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Abstract

We consider the canonical problem of revenue management (RM) wherein a seller must sell
an inventory of some product over a finite horizon via an anonymous, posted price mechanism.
Unlike typical models in RM, we assume that customers are forward looking. In particular,
customers arrive randomly over time, and strategize about their time of purchase. The private
valuations of these customers decay over time and the customers incur monitoring costs; both the
rate of decay and these monitoring costs are private information. Moreover, customer valuations
and monitoring costs are potentially correlated. This setting has proven to be a difficult one
for the design of optimal dynamic mechanisms heretofore. Optimal pricing schemes — an almost
necessary mechanism format for practical RM considerations — have been similarly elusive.

We propose a class of pricing policies, and a simple to compute policy within this class,
that is guaranteed to achieve expected revenues that are at least within 29% of those under an
optimal (not necessarily posted price) dynamic mechanism. Moreover, the seller can compute
this pricing policy without any knowledge of the distribution of customer discount factors and
monitoring costs. Our scheme can be interpreted as solving a dynamic pricing problem for my-
opic customers with the additional requirement of a novel ‘restricted sub-martingale constraint’
on prices. Numerical experiments suggest that the policy is, for all intents, near optimal.

1. Introduction

The discipline of Revenue or Yield Management (RM) has, over the last two decades come to
occupy a place of prominence in applied Operations Research. Today, applications of revenue
management run the gamut from dynamic pricing in the airline industry to hospitality to retail.
The following dynamic pricing problem is one of the central problems in revenue management: A
seller is endowed with an inventory of a single product that she must sell over a finite horizon.
She cannot acquire additional inventory over the course of the horizon and unsold inventory has
negligible salvage value. Customers arrive randomly over the course of the selling horizon with
the intent of purchasing a single unit of the product. Should the posted price upon a customers
arrival exceed his valuation he leaves the system for good; otherwise he purchases a single unit of
the product. The seller seeks to dynamically adjust prices with a view to maximizing expected
revenue. For typical assumptions on the customer arrival process — assuming, for instance, a renewal
process — this problem admits a tractable dynamic programming solution. Despite its simplicity,
the canonical nature of this problem serves to highlight an important view of the role of dynamic
pricing in revenue management as a tool to hedge against uncertain demand.
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In the past decade, it has become amply clear that for a number of principal RM applications,
assuming myopic customer behavior, as in the problem above, is no longer a tenable assumption.
In spite of this realization, optimal dynamic mechanisms proposed for the version of this central
problem that assumes strategic customers, face the following critique:

1. They do not admit pure pricing implementations requiring instead devices such as lotteries
or end of season ’fire-sale’ auctions. This typically rules out applying these mechanisms
in scenarios where an anonymous posted price mechanism is the norm (unfortunately, the
majority of RM applications).

2. They require the seller to calibrate a model of the customers strategicity, by learning for
instance, inter-temporal preferences or search costs. This latter learning problem is non-
trivial given the naturally censored data the seller has access to. The customer utility models
assumed also typically place strong restrictions on inter-temporal preferences.

3. These mechanisms frequently impute sophisticated purchase timing decisions in equilibrium
that are arguably as untenable as the myopic assumption given the burden they place on the
customer from a computational and data standpoint.

The present paper seeks to make progress on these fronts at the expense of optimality. In
particular, we propose a class of dynamic pricing policies which may be interpreted as solving
the simple dynamic pricing problem for myopic customers with the additional restriction that the
pricing policy satisfy what we call a ‘restricted sub-martingale constraint’. We dub such policies
‘robust dynamic pricing’ policies and exhibit a simple to compute policy within this class with
attractive properties:

1. Computing a robust policy require minimal data on customers beyond what is already required
by the standard dynamic pricing problem assuming myopic customers. The specific class of
robust policies we compute require no additional data.

2. Robust pricing policies induce customers to behave myopically under mild assumptions on
customer utility.

3. We exhibit a simple to compute robust pricing policy that is guaranteed to garner revenues
that are within 29% of those garnered under the optimal dynamic mechanism.

In addition to the features above, numerical results suggest that the performance of our robust
pricing policy can be expected to be substantially superior to what the uniform theoretical guarantee
we prove suggests. These numerical experiments also show that the loss in revenue due to an
incorrectly calibrated, but otherwise optimal, dynamic mechanism can be substantial over and
above the issues raised earlier.

In a nutshell, the present paper provides a tractable, provably robust approach to dynamic
pricing in the face of forward looking customers. The approach is robust in that it provides revenue
guarantees while making minimal assumptions of customers’ inter temporal utilities and search
costs, and requires minimal data about the same.

The remainder of the paper is organized as follows: Section [I.1] provides a brief literature
review. Section [2] presents our model: we introduce the notion of a dynamic pricing policy, model
customer utilities, and define an optimal dynamic mechanism benchmark. Section [3] introduces
robust dynamic pricing policies. We state our main theoretical results on the properties of these



policies in this section. Sections 4] and [5| present our analysis and finish with a proof of our uniform
performance guarantee. Section [6] complements our analysis with a brief numerical study. Section
[[ concludes.

