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ON A FAMILY OF SYMMETRIC RATIONAL FUNCTIONS

ALEXEI BORODIN

Abstract. This paper is about a family of symmetric rational functions that form a one-
parameter generalization of the classical Hall-Littlewood polynomials. We introduce two sets
of (skew and non-skew) functions that are akin to P and Q Hall-Littlewood polynomials. We
establish (a) a combinatorial formula that represents our functions as partition functions for
certain path ensembles in the square grid; (b) symmetrization formulas for non-skew functions;
(c) identities of Cauchy and Pieri type; (d) explicit formulas for principal specializations; (e)
two types of orthogonality relations for non-skew functions.

Our construction is closely related to the half-infinite volume, finite magnon sector limit of
the higher spin six-vertex (or XXZ) model, with both sets of functions representing higher spin
six-vertex partition functions and/or transfer-matrices for certain domains.
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1. Introduction

The Hall-Littlewood symmetric polynomials are very well studied objects that arise naturally
in a variety of group theoretic, representation theoretic, and combinatorial contexts; chapters
II-V of Macdonald’s book [13] contain a detailed description of their origins as well as a rich
structural theory. In the simplest instance, the Hall-Littlewood polynomials have the form

Pλ(x1, . . . , xn) = const(λ) ·
∑
σ∈Sn

σ

( ∏
1≤i<j≤n

xi − qxj
xi − xj

n∏
i=1

xλii

)
, (1.1)
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where the index λ is a finite string of integers λ1 ≥ λ2 ≥ · · · ≥ 0, Sn is the symmetric group
on n symbols, permutations σ ∈ Sn act on functions in n variables by permuting the variables,
and q ∈ C is a parameter.1

In recent years, a rational deformation of the Hall-Littlewood polynomials turned to be ex-
tremely useful in probability, more exactly, in large time analysis of certain interacting particle
systems in (1+1)-dimensions. This deformation is obtained through replacing xλii in the above
formula by ((α + βxi)/(γ + δxi))

λi with α, β, γ, δ ∈ C.
In a pioneering work, Tracy and Widom [21]-[25] considered the case of α = γ = 1, βδ =

q−1, and showed that the corresponding functions are eigenfunctions for the generator of the
asymmetric simple exclusion process, or ASEP for short. In the equivalent context of the infinite
volume, finite magnon sector XXZ model, same functions were considered in a much earlier
work of Babbitt and Gutkin [1], [9] (that followed similar but more extensive work of Babbitt
and Thomas for the (less general) XXX model [2]), but those papers did not contain complete
proofs and remained essentially unnoticed. In a very recent work of Borodin-Corwin-Gorin [4],
these functions were also utilized for asymptotic analysis of stochastic (spin 1

2
) six vertex model

in a quadrant.
A few years after the work of Tracy and Widom, the case of α = β = γ = 1, δ = 0, was

considered by Borodin-Corwin-Petrov-Sasamoto [5] in connection with the so-called q-TASEP
and a q-Boson particle system (here ‘T’ in ‘TASEP’ stands for ‘totally’, and total asymmetry
means that particles in the system are allowed to move in only one direction).

The fully general case was introduced by Povolotsky [17] and developed by Borodin-Corwin-
Petrov-Sasamoto [6] in connection with the so-called q-Hahn TASEP and a corresponding zero
range process.

Let us also remark that the quantum integrable systems perspective on the Hall-Littlewood
polynomials themselves was developed earlier by Van Diejen [26], and degenerating Hall-
Littlewood polynomials further leads to classical works on the quantum delta Bose gas, see
the introduction to [6] and references therein.

The essential property of the deformed functions that made them useful for probabilistic
analysis (in addition to them being eigenfunctions for generators of interesting interacting par-
ticle systems) consisted in completeness and (bi)orthogonality of them viewed as functions
of the index λ. This made it possible to explicitly construct and in some cases analyze at
large times the transition matrices (or Green’s functions) for the corresponding Markov chains.
However, from a structural viewpoint, these two properties (orthogonality and being eigenfunc-
tions of a nice difference operator) are merely a tip of the iceberg of a wealth of algebraic and
combinatorial facts that are available for Hall-Littlewood polynomials.

The principal goal of the present work is to develop further the structural properties of the
rational deformations of the Hall-Littlewood polynomials.

If one takes into account harmless renormalizations of functions and variables, the four
deformation parameters α, β, γ, δ yield a single independent one, and we shall choose it in a

1This parameter is traditionally denoted by t, but in the context of the present paper, q happens to be a
much more natural notation.
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specific way and denote it by s. The analog of (1.1) then reads

Fµ(u1, . . . , uM) =
(1− q)M∏M
i=1(1− sui)

∑
σ∈SM

σ

( ∏
1≤i<j≤M

ui − quj
ui − uj

·
M∏
i=1

(
ui − s
1− sui

)µi)
, (1.2)

where µ = (µ1 ≥ · · · ≥ µM) ∈ ZM≥0. Up to simple prefactors, these are the functions that have
been previously considered, for different values of s, in the above referenced papers.2

We introduce several new objects that are closely related to these functions.
• We define a ‘dual’ set of functions Gν defined as follows: For ν = (ν1 ≥ · · · ≥ νn) ∈ Zn≥0

with last k ≥ 0 coordinates equal to 0, and any N ≥ 0, we set

Gν(v1, . . . , vN) =
(1− q)N(s2; q)n

(q; q)N−n+k(s2; q)k

×
∑
σ∈SN

σ

( ∏
1≤i<j≤N

vi − qvj
vi − vj

·
n−k∏
i=1

vi
(1− svi)(vi − s)

(
vi − s
1− svi

)νi
·

N∏
j=n−k+1

1− qksvj
1− svj

)
. (1.3)

• We introduce skew functions Fµ/λ, Gν/λ, whose special cases with λ = ∅ or λ = (0, . . . , 0)
coincide with Fµ and Gν , respectively, and show that all these functions can be defined combina-
torially, as partition functions for ensembles of paths in the square grid with specific boundary
conditions pictured in Figure 3. In the Hall-Littlewood limit s = 0, this turns into the stan-
dard combinatorial formula involving summation over semi-standard Young tableaux, cf. [13,
Section III.5].

In this combinatorial definition of the F - and G-functions, the weight of an ensemble of paths
is given by the product of vertex weights over all vertices of the grid, and our vertex weights are
close relatives of the matrix elements of the higher spin R-matrix for the XXZ (or six-vertex)
integrable lattice model, with one representation of Uq(ŝl2) being two-dimensional (spin 1

2
) and

the other one being a generic Verma module (whose highest weight is related to the parameter
s). In fact, the F -function (1.2) can be viewed as the (half)infinite volume, finite magnon sector
limit of the eigenfunctions of the higher spin XXZ model with periodic boundary conditions,
and the summation over permutations in (1.2) is related to the (coordinate or algebraic) Bethe
ansatz for this model.

The connection to the integrable lattice models was essential for us; it provided motivation
as well as a broader viewpoint. However, familiarity with such models is not necessary for most
statements and proofs of this work, with the exception of Theorem 6.3.
• We employ a version of the Yang-Baxter equation (that is central to the theory of inte-

grable lattice models) to prove several (skew) Cauchy and Pieri type identities involving our
F - and G-functions. The fact that Fµ’s are eigenfunctions of simple difference operators in µ,
which made them useful in probabilistic models, may be viewed as a corollary of one of the
Pieri type identities. To give an example of our identities, the analog of the Cauchy identity

2The prefactor in the right-hand side of (1.2) was chosen so that the whole expression can be viewed as a
certain partition function, see below. For other purposes, e.g., for Cauchy type identities like (1.4) below, it
might be more natural to consider normalized functions Fµ/F(0,...,0).
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has the form (Corollary 4.7 below):∏M
i=1(1− sui)
(s2; q)M

∑
ν1≥···≥νM≥0
ν=0n01n12n2 ···

∏
k≥0

(s2; q)nk
(q; q)nk

Fν(u1, . . . , uM)Gν(v1, . . . , vN) =
∏

1≤i≤M
1≤j≤N

1− quivj
1− uivj

.

(1.4)
• We also show that the so-called principal specialization into a geometric progression with

ratio q of the skew G-functions can be viewed as the (half)infinite volume, finite magnon
sector transfer-matrix of the higher spin XXZ model with both representations of Uq(ŝl2) being
arbitrary; this is related to the well-known fusion procedure of Kirillov-Reshetikhin [10] for the
higher spin XXZ models.

Thus, our focus in this paper is a one-parameter generalization of the Hall-Littlewood theory.
There is another one-parameter generalization of Hall-Littlewood polynomials known as Mac-
donald polynomials, cf. [13, Chapter VI]. These two generalizations seems to be completely
different at the moment, and it is natural to conjecture that there should be a two-parameter
lift of the Hall-Littlewood theory that would unite the two.

One possible direction that could help in finding such a connection is the theory of Hecke
algebras. In a recent work, Takeyama [18], [19] showed that the F -functions (1.2) are closely
related to certain rational deformations of the affine Hecke algebras. Turning ‘affine’ to ‘double
affine’ may lead to a common generalization of the functions in this paper and Macdonald
polynomials, but for now this remains out of our reach.

Our F - and G-functions have a few degenerations as the parameters q and s tend to certain
special values, and some of those appear to be new, cf. Section 8. The case of inhomoge-
neous Schur polynomials discussed in Section 8.4 bears a certain similarity to a recent work of
Motegi and Sakai [15], [16] on the so-called Grothendieck polynomials, see also Lascoux and
Schützenberger [11], Lenart [12] for much earlier works on those polynomials, but we were not
able to establish a direct connection yet.

Another recent work that seems to be related to the present one on the level of ideas, but
not yet directly, is that of Betea, Wheeler, and Zinn-Justin [7], [8].

The paper is organized as follows.
In Section 2 we introduce vertex weights and establish their connection with R-matrices

for the higher spin XXZ model. In Section 3 we define the F - and G-functions as partition
functions of certain collections of paths in the square grid, and show that these functions are
symmetric in their parameters. Section 4 contains (skew) Cauchy and Pieri type identities.
In Section 5 we prove symmetrization formulas (1.2) and (1.3). Section 6 deals with principal
specializations of F - and G-functions and their connection to fully general higher spin XXZ
R-matrices and fusion. In Section 7 we discuss orthogonality relations for the F -functions
(1.2) proved earlier in [6] and their connection to the present work. Section 8 contains a brief
description of degenerations of F - and G-functions as parameters q and s tend to special values.

Acknowledgments. I am very grateful to Ivan Corwin, Vadim Gorin, and Leonid Petrov for
numerous discussions that were extremely helpful. I am also very grateful to Ole Warnaar
for a number of very valuable remarks. The research was partially supported by NSF grant
DMS-1056390.
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i1 = 3

j1 = 3

i2 = 5

j2 = 1

Figure 1. Graphical representation of a vertex of type (i1, j1; i2, j2) = (3, 3; 5, 1).

2. Vertex weights

We start by fixing two parameters that we denote by q and s. They should be viewed as
complex numbers with the condition of being generic — vanishing of certain algebraic expres-
sions in q and s may make some of our statements below meaningless. As a rule, we will not
focus on such degenerations.

Definition 2.1. For any four-tuple (i1, j1; i2, j2) of nonnegative integers, define the correspond-
ing vertex weight depending on a (generic) complex parameter u as follows: For any m ≥ 0,

wu(m, 0,m, 0) =
1− sqmu

1− su
, (2.1)

wu(m, 1,m, 1) =
u− sqm

1− su
, (2.2)

wu(m+ 1, 0,m, 1) =
(1− s2qm)u

1− su
, (2.3)

wu(m, 1,m+ 1, 0) =
1− qm+1

1− su
, (2.4)

and wu(i1, j1; i2, j2) = 0 for any other values of i1, j1, i2, j2 ≥ 0.

We shall also represent vertices of type (i1, j1; i2, j2) pictorially as in Figure 1, where i1, j1, i2, j2
denote the number of arrows on South, West, North, and East edges, respectively.

Remark 2.2. (i) The set of four-tuples (i1, j1; i2, j2) ∈ Z4
≥0 whose weights are (generically)

nonzero are described by two conditions: i1 + j1 = i2 + j2, and j1, j2 ≤ 1. The first condition is
the ‘arrow preservation’ — for every vertex with nonzero weight, the number of incoming arrows
is equal to the number of outgoing ones. This arrow preservation will be upheld throughout
the paper. The second condition says that each horizontal edge carries at most one arrow.
This condition will remain relevant until Section 6, where it will be lifted, and vertices with
arbitrary (i1, j1; i2, j2) ∈ Z4

≥0 subject to i1 +j1 = i2 +j2 will be allowed to have nonzero weights,
cf. Corollary 6.5.
(ii) The normalization (i. e., the common denominator 1−su) is chosen so that wu(0, 0; 0, 0) = 1,
cf. Remark 3.3 below.

The above-defined vertex weights are closely related to matrix elements of the higher spin R-
matrix associated with Uq(ŝl2). To make the connection exact, we need to fix a normalization
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of the R-matrix, and we do so by utilizing the R-matrices of [14]. There RI,J denotes the
image of the universal R-matrix in the tensor product of two highest weight representations
with arbitrary weights I and J with a particular choice of bases.

