and 6 further restrict
to a core set of ICs focused on diseases or body systems. See Appendix A for a list of these ICs. The outcome variables are fractional
patent counts.
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Table K5: Effect on Public-Sector Patenting

OLS IV OLS IV

(1) (2) (3) (4)

1.193*** 0.910 1.377*** 0.761
(0.295) (0.653) (0.296) (0.488)

Elasticity 0.771 0.588 0.560 0.310

R2 0.790 0.558 0.896 0.678

Observations 14,085 13,043 14,085 13,043

Year FEs Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl.

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

DST Funding ($10 mln.) 
Mean=4.06; SD=4.36

Note: See notes to Table 6 for details about the sample. The outcome variables are fractional patent counts. The
instrument is the total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank
scores were marginal, i.e., were within 25 applications of the award cutoff for their specific disease area (Institute).
Application controls include (i) FEs for the number of applications that a DST receives; (ii) FEs for the number of
applications associated with a DST that are also in a 50-grant window around the relevant IC payline, as well as (iii)
cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-grant window
around the payline. Public sector patents are defined as those assigned to government, non-profit foundations, academic,
or hospital entities. 

Appendix Table B: Public Sector Patenting

Citation Linked Total Related

Mean=6.75; SD=10.01 Mean=9.97; SD=11.05
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Table K7: Benchmark Results with Minimal Set of Patents

OLS IV OLS IV

(1) (2) (3) (4)

2.290*** 1.876* 3.343*** 2.206**

(0.613) (1.008) (0.755) (1.069)

Elasticity 0.865 0.709 0.598 0.394

R2 0.79 0.558 0.896 0.678

Observations 14085 13043 14085 13043

Year FEs Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl.

Note: See notes to Table 6 and 7 for details about the sample. The outcome variables are fractional patent counts. The
instrument is the total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank
scores were marginal, i.e., were within 25 applications of the award cutoff for their specific disease area (Institute).
Application controls include (i) FEs for the number of applications that a DST receives; (ii) FEs for the number of
applications associated with a DST that are also in a 50-grant window around the relevant IC payline, as well as (iii)
cubics in the average raw and rank scores of applications associated with a DST that are also in a 50-grant window
around the payline.

Standard errors in parentheses, two-way clustered at the disease and science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).

No Overlap with Grantees (any method)

Citation Linked Total Related

Mean=11.54; SD=17.54 Mean=22.71; SD=25.75

DST Funding ($10 mln.) 
Mean=4.06; SD=4.36
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Appendix L: “Stable” Keywords Indirect Linking Strategy

Recall that our preferred outcome measure identifies all patents related to an NIH funding area, whether or
not these patents actually cite NIH-funded research. This allows us to account for a richer set of channels
through which NIH funding may impact private-sector patenting. “Related” patents may include patents
linked to NIH funding via a longer citation chain or patents by NIH-trained scientists who end up in the
private sector. Crucially, these related patents may also be the result of private sector investments in related
research areas; they need not be financially dependent on the NIH at all. Capturing the total number of
private sector patents in an intellectual area is important because it allows us to take into account the
possibility that NIH funding crowds out private investments. If this were the case, then we would not expect
NIH funds to increase the total number of patents in a given research area: it would simply change the
funding source for those patents. The impact of NIH funding on total innovation in a research area captures
the net effect of potential crowd-in and crowd-out.

A potential drawback with this approach is that our definition of a DST’s “intellectual area” can vary over
time. If funding allows a disease/science area to expand the set of topics that it supports, then we may
associate increased funding with more patents simply because higher levels of grant expenditures leads us to
credit DSTs with patents over a wider slice of technological space.

To ensure that our results are not driven by this phenomenon, it is important that the breadth of the
space over which we attempt to link patents with grants in a DST is exogenous to the amount of funding
a DST receives. One way to ensure this is true is to verify that this space is stable over time, within each
disease/science (DS) area.