1.1. Literature Review

Revenue management is today a robust area of study with applications ranging from traditional
domains such as airline and hospitality pricing to more modern ones, such as financial services.
The text by |Talluri and van Ryzin [2004] provides an excellent (if now, slightly dated) overview of
this area. (Gallego and van Ryzin| [1994] is a foundational revenue management paper; the present
paper effectively studies the same problem but allowing for forward looking customers.

Stylized RM Models: The last decade has seen a good amount of interest in understanding
the impact forward looking or ‘strategic’ customers have on revenue management approaches. The
majority of this work follows a stylized vain with the objective of deriving qualitative insights. This
line of work typically considers a two period model, with a price change (typically a markdown)
occurring in the second period, and seeks to characterize a variety of effects: |Aviv and Pazgal| [2008]
study comparative statics with respect to heterogeneity in valuations and their decay over time;
they study the efficacy of announced discounts versus contingent pricing, and finally, show that
the revenue loss from incorrectly assuming customers are myopic when, in fact, they are forward
looking can be large. Su and Zhang [2008] are concerned with the question of optimal ordering
levels for a seller facing forward looking customers. |(Cachon and Swinney| [2009] consider a mix of
myopic, ‘bargain’ hunting and strategic customers, and study the impact of this mix on operational
issues such as initial ordering decisions and ‘quick response’ replenishment. Like |Aviv and Pazgal
[2008] they also study the efficacy of announced discounts versus contingent pricing but find the
latter to be substantially more beneficial in their model. These papers are a representative sample
of this body of work; |Aviv and Vulcano| [2012] provide a comprehensive review of this branch of
RM research.

Dynamic Mechanism: Closer to the spirit of the present paper, is research that applies dynamic
mechanism design ideas to RM with forward looking customers. An early paper in this regard is
Vulcano et al.| [2002]; these authors consider impatient (but strategic) customers arriving sequen-
tially over a finite horizon and propose running a modified second price auction in each period (as
opposed to dynamic pricing).

An excellent paper by (Gallien! [2006] provides what is perhaps the first tractable dynamic pricing
algorithm for a non-trivial revenue management model with forward looking customers. The model
he considers is the discounted, infinite horizon variant of the canonical RM model, and he shows
that the optimal dynamic mechanism can be implemented as a dynamic pricing policy in this model.
A limitation in this paper is the assumption of an infinite horizon and the delicate requirement that
the seller’s discount rate matches that of every customer (i.e. there is no heterogeneity in buyers’
inter-temporal preferences and these preferences are effectively common knowledge). More recently,
Board and Skrzypacz| [2010] consider a discrete time version of the same model, and assuming a
finite horizon, compute the optimal dynamic mechanism. Board and Skrzypacz| [2010] also require
that all customers discount at a homogenous rate that is common knowledge. While they do solve
the finite horizon RM problem, the mechanism they propose is no longer a purely dynamic pricing
mechanism but requires an end-of-season ‘clearing’ auction.

Pai and Vohra [2013] consider a substantially more general model of (finite horizon) RM with



forward looking customers. Customers in their model have heterogenous ‘deadlines’ as opposed to
discounting. When these deadlines are known to the seller, the authors characterize the optimal
mechanism completely and show that is satisfies an elegant ‘local’ dependence on customer reports.
On the other hand, when deadlines are private information, the authors illustrate that the optimal
dynamic mechanism is substantially harder to characterize. In light of this work, it is interesting
to note that both |Gallien [2006] and |Board and Skrzypacz [2010] compute the optimal dynamic
mechanism while requiring that the customer discount rate (which one may think of as the mean of
an exponentially distributed, random time until departure from the system) is common knowledge,
which is restrictive. It is worth contrasting the present paper with the aforementioned mechanism
design research:

1. We allow for customers’ discount factors to be heterogeneous and private information, akin
to the the hard ‘unknown deadlines’ version of the problem studied by Pai and Vohra, [2013]).
In addition, we assume that customers have a ‘monitoring cost’ and allow this cost to be
correlated with their valuation. This is a rich model.

2. We consider a finite horizon problem like Board and Skrzypacz [2010] and Pai and Vohra
[2013]. This makes our model relevant to the vast majority of RM applications (in contrast
with the assumption of a discounted, infinite horizon case as in Gallien [2006]).

3. We provide a mechanism that enjoys a constant factor approximation guarantee relative to
the optimal mechanism for our setting. We are unable to compute the optimal dynamic
mechanism. Given the substantially richer model at hand, and the indication that the mech-
anism design problem is hard when ‘deadlines’ are unknown (Pai and Vohra [2013]), this is
not surprising.

4. Our mechanism can be implemented as a simple anonymous posted price mechanism; it
constitutes a dynamic pricing policy for the seller. In contrast, neither [Board and Skrzypacz
[2010] nor Pai and Vohra/ [2013] provide dynamic pricing mechanisms; the former requires an
end of season ‘clearing’ auction.

2. Model

We are concerned with a seller who is endowed with x¢ units of inventory of a single product, which
she must sell over the finite selling horizon [0, 7] via an anonymous posted price mechanism, all of
which is common knowledge. We denote the price posted at time ¢ by m;. We denote the inventory
process by X; and the corresponding sales process by Ny; Ny = zg — X;. We require that m; depend
only on the history of the pricing and sales process'.

Customers arrive over this period according to a Poisson process of rate A2. A customer arriving
at time ¢ is endowed with a valuation, v, a time discount factor, «, and a monitoring cost 6, all
non-negative. We denote by ¢, the ‘type’ of an arriving customer which we understand to be the
tuple

= (t,v,0,a).