Remark 2.3. As was noted in the introduction, familiarity with the theory of integrable
lattice models (R-matrices etc.) is not really needed for almost all statements and proofs of
this paper (with the exception of Theorem 6.3). Proposition 2.4 below details the connection of
vertex weights of Definition 2.1 and R-matrices. It is used in our proofs of Proposition 2.5 and
Theorem 6.3, but one can also verify the claim of Proposition 2.5 in a completely elementary
fashion by multiplying 4×4 matrices, as indicated in the beginning of its proof. Thus, a reader
could safely omit Proposition 2.4 as well as all other mentions of the R-matrices without much
damage to the content of this work.

An explicit formula for RI,J can be seen in (1.1)-(1.3) of [14], where it is assumed that I ≤ J
are nonnegative integers; a more general formula is in [14, (5.8)-(5.9)]. We shall always assume
the ‘field parameter’ φ of [14] to be equal to 1, and we shall also re-denote the parameter q
from [14] by Q; it is related to our q above via Q2 = q.

With these conventions we have the following

Proposition 2.4. Let RI,J be as in [14] with q replaced by Q. Then for any i1, j2, i2, j2 ≥ 0,

wu(i1, j1; i2, j2) = const · (−1)j1Q
i2(i2−1)−i1(i1−1)+2i2+j1−j2

2 u
j2−j1

2 · [RI,1(λ; 1)]i2,j2i1,j1
, (2.5)

where q = Q2, the ‘spectral’ parameter λ is chosen so that λ2 = (uQ)−1, and

const =
1

(1− su)λQ
1+I
2

.

Proof. A direct comparison of Definition 2.1 above and [14, (5.2) and (5.10)]. �

It is natural to ask why we need a different set of weights here rather than using the R-matrix
itself. The answer lies in simpler explicit formulas for the symmetric functions involved that
are also easier to relate to the Hall-Littlewood polynomials, see Sections 5 and 8 below.

Our next goal is to describe the Yang-Baxter equation3 in terms of our vertex weights. To
that end, define the two-vertex weights by

w(m,n)
u1,u2

(k1, k2; k′1, k
′
2) =

∑
l≥0

wu1(m, k1; l, k′1)wu2(l, k2;n, k′2), (2.6)

where u1, u2 ∈ C, l,m, n ∈ Z≥0, k1, k2, k
′
1, k
′
2 ∈ {0, 1}. This is the weight of two vertices

(m, k1; l, k′1) and (l, k2;n, k′2) attached along the l-edges with l ≥ 0 being arbitrary, cf. Figure
2. Note that the sum over l ≥ 0 contains at most one nonzero term, because for both factors
to be nonzero we must have

l = m+ k1 − k′1 = n+ k′2 − k2, (2.7)

cf. Remark 2.2(i).
We also set

w̃(m,n)
u1,u2

(k1, k2; k′1, k
′
2) = w(m,n)

u1,u2
(k2, k1; k′2, k

′
1).

3The exact meaning of the term ‘Yang-Baxter equation’ may depend on the context in which it is used. Our
usage is close to what is called the star-triangle transformation in the context of the six vertex model in [3].
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k1

k2

k′1

k′2

m

n

l

Figure 2. Graphical representation of two vertices as in (2.6).

As kj, k′j vary over {0, 1}, let us organize these weights into 4× 4 matrices

w(m,n)
u1,u2

=


w

(m,n)
u1,u2 (0, 0; 0, 0) w

(m,n)
u1,u2 (0, 0; 0, 1) w

(m,n)
u1,u2 (0, 0; 1, 0) w

(m,n)
u1,u2 (0, 0; 1, 1)

w
(m,n)
u1,u2 (0, 1; 0, 0) w

(m,n)
u1,u2 (0, 1; 0, 1) w

(m,n)
u1,u2 (0, 1; 1, 0) w

(m,n)
u1,u2 (0, 1; 1, 1)

w
(m,n)
u1,u2 (1, 0; 0, 0) w

(m,n)
u1,u2 (1, 0; 0, 1) w

(m,n)
u1,u2 (1, 0; 1, 0) w

(m,n)
u1,u2 (1, 0; 1, 1)

w
(m,n)
u1,u2 (1, 1; 0, 0) w

(m,n)
u1,u2 (1, 1; 0, 1) w

(m,n)
u1,u2 (1, 1; 1, 0) w

(m,n)
u1,u2 (1, 1; 1, 1)

 ,
and similarly for w̃(m,n)

u1,u2 .

Proposition 2.5 (Yang-Baxter equation). For any m,n ≥ 0, u1, u2 ∈ C,

w̃(m,n)
u2,u1

= X w(m,n)
u1,u2

X−1, (2.8)

where

X =



1 0 0 0

0
q(u1 − u2)

u1 − qu2

(1− q)u1

u1 − qu2

0

0
(1− q)u2

u1 − qu2

u1 − u2

u1 − qu2

0

0 0 0 1


. (2.9)

Proof. This relation is easy to check directly, although it may be a bit tedious as one needs to
go over the cases m = n, n± 1, n± 2. Let us instead derive it from the Yang-Baxter equation
for the R-matrices. Its special case that is relevant to us now reads, cf. [14, (4.8)],

R
(21)
1,I (λ1; 1)R

(31)
1,I (λ2; 1)R

(23)
1,1

(
λ2

λ1

; 1

)
= R

(23)
1,1

(
λ2

λ1

; 1

)
R

(31)
1,I (λ2; 1)R

(21)
1,I (λ1; 1), (2.10)

where the equality takes place in the tensor product of the highest weight representation with
weight I that we denote as VI and C2 ⊗ C2, and (omitting zeroes)

R1,1(µ) =


µQ− (µQ)−1

µ− µ−1 Q−Q−1

Q−Q−1 µ− µ−1

µQ− (µQ)−1

 . (2.11)
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The conjugating matrix X in (2.8) is the inverse of R1,1 modified according to Proposition 2.4.
More exactly, set u1 = (λ2

1Q)−1, u2 = (λ2
2Q)−1, and µ = λ2/λ1 in (2.11). Then, using (2.7) and

its analog for w̃, we obtain

w(m,n)
u1,u2

(k1, k2; k′1, k
′
2) = const2(−1)k1+k2Q

n(n−1)−m(m−1)
2

+2nQ
(k1−k2)−(k′1−k

′
2)

2 u
k′1−k1

2
1 u

k′2−k2
2

2

×
[
R

(21)
1,I (λ1; 1)R

(31)
1,I (λ2; 1)

]k′1,k′2
k1,k2

,

w̃(m,n)
u2,u1

(k1, k2; k′1, k
′
2) = const2(−1)k1+k2Q

n(n−1)−m(m−1)
2

+2nQ
(k2−k1)−(k′2−k

′
1)

2 u
k′1−k1

2
1 u

k′2−k2
2

2

×
[
R

(31)
1,I (λ2; 1)R

(21)
1,I (λ1; 1)

]k′1,k′2
k1,k2

.

The sub- and super-indices (k1, k2) and (k′1, k
′
2) refer to the basis labels in C2 ⊗ C2, which are

ordered as (0, 0), (0, 1), (1, 0), (1, 1). We thus obtain
1

−
(

1
Qu2

) 1
2

−
(
Q
u1

) 1
2

1

(u1u2)
1
2



−1

w(m,n)
u1,u2


1

− (u2Q)
1
2

−
(
u1
Q

) 1
2

(u1u2)
1
2


−1

R1,1

(
λ2

λ1

; 1

)

= R1,1

(
λ2

λ1

; 1

)


1

−
(
Q
u2

) 1
2

−
(

1
Qu1

) 1
2

1
(u1u2)1/2



−1

w̃(m,n)
u2,u1


1

−
(
u2
Q

) 1
2

− (Qu1)
1
2

(u1u2)
1
2


−1

.

Simplifying yields (2.8). �

For a future use we record the following computation, cf. (2.8).

Lemma 2.6. Let A = [Aij]
4
i,j=1 be a 4× 4 matrix and X be as in (2.9). Then

(XAX−1)11 = A11, (XAX−1)41 = A41, (2.12)

(XAX−1)42 =
u2 − u1

u2 − qu1

A42 +
(1− q)u2

u2 − qu1

A43. (2.13)

The proof is straightforward.

3. Symmetric rational functions

The goal of this section is to define certain rational functions in finitely many variables and
to show that these functions are symmetric with respect to permutations of the variables.

We shall define two families of functions, with functions in each family parametrized by
pairs of nonnegative signatures. A signature is a finite string of ordered integers λ = (λ1 ≥
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λ2 ≥ · · · ≥ λL).4 The length L of the string is called the length of the signature. The set of all
signatures of a given length L will be denoted as SignL, and the set of all nonnegative signatures
(i.e. the signatures that consist of nonnegative integers) of length L will be denoted as Sign+

L .
We will also occasionally write nonnegative signatures in the form λ = 0m01m12m2 · · · , where
mj’s are the multiplicities: mj = |{i : λi = j}|.

We agree that the set Sign0 = Sign+
0 consists of the single empty signature ∅ = 001020 · · · .

Whenever we speak of the set of all (nonnegative) signatures below, we mean
⊔
L≥0 SignL or⊔

L≥0 Sign+
L , including the possibility that the length may be zero.

Let us now consider (a part of) the standard square grid, and let us assign to each vertex of
the grid a complex variable in such a way that all the vertices in the same row are assigned the
same variable.

For a finite up-right path in the square grid, we define its weight as the product of weights
of its interior vertices5, where the weight of each vertex is determined via Definition 2.1 with
i1, j1, i2, j2 being 0 or 1 depending on whether the corresponding (South, West, North, or East)
edge adjacent to the vertex is a part of the path or not (0 if it is not, and 1 if it is). To apply
the formulas of Definition 2.1 we assume that q and s are universal parameters fixed once and
for all, and for u we utilize the variables that we have just assigned to the vertices of the grid
(recall that this variable does not change if we move along any row).

Similarly, for a collection of finitely many up-right paths in the square grid, we define the
corresponding weight as the product of weights of interior vertices of all the paths in the
collection, where the weight of each vertex is determined via Definition 2.1 with i1, j1, i2, j2
equal to the number of paths of the collection that contain the corresponding (South, West,
North, or East) edge adjacent to the vertex, with the same convention about q, s, u as in the
previous paragraph. Note that the weight of a collection of paths is, generally speaking, not
equal to the product of weights of its members (but it will be if the paths do not have common
edges).

We view two collections of up-right paths as identical if their sets of interior vertices coincide
and the numbers (i1, j1, i2, j2) for each of such vertices in the two collections are equal.

If a collection of paths has no interior vertices we assign to it the weight 1.

Definition 3.1. Fix L ≥ M ≥ 0, λ ∈ Sign+
L , µ ∈ Sign+

M , and indeterminates u1, . . . , uL−M .
Assign to each vertex (i, j) ∈ Z× {1, 2, . . . , L−M} the variable uj.

Define a rational function Fλ/µ(u1, . . . , uL−M) as the sum of weights of all possible collections
of L up-right paths that (cf. Figure 3, left panel)

(1) start with the (vertical) edges {(µm, 0) → (µm, 1), 1 ≤ m ≤ M}, and with the (hori-
zontal) edges {(−1, j)→ (0, j), 1 ≤ j ≤ L−M};

(2) end with the (vertical) edges {(λl, L−M)→ (λl, L−M + 1), 1 ≤ l ≤ L}.
We shall also use the abbreviated notation Fλ/∅ = Fλ.

Definition 3.2. Fix L, k ≥ 0, λ ∈ SignL, ν ∈ SignL, and indeterminates u1, . . . , uk. Assign to
each vertex (i, j) ∈ Z× {1, 2, . . . , k} the variable uj.

4I apologize for the use of “λ” here, given that it was utilized in the previous section to denote the spectral
parameter of the R-matrix. The notation is traditional in both places, and I find it hard to avoid.

5We call a grid vertex interior to a path if it lies on the path and does not coincide with its beginning and
ending vertices.
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Figure 3. Paths for Fλ/µ (left) and Gλ/µ (right).

Define the rational function Gλ/ν(u1, . . . , uk) as the sum of weights of all possible collections
of L up-right paths that (cf. Figure 3, right panel)

(1) start with the (vertical) edges {(νn, 0)→ (νn, 1), 1 ≤ n ≤ L};
(2) end with the (vertical) edges {(λl, k)→ (λl, k + 1), 1 ≤ l ≤ L}.
We shall also use the abbreviated notation Gλ/(0,...,0) = Gλ.

Note that in the second definition the signatures are not required to be nonnegative.

Remark 3.3. Because of our normalization w(0, 0; 0, 0) = 1, we could have equivalently defined
the weight of the collection of paths in Definition 3.1 as the product of weights of all vertices
of the half-strip Z≥0 × {1, . . . , L −M}. Furthermore, instead of restricting our attention to
up-right paths, we could have taken the sum over all possible assignments of nonnegative
integers to all the edges adjacent to the vertices of the half-strip that agree with our boundary
conditions on the bottom, left, and top boundaries, and such that only finitely many edges
carry nonzero numbers (which can be thought of as a boundary condition at the infinite right
edge of the strip). Namely to a vertical edge with coordinate x ∈ Z≥0 at the bottom boundary
we assign 1x∈{µm}, to a vertical edge with coordinate x ∈ Z≥0 at the top boundary we assign
1x∈{λl}, and to all horizontal edges at the left boundary we assign 1’s. It is not hard to see that
only the assignments that correspond to the collections of up-right paths would give nonzero
contributions.

