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Abstract

We study the calculation of exact p-values for a large class of non-

sharp null hypotheses about treatment effects in a setting with data
from experiments involving members of a single connected network.

The class includes null hypotheses that limit the effect of one unit’s
treatment status on another according to the distance between units;

for example, the hypothesis might specify that the treatment status of
immediate neighbors has no effect, or that units more than two edges
away have no effect. We also consider hypotheses concerning the valid-

ity of sparsification of a network (for example based on the strength of
ties) and hypotheses restricting heterogeneity in peer effects (so that,

for example, only the number or fraction treated among neighboring
units matters). Our general approach is to define an artificial experi-

ment, such that the null hypothesis that was not sharp for the original
experiment is sharp for the artificial experiment, and such that the

randomization analysis for the artificial experiment is validated by the
design of the original experiment.
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1 Introduction

This paper studies the calculation of exact p-values for a large class of non-

sharp null hypotheses about treatment effects in a setting with data from

experiments involving members of a single connected network. For example,

researchers might randomly assign some members, or clusters of members, of

a social network to a treatment such as receiving information. We consider an

environment where the following are observed: (i) the vector of treatments for

all individuals in the network; (ii) the realized outcomes for all of the individ-

uals (or possibly, a only a subset); (iii) all of the edges connecting individuals

(where edges may potentially be categorized, for example into strong or weak

edges); (iv) possibly, fixed characteristics for these individuals. Because the

data come from a single network, with all units potentially connected and thus

all units potentially affected by the full vector of treatments, establishing large

sample approximations to distributions of statistics is challenging. This moti-

vates our focus on the calculation of exact p-values based on the randomization

distribution (Fisher, 1925). The validity of the p-value calculations does not

depend on the network structure or the sample size. Although we focus on

the case of an explicit network where edges at most belong to a small number

of categories, the general methods we develop can be applied to more gen-

eral settings with “interference” and some measure of distance between units,

where the researcher is interested in testing hypotheses about the nature of

interference and how it relates to distance.

This paper considers a wide class of hypotheses about interference, some-

times caused by social interactions between units, where three categories of

null hypotheses serve as leading examples. In all three, the hypothesis re-

stricts the effects of the treatment of other units on a particular unit, while

allowing for an individual’s own treatment status to have a direct effect. The

first category specifies that the treatment status of units with network dis-

tance weakly greater than k do not matter; when k = 1, this requires that no
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other units’ treatments have an impact, when k = 2 only immediate neigh-

bors’ treatments matter, while when k = 3 only neighbors as well neighbors

of neighbors matter. These types of hypotheses have been considered in em-

pirical applications — Bond et al. (2012) claim to find that “messages not

only influenced the users who received them, but also the users’ friends, and

friends of friends” (p. 295) — as well as in theoretical work, with many mod-

els a priori constraining spillovers in networks by ruling out effects of friends

of friends (e.g., Toulis and Kao, 2013). The second category of hypotheses

concerns the comparison between different categories of edges: e.g., under the

null, only the treatments of neighbors with edges in one category matter. For

example, Goldenberg, Zheng, Fienberg and Airoldi (2009) discuss a network

defined through email interactions between Enron employees, with edges de-

fined by the volume of email correspondence exceeding a threshold. Similarly,

in analyses of large social networks researchers often sparsify the network by

trimming edges between individuals with few interactions (see Thomas and

Blitzstein, 2011, Bond et al., 2012, and Eckles, Karrer, and Ugander, 2014).

One can test whether such sparsification is appropriate by testing the hypothe-

sis that there are no spillovers between individuals not connected according to

one definition of edges, but who would be connected under a looser definition

of edges. The third category of hypotheses concerns restrictions on hetero-

geneity in the impact of neighbors. For example, many models assume that

only the number or fraction of treated neighbors matters for an individual’s

outcome, not which of their neighbors were treated. An alternative of interest

might be that neighbors with more connections matter more.