Where needed we will make the dependence of each component on ¢ explicit. After making a
purchase decision, customers exit the system. Assume that such a customer chooses to delay

"More formally, we require m; to be left continuous, and adapted to F;— where F; = o(n*, X).
20ur analysis extends to non-homogenous processes.



making a purchase decision to time 7, > ¢, and define the tuple y, = (74, ag, py), where py = 7 5"
If the seller has inventory to allocate 3 and if the allocation provides the customer greater utility
than no allocation then ag = 1; otherwise ag = 0. Such a customer garners utility

U(o,ys) = ag (6_“<T¢_t)v - P¢> —0(1p — ).

We assume that a customer’s type ¢ is private information, drawn from a distribution that is
common knowledge. For the sorts of RM applications alluded to in the introduction, heterogeneity
in « allows us to capture heterogeneity in customers’ aversion to the risk of not obtaining the
product while 6 parameterizes the cost he incurs in monitoring prices. We denote by 6 a lower-
bound on the monitoring cost of a customer; this quantity is potentially zero. We denote the
marginal distribution (c.d.f.) of product valuations, v, by F(-) and the corresponding p.d.f. by
f(-). We denote F(-) £ 1 — F(-). We assume that a customer valuation v is independent of his
discount factor . We make a standard assumption on the valuation distribution:

Assumption 1. v — % is non-decreasing in v and has a non-negative root, v*.

Customers are forward looking and employ (symmetric) stopping rules contingent on their type
that constitute a symmetric Markov Perfect equilibrium. In particular, for customer type ¢, 7 is
a stopping rule with respect to the filtration generated by the price process, P;, and solves? the
optimal stopping problem

sup E |U (6, 7)[Pt, |
T2t¢
where the expectation assumes that other customers use a symmetric stopping rule.
Our goal in this paper is to construct a price process 7, and exhibit a corresponding stopping
rule 7™ to ‘maximize’ the seller’s expected revenue

TAT
Jﬂ,r”($0aT) =E / md N |,
0

where 7 = inf{t : X; = 0}. We will not characterize an optimization problem to find an optimal
such dynamic pricing policy, Rather, we will measure the performance of the robust dynamic pricing
algorithm that is the subject of this paper via-a-vis an optimal dynamic mechanism benchmark
that we discuss next.

2.1. An Optimal Dynamic Mechanism Benchmark

We denote by k' £ {¢ : t, <t} the set of customers (or more carefully, customer types) that arrive
prior to time t. We restrict ourselves to direct mechanisms.

A mechanism specifies an allocation and payment rule that we encode as follows: customer ¢
is assigned

A
Yo = (Tp, Qg5 Do) 5

where 74 > 1,4 is the time of allocation, a4 is an indicator for whether or not a unit of the product
is allocated and pg is the price paid by the customer. Note that y, depends on h™. Denote by

3Multiple customers revealing themselves to the seller at the same time are allocated inventory in random order.
4We will later demonstrate existence of such an equilibrium stopping rule for a specific class of pricing policies.
We do not prove existence in general.



y' = {ys : 75 < t} the set of decisions made up to time ¢. Finally denote the seller’s information
set by H:, the filtration generated by the customer reports made up to time t and assignment
decision prior to time t. Specifically, H; = o (h',y'™). A feasible mechanism satisfies the following
properties:
1. Causality: 74 is a stopping time with respect to the filtration H;. Moreover, ag and py are
H, 3 -measurable.
2. Limited Inventory: The seller cannot allocate more units of product than her initial allocation:
D pehT Gy < To, a.S.
3. No Participation Fee: py = 0 if agy = 0.

We denote by Y, the class of all such rules, y*. The seller collects total revenue
pehT

whereas the utility garnered by customer ¢ is U(¢,ys). The utility garnered by customer ¢ when
he reports his true type as ¢ is then given by U(¢,y <£>7 where customer ¢ can only reveal his arrival

no earlier than his true arrival (i.e., {5 > t), and y; depends on WT\{¢} U {o}.
The seller now faces the following optimization problem that seeks to find an optimal dynamic
mechanism.

max,rcy E {H (yT)}
subject to  E_y [U(6,ys)] > E_g {U((b,ng)}, V., stoty >ty (IC) (1)
E_4[U(d,ys)] >0 V9. (IR)

Denote by J*(zg,T") the optimal value obtained in the problem above. We have the following
result® illustrating that this constitutes an interesting benchmark:

Lemma 1. (Valid Benchmark) For any pricing policy (7w, 7™), we have that
Jr (20, T) < J* (20, T).

Proof. Consider the class of pricing mechanisms that form a subset of JP, where for a given pricing
policy 7t, pp = 7r,, and ay = 1 only if doing so yields the buyer a higher utility, and if inventory
is available. Now consider the optimization problem:

max,rcyr E [H (yT”
subject to  E_y [U(6,59)|Pr, | > Eg [U(6,)[Pr, |, a5,V 6,0, st t; >4, (IC) ()
E 4 [U(¢,4)] >0 , V9. (IR)

Denote by J™ (z0,T') the optimal value for this problem. Observe now that for any pricing policy
(m,7™), we must have Jy (20, T) < J™ (20, T). Specifically, given a policy (m,77), consider the
mechanism y”™ where the seller commits to ‘simulating’ each customers stopping rule, i.e. use
7y = 75. Given the definition of 74, (IC) is satisfied in (2). But is a relaxation of (2)), so

J™ (20, T) < J*(x9,T) completing the proof. [

5The result is straightforward; we prove it since a standard revelation principle Lemma for this setting does not
appear to be available in the literature.