To do this, we categorize all MeSH keywords associated with a publication funded by a DS combination into
one of two types: “stable” MeSH keywords are ones that appear in publications funded by that DS across
all years in the observation window, whereas “peripheral” keywords appear only in a subset of years in the
data. We then restrict our set of related publications to those that match to a DS on stable keywords only.
This fixes the boundaries of an intellectual area over time and therefore breaks any mechanical relationship
that might exist between funding and the number of indirectly linked patents.

Concretely, for each DS, across all years in the observation window, we list all the MeSH keywords tagging the
publications that directly acknowledge the grants in the DS. We then compute the frequency distribution of
keywords within each DS. To fix ideas, in the DS corresponding to the National Institute of General Medical
Sciences (NIGMS) and the Microbial Physiology II study section (MBC-2), the MeSH keyword DNA-Binding
proteins sits above the 80th percentile of the frequency distribution; E coli sits above the 95th percentile;
Structure-Activity Relationship sits above the 50th percentile; and Glucosephosphates lies below the
fifth percentile.

In the next step, we once again link each acknowledged article to the related articles identified by PMRA.
However, we can now track whether these related articles are themselves tagged by keywords that our
previous analysis has identified as “stable” within the DS—those keywords that are at the median or above
of the DS-specific MeSH keyword frequency distribution.xx The last step is to identify the patents that cite
these indirectly linked articles, but we now restrict the citations to exist between patents and only the subset
of “stable” related articles.

We experimented with several alternative ways to characterize “stable” indirectly linked articles. We report
the results of specifications modeled after those used to generate the estimates in columns 4 and 5 of Table 8,
our benchmark set of results. We manipulate two characteristics of keywords to generate the four variations
of the strategy presented in the table below. First, for each article indexed by PubMed, some keywords are
designated as main keywords, in the sense that they pertain to the article’s central theme(s). We generate
the keyword frequency distributions using all keywords and only main keywords, separately.

xxIn unreported results, we also experimented with a top quartile threshold, with little change to the results.
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Second, MeSH keywords are arrayed in a hierarchical tree with 13 levels, with keywords for each article
potentially sitting at any of these levels. Eighty percent of keywords that occur in PubMed belong to the
third level of the hierarchy or below. For each keyword below the third level, we climb up the MeSH hierarchy
to the third level to find its third-level ancestor (in the case of keywords that belong to multiple branches in
the tree, we pick the ancestor at random). We recompute the keyword frequency distribution at this coarser,
but more homogeneous level. Combining these two characteristics (main vs. all keywords; any levels vs.
third level of the MeSH tree) provides us with four distinct keyword frequency distributions to identify the
set of stable, indirectly-linked articles. Each of these in turn correspond to a column in Table L1.

Two features of the results in this table deserve mention. First, the magnitudes of the coefficients are slightly
smaller than those observed in Table 6. This is to be expected, since our “stable” linking strategy shrinks the
number of opportunities to associate patents with DSTs. The IV estimates are more imprecisely estimated
(statistically significant at the 10% level for three out of four specifications). Second, the elasticities are
comparable in magnitude to those computed in Table 8 (columns 4 and 5).

In conclusion, the results corresponding to these alternative linking strategies bolster our claim that the
indirect linking strategy presented in the main body of the manuscript allows us to identify total private-
sector innovation in a DST in a way that is not mechanically related to the amount of funding this DST
receives.
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Table L1: Effect of NIH Investments on Total Related
Private-Sector Patenting, Stable Research Area Keywords Only

Level Adjusted Raw Level Adjusted Raw

Mean=14.8; 
SD=17.0

Mean=12.5; 
SD=14.9

Mean=23.1; 
SD=25.8

Mean=22.5; 
SD=25.2

(1) (2) (3) (4)

OLS

2.242*** 2.018*** 3.372*** 3.305***

(0.451) (0.393) (0.717) (0.706)