A similar statement applies for Definition 3.2 as well, with the half-strip replaced by the full
strip Z×{1, . . . , k}, and the boundary conditions enforced on top and bottom boundaries (left
and right infinities are both taken care of by the finiteness condition).

The definitions immediately imply, by splitting the (half)-strip into two narrower (half)-
strips, the following branching rules.

Proposition 3.4. (i) For any L ≥ K ≥M ≥ 0, λ ∈ Sign+
L , µ ∈ Sign+

M ,

Fλ/µ(u1, . . . , uL−M) =
∑

κ∈Sign+
K

Fλ/κ(uK−M+1, . . . , uL−M)Fκ/µ(u1, . . . , uK−M). (3.1)

(ii) For any L, k1, k2 ≥ 0, λ, ν ∈ SignL,

Gλ/µ(u1, . . . , uk1+k2) =
∑

κ∈SignL

Gλ/κ(uk1+1, . . . , uk1+k2)Gκ/ν(u1, . . . , uk1). (3.2)
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The following result is less obvious. It is essentially equivalent to the statement about
commutation of transfer matrices with different spectral parameters for the higher spin XXZ
model in infinite volume and finite-magnon sector6.

Theorem 3.5. The functions Fλ/µ(u1, . . . , uL−M) and Gλ/ν(u1, . . . , uk) of Definitions 3.1, 3.2
are symmetric with respect to permutations of their u-variables.

Proof. Due to the branching relations above, it suffices to consider the case of two variables. (In
other words, it suffices to show that swapping the variables corresponding to two neighboring
rows of the grid does not affect the partition function.) Also, due to translation invariance of
the path collections of Definition 3.2, for Gλ/ν we may assume that λ and ν are nonnegative
without loss of generality.

Let us recall the 4 × 4 matrices w(m,n)
u1,u2 of the two-vertex weights (2.6). If we consider the

product of a few such matrices

w(m0,...,mS ;n0,...,nS)
u1,u2

= w(m0,n0)
u1,u2

w(m1,n1)
u1,u2

· · ·w(mS ,nS)
u1,u2

, S ≥ 0,

then its matrix elements w(m0,...,mS ;n0,...,nS)
u1,u2 (k1, k2; k′1, k

′
2) can be viewed as sums of products of

weights of all vertices in the rectangle {0, . . . , S}×{1, 2}; the summation goes over all possible
assignments of nonnegative numbers to the grid edges adjacent to the vertices of the rectangle,
subject to boundary conditions given by (m0, . . . ,mS) at the row of vertical edges on the
bottom, by (n0, . . . , nS) at the row of vertical edges at the top, by (k1, k2) at the two horizontal
edges on the left boundary, and by (k′1, k

′
2) at the two horizontal edges on the right boundary,

cf. Remark 3.3.
Given λ = 0n01n12n2 · · · , µ = 0m01m12m2 · · · and taking S ≥ λ1, we have (by Definition 3.1)

Fλ/µ(u1, u2) = w(m0,...,mS ;n0,...,nS)
u1,u2

(1, 1; 0, 0),

or with λ = 0n01n12n2 · · · , ν = 0m01m12m2 · · · and S ≥ λ1 we we have (by Definition 3.2)

Gλ/µ(u1, u2) = w(m0,...,mS ;n0,...,nS)
u1,u2

(0, 0; 0, 0).

Further, Proposition 2.5 implies that

w̃(m0,n0)
u2,u1

w̃(m1,n1)
u2,u1

· · · w̃(mS ,nS)
u2,u1

= X w(m0,n0)
u1,u2

w(m1,n1)
u1,u2

· · ·w(mS ,nS)
u1,u2

X−1 (3.3)

with X as in (2.9), and the two relations of (2.12) yield Gλ/ν(u1, u2) = Gλ/ν(u2, u1) and
Fλ/µ(u1, u2) = Fλ/µ(u2, u1), respectively. �

Remark 3.6. We used the left boundary conditions (k1, k2) = (1, 1) and (0, 0) to define
F∗(u1, u2) and G∗(u1, u2). For the symmetry u1 ↔ u2 it is essential that k1 and k2 are equal.
One could define similar rational functions with kj’s being different (either two or more of
them for a larger number of variables), but then the symmetry relations would be replaced by
more complicated ones; those could be extracted from relations on other matrix elements in
the setting of Lemma 2.6.

6The words ‘finite-magnon sector’ refer to the situation when the total number of up-spins in the system
remains finite. In our situation this corresponds to finitely many vertical arrows in any row of vertical edges.
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4. Identities of Cauchy and Pieri type

In this section we prove several identities involving F - and G-functions defined above. The
terminology we use for these identities (as well as for a few results in further sections as well)
originate from the theory of symmetric functions, where it is traditionally used for similar results
involving classical Schur symmetric functions and their generalizations. Exact references to
analogs of our results for the Hall-Littlewood symmetric functions (which form a one-parameter
generalization of the Schur functions, and the s = 0 specialization of our F - and G-functions)
are collected in Section 8.1 below.

Our first goal is to derive the simplest skew-Cauchy type identity using Proposition 2.5 and
(2.13). We need more notation to state it.

Definition 4.1. For any (i1, j1; i2, j2) ∈ Z4
≥0 we define the conjugated vertex weight (depending

on a complex parameter u) by

wcu(i1, j1; i2, j2) =
(q; q)i1(s

2; q)i2
(q; q)i2(s

2; q)i1
wu(i1, j1; i2, j2),

with wu as in Definition 2.1 and with the standard q-Pochhammer notation

(a; q)n =

{
(1− a)(1− qa) · · · (1− aqn−1), n ≥ 1,

1, n = 0.

Utilizing such conjugated weights instead of the usual ones in Definitions 3.1 and 3.2 leads to
the conjugated F and G functions

F c
λ/µ :=

c(λ)

c(µ)
Fλ/µ, Gc

λ/µ :=
c(λ)

c(µ)
Gλ/µ,

where for a signature ν = 0n01n12n2 · · · we define

c(ν) =
∏
k≥0

(s2; q)nk
(q; q)nk

. (4.1)

Theorem 4.2 (skew-Cauchy identity with single variables). Let u, v ∈ C be such that∣∣∣∣ u− s1− su
· v − s

1− sv

∣∣∣∣ < 1. (4.2)

Then for any nonnegative signatures λ and µ we have∑
ν

Fν/λ(u)Gc
ν/µ(v) =

1− quv
1− uv

∑
κ

Gc
λ/κ(v)Fµ/κ(u), (4.3)

where both summations are taken over the set of all nonnegative signatures.

Comments. (i) The summation over κ always has finitely many nonzero terms, while the
summation over ν may have infinitely many ones. Condition (4.2) is needed to insure the
convergence of the series.
(ii) For the statement to be nontrivial one must take the length of µ to be one more than the
length of λ. Then the only nonzero contributions to the left-hand side of (4.3) will come from
ν that are of the same length of µ, and nonzero contributions to the right-hand side will come
from κ of the same length as λ.
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µ1µ2µ3
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κ1κ2

λ1λ2

µ1µ2µ3

ν1ν2ν3

0

Figure 4. Two types of paths in the proof of Theorem 4.2.

(iii) The conjugation in (4.3) can be placed on the F -factors instead of the G-factors; the
statement obviously does not change.
(iv) The formulation and the proof of Theorem 4.2 assumes that the ‘set of all nonnegative
signatures’ includes the empty signature ∅ ∈ Sign+

0 .

Proof. The argument is similar to the proof of Theorem 3.5. Namely, we begin with (3.3) with
λ = 0n01n12n2 · · · , µ = 0m01m12m2 · · · , and we also take u1 = u, u2 = v−1. Further, we look at
the matrix element (4, 2) of both sides (that corresponds to (k1, k2; k′1, k

′
2) = (1, 1; 0, 1)). The

type of paths that contribute to the left-hand side can be seen on Figure 4, left panel. Here
for the bottom row of vertices we use parameter v−1, and for the top row of vertices we use
parameter u.

According to (2.13), on the right-hand side we obtain a linear combination of (4, 2) and
(4, 3) matrix elements of w(m0,n0)

u,v−1 w
(m1,n1)

u,v−1 · · ·w(mS ,nS)

u,v−1 . The (4, 3)-matrix element is again the
sum of weights of paths of the same type as before, but with u and v−1 interchanged. On the
other hand, the (4, 2)-matrix element is the sum of weights corresponding to paths of the type
pictured in Figure 4, right panel. The bottom row of vertices uses u, and the top row of vertices
uses v−1.

As S — the horizontal size of our rectangles — tends to infinity, all three terms collect a
growing number of factors, which are the weights of vertices (i1, j1; i2, j2) = (0, 1; 0, 1) lying on
the long horizontal parts of the paths that exit through the right boundary. Let us divide all
three terms by

(wv−1(0, 1; 0, 1))S =

(
1− sv
v − s

)S
.

This will remove most factors from left-hand side and from the (4,2)-matrix element on the
right hand-side, with both tending to a finite limit as S → ∞ (we will identify these limits
shortly). On the other hand, the (4,3)-element on the right-hand side will equal to a finite
expression times (

wu(0, 1; 0, 1)

wv−1(0, 1; 0, 1)

)S
=

(
(u− s)(v − s)

(1− us)(1− vs)

)S
,

which will tend to zero because of our hypothesis (4.2). Hence, from (2.13) in the limit S →∞
we read

(4,2)-element of the LHS =
1− uv
1− quv

·
(
(4,2)-element of w(m0,n0)

u,v−1 w
(m1,n1)

u,v−1 · · ·w(mS ,nS)

u,v−1

)
, (4.4)

with the two (4,2)-elements represented as sum of weights of paths on the left and right panels
of Figure 4, respectively, where for the top row of vertices on the left figure and for the bottom
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row of vertices on the right figure we use the weights wu of Definition 2.1, while for the bottom
row of vertices on the left figure and for the top row of vertices on the right figure we use the
weights

weight(i1, j1; i2, j2) =
v − s
1− sv

· wv−1(i1, j1; i2, j2).

Observe that we re-packaged the renormalization as the extra pre-factor (v − s)/(1 − vs) on
the right, which turns the weight of each of the infinitely many (0, 1; 0, 1) vertices into 1.

It remains to identify (4.4) with (4.3). This readily follows from the pictorial interpretation
and the identity

v − s
1− sv

· wv−1(i1, j1; i2, j2) = wcv(i2, 1− j1; i1, 1− j2).

Note that pictorially, the change (j1, j2) 7→ (1− j1, 1− j2) in the above relation correspond to
swapping filled and unfilled horizontal edges on the top row of the left panel and on the bottom
row of the right panel of Figure 4. �

Remark 4.3. Similarly to Remark 3.6, we could have used other matrix elements in the above
argument. This leads to different identities. More exactly, in the setting of Lemma 2.6 we have

(XAX−1)22 =
q(u1 − u2)2

(u1 − qu2)(qu1 − u2)
A22 +

(1− q)u1(u1 − u2)

(u1 − qu2)(qu1 − u2)
A32 + lin. comb. of (A23, A33),

which translates into (under the same assumption (4.2))

(1− quv)(q − uv)
∑
κ

Gµ/κ(u)Gc
λ/κ(v)

= q(1− uv)2
∑
ν

Gν/λ(u)Gc
ν/µ(v)− (1− q)uv(1− uv)

∑
ν

Fν/λ(u)F c
ν/µ(v).

Similarly,

(XAX−1)32 =
(u1 − u2)2

(u1 − qu2)(qu1 − u2)
A32 +

(1− q)u2(u1 − u2)

(u1 − qu2)(qu1 − u2)
A22 + lin. comb. of (A23, A33)

translates into

(1− quv)(q − uv)
∑
κ

Fµ/κ(u)F c
λ/κ(v)

= (1− uv)2
∑
ν

Fν/λ(u)F c
ν/µ(v)− (1− q)(1− uv)

∑
ν

Gν/λ(u)Gc
ν/µ(v).

We now draw a few corollaries of Theorem 4.2.

Corollary 4.4 (skew-Cauchy identity). Let u1, . . . , uM ; v1, . . . , vN ∈ C be such that∣∣∣∣ ui − s1− sui
· vj − s

1− svj

∣∣∣∣ < 1, 1 ≤ i ≤M, 1 ≤ j ≤ N. (4.5)

Then for any nonnegative signatures λ and µ we have∑
ν

Fν/λ(u1, . . . , uM)Gc
ν/µ(v1, . . . , vN) =

∏
1≤i≤M
1≤j≤N

1− quivj
1− uivj

∑
κ

Gc
λ/κ(v1, . . . , vN)Fµ/κ(u1, . . . , uM),

(4.6)
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where both summations are over the set of all nonnegative signatures.