There is a growing literature focusing on testing and inference in settings

with general interference between units, both theoretical and empirical.1 How-

1See Manski (1993, 2013), Christakis and Fowler (2007), Rosenbaum (2007), Kolaczyk
(2009), Aronow (2012), Bond, Fariss, Jones, Kramer, Marlow, and Fowler (2012), Bowers,
Fredrickson, and Panagopoulos (2012), Hudgens and Halloran (2012), Ugander, Karrer,
Backstrom, and Kleinberg (2012), Tchetgen and VanderWeele (2012), Goldsmith-Pinkham
and Imbens (2013), Liu and Hudgens (2013), Aronow and Samii (2014), Choi (2014), Eckles,
Karrer, and Ugander (2014), Ogburn and VanderWeele (2014) and van der Laan (2014).
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ever, there is no available general asymptotic theory that handles hypothesis

tests about these categories of null hypotheses, and the nascent literature on

estimation in network settings requires strong restrictions on the network size

and structure.2 In contrast, our primary goal is to test hypotheses about the

impact of treatments in a network setting, without restricting the network.

The main contribution of this paper is to expand the applicability of the

“randomization inference” approach to calculating exact p-values, originally

developed by Fisher (1925) and Rosenbaum (1984), to our hypotheses of in-

terest.3 In the randomization inference approach, the distribution of a test

statistic is generated by the assignment mechanism, keeping fixed the poten-

tial outcomes and characteristics of the units. This approach only applies

directly to “sharp” null hypotheses, whereby the null hypothesis allows the

analyst to infer the outcomes of individuals under alternative (counterfactual)

treatment vectors. For example, the null hypothesis that the treatment has

no effect whatsoever is sharp, because an individual’s outcome is known (and

equal to his realized outcome) under all possible treatment vectors. Given

this, it is possible to simulate draws from the random assignment of treatment

vectors, and calculate the test statistic of interest under each simulated draw

(in this example, a natural test statistic is the average difference in outcomes

between treated and control individuals). The distribution of these simulated

test statistics converges to the true distribution of the test statistic as the num-

ber of draws grows, and this true distribution is exact for the given network

size and structure rather than a large sample approximation. Thus, exact

2A small literature has emerged that posits a specific functional form model of network
formation (and thus the process for how the network changes as the size of the network
grows), and then proposes an approach for estimating the parameters of the network forma-
tion process (as opposed to parameters describing treatment effects). In a leading example,
Chadraskhar and Jackson (2014) establish consistency and asymptotic normality of param-
eter estimates for network formation under certain conditions (e.g. network is sufficiently
sparse for a class of models they call subgraph generation models). See also Holland and
Leinhard (1981), Kolaczyk (2009), Manski (1993, 2013), Goldsmith-Pinkham and Imbens
(2013), and Aronow and Samii (2014).

3For applications of randomization inference outside the network setting, see Basu (1980),
Rubin (1980), Rosenbaum (1995, 2002, 2007, 2009), Lehmann and Romano (2005), Imbens
and Rubin (2015), and Canay, Romano, and Shaikh (2015).
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p-values for the null hypothesis of no treatment effects can be derived in a

network setting using a conventional application of randomization inference.

In contrast, the three leading categories of null hypotheses outlined above

are not sharp because under the null hypotheses we cannot infer the exact

values for all outcomes for all possible values of the treatment; since all of

the categories allow the treatment to have a direct effect on individuals, their

outcomes cannot be inferred under alternative treatment assignments. In this

paper we present a novel approach to dealing with such non-sharp null hy-

potheses. Closest in spirit to this paper, Aronow (2012) adapts the random-

ization inference approach to consider the specific non-sharp null hypothesis

that only an individual’s own treatment and that of his immediate neighbors

matter, corresponding to the first category described above with k = 1. Here,

we provide a general framework that applies to a much larger class of non-sharp

null hypotheses.

At an abstract level we address the problem that the null hypothesis of

interest is not sharp by introducing the notion of an artificial experiment that

differs from the experiment that was actually carried out. This artificial ex-

periment will be chosen so that the randomization analysis we propose for it

is validated by the design of the experiment that was actually carried out, and

at the same time the null hypothesis of interest that was not sharp for the

actual experiment, is sharp for the artificial experiment. In simple settings

this idea of analyzing an experiment that differs from the experiment that was

actually carried out is often used implicitly. Suppose we have an experiment

where for each unit in a finite population a coin is flipped to determine the

treatment assignment for that unit. Given the data, we may analyze the data

as if the total number of treated units is fixed, whereas in the actual exper-

iment the number of treated units is random. Analyzing the experiment as

if the number of treated units is fixed is valid because we can think of the

original experiment being a sequential one where in the first stage the number

of treated units is determined by a sequence of coin tosses, and in the second
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stage the the fixed number of treated units is selected from the population

at random. The artificial experiment is now simply the second stage of the

original experiment, conditional on the first stage. In this case there is no loss