Elasticity 0.615 0.655 0.592 0.596

IV

1.403* 1.091 2.034* 2.027*

(0.849) (0.792) (1.176) (1.179)

Elasticity 0.385 0.360 0.357 0.366

Observations 14,085 14,085 14,085 14,085

Main Keywords All Keywords

Note: The dependent variable is the number of fractional patents in the same area as a given DST, but using a more
restrictive definition of relatedness than in our benchmark specification. If a patent cites a publication that directly
acknowledges an NIH grant, but which does not contain any keywords that have commonly been used in that D-S, then the
linked patent is not counted under this approach. See Appendix L for more details regarding this matching method.
Columns 1 and 2 apply this method counting only keywords that are designated as main keywords; Columns 3 and 4 do
this for all keywords. Columns 1 and 3 match two different keywords if they share the same level 3 parent keyword in the
National Library of Medicine’s semantic keyword tree. Columns 2 and 4 do not.  

Effect of NIH Investments on Total Related Private-Sector Patenting, 

Core Research Area Keywords Only   

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

DST Funding (×$10 mln.) 
Mean=4.06; SD=4.36

Standard errors in parentheses, two-way clustered at the disease and science level (*p  < 0.10, **p  < 0.05, ***p  < 0.01).
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Appendix M: Assessing Firm Reallocation of R&D Expenditures

The results in the main body of the manuscript examine the impact of NIH funding on firm patenting in
related research areas. Yet in the cases of both crowd-in and crowd-out, the additional resources that a firm
devotes to—or diverts from—a DST must come from somewhere else in its budget. One possibility is that
these resources come from either an expansion in the firm’s total R&D budget (in the case of crowd-in) or a
contraction in the firm’s R&D budget (in the case of crowd-out). In this case, the impact of NIH expenditures
estimated in Tables 7 and 8 is the same as its impact on overall firm R&D. Another possibility, however,
is that firms respond to public investments by reallocating resources to and from other parts of their R&D
portfolio. In this case, one needs to know the consequences of NIH investments on firm investments in other
areas in order to assess its full impact on private innovation.

If firms respond to increased NIH funding for a DST by adjusting their portfolio of investments, then the
effect of NIH funding for a DST would be two-fold: the direct effect on private innovation in the area of
that same DST, and the countervailing reallocation effect on private innovation in the other research areas
that a firm reallocates to or from. If firms divert funds from other areas in order to invest in the DST with
increased NIH funding, we think of this as “reallocated crowd-in.” Conversely, firms may divert resources
away from a DST with increased NIH funding toward other research areas; we refer to this as “reallocated
crowd-out.”

We attempt to directly measure the extent of firm reallocation in response to NIH funding. First, we note
that our second outcome measure—the total number of patents that draw on research related to a DST—is
already likely to take into account some of the impact of reallocation. This is because our patent linking
approach defines the area of a DST quite broadly. If the NIH increases spending on, for instance, cancer (D)
cell signaling (S) research in 1990 (T), we measure net impact of this change on total innovation in all parts
of the firm’s R&D portfolio that are related to cancer/cell signaling research from 1990. This may include
patents related to cell signaling in other disease areas, cancer patents unrelated to cell signaling, or any other
set of projects similar to research that is supported by the DST. Reallocation within this set would already
be captured in the results displayed in Table 7.

Firms, however, may also choose to reallocate funds to or from projects that are completely unrelated to a
DST’s research. If NIH funding in one DST leads firms to reallocate funds away from that DST, then we
should observe an increase in non-DST patenting within that firm. If, instead, NIH investments in a DST
lead firms to reallocate funding away from other projects toward the area of NIH investment, then we should
observe a decrease in non-DST patenting within that firm.