Proof. One first uses branching rules of Proposition 3.4 (they hold for conjugated F and G
functions too), and then applies Theorem 4.2 a total of MN times. �

Corollary 4.5 (Pieri type rules). (i) For any M ≥ 0, µ ∈ Sign+
M , u1, . . . , uM , v ∈ C such that∣∣∣∣ ui − s1− sui

· v − s
1− sv

∣∣∣∣ < 1, 1 ≤ i ≤M,

we have
M∏
i=1

1− quiv
1− uiv

Fµ(u1, . . . , uM) =
∑

ν∈Sign+
M

Gc
ν/µ(v)Fν(u1, . . . , uM). (4.7)

(ii) For any l, N ≥ 0, λ ∈ Sign+
l , u, v1, . . . , vN ∈ C such that∣∣∣∣ u− s1− su
· vj − s

1− svj

∣∣∣∣ < 1, 1 ≤ j ≤ N,

N∏
j=1

1− quvj
1− uvj

Gc
λ(v1, . . . , vN) =

1− su
1− ql+1

∑
ν∈Sign+

l+1

Fν/λ(u)Gc
ν(v1, . . . , vN). (4.8)

Proof. For (i) we set λ = ∅ in (4.6). For (ii) we set µ = 0l+1 in (4.6) and note that F0l+1/κ(u)

may only be nonzero if κ = 0l, in which case

F0l+1/0l(u) = wu(l, 1; l + 1, 0) =
1− ql+1

1− su
according to Definition 2.1. �

Remark 4.6. Corollary 4.5(i) can be viewed as the statement that the vector

{c(µ)Fµ(u1, . . . , uM) | µ ∈ Sign+
M}

is an eigenvector of the ‘transfer-matrix’

{Gν/µ(v) | µ, ν ∈ Sign+
M}.

This matrix can indeed be seen as the infinite volume, finite-magnon sector limit of the transfer-
matrix of the higher spin XXZ model with periodic boundary conditions (modulo some mod-
ifications, cf. Proposition 2.4). As eigenvectors of such transfer-matrices are computable by
(coordinate or algebraic) Bethe ansatz, one might expect that there should be a symmetrization
formula for Fµ. We shall derive such a formula (and another one for Gν) in the next section.

Corollary 4.7 (Cauchy identity). For any M,N ≥ 0, u1, . . . , uM ; v1, . . . , vN ∈ C such that
(4.5) holds, we have∏M

i=1(1− sui)
(q; q)M

∑
ν∈Sign+

M

Fν(u1, . . . , uM)Gc
ν(v1, . . . , vN) =

∏
1≤i≤M
1≤j≤N

1− quivj
1− uivj

. (4.9)
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Proof. Substitute λ = ∅, µ = 0M into (4.6), and using (2.4) evaluate

F0M (u1, . . . , uM) = (q; q)M

M∏
i=1

(1− sui)−1 . �

5. Symmetrization formulas for Fλ and Gλ

The goal of this section is to prove the following statement, cf. Remark 4.6. In what follows
we denote the symmetric group on n symbols by Sn, and for σ ∈ Sn and a function f in n
variables we also use the notation σ(f)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Theorem 5.1. (i) For any M ≥ 0, µ ∈ Sign+
M , and u1, . . . , uM ∈ C, we have

Fµ(u1, . . . , uM) =
(1− q)M∏M
i=1(1− sui)

∑
σ∈SM

σ

( ∏
1≤i<j≤M

ui − quj
ui − uj

·
M∏
i=1

(
ui − s
1− sui

)µi)
. (5.1)

(ii) Fix n ≥ 0, ν ∈ Sign+
n , and assume k ≥ 0 last coordinates of ν are zero: νn−k+1 = · · · =

νn = 0. Then for any N ≥ n− k we have

Gν(v1, . . . , vN) =
(1− q)N(s2; q)n

(q; q)N−n+k(s2; q)k

×
∑
σ∈SN

σ

( ∏
1≤i<j≤N

vi − qvj
vi − vj

·
n−k∏
i=1

vi
(1− svi)(vi − s)

(
vi − s
1− svi

)νi
·

N∏
j=n−k+1

1− qksvj
1− svj

)
. (5.2)

Remark 5.2. (i) One sees directly from Definition 3.1 that increasing all coordinates of µ ∈
Sign+

M by the same integer a ≥ 0, µ 7→ µ + aM , is equivalent to adding a vertices of type
(i1, j1; i2, j2) = (0, 1; 0, 1) to each row of the path collections for Fµ. This yields an extra weight
factor:

Fµ+aM (u1, . . . , uM) =
M∏
i=1

(wui(0, 1; 0, 1))aFµ(u1, . . . , uM) =
M∏
i=1

(
ui − s
1− sui

)a
Fµ(u1, . . . , uM).

This is obviously in agreement with (5.1).
(ii) Definition 3.1 implies that the number of variables of Fµ = Fµ/∅ must be equal to the
length of µ, and this is what we have in (5.1). On the other hand, the number of variables N
of Gν(v1, . . . , uN) can be arbitrary. But if N is smaller than the number of nonzero coordinates
of ν, then one easily sees that collections of paths of Definition 3.2 with nonzero weight do not
exist, and thus Gν(v1, . . . , vN) ≡ 0. The case of the number of variables being at least as large
as the number of nonzero coordinates of ν is covered by (5.2).
(iii) If in (5.2) we have N − n + k > 0 then the summation over σ ∈ SN can be partially
performed explicitly by symmetrizing over indices (n − k + 1, . . . , N) first. The resulting
formula looks as follows:

Gν(v1, . . . , vN) =
(1− q)n−k(s2; q)n

(s2; q)k

∑
I⊂{1,...,N}
|I|=n−k

∏
i∈I

vi
(1− svi)(vi − s)

·
∏
j /∈I

1− qksvj
1− svj

·
∏
i∈I
j /∈I

vi − qvj
vi − vj



ON A FAMILY OF SYMMETRIC RATIONAL FUNCTIONS 17

×
∑

σ:{1,...,n−k}→I
σ is a bijection

σ

( ∏
1≤i<j≤n−k

vi − qvj
vi − vj

·
n−k∏
i=1

(
vi − s
1− svi

)νi)
, (5.3)

and we used the symmetrization identity (see [13, (1.4) in Chapter III])

∑
σ∈Sp

σ

( ∏
1≤i<j≤p

zi − qzj
zi − zj

)
=

(q; q)p
(1− q)p

(5.4)

along the way.
(iv) Formula (5.3) immediately implies that the functions Gν are stable in the sense that adding
0’s to the string of their variables does not change them (indeed, the factor vi forces indices
of the zero variables not to be included in the set I in the summation). On the other hand,
this fact is also easy to see from Definition 3.2, as having a zero variable forces the absence of
occupied horizontal edges in the corresponding row, and wu=0(m, 0;m, 0) = 1 for any m ≥ 0.
This actually proves a more general stability relation: For any signatures λ, ν we have

Gν/λ(v1, . . . , vN) = Gν/λ(v1, . . . , vN , 0). (5.5)

(v) If µ ∈ Sign+
M has no zero coordinates then the collections of paths in Definitions 3.1 and 3.2

for Fµ(u1, . . . , uM) and Gµ(u1, . . . , uM) are almost identical apart from the left-most column.
More exactly, one has (using (i) above)

Gµ(v1, . . . , vM) =
M∏
i=1

wvi(i, 0; i− 1, 1) · F(µ−1M )(v1, . . . , vM)

= (s2; q)M

M∏
i=1

vi
vi − s

· Fµ(v1, . . . , vM),

(5.6)

where (µ − 1M) = (µ − 1, . . . , µM − 1) ∈ Sign+
M . This relation also immediately follows from

(5.1) and (5.3).
(vi) The proof of Theorem 5.1 we give below is a verification rather than a derivation argument,
and one might wonder where (5.1) and (5.2) came from. The symmetrization formula (5.1) for
Fµ can be derived with standard (coordinate or algebraic) Bethe ansatz techniques, cf. Remark
4.6. As for the symmetrization formula (5.2) for Gν , its derivation is given in Proposition 7.3
below, and it is based on (5.1), the Cauchy identity (4.9), and the spatial orthogonality of
Theorem 7.2.

Proof of Theorem 5.1. We shall use the branching relations of Proposition 3.4 and induction
on the number of variables. For a single variable, Definitions 3.1 and 3.2 imply

F(µ1)(u) = (wu(0, 1; 0, 1))µ1wu(0, 1; 1, 0) =
1− q

1− su1

(
u− s
1− su

)µ1
,

G(ν1,0n−1)(v)
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=


wv(n, 0;n− 1, 1)(wv(0, 1; 0, 1))ν1−1wv(0, 1; 1, 0) =

(1− q)(1− s2qn−1)v

(v − s)(1− sv)

(
v − s
1− sv

)ν1
, ν1 > 0,

wv(n, 0;n, 0) =
1− sqnv
1− sv

, ν1 = 0,

and all three expressions are in agreement with (5.1), (5.2).
Let us first prove the inductive step for Fµ. The instance of the branching relation (3.1) that

we need is
Fµ(u1, . . . , uM) =

∑
λ∈Sign+

M−1

Fµ/λ(uM)Fλ(u1, . . . , uM−1). (5.7)

Split µ into (nonempty) clusters of equal coordinates

µ1 = · · · = µc1 , µc1+1 = · · · = µc1+c2 , . . . , µc1+···+cm−1+1 = · · · = µM , (5.8)

where {cj}mj=1 are the cluster sizes. One easily sees from Definition 3.1 that nonzero contribu-
tions to the right-hand side of (5.7) come only from λ’s such that

λ1 = · · · = λc1−1 = µc1 , µc1 ≤ λc1 ≤ µc1+1,

λc1+1 = · · · = λc1+c2−1 = µc1+c2 , µc1+c2 ≤ λc1+c2 ≤ µc1+c2+1, . . . ,

µc1+···+cm−1 ≤ λc1+···+cm−1 ≤ µc1+···+cm−1+1, λc1+···+cm−1+1 = · · · = λM−1 = µM . (5.9)

It is convenient to switch from variables {ui} to their fractional-linear images

ξi :=
ui − s
1− sui

, i ≥ 1. (5.10)

By the induction hypothesis, we know that Fλ(u1, . . . , uM−1) is a linear combination of mono-
mials

∏
i ξ
λσ(i)
i , σ ∈ SM−1, with coefficients in C(ξ1, . . . , ξM1) — the field of rational functions in

ξ1, . . . , ξM−1. As a first step, we want to prove a similar statement for Fµ(u1, . . . , uM). Before
doing that, let us make sure that such a representation is unique.

Lemma 5.3. For any α, β ≥ 1, the functions of the form

fA : Zβ≥0 → C(ξ1, . . . , ξα), fA : (p1, . . . , pβ) 7→
α∏
i=1

ξ
∑β
j=1 Aijpj

i ,

with A ∈ Mat(α × β,Z), are linearly independent over C(ξ1, . . . , ξα). In other words, if for
φ1, . . . , φR ∈ C(ξ1, . . . , ξα) and pairwise distinct A(1), . . . , A(R) ∈ Mat(α× β,Z) we have

φ1fA(1)(p1, . . . , pβ) + · · ·+ φRfA(R)(p1, . . . , pβ) = 0 for any p1, . . . , pβ ∈ Z≥0,

then φ1 = · · · = φR = 0.

The linear transformation (p1, . . . , pβ) 7→ (p1 + · · · + pβ, p2 + · · · + pβ, . . . , pβ) allows one to
replace Zβ≥0 by {p1 ≥ p2 ≥ · · · ≥ pβ} ⊂ Zβ≥0 in the statement of the lemma. It is this version
that we actually need. Although Lemma 5.3 is not far from being a triviality, we supply a
proof at the end of this section.

Let us return to showing that Fµ(u1, . . . , uM) is a linear combination of monomials
∏

i ξ
µτ(i)
i ,

τ ∈ SM , with coefficients in C(ξ1, . . . , ξM). As Fλ(u1, . . . , uM−1) is a linear combination of
monomials of the form

∏
i ξ
λσ(i)
i , let us start with one such monomial in (5.7) and see what the
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summation over λ’s as in (5.9) gives. We shall take σ = id, for other σ’s the argument and the
conclusion are similar.

We want to trace what happens to powers of ξi’s as we do the summation over λ’s. For now
we shall ignore rational coefficients that are independent of the values λi’s and µi’s (but they
may depend on multiplicities (cluster sizes) in λ and µ). For each λi that is free to move in the
corresponding interval, cf. (5.9), we split its range into three parts — the left end, the right
end, and strictly between the two ends. We then observe that

• If λi is locked then ξλii can be simply read as ξµii . The same is valid if λi is at the right
edge of its range.
• If λi is at the left edge of its (nontrivial) range then λi = µi+1 so that ξλi = ξ

µi+1

i .
But in addition to that, the factor Fµ/λ(uM) in (5.7) contains ξµi−µi+1

M from the vertices
of type (i1, j1; i2, j2) = (0, 1; 0, 1) between µi+1 and µi in the top (Mth) row of the
corresponding path collection.7 Thus, together we obtain ξµi+1

i ξ
µi−µi+1

M . Note that the
total degree is µi.
• If λi ranges strictly between µi+1 and µi, we need to do the summation∑

λi:µi+1<λi<µi

ξλii ξ
µi−λi−1
M =

1

ξi − ξM
ξµii −

ξi
ξM(ξi − ξM)

ξ
µi+1

i ξ
µi−µi+1

M , (5.11)

which is a linear combination of the contributions of the two previous cases. Here in
the left-hand side ξµi−λi−1

M comes from Fµ/λ(uM), where it corresponds to vertices of
type (0, 1; 0, 1) at the top row of the path collection between λi and µi, similarly to the
previous case.
• We also need to add the factor (wuM (0, 1; 0, 1))µM = ξµMM from the vertices between 0
and µM at the top row of the path collection.