It is worth pausing to discuss two salient facts pertinent to the formulation above:

1. The formulation allows for general mechanisms. As our objective is to produce a benchmark,
this generality is desirable, as it will imply a guarantee among a much broader class of
mechanisms than those that rely purely on anonymous posted prices.

2. The formulation requires truth telling be the best response in expectation over all possible
customers arrival process. This is weaker than dominant strategies (as in |Gallien| [2006]), as
well as weaker than the the requirement placed on the stopping rules assumed when a pricing
mechanism is employed (which allowed customers to observe the price history).

3. Robust Dynamic Pricing

This section presents a robust dynamic pricing policy {m;} that induces customers to behave my-
opically, and that guarantees the seller expected revenues that are within a constant factor of the
optimal mechanism benchmark, J*(zq,T).

Specifically, we define a feasible set of pricing policies that satisfy an additional ‘robustness’
constraint. Let 7; = o(7’, X*) and define by G, = F;_ the filtration yielded by the left limit of F;.
We require:

1. m; is left-continuous and adapted to G;.

2. m satisfies a constraint we dub the ‘restricted sub-martingale’ constraint. Specifically, for all
t such that X;— > 0, we require:

E [(me — m)t |G <0t — 1) (3)
for all ' > t where the expectation assumes that all customers behave myopically.
3. m =o00if X;— =05

Denote by II the set of all processes satisfying the three constraints above. We then seek to solve
the following dynamic optimization problem:

N TAT
J*(:po,T) £ Sup{m}en E |:/O Wtht‘| (4)

where N; is a point process with instantaneous rate AF(m;); see Brémaud [1981]. Notice that
this optimization problem does not consider any strategic behavior on the part of customers. The
only aspect in which it differs from the ‘typical’ revenue revenue management problem is the con-
straint placed on sample paths of the pricing policy via the restricted sub-martingale constraint .

Motivation: In the absence of the restricted sub-martingale constraint , the dynamic op-
timization problem above is identical to what one may consider the canonical RM problem |Gallego
and van Ryzin [1994]. The second constraint implies

E [7Tt’|gt] Z T — Q(t/ - t)

5We adopt the convention oo - 0 = 0.



This allows an interesting interpretation of the constraint. If customers have no monitoring cost
whatsoever, this constraint requires the pricing process to be a submartingale. As monitoring costs
grow higher, this constraint grows weaker. In the limit of infinite monitoring costs, the constraint
is vacuous (and we are back to the canonical RM problem with myopic customers as one might
expect). Consequently, the constraint limits the extent of the ’price drop’ a customer arriving to
the system may hope to gain from waiting to purchase. The extent of this limitation grows stronger
as it becomes cheaper for customers to wait.

3.1. Performance Guarantee for Robust Pricing

We present here our principle results for the robust pricing policy. First, we establish an equilibrium
stopping rule for customers when the seller follows a robust pricing policy; specifically we show that
customers behave myopically:

Lemma 2. (Myopia) Assume that the seller adopts a robust dynamic pricing policy, and further,
that all customers of type ¢ # ¢ behave myopically: that is they follow the stopping rule Ty =t
Then, ¢’s best response is to use the stopping rule 74 = .

Proof. Now, since the inter arrival times of customers are exponential (and so, memoryless), and
moreover, since Fi, = Gy, a.s. when customer ¢ chooses to not make a purchase at his time of
arrival (and consequently does not reveal himself), we have that customer ¢’s best response may
be calculated by solving the optimization problem:

max U(6.7)(6t, ] -

We will show that U(¢,t) is a Gi-super-martingale on ¢ >t when Xy, > 0; if Xy, = 0, the claim
of the lemma is trivial. Doob’s optional sampling theorem then immediately implies that

U(6:ts) > maxE |U(,7)|Gr,

which is the result. To finish the proof, we show that U(¢,t) is a Gi-super-martingale on ¢ > t4.
We have, for t >t > t4:

ElU(o,1)|Gv] =E [( meolttoly, — 7Tt)+ ’gt’} — Oyt — 1) — Os(t' —tg)
( ,a¢ (t— t¢ Vg — 7['75’)+ 4+ E [(ﬂ't’ _ 7Tt)+ |gt/} _ ed)(t - 75/) o 9¢(tl N t(j))
< (e‘%(t—%)% - W)+ — 04t —ty)

=U(p,t).

where the second inequality follows from the restricted sub-martingale constraint. This completes
the proof. ]

IN

Denote by #* an optimal solution to 7. The previous Lemma shows that (an) equilibrium
stopping rule for customers facing such a pricing policy is the myopic rule 75, = t5,. We next
present the main performance guarantee for this paper. Specifically, we show that the optimal
robust pricing policy guarantees revenues that are within a constant factor of the revenue under
the optimal dynamic mechanism benchmark presented in the preceding section:

"The optimal policy may not exist, in which case one could consider an e-optimal policy for arbitrary e.