of information because the number of treated units is ancillary.4

In the settings we analyze in the current paper we also decompose the orig-

inal experiment into two stages, and we analyze the experiment performed in

the second stage conditional on the first stage randomization. In an additional

modification to the original experiment, we focus on a limited set of test statis-

tics, namely those that depend on outcomes only for a subset of the original

population, which we call the “focal units.” These changes to the original

experiment lead to an artificial experiment where the null hypothesis that is

not sharp in the original experiment is sharp for the artificial experiment, and

where randomization inference is validated by the original experiment. The

choice of the focal units on whose outcomes the statistic may depend and the

decomposition of the original experiment into two stages are intricately linked

to achieve the goal of defining an experiment with a sharp null hypothesis

amenable to randomization inference.

The choice of focal units will matter for the power of the tests, but for any

choice of focal units our approach will lead to exact p-values. Given the choice

of focal units, we derive the unique partition of the space of assignments into

subsets such that the null hypothesis implies that the outcomes for all focal

units must be constant within these subsets. Then the original experiment is

re-interpreted as a sequential experiment where in the first stage the subset

into which the assignment falls is determined, and in the second stage the

assignment is drawn randomly from within the subset (with the likelihood of

each assignment implied by the original experiment). The analysis of our arti-

ficial experiment then focuses on a test statistic constructed from outcomes for

the subpopulation of focal units and relies on the second stage randomization,

4This is similar in spirit to Rosenbaum (1984), who carries out randomization tests
conditional on covariates or functions thereof such as the propensity score.
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conditional on the randomization in the first stage, to construct the p-value

for the test statistic.

With our framework for testing in place, it is then possible to compare

the statistical power of alternative test statistics. We do this for our three

categories of hypotheses, and we propose statistics that will be optimal for

particular models of network interactions. This in turn lays the groundwork

for future research about optimal experimental design when the goal is to test

a given hypothesis or set of hypotheses.

The remainder of the paper is organized as follows. In the next section we

introduce the general set up and notation. In Section 3 we discuss a number

of the hypotheses that we consider. This is not an exhaustive list, but it

contains what we view as leading examples of the hypotheses researchers may

wish to consider in network settings. Section 4 contains a general discussion

of the notion of artificial experiments that lies at the heart of our approach.

In the next four sections, Sections 5, 6, 7, and 8 we discuss in detail how the

approach would be implemented for the main categories of null hypotheses we

consider. These details include discussions of the decisions researchers need to

make regarding the choice of focal units and test statistics. In Section 9 we

present the results from some simulations to evaluate the statistical power of

the tests for alternative statistics. Section 10 concludes.

2 Set Up

We have information on a population P of N individuals, with i indexing the

individuals. We also have a set of treatments W. In most of our examples

each individual is either exposed to an intervention of not, although that is

not necessary for some of the results. In that case for individual i the exposure

is denoted by Wi ∈ {0, 1}, with W the N -component vector of exposures with

ith component equal to Wi, and W = {0, 1}N . There is mapping Y : W 7→ YN

of potential outcomes, with the ith element of this mapping written as Yi :

W 7→ Y, where Y ⊂ R is the set of values for the potential outcomes. We refer
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to Yi(w) as a potential outcome, with the corresponding vector of potential

outcomes denoted by Y(w). For the realized value of the assignment W we

observe the corresponding vector of potential outcomes,

Yobs = Y(W).

The treatment exposure W is assigned through an assignment mechanism

p : W 7→ [0, 1], where p(w) is the probability of the assignment W taking on

the value w, p(w) = pr(W = w), satisfying p(w) ≥ 0 and
∑

w∈W
p(w) = 1.

The units are connected through a undirected network that is observed

by the researcher. The symmetric N × N adjacency matrix G measures the

network, with the (i, j)th element of the adjacency matrix, denoted by Gij,

equal to one if there is an edge between units i and j, and zero otherwise. By

convention all diagonal elements Gii are equal to zero. We will call individuals

i and j neighbors or peers if Gij = 1. The network is taken here to be a fixed

characteristic of the population. Let the distance d(i, j) between units i and

j be length of the shortest path between i and j, and equal to ∞ if there

is no path between i and j. Thus d(i, i) = 0, and d(i, j) = 1 if i 6= j and

Gij = 1, d(i, j) = 2 if Gij = 0 if i 6= j but there is at least one unit k such that

Gik = 1 and Gkj = 1, et cetera. A special case is that with non-overlapping

peer groups, considered, for example, in Manski (1993, 2013), Hudgens and

Halloran (2008), and Carrell, Sacerdote and West (2013), where for all triples

(i, j, k), Gij = 1 and Gjk = 1 implies Gik = 1. We allow for such settings, but

do not require them. Let G be the space of possible adjacency matrices.