We conclude that in all cases any ξi with 1 ≤ i ≤M−1 is being raised to the power given by
a coordinate of µ, and the total power over all ξi’s, 1 ≤ i ≤M , is always µ1 + · · ·+ µM . (Note
that we have ignored contributions to Fµ/λ(uM) of vertices of all types different from (0, 1; 0, 1);
such vertices simply add rational coefficients.) Relying on the symmetry of Fµ(u1, . . . , uM) in
the u-variables, cf. Theorem 3.5, and on Lemma 5.3, we can now conclude that Fµ(u1, . . . , uM)

is the sum of monomials of the form
∏

i ξ
µτ(i)
i over τ ∈ SM . Furthermore, because of the

symmetry, to obtain a formula for Fµ(u1, . . . , uM) it suffices to find the (rational) coefficient of
only one such monomial, for example, of

∏
i ξ
µi
i that corresponds to τ = id. This is what we

do next.
Let us focus on a monomial

∏
i ξ
λi
σ(i), σ ∈ SM−1, with its coefficient in Fλ(u1, . . . , uM−1),

substitute it into (5.7) instead of Fλ(u1, . . . , uM−1), do the summation over λ subject to (5.9),
and read off the resulting coefficient of

∏
i ξ
µi
i .

By going through the same three cases as above for each λi, we see that there may be a
nontrivial contribution to the coefficient of

∏
i ξ
µi
i only if σ preserves the subsets

{1, . . . , c1}, {c1 + 1, . . . , c1 + c2}, . . . , {c1 + · · ·+ cm−1 + 1, . . . ,M − 1}
of {1, . . . ,M − 1}, where cj’s are the cluster sizes of µ, cf. (5.8), and, furthermore, no λi can
assume the lowest possible value of its range as long as this range is nontrivial. This means

7It is actually ξµi−µi+1−1
M as there are µi − µi+1 − 1 such vertices. However, since we are ignoring rational

coefficients, we can remove the ‘−1’ from the exponent.
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that the relevant ranges of different λi’s do not intersect, and we can perform the summations
over each of them independently.

Let us start with summation over the interval between the first two clusters. From (5.1),
the part of Fλ(u1, . . . , uM−1) to be summed has the form, apart from the easy factor (1 −
q)M−1/

∏M−1
i=1 (1− sui),

∏
1≤i<j≤M−1

uσ(i) − quσ(j)

uσ(i) − uσ(j)

M−1∏
i=1

ξλiσ(i) =
∏

c1+1≤i<j≤M−1

uσ(i) − quσ(j)

uσ(i) − uσ(j)

∏
1≤i≤c1

c1+1≤j≤M−1

ui − quj
ui − uj

M−1∏
i=c1+1

ξλiσ(i)

×
∏

1≤i<j≤c1

uσ(i) − quσ(j)

uσ(i) − uσ(j)

c1∏
i=1

ξλiσ(i), (5.12)

where we used the fact that σ preserves {1, . . . , c1}. Let us denote the restriction of σ to
{1, . . . , c1} by σ1; we want to sum over σ1 ∈ Sc1 as well. Before doing the summation, the
above expression needs to be multiplied by the corresponding part of Fµ/λ(uM) in (5.7), which
is {

wuM (1, 0; 0, 1)(wuM (0, 1; 0, 1))µc1−λc1−1wuM (c1 − 1, 1; c1, 0), µc1+1 < λc1 < µc1 ,

wuM (c1, 0; c1; 0), λc1 = µc1 .

In view of (5.9), we have
c1∏
i=1

ξλiσ(i) =

(
c1−1∏
i=1

ξσ1(i)

)µc1

ξ
λc1
σ1(c1).

Using (5.4) to sum over σ1’s with fixed σ1(c1) = l and substituting explicit weights from
Definition 2.1, we rewrite the sum over σ1 and λc1 as

∏
c1+1≤i<j≤M−1

uσ(i) − quσ(j)

uσ(i) − uσ(j)

∏
1≤i≤c1

c1+1≤j≤M−1

ui − quj
ui − uj

M−1∏
i=c1+1

ξλiσ(i) ·
(q; q)c1−1

(1− q)c1−1

∏
1≤i≤c1

ξ
µc1
i

×
c1∑
l=1

∏
1≤i≤c1
i 6=l

ui − qul
ui − ul

(1− s2)(1− qc1)uM
(1− suM)2ξ

µc1
l

∑
µc1+1<λc1<µc1

ξ
µc1−λc1−1

M ξ
λc1
l +

1− sqc1uM
1− suM

 .

(5.13)

The sum over λ1 is like in (5.11), and we can omit the term that is similar to the second term
of the right-hand side of (5.11), because it has ξµc1−µc1+1

l , while we need ξµc1l to contribute to
the coefficient of

∏
i ξ
µi
i . Further,

(1− s2)(1− qc1)uM
(1− suM)2(ξl − ξM)

+
1− sqc1uM

1− suM
=
ul − qc1uM
ul − uM

,

and the final simplification is achieved with the identity
c1∑
l=1

∏
1≤i≤c1
i 6=l

ui − qul
ui − ul

· ul − q
c1uM

ul − uM
=

1− qc1
1− q

c1∏
i=1

ui − quM
ui − uM

, (5.14)
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which follows from evaluating
∮

around poles at z=u1,...,uc1
f(z)dz with

f(z) =
1

(q − 1)z

z − qc1uM
z − uM

c1∏
i=1

qz − ui
z − ui

in two different ways — as the sum of residues at z = ui, 1 ≤ i ≤ c1, and as the negative sum
of residues at z = 0, uM ,∞ (the contributions of z = 0 and z =∞ cancel out).8

Hence, the summation over λc1 and σ1 yields the expression∏
c1+1≤i<j≤M−1

uσ(i) − quσ(j)

uσ(i) − uσ(j)

∏
1≤i≤c1

c1+1≤j≤M−1

ui − quj
ui − uj

M−1∏
i=c1+1

ξλiσ(i) ·
(q; q)c1

(1− q)c1
∏

1≤i≤c1

ξµii

c1∏
i=1

ui − quM
ui − uM

.

We continue summing in this fashion (the next step is to sum over λc2 and σ2 = σ|c1+1,...,c1+c2),
and in the end, having summed over the whole of λ and σ and multiplied by the weight

(wuM (0, 1; 0, 1))µMwuM (cm − 1, 1; cm, 0) =
1− qcm
1− suM

ξµMM

of the vertices between 0 and µM in the Mth row, we obtain

1− q
1− suM

m∏
i=1

(q; q)ci
(1− q)ci

∏
1≤a<b≤m

∏
i∈ ath cluster of µ
j∈ bth cluster of µ

ui − quj
ui − uj

∏
1≤i≤M

ξµii

Together with the previously omitted factor (1− q)M−1/
∏M−1

i=1 (1− sui), this gives the correct
coefficient of

∏
i ξ
µi
i in the right-hand side of (5.1) (here we need (5.4) again). This completes

the inductive step for Fµ and the proof of part (i) of Theorem 5.1.
Let us proceed to path (ii) — the inductive step for Gν . Recall that the base of the induction,

the case of a single variable, was discussed in the beginning of the proof.
The proof of the inductive step for Gν is largely similar to that for Fµ above. Let us comment

on the differences.
One starts with a branching relation, cf. (3.2), (3.2), which says that for ν ∈ Sign+

n ,

Gν(v1, . . . , vN) =
∑

λ∈Sign+
n

Gν/λ(vN)Gλ(v1, . . . , vN−1).

It implies that the λ-coordinates must interlace with the ν-coordinates. The interlacing is
similar to (5.9), except in addition the smallest coordinate λn may vary between νn and 0.

Same inductive arguments as for Fµ above show that Gν(v1, . . . , vN) must be a linear com-
bination of monomials

∏
i ξ
νi
τ(i), τ ∈ SN , with coefficients in C(v1, . . . , vN), where we take, cf.

(5.10),

ξi =
vi − s
1− svi

, i ≥ 1.

Hence, by the symmetry in v-variables of Theorem 3.5, it suffices to evaluate the coefficient of∏
i ξ
νi
i . Then one needs to consider two cases: (a) The number of nonzero coordinates in ν is

strictly smaller than the number of v-variables, i.e. n−k < N ; and (b) The number of nonzero
coordinates in ν is equal to the number of v-variables , i.e. n− k = N .

8Identities of this type are rather old. For example, an elliptic generalization of (5.14) can be extracted from
[20, No. 400]. I am very grateful to Ole Warnaar for pointing this out.
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For case (a) the computation literally repeats the one we did for the coefficient of
∏

i ξ
µi
i in

Fµ except for the very last factor, where one needs to multiply by the weight of vertex 0 in the
top row, which for Gν is wvN (k, 0; k; 0) = (1− sqkuM)/(1− suM), with k being the multiplicity
of 0 in ν, instead of wuM (cm− 1, 1; cm, 0) that would have been there for Fµ. One easily checks
that this exactly gives the coefficient of

∏
i ξ
νi
i in the right-hand side of (5.2) or (5.3).

A more substantial difference comes up in case (b). If n−k = N , then even though interlacing
of λ and ν (that comes from non-vanishing of Gν/λ(vN)) allows λN = λn−k to vary between νN
— the last nonzero coordinate of ν — and 0, the fact that for Gλ(v1, . . . , vN−1) to be nonzero
the number of nonzero coordinates in λ cannot be greater than N − 1 forces λN to be zero.
If we denote by c the size of the smallest nonzero cluster of ν (located at νN), then the total
contribution of vertices between 0 and νN to Gν/λ(vN) is

wvN (k + 1, 0; k, 1)(wvN (0, 1; 0, 1))νN−1wvN (c− 1, 1; c, 0) =
(1− s2qk)vN

1− svN
ξνN−1
N

1− qc

1− svN
= (1− s2qk)(1− qc) vN

(1− svN)(vN − s)
ξνNN .

This allows us to verify that the induction step yields the correct coefficient of
∏

i ξ
νi
i in the

right-hand side (5.2) and concludes the proof of Theorem 5.1. �

Proof of Lemma 5.3. Assume that we found nonzero φ1, . . . , φR ∈ C(ξ1, . . . , ξα) and pairwise
distinct A(1), . . . , A(R) ∈ Mat(α × β,Z) such that

∑
r φrfA(r) ≡ 0. Pick an α-tuple of positive

reals (ζ1, . . . , ζα) ∈ Rα
>0 and a direction (ω1, . . . , ωβ) ∈ Zβ>0 so that the numbers

Ωr =
∑
i,j

A
(r)
ij ζiωj, 1 ≤ r ≤ R,

are pairwise distinct (this is always possible as an equality of two such numbers is a nontrivial
quadratic equation on ζ’s and ω’s, and solutions to finitely many such equations cannot ex-
haust Rα

>0 × Zβ>0). Assign weights to variables ξi via wt(ξ) = ζi, 1 ≤ i ≤ α, and single out
top homogeneous components of the polynomial numerators and denominators of the rational
functions φ1, . . . , φR with respect to this weighting. Pick a point (c1, . . . , cα) ∈ (C \ {0})α so
that none of these top homogeneous components vanishes at this point.

Let us now take a fixed large integer L and look at the behavior of
∑R

r=1 φrfA(r) as we
substitute

(ξ1, . . . , ξα) = (c1ξ
ζ1 , . . . , cαξ

ζα), (p1, . . . , pβ) = (ω1L, . . . , ωβL)

and take ξ →∞. We observe that each |φr| behaves as a nonzero constant times |ξ|constr . Each
|fA(r)| equals a nonzero constant times |ξ|ΩrL. As long as L · min1≤r≤R(max1≤r≤R Ωr − Ωi) is
greater than all constr coming from φr (which we can guarantee by taking L large enough), the
term corresponding to the maximal Ωr will dominate all the other ones, and hence

∑
r φrfA(r)

cannot vanish. The contradiction completes the proof of Lemma 5.3. �



ON A FAMILY OF SYMMETRIC RATIONAL FUNCTIONS 23

6. Principal specializations

In this section we provide explicit formulas for Fµ, Gν , and Gν/λ specialized at geometric
progressions with ratio q. While the first two results are elementary corollaries of the sym-
metrization formulas in Theorem 5.1, the third one is less obvious as it relies on fusion rules
for transfer matrices of the higher spin XXZ model.

Proposition 6.1. (i) For any M ≥ 0, µ ∈ Sign+
M , and u ∈ C, we have

Fµ(u, qu, . . . , qM−1u) =
(q; q)M

(su; q)M

M∏
i=1

(
qi−1u− s
1− sqi−1u

)µi
. (6.1)

(ii) Fix n ≥ 0, ν ∈ Sign+
n , and assume k ≥ 0 coordinates of ν are zero. Then for any

N ≥ n− k and v ∈ C we have

Gν(v, qv, . . . , q
N−1v) =

(q; q)N(s2; q)n(sv; q)N+k

(q; q)N−n+k(s2; q)k(sv; q)n(sv; q)N(sv−1; q−1)n−k

n−k∏
i=1

(
qi−1v − s
1− sqi−1v

)νi
.

(6.2)

Proof. For (i) we use (5.1). Observe that substituting {ui = uqi−1}Mi=1 into

σ

( ∏
1≤i<j≤M

ui − quj
ui − uj

)
, σ ∈ SM ,

gives 0 unless σ = id, in which case we get (q; q)M/(1 − q)M . This implies (6.1). In the same
way (5.2) implies (6.2). �

Let us proceed to the skew functions Gλ/µ.