Theorem 1. Let 7#* be an optimal robust pricing policy. Moreover, denote by 7™ the corresponding
(myopic) stopping rule Tg* =ty. We then have that

Jae roe (20, T) > 0.29J* (o, T).

™

The next two sections are dedicated to establishing this theorem. In anticipation of these
sections, however, we find it useful to point out two salient features of our proof of this theorem:

1. We show, in fact, that the guarantee above holds for a sub-optimal robust pricing policy that
can be calculated tractably. This sub-optimal policy can be interpreted as the optimal policy
for an infinite horizon dynamic pricing problem with a certain ‘optimized’ discount rate.

2. The (sub-optimal) policy used to establish our result requires no knowledge of 6, so that the
information requirements of this policy are identical to the information requirements of the
dynamic pricing problem with myopic customers.

Before moving on to the proof of Theorem [1} we take a brief detour to consider the task of
finding good robust pricing policies (where by good, we mean any policy satisfying Theorem .
This is necessitated by the fact that computing the optimal robust dynamic pricing policy does not
appear to be an easy task.

3.2. Computable Robust Pricing Policies Satisfying Theorem [I]
Define 7 : Ny U {0} — Ry U {oo} according to

- 5 = Jh(x) — iz — 1)

where ) ) )
sup,>o AF(p)(p + J3(z — 1) — J5(x)), ifz>0.
0, otherwise.

BI5(x) = {

Farias and Van Roy| [2010] show how to compute 7 efficiently, and further show that 77 is non-
decreasing, taking 75(0) = co. Now define the §; random variable A; according to Ay = inf{t —7:

T < t,dN; = 1}, and consider the class of dynamic pricing policies, parameterized by 3,0, given by
ﬁ(ﬁ,é),t == ﬁ'g(Xt_) - éAt
The following is an easy consequence of the fact that 7 is non-decreasing:

Lemma 3. 7?(/379*)7,& is a feasible robust pricing policy for any > 0 and 6 < 6.
The proof of Theorem [I| actually yields the following stronger statement:

Theorem 2. Let 3y = 1/1.42T and 6 = 0. Then,

7AT(£ 0 Tﬁ(ﬂovo) (1‘0, T) Z 029J*(LEO, T)
0,0)’

T(84,0)

where Ty =ty is a myopic stopping rule.



4. Analysis: An Optimal Dynamic Mechanism Upper Bound

Towards establishing Theorem [1, we find it useful to compute an upper bound on J*(xzo,T), the
revenue under the optimal dynamic mechanism, in terms of the revenue under an optimal (dis-
counted, infinite horizon) dynamic pricing policy when customers are myopic. To this end, we
first prove an intuitive upper bound on J*(xg,7") that connects this quantity to a static problem.
Specifically, let us denote by ¢,, the customer with the nth largest valuation, v™ from among all
customers arriving within the sales horizon, T'. Let & = xg A max{n : v™ > v*}. We then show:

T* (w0, T) <E| 3 (w — ?é;’:f)

n:n<z

This upper bound enjoys a simple interpretation: specifically, it is the expected revenue under
an optimal (static) auction for zy units of an item, where the expectation is over the number of
participants in the auction. This result requires we consider a relaxation of our dynamic mechanism
design problem where customers can only distort valuation (as opposed to type), and produce a
further relaxation employing a suitable envelope theorem. Having proved this result, we will be able
to connect this upper bound to a standard (discounted, infinite horizon) dynamic pricing problem.

4.1. A Relaxed Problem

Let us denote by ¢, the report of customer ¢ when he distorts his valuation to v’. In particular:

Po = (tp, V', 0, tg)

and consider the following weakened incentive compatibility constraint:

E_s [U(¢,yp)] = E—y [U(Qb,yqbv/)} R (1)

(IC) is a relaxation of (IC) since we only allow for distortions of valuation. In what follows, we
will frequently drop the —¢ subscript on the expectation where it is clear from context. We now
derive an upper bound on the expected price paid by customer ¢ for any feasible mechanism that

satisfies (IR) and (IC)):
Lemma 4. If (IC’) and (IR) hold, then for any ¢,

Yo

Elps] < veE [a¢e*%(7¢*t¢)} - //

V=

E {a%,e% (7o, t¢)] dv’. (5)
0

Proof. Denote by u(¢,y) the derivative of U with respect to v, treating y as a constant. We have:

E[U(6,y0)] = E[U(v,Y5,)]

=E _/W) U (va”ydw) dv’ + U(¢Oa yd)o)}

v'=0

rro
>E / ’ U(¢v/,y¢v,> dvl]
L v'=0
e[ men ]
v'=0

A {% e (7o, ‘%)} ',

10



where the first equality is (IC’]), the second equality follows from the envelope theorem (Theorem
2) of Milgrom and Segal [2002], the first inequality is due to (IR), and the final equality is via
Fubini’s theorem. Further, note that:

[%%6_%(”’_%) —pg — 0y — ty)]

E[U(¢,ys)] = E
<E {v¢a¢e_°‘¢(T¢_t¢) - p(ﬁ}

)

so that with the prior inequality, we have:

Vo

E [pg] < vgE [%e—%(%—%)} _/

v'=

E [% /e—%(%vl—%)]
which is the result. [ ]

Now, since Lemma 4] is implied by (IC) and (IR) (noting that (IC’) is implied by (IC)), we
have the the following optimization problem (whose optimal value we denote by J*(xo,T)) is a
relaxation of the optimization problem for J*(x,T):

maxyrey €[ (y7)]

subject to  E[py] < vyE [ad)e—w(w—w)} _/

V=

(6)

Vo

E [a(ﬁ e e (75, _t"’)], YV o

4.2. The Relaxation And An Upper Bound

We now analyze the relaxed problem and show that J *(x0,T), the optimal value of the relaxed

problem @ satisfies: i
= (-5

pehT

J*(z0,T) < max E
(zo >*yTey [

Lemma 5.