To measure the extent of reallocation, we would ideally like to focus on the set of firms that actually faced
a decision about whether to invest more or less in a DST as a result of NIH funding. In the absence of
these data, we focus on firms that actively patent in a DST area and construct a measure of the number
of non-D, non-S patents that they produce in the same year. We have two final variables of interest.
TotalPatents−d,−s,t measures the total number of non-D, non-S patents that are produced by firms that
also produce a DST-linked patent in the same year. AveragePatents−d,−s,t measures the average number
of non-D, non-S patents a firm produces for every DST-linked patent it produces, averaged over all firms in
that DST.

The advantage of this approach is that we restrict our analysis to firms that are indeed affected by changes
in funding for a particular DST. If these firms spend more resources in another area, it is likely that these
funds could have also been spent on DST research. The downside of this approach, however, is that it limits
the kinds of reallocation we can study. If DST funding leads a firm to reallocate toward other areas entirely,
then we would no longer be able to associate it to the original DST. Our results, then, document the impact
of DST funding on the reallocation of firm investments on the intensive margin, conditional on firms not
switching away entirely.
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Table M1 shows that, in general, an increase in NIH funding for one area of a firm’s R&D portfolio does not
decrease the number of patents that those firms develop in other areas. Our estimates in Columns 1 and 2
indicate that a $10 million increase in DST funding leads to an additional four to five patents, although
these estimates are noisy. NIH funding does not appear to increase the average number of non-DST patents
assigned to firms.

These findings, when combined with our previous results, indicate that overall firm patenting appears to
increase in response to NIH funding. This finding suggests that NIH investments lead firms to weakly increase
their overall patenting. Another interpretation for this finding is that there is a larger direct impact of NIH
funding for a DST than we capture through our main outcome measures. If, for instance, firms respond to
increased NIH funding by expanding their scientific labor force, and these scientists work on a variety of
projects, then an increase in NIH funding for one DST can impact other patenting areas in ways our main
outcome measures cannot capture; some of those effects may be reflected in Table M1.

The elasticities we estimate under all of these specifications are smaller than the ones we estimate for the
direct effect of DST funding on patenting in the same area. These smaller magnitudes are to be expected.
In the case of reallocated crowd-in, the patents that are lost in the area from which the firm diverts funds
should be fewer than the number that are gained, as long as the firm is reallocating optimally. Similarly, in
the case of reallocated crowd-out, the patents that are gained in the area to which firms divert funds should
be fewer than the number that are lost in the original area, as long as firms had initially allocated their
investments optimally.
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Table M1: Effect of NIH Investments on Firm Reallocation
of R&D Investments

Citation Related Citation Related

Mean=122.6; 
SD=289.1

Mean=178.1; 
SD=197.7

Mean=2.57 
SD=3.20

Mean=21.05; 
SD=66.9

(1) (2) (3) (4)

5.537 6.141*** 0.035 -0.004
(3.736) (1.991) (0.457) (0.025)

Elasticity 0.183 0.140 0.055 -0.001

R2 0.898 0.983 0.825 0.908

Observations 14,085 14,085 14,085 14,085

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

Note: Each observation is Disease-Science Area-Time (DST) combination. The outcome variables are fractional patent counts.
Total non-DST patents are calculated by first identifying all assignees that produce a patent linked to a DST (either through
citations or through PMRA relatedness). We then find all non-D, non-S patents issued to that restricted set of assignees in the
same year. This is our “Total non-DST” patent count. “Average non-DST” patents normalizes this by the number of DST-linked
patents. A patent is assigned to the disease area to which it is most often associated. All regressions include disease-science FEs,
disease-year FEs, science-year FEs, and FEs for the number of applications to the DST, and cubics in the number of DST-linked
patents that are matched.

Table 9: Effect of NIH Investments on Firm Reallocation of R&D Investments

Total non-DST patents
Average non-DST patents,

per DST-linked patent

DST Funding (×$10 mln.)
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Appendix N: Linking NIH Grants to Patents Directly
[Bayh-Dole Linkage]

Recipients of NIH grants and contracts are allowed to seek patent protection on project results. This
practice emerged in the 1970s under Institutional Patent Arrangements between individual grantees (and
contractors) and the Department of Health, Education, and Welfare, and intensified after the implementation
of the Bayh-Dole Act in 1981.