Definition 6.2. We say that a function H(λ, µ) of two signatures λ and µ of the same length
corresponds to vertex weights {w(H)(i1, j1; i2, j2) | i1, j1, i2, j2 ≥ 0} if each value H(λ, µ) is given
by the sum of products of these vertex weights over all possible collections of upright paths as
in Definition 3.2 and Figure 3, right panel, with a single horizontal row of vertices (i.e. k = 1
in the notation of Definition 3.2).

Clearly, with the terminology of Definition 6.2, the single variable specialization Gλ/µ(v)
corresponds to the weights wv of Definition 2.1. This is the case when Definition 3.2 and 6.2
simply coincide.

Because of the unfortunate overload of the letter λ, cf. the footnote in the beginning of
Section 3, in what follows we speak about functions of ν and µ, where ν plays the role of λ in
Definition 6.2.

Theorem 6.3. For any J ≥ 1, Gν/µ(v, qv, . . . , qJ−1v) corresponds (as a function of ν and µ,
in the sense of Definition 6.2) to the vertex weights

w(J)
v (i1, j1; i2, j2) =

(−1)j1Q
(2i2−I−1)J+i22−i

2
1

2

λJ(sv; q)J
· [RI,J(λ; 1)]i2,j2i1,j1

, (6.3)

where RI,J is the (fully general) higher spin R-matrix of the XXZ model as in [14, (5.8)-(5.9)]
with the parameter q of [14] re-denoted by Q and related to our q through Q2 = q, the spectral
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parameter λ given by λ2 = (QJv)−1, parameter I given by Q−I = s, and m(I, J) in [14, (5.9)]
(used to denoted the minimum of I and J) set to J .

Remark 6.4. (i) For J = 1, Theorem 6.3 immediately follows from Proposition 2.4. Com-
paring the two formulas one may notice discrepancy in certain factors of the form f(j1)/f(j2);
this is explained by the fact that such factors cancel out in products of weights over vertices of
up-right paths, and are thus irrelevant (for the purpose of Theorem 6.3).
(ii) As we know from Definition 2.1, for J = 1 the vertex weights vanish as long as max(j1, j2) >

1. Similarly, w(J)
v (i1, j1; i2, j2) from (6.3) vanishes if max(j1, j2) > J ; this corresponds to the

highest weight representation of Uq(ŝl2) with weight J having dimension J + 1.
Also, if I ∈ {1, 2, . . . }, i.e. s2 ∈ {q−1, q−2, . . . }, then w

(J)
v (i1, j1; i2, j2) = 0 as long as

max(i1, i2) > I. In particular, s2 = q−1 corresponds to the spin-1
2
situation with no more than

one particle (vertical arrow) at each location.

Proof of Theorem 6.3. The argument combines Proposition 2.4 and an infinite volume limit of
the fusion relation [14, (7.13)] (the fusion relations in this context were first derived in [10], but
it is convenient for us to use the notation of [14]).

More exactly, follow [14] in combining the R-matrices into transfer-matrices via

TJ,I(λ) = TraceVJ

[
R

(01)
J,I (λ)⊗ · · · ⊗R(0S)

J,I (λ)
]
, (6.4)

where VJ is the 0th ‘auxiliary’ highest weight representation of Uq(ŝl2) with weight J , and
the tensor product is taken in the ‘quantum space’ V ⊗MI , M ≥ 1. The fusion relation we are
interested in reads, see [14, (7.13)-(7.14)],

T1,I(λ)TJ,I(λQ
−J+1

2 ) =
(
(Qλ− (Qλ)−1)(Q−Iλ−QIλ−1)

)M
TJ−1,I(λQ

−J
2
−1) + TJ+1,I(λQ

−J
2 ),
(6.5)

where we take J < I. We want to take the limitM →∞ while keeping the number of quantum
particles finite (i.e., looking at matrix elements of transfer-matrices with finitely many indices
that are different from 0). To do that, we first normalize RJ,I so that [RJ,I(λ, 1)]0,00,0 turns into
1; this is achieved by

RJ,I(λ, 1) 7→ R̃J,I(λ, 1) :=
Q−

I(J+1)
2

λJ(λ−2Q−I−J ;Q2)J
RJ,I(λ, 1). (6.6)

Note that this does not destroy the second coefficient ‘1’ in the right-hand side of (6.5). Further,
let us assume that Q is sufficiently close to 1, and λ is sufficiently close to s = Q−I ; as the final
formula (6.3) easily admits analytic continuation from such a domain (it is even an identity of
rational functions for fixed ν and µ), this is not a serious restriction. This leads to the first
coefficient in the right-hand side of (6.5) being a small constant raised to the power M , and
the fusion relation now makes sense in the M →∞ limit; it reads

T̃1,I(λ)T̃J,I(λQ
−J+1

2 ) = T̃J+1,I(λQ
−J

2 ),

or, iterating,
T̃1,I(Q

−J+1
2 λ)T̃1,I(Q

−J+3
2 λ) · · · T̃1,I(Q

J+1
2 λ) = T̃J,I(λ), (6.7)

where we use the tilde in T̃ to signify both the M →∞ limit and the normalization (6.6).
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From the point of view of path interpretation of matrix elements of the transfer matrix,
we started with the periodic boundary conditions in (6.4), and by making λ close to s we
made [R1,I(λ, 1)]j2=1,i2=0

j1=1,i1=0 (which corresponds to wv(0, 1; 0, 1)) small, which in the limitM →∞
prevents paths from going around the infinite loop.

It only remains to utilize Proposition 2.4 in the left-hand side, keeping in mind the normal-
ization (6.6) and the symmetry relation [14, (5.10)]. �

Theorem 6.3 and results of [14] allow us to write down an explicit formula for the principal
specialization of the skew G-functions. For that we need additional notation.

Following [14], we shall use the following extended notation for q-Pochhammer symbols:

(x; q)n =


(1− x)(1− qx) · · · (1− qn−1x), n > 0,

1, n = 0,

((1− qnx)(1− qn+1x) · · · (1− q−1x))
−1
, n < 0,

and also regularized terminating basic hypergeometric series

r+1φ̄r

(
q−n; a1, . . . , ar
b1, . . . , br

∣∣∣q, z) =
n∑
k=0

zk
(q−n; q)k
(q; q)k

r∏
i=1

(ai; q)k(biq
k; q)n−k

=
r∏
i=1

(bi; q)n · r+1φr

(
q−n; a1, . . . , ar
b1, . . . , br

∣∣∣q, z) .
Corollary 6.5. For any J ≥ 1, Gν/µ(v, qv, . . . , qJ−1v) corresponds (as a function of ν and µ,
in the sense of Definition 6.2) to the vertex weights given by

w̃(J)
v (i1, j1; i2, j2)

=
(−1)i1+j1q

i21+i
2
2

4
+
i1(j1−1)+i2j2

2 sj1−i1vi1(vs−1; q)j1−i2
(q; q)i1(vs; q)i1+j1

4φ̄3

(
q−i1 ; q−i2 , qJsv, qsv−1

s2, q1+j1−i2 , q1+J−i1−j1

∣∣∣ q, q) (6.8)

if i1 + j1 = i2 + j2, and by 0 otherwise.

Proof. This statement is a mere substitution of [14, (5.8)-(5.9)] into Theorem 6.3 and subse-
quent removal of certain factors of the form f(j1)/f(j2), cf. Remark 6.4(i). �

Proposition 6.1(ii) (and hence (i) too via (5.6)) can, in principle, be derived from Corollary
6.5, because for Gν/0M (v, qv, . . . , qJ−1v) only vertices with either i1 = 0 or j1 = 0 participate.
For i1 = 0, the 4φ̄3 in (6.8) is simply equal to 1, and for j1 = 0 only one term in the series
expansion of 4φ̄3 contributes and gives an elementary expression. Multiplying the weights over
the row of vertices should yield (6.2), but the computation is rather tedious.

Observe that the right-hand side of (6.8) is manifestly a polynomial in qJ , while the def-
inition of Gν/µ(v, qv, . . . , qJ−1v) requires J to be a positive integer. One might wonder if
Gν/µ(v, qv, . . . , qJ−1v) can be analytically continued in qJ in a natural way. One answer is
provided by the following statement.
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Corollary 6.6. For any M ≥ 0, µ ∈ Sign+
M , and v, qJ ∈ C, define Gν/µ(v, qv, . . . , qJ−1v) via

Corollary 6.5. Then for any u1, . . . , uM ∈ C in a small enough neighborhood of s, we have
M∏
i=1

1− qJuiv
1− uiv

Fµ(u1, . . . , uM) =
∑

ν∈Sign+
M

c(ν)

c(µ)
Gν/µ(v, qv, . . . , qJ−1v)Fν(u1, . . . , uM), (6.9)

where the function c( · ) is defined in (4.1).

Comments. (i) One way to think about (6.9) is as of a decomposition of the left-hand
side, viewed as a function of µ ∈ SignM , in the basis of functions {Fν(u1, . . . , uM)}ν∈SignM on
SignM . Because of certain orthogonality relations for Fν that we describe in the next section,
the coefficients in such an expansion can be effectively extracted via contour integrals. This
provides an alternative expression for Gν/µ(v, qv, . . . , qJ−1v) that is manifestly polynomial in
qJ , cf. Remark 7.4 below. Proving the equality between this expression and that of Corollary
6.6 directly seems to be challenging though.
(ii) One can also view (6.9) as an eigenrelation for the ‘fused transfer-matrix’

[Gν/µ(v, qv, . . . , qJ−1v)]ν,µ∈SignM

and its eigenvector {c(ν)Fν(u1, . . . , uM)}ν∈SignM , cf. Remark 4.6. The product in the left-hand
side of (6.9) is the corresponding eigenvalue, and it is indeed an infinite volume limit of an
eigenvalue of the fused transfer matrix of the higher spin XXZ model.
(iii) For µ = 0M , qJ = (vs)−1, Corollary 6.6 yields [6, Proposition 5.18]. Note that for such
value of qJ , ν must have no nonzero coordinates because otherwise the factor (sv; q)N+k =
(q−J ; q)J+k in the right-hand side of (6.2) vanishes, and then for Gν(v, qv, . . . , q

J−1v) we can
use (5.6) and (6.1). I am very grateful to Leonid Petrov for pointing this connection out.

Proof of Corollary 6.6. We argue by analytic continuation of the skew Cauchy identity (4.6)
with N = J , (v1, . . . , vN) = (v, qv, . . . , qJ−1v), λ = ∅, viewed as an identity between polyno-
mials in qJ for qJ ∈ {q, q2, q3, . . . }.

Indeed, one readily sees from Corollary 6.5 that Gν/µ(v, qv, . . . , qJ−1v) is a polynomial in qJ
of degree at most M , and that its absolute value grows at most as constν1 and ν1 → ∞ as
long as qJ stays in a compact subset of C. On the other hand, one sees from (5.1) that by
taking u1, . . . , uM into a small enough neighborhood of s one can achieve that |Fν(u1, . . . , uM)|
decays, as ν1 →∞, faster than any (small) positive constant to the power ν1. Hence, the series
in the right-hand side of (6.9) is uniformly convergent for bounded qJ and ui’s close to s, the
sum remains a polynomial in qJ of degree at most M , and it can be analytically continued off
any M + 1 distinct points. Since the skew Cauchy identity implies (6.9) for qJ in the infinite
set {q, q2, . . . , }, the proof is complete. �

While the expression in the right-hand side of (6.8) does not look too appetizing, it may
simplify for special values of parameters. Here is an example of such a simplification at v = s.

Proposition 6.7. For any J ≥ 1, and by analytic continuation of Corollaries 6.5-6.6, for any
qJ ∈ C, Gν/µ(s, qs, . . . , qJ−1s) corresponds (as a function of ν and µ, in the sense of Definition
6.2) to the vertex weights given by

ŵ(J)
s (s, qs, . . . , qJ−1s) = (−s)−j1(s2qJ)j1

(q−J ; q)j1(s
2qJ ; q)i2−j1

(s2; q)j2

(q, q)i2
(q, q)j1(q; q)i2−j1

(6.10)
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for i2 ≥ j1 and i1 + j1 = i2 + j2, and by 0 otherwise.

Remark 6.8. (i) The tilde and hat over ‘w’ in the left-hand sides of (6.8) and (6.10) symbolize
that the expressions on the right-hand sides are different from (6.3) by (irrelevant) factors of
the form f(j1)/f(j2), cf. Remark 6.4(i), that we remove to make the resulting expressions
simpler.
(ii) The condition i2 ≥ j1 or, equivalently (modulo the default condition i1 + j1 = i2 + j2),
i1 ≥ j2, pictorially means that the number of paths that exit any vertex on the top is at least
as large as the number of paths that enter the vertex from the left. This could be thought of
as the condition that the up-right paths are not allowed to move horizontally by more than
one unit. This restriction can also be seen in a different way: At v = s, the eigenvalue in the
left-hand side of (6.9) has the form

M∏
i=1

1− qJuis
1− uis

=
M∏
i=1

(
1− qJs2

1− s2
+

(qJ − 1)s

1− s2
· s− ui

1− uis

)
,

and the important part is that the factors are linear functions in ξi = (s−ui)/(1−uis). When
one multiplies such an expression by (5.1), it is natural to expect that powers νi of ξj’s increase
by no more than one.
(iii) The right-hand side of (6.10) coincides, up to the factor (−s)j1 , with the jumping prob-
abilities [17, (8)] with the parameters (µ, ν) of [17] related to ours via µ = s2qJ , ν = s2 (I
apologize again for the overloading of Greek letters). Further, Corollary 6.6 coincides with the
eigenrelation first proved in [17], and also re-stated and re-proved as [6, Proposition 5.13].