J*(20,T) < J*(20,T) < max E [Z <v — F(U)> a¢] :

yTey SehT f(v)

Proof. The first inequality is evident since the optimization problem for J*(z¢,T) is a relaxation
of that for J*(zo,T). Now, observe that the constraint defining E[py] must be tight at an optimal
solution, so that

Vg

yTey dehT v'=0

J*(w0,T) = max E [ Z vpE_g [‘%e_%(%_td’)} —/ E_ {a%,e—%(wv/ ﬂfqﬁ)} dv’]

where the notation E_4 makes explicit that an expectation is over —¢. Now, denote by W (¢), the
following quantity, marginalized over vg:

W(¢) = /U ) (U¢E¢ [agemae(rete)] - /v CEy {aabv/e_%(“v’_%)} dv’) £ (vg)dvg,

»=0 =0

11



so that

J*(x0,T) = max E {Z W((b)] . (7)

T
VY gent

Now, applying the ‘standard trick’ of interchanging integrals for the second term in the integrand
in W(¢), we have:

/ / ) Eid) |:a¢v’e_a¢ <T¢v/ _t¢):| f(v¢)dvldv¢

v =0 Jv'=0

= / E_s [%v,e% (7o, t¢)] / f(vg)dvgdo'
v vy =’

’—0
00

so that,

o F(U ) —ag(Te—t
W(¢) = /W):o <U¢ - f(Uj)) E,qg [a(z,e ( ‘i’)} f(’l)¢)d’U¢.

Substituting W (¢) in with this identity, and applying Fubini’s theorem, we have:

J*(0,T) = max E | ) ( F(%)) a¢e%(%t¢)]

U —
ey | S ? Flvg)
F (%))
< max E Vg — a
yT ey _g;; ( T fg) )
which is the result. [ ]

4.3. The Discounted Infinite Horizon Problem As An Upper Bound

As our final step for this section, we use the result of Lemma [5] in connection with a result
established by |Gallien| [2006] to relate our dynamic mechanism design benchmark to a simple
dynamic pricing problem. Recall that .J (o) denote the optimal value of the discounted, infinite
horizon dynamic pricing problem, with myopic customers and discount rate 5 > 0, i.e.

j;(:co):maxE / e Pl dN | .
mell 0

where I is the set of left continuous pricing policies, adapted to G;, satisfying m = oo if X;— = 0.
Lemma 6.
5 _ F(vg)
J5(ro) = max E 265%(@ — ——= | ae| .
p\Lo s ¢ é
y>ey Lehw f(vg)
Proof. Observe that if, on a given sample path, under the optimal policy we accept ¢, thereby

earning vy — I;((;}I)) , then we would have accepted all ¢' = (ty, vy, 04, ) such that vy > vy, since

such an acceptance would earn - -
F(oy F

vy — (ver) vy (vg)

flug) f(vg)

12



since v — ?((;))) was assumed to be non-decreasing. Consequently, by the optimality of stationary
policies, the optimal policy takes the following form:
1, if U¢2ﬁ(Xt¢_).

0, otherwise.

(¢, Xt¢>—) = {

with 7(0) £ co. Call the family of all such functions II. Consequently, we have

~Pts - F(v) = max — e Pl Vg — F(%) v 0
JEo%’éE[Z o (”¢ f(v¢)>a¢] —max €13 e E[(‘ﬁ f(v¢>)>ﬂ[¢2 (Xt“”ﬂ”

pehee | peh>

—=max E | Y e M F(R(Xy, )R (Xe,-)
7ell | pehoe

= J5(wo)
where the second inequality used the fact that

|~ (o) = F@) dv = pF ).

=p
This completes the proof. [

Combining, Lemmas |§| and || yield the final result for this section, an upper bound on J*(z¢,T)

in terms of the optimal value of a (discounted, infinite horizon) dynamic pricing problem with
myopic customers:

Lemma 7. For any 8 > 0, we have:

Proof. We have:

g [ (2

pehT
= max v — F(v)
T ASE LZ;( f(v)> ¢
= T max _ e AT [y — F(v) a
yoey . _(%;T < f(v)> 4

_ F
< E| 5 (- 70 )4
= ¢ Jj (o)

where the first inequality is Lemma |5, the second inequality follows since T > t4 for all ¢ € nT.
The final equality is Lemma [6] n
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5. A Robust Dynamic Pricing Lower Bound and The Approximation
Guarantee

Our analysis in this section will complete the proof of Theorem [1| using the upper bound on the
optimal dynamic mechanism, J*(zg,T) established in the preceding section. We will accomplish
this in the following steps:

1. First, we construct a feasible robust dynamic pricing policy that is, in effect, the optimal
policy for the discounted, infinite horizon problem, applied over a finite horizon.