One Bayh-Dole requirement is for recipients of federal research funds to report to the funding agency any
patent application they file. This information is stored in the Interagency Edison (iEdison) database.
Another requirement is to acknowledge on patent documents the existence of federal funding and the fact
that the government retains certain rights, in so-called “government interest” statements.

The iEdison database has typically not been public, and grants are acknowledged on government interest
statements in a format that is not standardized. Recently iEdison data has been made available on the
web,xxi although there is in all likelihood undercompliance in the early part of our sample (Rai and Sampat
2012). Accordingly, we complement iEdison data with information from government interest statements in
granted patents. Grant numbers contained in government interest statements within patents are reported
haphazardly. We extract them through the use of regular expression matching, looking for any mention of
an NIH institute code followed by a grant number, possibly with punctuation (e.g., a dash) in between.xxii

We find that 9,821 of these grants (6.4 percent of the total) generate patents directly, leading to 12,485
U.S. patents that are assigned primarily to universities and hospitals. These raw statistics are informative,
since this represent only one fourth of the number of private-sector patents that can be linked through
publications. Clearly, an assessment of patenting outcomes based on “Bayh-Dole” acknowledgments would
miss a very large part of the impact we document in the main body of the manuscript. Just as in the case
of our direct citation measure, we can assign each and every one of the “Bayh-Dole patents” to a DST, and
run regression specifications analogous to those displayed in Table 6. The results are presented in Table N1
below. The OLS estimates (columns 1 and 3) imply an elasticity only approximately half as large as that
yielded by the citation and PMRA-linking methods.

Our 2SLS estimates are negative and noisy. This is likely due to the fact that there are a relatively small
number of grants that generate patents directly. If too few of these grants fall in the narrow window around
an IC’s payline, then our IV strategy is unlikely to be able to identify an effect.

xxihttp://www.iedison.gov
xxiiSee Sampat (2016) for more detail.
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Table N1: Effect of NIH Investments on Downstream Patenting by
Grantees

OLS IV OLS IV

(1) (2) (3) (4)

0.126** -0.068 1.179*** -0.214
(0.051) (0.101) (0.447) (0.759)

Elasticity 0.275 -0.148 0.287 -0.052

R2 0.878 0.604 0.895 0.650

Observations 14085 13043 14085 13043

Year FEs Incl. Incl. Incl. Incl.

Disease × Science FEs Incl. Incl. Incl. Incl.

Disease × Year FEs Incl. Incl. Incl. Incl.

Science × Year Linear Trends Incl. Incl. Incl. Incl.

Application Controls Incl. Incl. Incl. Incl.

Note: See notes to Table 6 for details about the sample. The outcome variables are fractional patent counts. The instrument is the
total amount of funding (2010 dollars) for the subset of grants funded by a DST whose rank of rank scores were marginal, i.e., were
within 25 applications of the award cutoff for their specific disease area (Institute). Application controls include (i) FEs for the
number of applications that a DST receives; (ii) FEs for the number of applications associated with a DST that are also in a 50-
grant window around the relevant IC payline, as well as (iii) cubics in the average raw and rank scores of applications associated
with a DST that are also in a 50-grant window around the payline. Public sector patents are defined as those assigned to
government, non-profit foundations, academic, or hospital entities. 

Standard errors in parentheses, two-way clustered at the disease and science level (*p < 0.10, **p < 0.05, ***p < 0.01).

Bayh Dole Linked Patents

Fractional Counts Unit Counts

Mean=2.00; SD=3.12 Mean=16.7; SD=25.8

DST Funding ($10 mln.) Mean=4.06; 
SD=4.36
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