The extra factor (−s)j1 is explained by a change of variables in the eigenfunctions: If we
replace our variables ui in Fν(u1, . . . , uM) by szi, 1 ≤ i ≤M , then

ui − s
1− sui

= (−s) 1− zi
1− s2zi

, 1 ≤ zi ≤M,

and when we raise this expression to power νσ(i) and take the product over i as in (5.1), we
obtain the extra factor of (−s)

∑
i νi . On the other hand, extra (−s)j1 in the weight of any vertex

of type (i1, j1; i2, j2) leads to the multiplication of Gν/µ corresponding to these vertex weights
by (−s)

∑
i(µi−νi). We thus see that all these powers of (−s) cancel out in the eigenrelation (6.9).

Proof of Proposition 6.7. In principle, we simply need to substitute v = s into the right-hand
side of (6.8), but what we literally read is not very illuminating. One way to proceed is to
apply the transformation formula [14, (B.3)] that reads

4φ̄3

(
q−m; a, b, c
q1−m+n, e, f

∣∣∣ q, q) =
(−1)m+n(ab)n(a, b, c; q)m−n

qn+
(m−n)(m−n−1)

2

4φ̄3

(
q−n; q

a
, q
b
, cqm−n

q1−n+m, qe
ab
, qf
ab

∣∣∣ q, q)
withm,n ∈ Z≥0 and abc = efqn (we used the abbreviated notation (a, b, c; q)l = (a; q)l(b; q)l(c; q)l
here). Setting v = s, choosing

m = i1, n = j2, a = s2qJ , b = q, c = q−i2 , e = s2, f = q1+J−i2−j2 ,

noting that q/b = 1 and

4φ̄3

(
q−N ;A, 1, C
D,E, F

∣∣∣ q, z) = (D,E, F ; q)N ,
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we rewrite the right-hand side of (6.8) with v = s, remembering that i1 + j1 = i2 + j2, as

(−1)i1+j1q
i21+i

2
2

4
+
i1(j1−1)+i2j2

2 sj1(1; q)j1−i2
(q; q)i1(s

2; q)i2+j2

×(−1)i1+j2(s2qJ+1)j2(s2qJ , q, q−i2 ; q)i2−j1

qj2+
(i1−j2)(i1−j2−1)

2

· (q1+i1−j2 , q−J , q1−i2−j2s−2; q)j2 .

A few factors can now be simplified:

(1; q)j1−i2 = 1i2≥j1 · (−1)i2+j1
q

(i2−j1)(i2−j1+1)
2

(q; q)i2−j1
;

(q1−i2−j2s−2; q)j2
(s2; q)i2+j2

=
(−1)j2s−2j2q−

(2i2+j2−1)j2
2

(s2; q)i2
;

(q−i2 ; q)i2−j1(q
1+i1−j2 ; q)j2

(q; q)i1
=

(−1)i2+j1q−
(i2+j1+1)(i2−j1)

2 (q; q)i2
(q; q)j1(q; q)i2−j1

.

Collecting powers of (−1) gives (−1)j1 . Remembering that we can multiply vertex weights by
f(j1)/f(j2), cf. Remarks 6.4(i) and 6.8(i), we can replace

(s2qJ)j2(q−J ; q)j2 by (s2qJ)j1(q−J ; q)j1 and sj1s−2j2 by s−j1 .

It remains to collect the powers of q. We read

i21 + i22
4

+
i1(j1 − 1) + i2j2

2
+

(i2 − j1)(i2 − j1 + 1)

2
− (2i2 + j2 − 1)j2

2
− (i2 + j1 + 1)(i2 − j1)

2
.

Substituting i1 = i2 + j2 − j1 into this expression yields 1
4
(j2

1 − j2
2), which can be removed

from the vertex weight, because q raised to that power has the form f(j1)/f(j2). Gathering
remaining factors leads to the desired expression. �

7. Orthogonality relations

The functions Fν(u1, . . . , un) satisfy two types of (bi)orthogonality relations, both were
proved in [6] (one of the relations had been previously conjectured in [17]), and we shall restate
them below. The goal of the section is to explain how results of the previous sections connect
to these orthogonality relations.

We shall show that the Cauchy identity of Corollary 4.7 essentially implies one of them,
the so-called spectral biorthogonality. We shall also show that the second one, the so-called
spatial biorthogonality, can be viewed as a link between the two symmetrization formulas of
Theorem 5.1. This theorem can thus be used to give a proof of the spatial biorthogonality,
but we stop short of doing that because the proof given in [6] is shorter and more direct. On
the other hand, one can also say that the spatial biorthogonality provides a route of deriving
(rather than verifying) the symmetrization formula for Gν given the simpler, Bethe ansatz type
symmetrization formula for Fµ, and this is indeed how the formula for Gν was obtained for the
first time.
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The orthogonality relations can be complemented with completeness of the corresponding
functional bases, thus providing Plancherel type isomorphism theorems between suitable func-
tional spaces. Such theorems were the primary goal of [6], where an interested reader can find
their statements and proofs.

Theorem 7.1 (Spectral orthogonality; Theorems 4.3, 6.7 of [6]). For any n ≥ 1, we have

∑
ν∈Signn

∮
· · ·
∮ n∏

i=1

dui
2πi

∮
· · ·
∮ n∏

i=1

dvi
2πi

∑
ν∈Signn

c(ν)Fν(u1, . . . , un)Fν(v
−1
1 , . . . , v−1

n )

×
∏

1≤i<j≤n

(ui − uj)(vi − vj)ϕ(u1, . . . , un)ψ(v1, . . . , vn)

= (−1)
n(n−1)

2

∮
· · ·
∮ n∏

i=1

dui
2πi

∏
1≤i,j≤n

(ui − quj)
∑
σ∈Sn

ϕ(u1, . . . , un)ψ(uσ(1), . . . , uσ(n)), (7.1)

where ui’s and vj’s are integrated over positively oriented circles |ui − s| = |vi − s| = ε � 1,
ϕ, ψ are suitable test functions, and c( · ) is given by (4.1). Less formally, the above relation
can be rewritten as∏

1≤i<j≤n

(ui − uj)(vi − vj)
∑

ν∈Signn

c(ν)Fν(u1, . . . , un)Fν(v
−1
1 , . . . , v−1

n )

= (−1)
n(n−1)

2

∏
1≤i,j≤n

(ui − quj) · det
[
δ(vi − u−1

j )
]n
i,j=1

.
(7.2)

The statement of Theorem 7.1 is somewhat sloppy with not defining exactly the class of test
functions for which (7.1) holds. One possible class is described in [6], another one will come
out of our proof of Theorem 7.1 below. Neither of them is optimal, and since our goals are
mostly algebraic here, we do not pursue this issue further.

Theorem 7.2 (Spatial orthogonality; Corollary 3.13 of [6]). For any n ≥ 1, µ, ν ∈ Signn, we
have

c(ν)

(q − 1)nn!

∮
· · ·
∮ n∏

i=1

dui
2πiui

∏
1≤i 6=j≤n

ui − uj
ui − quj

Fν(u1, . . . , un)Fµ(u−1
1 , . . . , u−1

n ) = 1µ=ν , (7.3)

where ui’s are integrated over a positively oriented contour that contains points {s, qs, . . . , qn−1s}
and its own image under multiplication by q, and that does not contain s−1.

Let us proceed to showing how the Cauchy identity implies spectral orthogonality. The
argument is similar to the proof of [5, Proposition 6.10], where it was used for the Hall-
Littlewood symmetric polynomials.

Proof of Theorem 7.1. We start with the Cauchy identity (4.9) with M = N = n, substitute
vi 7→ v−1

i , and rewrite it using (5.6):∏n
i=1(1− sui)

(q; q)n

∑
ν: νn=0

Fν(u1, . . . , un)Gc
ν(v
−1
1 , . . . , v−1

n )
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+
n∏
i=1

(1− sui)(1− svi)
∑
ν:νn≥1

c(ν)Fν(u1, . . . , un)Fν(v
−1
1 , . . . , v−1

n ) =
n∏

i,j=1

vi − quj
vi − uj

. (7.4)

It is convenient to use the notation

ξi =
ui − s
1− sui

, ui =
ξi + s

1 + sξi
, ζi =

vi − s
1− svi

, vi =
ζi + s

1 + sζi
, 1 ≤ i ≤ n.

Let us multiply both sides of (7.4) by
n∏
i=1

ζMi
ξMi

∏
1≤i<j≤n

(ui − uj)(vi − vj) · ϕ(ξ1, . . . , ξn)ϕ(ζ1, . . . , ζn), (7.5)

where M is a large positive integer, and ϕ(ξ1, . . . , ξn), ψ(ζ1, . . . , ζn) are test functions such that
n∏
i=1

(1 + sξi)
−n−1ϕ(ξ1, . . . , ξn) ∈ C[ξ±1, . . . , ξ±1

n ],

and ψ(ζ1, . . . , ζn) is analytic in a punctured neighborhood of the origin with a possible finite
order pole at the origin (as was noted above, these conditions on test functions are not optimal
can be substantially relaxed, but we do not pursue that here). Let us further integrate over
|ui − s| = ε� 1, |vi − s| = 2ε.

Rewriting the u-integrals in terms of ξ-variables, we observe that our assumptions and (5.1)
guarantee that in each term of the left-hand side of (7.4) we are integrating a Laurent poly-
nomial in ξi’s. Furthermore, in the first sum with νn = 0, each term will have at least one ξi
raised to only very negative degrees — this follows from the symmetrization identity (5.1) and
the presence of

∏
i ξ
−M
i with M � 1. This implies that the sum with νn = 0 vanishes after the

u-integration.
To deal with the sum with νn ≥ 1 we observe that, cf. Remark 5.2(i),
n∏
i=1

ζMi
ξMi

∑
ν:νn≥1

c(ν)Fν(u1, . . . , un)Fν(v
−1
1 , . . . , v−1

n ) =
∑

ν:νn≥−M+1

c(ν)Fν(u1, . . . , un)Fν(v
−1
1 , . . . , v−1

n ).

(7.6)
In the limit M →∞ we thus obtain the sum over all ν ∈ Signn. (With our test functions, this
limit is actually a stabilization as terms with small or large enough νj’s give zero contribution
by the same reasoning that we used to remove the part with νn = 0 above.)

It remains to understand what the integral of the right-hand side of (7.4) multiplied by (7.5)
gives. For that we shrink the v-contours to s. Due to

∏
i ζ

M
i , M � 1, there is no singularity

at vi = s for any i, 1 ≤ i ≤ n. Hence, for a nonzero contribution one needs to pick the residues
at the first order poles vi = uj. Two different vi’s cannot utilize that same uj because of the∏

i<j(vi − vj) factor in (7.5). Therefore, we end up with the sum∑
σ∈Sn

Resvi=uσ(i)(· · · ),

and this yields the right-hand side of (7.1). �

Let us proceed to the spatial orthogonality (7.3). We are going to test it on the Cauchy
identity (4.9). More exactly, this identity provides a decomposition of any function of u1, . . . , uM
that has the form as in the right-hand side of (4.9) divided by the prefactor of the left-hand



ON A FAMILY OF SYMMETRIC RATIONAL FUNCTIONS 31

side, on {Fν(u1, . . . , uM)}ν∈s+M . We are going to extract the coefficients in such decomposition
using (7.3) and see that they are given by (5.3):

Proposition 7.3. For any n,N ≥ 0, ν ∈ Sign+
n , v1, . . . , vN ∈ C in a sufficiently small neigh-

borhood of s, the expression

(q; q)nc(0
n)

(q − 1)nn!

∮
· · ·
∮ n∏

i=1

dui
2πiui

∏
1≤i 6=j≤n

ui − uj
ui − quj

∏
1≤i≤n

(
1

1− sui

∏
1≤j≤N

1− quivj
1− uivj

)
Fν(u

−1
1 , . . . , u−1

n )

(7.7)
with integration contours as in Theorem 7.2, coincides with the right-hand side of (5.3) with k
being the number of zero coordinates in ν.

Remark 7.4. (i) The above statement coupled with Theorem 5.1(ii) can be used to provide a
proof of Theorem 7.2. To do that one needs to argue that functions {Fν(u1, . . . , un)}ν∈Signn are
linearly independent so that decompositions on them yield well-defined coefficients, and that
the set of functions∏

1≤i≤n

(
1

1− sui

(
ui − s
1− sui

)a ∏
1≤j≤N

1− quivj
1− uivj

)
, a ∈ Z, N ∈ Z≥0, v1, . . . , vN ∈ C,

is sufficiently rich (the extra parameter a appeared due to Remark 5.2(i)). We do not pursue
this direction here as the proof of Theorem 7.2 given in [6] is simpler.
(ii) One can similarly apply spatial orthogonality (7.3) to the skew Cauchy identity (4.7) with
λ = ∅, thus obtaining a contour integral formula for the skew functions Gν/µ(v1, . . . , vN) with
arbitrary µ, ν ∈ Signn and v1, . . . , vN ∈ C. Via Theorem 6.3, this can be used to obtain explicit
expressions for the fully general higher spin R-matrix for the XXZ model.