2. We then prove that this policy accrues expected revenues that are within a constant factor
of the revenue optimal infinite horizon revenue.

3. Using this result along with the upper bound on the optimal dynamic mechanism proved in
Lemma [7] will yield Theorem

5.1. Infinite Horizon Dynamic Pricing

Consider the infinite horizon dynamic pricing problem introduced in previous sections. Specifically,
recall that we defined

j;(:co):maxE / e Pl dN | .
mell 0

where 7 = inf{t : Ny = z¢}, and where I1 is the set of left continuous pricing policies, adapted to
G, satisfying m = oo if Xy— = 0. We denote by {7?;;7,:} an optimal policy. From |Farias and Van Roy
[2010], we have that 7, £ 75(X¢—), where for all x > 0, 75(z) is the root of the equation

p— s = Ji(@) = Ji(@ - 1), (8)

The optimal price process enjoys the following properties:

Lemma 8. On every sample path, s, is non-decreasing in t while ﬁEtF(frgt) is mon-increasing in
t.

Proof. The first claim is Lemma 1 of [Farias and Van Roy| [2010]. For the second claim, we observe
that since J3(z) > J3(z—1), it follows from Assumptionthat 5, > v* for all t. Now, since pF(p)

is non-increasing in p on p > v* by Assumption (1} it follows that 7?2 tF (frz ;) is also non-increasing
in t. |

These properties of the price process yield the following simple result which will be crucial for
our lower bound.

Lemma 9. Let T, T’ > 0, with T > T'. We have:

AT | T AT
E /0 7T67tht S FE /0 7T67tht
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Proof. Since 7, F'(7},) is non-increasing in ¢ (as established in the preceding Lemma), we have
immediately that

AT _ AT’ B
/0 Wﬁ,tF(Wﬂ,t)dt < F/o 7T57tF(7T67t)dt.

The above inequality must also therefore hold in expectation. Now N; — [ ﬁg,t/ﬁ’(fr;t,)dt is a Gy
martingale by construction Brémaud| [1981], so that

FAT AT ~
E /0 wndN| = E| [ a3 P )t

for all T" > 0, which completes the proof. |

5.2. A Robust Dynamic Pricing Policy And Proof Of Theorem []]
Now, consider the robust dynamic pricing policy {7;} defined according to
iy = fg(Xe-)

for some 5 > 0. We observe that this is a robust dynamic pricing policy since it is evidently left
continuous and adapted to G, and further, trivially satisfies the restricted sub-martingale constraint
since ﬁ;(a?) is non-increasing in x. We show that the revenue obtained under this policy (over the
finite horizon T'), is lower bounded by a function of the optimal discounted infinite horizon revenue
(when the discount rate is 3):

Lemma 10.
A e_BT N
Jj(o) < <1 + 5T> J* (@0, T).

Proof. Denote by X an exponential random variable with rate 5 that is independent of the arrival
process and customer types. Then,

R 7 TAX
J5(wo) =E [ / e‘BtﬁZ}’tht] =E [ / frﬂ,tht]
0 0

where the equality follows from Fubini’s theorem. Moreover, since 7ty as defined prior to the
statement of the Lemma is a feasible robust dynamic pricing policy,

TNT
E /0 75N

But applying Lemma [J] to every realization of X and taking expectations yields

FAX X #AT
E/O 7% 4dN, <E{max{l,THE/0 % 4dN | -

X —AT
E {max{l, T}:| =1 + eﬁiT,

the result follows. |

< j*($0,T)

Since
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We can now complete our proof of Theorem [l Two inequalities established in Lemma [7] and

Lemma [10] yield
1

>
- eﬁT-l—l/ﬁTJ

for any 8 > 0. Noting that Jy. .+« (z0,T) = J*(20,T), and taking 8 = 1/1.42T in the preceding
inequality yields Theorem

J*(20,T) *(x0,T)

6. Numerical Experiments

In the previous section we established a uniform performance lower bound on the robust pricing
policy 7*. In fact, we established this bound for the policy 7 taking 5 =1 /1.42T. This section
will numerically investigate the performance of 7, where we will be allowed to tune 5. Our ob-
jective is two fold. First, we aim to understand numerically how well 7% performs. Second, we
would like to understand the risk of mis-specification in an optimal dynamic mechanism, and to
that end will explore explore the performance loss incurred if the seller misestimates the distri-
bution of customers’ time discount factor @ and monitoring cost 6, and implements the optimal
dynamic mechanism under those mis-specified parameters. Throughout this section, we assume
that customers’ valuations are exponentially distributed with parameter 1; i.e., F(v) =1 — e " for
allv e Ry.

First, we investigate the performance of 5. Table [I| reports a lower bound on relative perfor-
mance. Specifically, the lower bound reported is:

max Jrx (o, T
LB({L‘(),T N BEB ﬂ'ﬁ( 0 )
JUB({L'(),T)

where

JYB(20,T) = max E Z (U - F(’u)) ag

yTey SehT f(v)

is an upper bound on J*(zo,T) by Lemma We selected the optimal 8 from among a set of
discount factors between 0.01 and 100, examined in increments of 0.01.
We make the following two key observations from Table [T}

1. Relative Performance: For a wide range of inventory relative scarcity levels (zo/AT varies
from 0.1 to 1), 7?;* yields revenues which are at least 79% of the optimal revenue, and in most
cases, more than 90%.

2. Recall that under ﬁ'g, customers’ time discount factors and monitoring costs impact neither the
policy nor customers’ behavior: every customer behaves myopically, and the seller’s revenue
is the same as her revenue yielded in the setting in which all customers are myopic. Therefore,
the results in Table [I] are robust, in that they hold under any type distribution of customers’
time discount factors and monitoring costs.

Next, we investigate the robustness (or lack thereof) of the optimal mechanism to mis-specification
of discount factor and monitoring cost. We analyze the setting in which all customers have the
same time discount factor o and monitoring cost 6, but the seller incorrectly believes that all cus-
tomers are effectively infinitely patent and do not incur such costs (o« = 0 and 6 = 0). The optimal
mechanism under the seller’s belief is simply to conduct a static revenue maximizing auction at the
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Table 1: A lower bound on relative optimality (i.e., LB(z,T)).

i) ﬂ* Jﬁ—g* (:L’o, T) LB(xQ, T)
110.12 1.49 0.79
210.15 2.36 0.84
31 0.18 291 0.89
41 0.22 3.26 0.93
5 10.28 3.47 0.96
6] 0.34 3.58 0.98
7 10.40 3.64 0.99
81 0.59 3.66 1.00
910.77 3.68 1.00

10 | 0.77 3.68 1.00

Note. The parameters are A =1, T' = 10.

end of the horizon, whereas the best response from buyers is simply to report their appropriately
discounted value at the end of the horizon (or not participate and leave the system at t, if this
quantity turns out to be negative). Denote the revenue yielded under the misspecified ‘optimal’
mechanism by J* ,(xo,7"). In this experiment, we allow a and 6 to vary in a wide range (from 0.01
to 1). To understand the cost of the mis-specification of o and 6, we compare the revenue under
this mis-specified policy against that under the robust dynamic pricing policy studied in the last

experiment, and report the quantity:

I o(x0, T)

UB,p & )
o0 maX,BEBJﬁE(me)

Table [2| reports the results which are quite stark: In essentially all cases, the mis-specified ‘optimal’
mechanism performed worse than the robust dynamic pricing policy — in many cases substantially
worse.

Table 2: Performance loss for an optimal but mis-specified mechanism (i.e., UB, g).

UBa,H

zo\(a,0) | (01,.01) (01,1) (0L,1) (.1,01) (1,1) (1,1) (1,001) (1,1) (L1
1 1.15 0.90 0.22 0.63 049  0.17 0.09 0.09 0.06
2 1.05 0.77 0.15 0.52 0.38 0.11 0.06 0.06 0.04
3 0.99 0.69 0.12 0.45 0.32 0.09 0.05 0.05 0.03
4 0.94 0.64 0.11 0.42 0.29 0.08 0.05 0.04 0.03
) 0.90 0.60 0.10 0.39 0.28 0.08 0.04 0.04 0.03
6 0.88 0.58 0.10 0.38 0.26 0.07 0.04 0.04 0.03
7 0.87 0.57 0.10 0.37 0.26 0.07 0.04 0.04 0.03
8 0.86 0.57 0.10 0.37 0.26  0.07 0.04 0.04 0.03
9 0.86 0.57 0.10 0.37 0.26 0.07 0.04 0.04 0.03
10 0.86 0.57 0.10 0.37 0.26  0.07 0.04 0.04 0.03

Note. The parameters are A =1, T = 10.
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In conclusion, our numerical experiments suggest the following conclusions:

1. The robust dynamic pricing policy offers excellent performance relative to the optimal dy-
namic mechanism. This relative performance appears to far exceed the quality suggested by
our uniform lower bound.

2. The performance loss incurred due to mis-specification of an optimal mechanism might easily
exceed that incurred due to the use of a sub-optimal (but robust) mechanism such as our
robust dynamic pricing policy.

7. Concluding Remarks

We have focused on a rich class of revenue management models. The class of models is rich in that
we allowed for heterogeneity in customer discount factors and monitoring costs; these were private
information in contrast to problems for which the optimal mechanism is known. We proposed a
class of pricing mechanisms for this set of models inspired by two very practical requirements:

1. Pricing mechanisms are the mechanism of choice in RM — departures from such mechanism
in mainstream applications are few and far-between.

2. It is unclear that calibrating a rich utility model for customers — describing how they discount
or their monitoring costs — is possible given the naturally censored nature of the data available
for such a task.

In the face of these requirements we have demonstrated a policy that is easy to compute and satisfies
a constant factor guarantee with respect to the optimal mechanism. Computational experiments
suggest that this policy is, for all intents, near optimal.

In addition to the positive results described above, we have proposed a class of dynamic opti-
mization problems for which we do not find the optimal policy. Finding such an optimal policy would
seem like an interesting task for future work — as opposed to solving a simple dynamic optimization
problem, one must solve a problem with constraints on the trajectory of prices. A comprehensive
dynamic programming characterization for this task does not appear obvious; nonetheless, there is
hope to solve this problem since we conjecture that the constraints on the trajectory of prices can
be enforced by ‘local’ constraints.
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