Proof of Proposition 7.3. All parts of the integrand in (7.7) are symmetric in ui’s. This implies
that we can de-symmetrize Fµ(u−1

1 , . . . , u−1
n ) using Theorem 5.1(i) and equivalently rewrite

(7.7) as (also recalling that c(0n) = (s2; q)n/(q; q)n)

(s2; q)n

∮
· · ·
∮ n∏

i=1

dui
2πi

∏
1≤i<j≤n

ui − uj
ui − quj

×
∏

1≤i≤n

(
1

(ui − s)(1− sui)

(
1− sui
ui − s

)νi ∏
1≤j≤N

1− quivj
1− uivj

)
. (7.8)

Let us first handle integration over the last k variables (recall that k is the number of zero
coordinates in ν). If k ≥ 1, then inside the un-integration contour, the integrand viewed as a
function in un has only one simple pole at un = s. (Indeed, by our assumption on the contours,
the points s−1, v−1

1 , . . . , v−1
N lie outside the un-contour.) Evaluating the residue gives, from all

the factors that involve un,

1

1− s2

n−1∏
i=1

ui − s
ui − qs

N∏
j=1

1− qsvj
1− svj

.

Assuming k ≥ 2, i.e. νn−1 = 0, we see that in un−1 the pole at un−1 = s gets canceled by the
last expression, which has also introduced a simple pole at un−1 = qs. As for un, there are
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no other singularities inside the un−1-integration contour, and we can evaluate the residue at
un−1 = qs, which gives, writing only factors that depend on un−1,

1

1− qs2

n−2∏
i=1

ui − qs
ui − q2s

N∏
j=1

1− q2svj
1− qsvj

.

As we continue in this fashion, after k steps our integral (7.8) turns into

(s2; q)n
(s2; q)k

∮
· · ·
∮ n−k∏

i=1

dui(ui − s)
2πi(ui − qks)

N∏
j=1

1− qksvj
1− svj

∏
1≤i<j≤n−k

ui − uj
ui − quj

×
∏

1≤i≤n−k

(
1

(ui − s)(1− sui)

(
1− sui
ui − s

)νi ∏
1≤j≤N

1− quivj
1− uivj

)
. (7.9)

All remaining ν1 ≥ · · · ≥ νn−k are at least 1, and we cannot proceed in the same way.
However, this means that there are no singularities at ui = s−1. Also, there is ∼ |ui|−2 decay
near ui = ∞, which means that if we peel off the contours and deform them to ∞, we only
need to take into account the poles at ui = v−1

j . No two ui’s are allowed to share the same
pole because of the factor

∏
i<j(ui− uj) in the integrand. Evaluating (negative) residues at all

possible pole choices yields

(s2; q)n
(s2; q)k

∑
σ:{1,...,n−k}→{1,...,N}

σ is injective

n−k∏
i=1

v−1
σ(i) − s

v−1
σ(i) − qks

N∏
j=1

1− qksvj
1− svj

∏
1≤i<j≤n−k

v−1
σ(i) − v

−1
σ(j)

v−1
σ(i) − qv

−1
σ(j)

×
∏

1≤i≤n−k

 1

(v−1
σ(i) − s)(1− sv

−1
σ(i))

(
1− sv−1

σ(i)

v−1
σ(i) − s

)νi

(1− q)v−1
σ(i)

∏
1≤j≤N
j 6=σ(i)

1− qv−1
σ(i)vj

1− v−1
σ(i)vj

 .

Setting I = Ran(σ) and simplifying, we see that the above expression coincides with the right-
hand side of (5.3). �

8. Degenerations

The aim of this section is to indicate certain degeneration of the above results as parameters
(q, s) tend to certain special values. All of these degenerations can and should be approached
independently, and we hope to return to them in a future work.

8.1. Hall-Littlewood symmetric polynomials. The Hall-Littlewood symmetric polynomi-
als are very well studied, and we refer to [13, Chapter III] for definitions and notations.

In order to reach these polynomials from our definitions, it suffices to set s = 0. Then the
symmetrization formulas of Theorem 5.1 imply that for any M,N, n ≥ 0, µ = 0m01m12m2 · · · ∈
Sign+

M , ν = 0n01n12n2 · · · ∈ Sign+
n , we have

Fµ(u1, . . . , uM) =
∏
i≥0

(q; q)mi · Pµ(u1, . . . , uM) = (q; q)m0 ·Qµ(u1, . . . , un),
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Gν(v1, . . . , vN) =
∏
i≥1

(q; q)ni · Pν(v1, . . . , vN) = Qν(v1, . . . , vN),

with Pλ’s and Qλ’s as in [13, §III.2], and the parameter t of [13] is identified with our q.
Recalling Definition 4.1, we can also compare the skew functions [13, Ch. III, (5.11’), (5.14)]

and Definitions 3.1, 3.2 to conclude that

F c
λ/µ(u) = Pλ/µ(u), λ ∈ Sign+

L , µ ∈ Sign+
L+1, u ∈ C,

Gλ/ν(v) = Qλ/ν(v), λ ∈ Sign+
L , µ ∈ Sign+

L , v ∈ C.
Since the branching relations of Proposition 3.4 are exactly the same as for the Hall-Littlewood

polynomials, cf. [13, Ch. III, (5.5), (5.6)], the formulas for Fµ, Gν above also follow from the
formulas for the skew functions.

The skew Cauchy identity of Theorem 4.2 and Corollary 4.4 now matches the corresponding
identity for the Hall-Littlewood polynomials, see [13, Ch. VI, Ex. 7.6] where this identity is
stated in the more general context of Macdonald polynomials. The Cauchy identity of Corollary
4.7 turns into [13, Ch. III, (4.4)].

The Pieri type rules of Corollary 4.5, after decomposing the product-eigenvalue in the left-
hand sides according to the Cauchy identity and comparing the same degree coefficients of both
sides, coincide with [13, Ch. III, (5.7), (5.7’)].

The spatial orthogonality of Theorem 7.2 is [13, Ch. VI, (9.5)-(9.6)], where again the state-
ment in [13] is in the more general context of Macdonald polynomials.

The principal specializations of Fµ and Gν as in Proposition 6.1 correspond to [13, Ch. III,
Ex. 2.1]. I do not know however if analogs of Theorem 6.3 and Corollary 6.5 that describe
principal specialization of the skew functions Gν/µ, have been considered in the Hall-Littlewood
context.

8.2. Inhomogeneous Hall-Littlewood polynomials. Instead of simply setting s = 0 as
we did in Section 8.1, let us send s → 0 but also simultaneously scale the variables ui = szi,
vi = swi. Then the weights wu(i1, j1; i2, j2) of Definition 2.1 divided by sj1 turn into

w̃z(m, 0,m, 0) = 1, w̃z(m, 1,m, 1) = z − qm,
w̃z(m+ 1, 0,m, 1) = z, w̃z(m, 1,m+ 1, 0) = 1− qm+1,

which implies, via Definitions 3.1, 3.2, that there exist limits

F̃λ/µ(z1, . . . , zm) = lim
s→0

Fλ/µ(sz1, . . . , szm), G̃λ/ν(w1, . . . , wn) = lim
s→0

Gλ/µ(sw1, . . . , swn),

and they are (inhomogeneous) polynomials whose top homogeneous coefficients coincide with
the corresponding Hall-Littlewood versions of Fλ/µ and Gλ/µ from the previous section.

Taking the same limit in the symmetrization formulas of Theorem 5.1, we read (using the
notations of Theorem 5.1)

F̃µ(z1, . . . , zM) = (1− q)M
∑
σ∈SM

σ

( ∏
1≤i<j≤M

zi − qzj
zi − zj

·
M∏
i=1

(zi − 1)µi

)
,

G̃ν(w1, . . . , wN) =
(1− q)N

(q; q)N−n+k

∑
σ∈SN

σ

( ∏
1≤i<j≤N

wi − qwj
wi − wj

·
n−k∏
i=1

wi (wi − 1)νi−1

)
.
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All the results we proved for Fλ/µ and Gλ/µ carry over to F̃λ/µ and G̃λ/µ, and to my best
knowledge, none of them have appeared in the literature before, with the exception of the
orthogonality relations and Remark 6.8(iii), whose analogs were proved in [5].

8.3. The Schur like case: q = 0. The Schur symmetric polynomials, see e.g. [13, Chapter
I] can be thought of as specializations of the Hall-Littlewood symmetric polynomials with the
parameter set to 0. Accordingly, we can set q = 0 in our definitions of F - and G-functions.
The vertex weights of Definition 2.1 then take the form

w(q=0)
u (m, 0,m, 0) =

1− 1m=0 · su
1− su

, w(q=0)
u (m, 1,m, 1) =

u− 1m=0 · s
1− su

,

w(q=0)
u (m+ 1, 0,m, 1) =

(1− 1m=0 · s2)u

1− su
, w(q=0)

u (m, 1,m+ 1, 0) =
1

1− su
.

The symmetrization formulas of Theorem 5.1 take the form of ratios of two determinants:

F (q=0)
µ (u1, . . . , uM) =

det

[
uM−ji

1− sui

(
ui − s
1− sui

)µj]M
i,j=1∏

1≤i<j≤M(ui − uj)
,

G(q=0)
ν (v1, . . . , vN) = (1− s2)1k=0

det

[
vN−ji

1− svi

(
vi

vi − s

)1νj>0
(
vi − s
1− svi

)νj]N
i,j=1∏

1≤i<j≤N(vi − vj)
.

At s = 0 both formulas turn into the celebrated formula for the Schur polynomials as a ratio
of two alternants [13, Ch. I, (3.1)].

One easily sees that for q = 0, the conjugation of Definition 4.1 leaves all skew G-functions
unaffected, which means that it can be removed from all the Cauchy and Pieri type formulas
of Section 4.

As in the previous section, all our results carry over to this degenerate case, and it remains
unclear to me whether any of them have been considered before.

8.4. Inhomogeneous Schur polynomials. By combining the degeneration procedures of
Sections 8.2 and 8.3, i.e. taking q = 0, s→ 0, and scaling the variables ui = szi, vi = swi, we
observe the vertex weights

w̃(q=0)
z (m, 0,m, 0) = 1, w̃(q=0)

z (m, 1,m, 1) = z − 1m=0,

w̃(q=0)
z (m+ 1, 0,m, 1) = z, w̃(q=0)

z (m, 1,m+ 1, 0) = 1,

and symmetrization formulas

F̃ (q=0)
µ (z1, . . . , zM) =

det
[
zM−ji (zi − 1)µj

]M
i,j=1∏

1≤i<j≤M(zi − zj)
,

G̃(q=0)
ν (w1, . . . , wN) =

det

[
wN−ji

(
wi

wi − 1

)1νj>0

(wi − 1)νj

]N
i,j=1∏

1≤i<j≤N(wi − wj)
.
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These are inhomogeneous polynomials whose top homogeneous components coincide with
the Schur polynomials.

The polynomials F̃ (q=0)
µ (z1, . . . , zM) bear a certain similarity to the so-called Grothendieck

polynomials as presented in [15], [16], see also references therein, as well as [11], [12] for much
earlier works on those polynomials. However, on the surface the connection to integrable lattice
models, skew functions, and the Cauchy formulas for these two objects appear to be different.
It would be very interesting to establish a direct link.

As in Sections 8.2, 8.3, our results carry over to this case as well, and we have so far been
unable to find them in the literature.

8.5. Trigonometric to rational limit: q → 1. The limit we consider here is equivalent to
the well-known transition from the XXZ to the XXX model. We take

q = exp(ε), s = exp(εζ), ui = exp(εxi), vi = exp(εyi), ε→ 0.

Such limit of the vertex weights of Definition 2.1 gives

w(rational)
x (m, 0,m, 0) =

m+ ζ + x

ζ + x
, w(rational)

x (m, 1,m, 1) =
m+ ζ − x
ζ + x

,

w(rational)
x (m+ 1, 0,m, 1) =

m+ 2ζ

ζ + x
, w(rational)

x (m, 1,m+ 1, 0) =
m+ 1

ζ + x
.

Taking the limit of symmetrization formulas of Theorem 5.1 yields

F (rational)
µ (x1, . . . , xM) =

1∏M
i=1(ζ + xi)

∑
σ∈SM

σ

( ∏
1≤i<j≤M

xi − xj − 1

xi − xj
·
M∏
i=1

(
ζ − xi
ζ + xi

)µi)
,

G(rational)
ν (y1, . . . , yN) =

(2ζ)n
(N − n+ k)!(2ζ)k

×
∑
σ∈SN

σ

( ∏
1≤i<j≤N

yi − yj − 1

yi − yj
·
n−k∏
i=1

1

(ζ + yi)(ζ − yi)

(
ζ − yi
ζ + yi

)νi
·

N∏
j=n−k+1

k + ζ + yi
ζ + yi

)
,

with the Pochhammer notation (a)m = a(a+ 1) · · · (a+m− 1) for m ≥ 1, and 1 for m = 0.
Once again, our results also have such limits, and we have not seen those in the literature.
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