For each individual there is also a vector of attributes Xi, with the matrix

of attributes denoted by X. Both the network and the attributes are viewed as

pretreatment variables, not affected by the treatment. We focus on the case

where we observe the quadruple (Yobs,W,G,X). More generally we may

observe outcomes for a subset of the population. The first two components

of this quadruple, Yobs and W are random because of the randomization, the

last two, G and X, as well as the potential outcome function Y(·) are taken

as fixed.
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Let us think of an experiment for causal effects, denoted by E, being defined

by a combination of the set W of possible values for the treatment W; the

population P of units characterized by their potential outcomes, their network

and their fixed attributes; and a distribution for the treatment assignment,

p : W 7→ [0, 1], so that E = (W, P, p(·)).

3 Hypotheses

In this section we discuss the three general classes of null hypotheses we con-

sider, as well as some specific examples, and briefly discuss how p-values are

calculated given a sharp null hypotheses. The classes of hypotheses are not ex-

haustive, but they include many of the hypotheses that we view as interesting

in settings with networks and are suggestive of the generality of the approach.

3.1 Some General Concepts

Let us start by formally defining several concepts: (i) a null hypothesis on

treatment effects; (ii) whether a null hypothesis on treatment effects is sharp;

(iii) level sets, that is, sets of assignments that result in invariant outcomes for

a given individual.

Definition 1 (A Null Hypothesis on Treatment Effects) A null hy-

pothesis on treatment effects H0 is a set of restrictions on the potential outcome

function Y : W 7→ YN .

These restrictions can include the absence of any treatment effects, e.g., Yi(w) =

Yi(w
′) for all w, w′ and all i. They can also include more limited restrictions

on the potential outcome functions.

Definition 2 (A Sharp Null Hypothesis on Treatment Effects) A

null hypothesis on treatment effects H0 is sharp for (W, P) if, given the value

of (w,Y(w)) for a single assignment w ∈ W, under H0 we can infer the value

of Y(w′) for any other w′ ∈ W.
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Now consider a test statistic, T : YN × W 7→ R. For a given experiment

E = (W, P, p(·)) the test statistic T (Y(W),W) is random only through its

dependence on the treatment (directly, and indirectly through the dependence

of the realized outcome on the treatment). We can infer the distribution of

the test statistic for a sharp null hypothesis. The p-value for the statistic

under the null hypothesis is then the probability that the realization of the

test statistic is at least as extreme as the observed value:

p-value = pr
(

|T (Y(W),W)| ≥ |T (Y(Wobs),Wobs)|
)

.

In most cases we do not have available a closed form expression to calculate

this p-value exactly. However, we can approximate it arbitrarily accurately by

taking B independent draws Wb from the distribution of the assignment, p(·),
and calculating the proportion of these B draws that would have led to value

for the statistic larger than or equal to the observed value of the statistic:

p̂-value =
1

B

B
∑

b=1

(

|T (Wb,Y(Wb))| ≥ |T (Wobs,Y(Wobs))|
)

,

for some large value of B. This estimate is unbiased for the true p-value, and

its variance is bounded by 1/(4B), which can be made arbitrarily small by

choosing B large enough.

In some cases the statistic does not have a symmetric distribution under

the null, and we may look at twice the minimum of the tail probabilities,

p̂-value = 2 × min
{

pr
(

T (Y(W),W) ≥ T (Y(Wobs),Wobs)
)

,

pr
(

T (Y(W),W) ≤ T (Y(Wobs),Wobs)
)}

.

Most of the null hypotheses we consider in this paper are not sharp. How-

ever, they imply that only a limited set of changes in the treatment actually

change outcomes. To capture this, it is useful to introduce the notion of level

sets, that is, sets of assignments with zero treatment effects.
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Definition 3 (Level Sets) Given a null hypothesis H0, for each individual

i and for each treatment level w, define the level set V(i,w, H0) as follows:

V(i,w, H0) = {w′ ∈ W|Yi(w
′) = Yi(w) given H0}.

Thus, the level set for unit i given treatment vector w is the set of treatments

w′ such that under the null hypothesis, the potential outcome for unit i is

identical to the potential outcome given treatment w.5 (More generally we

could define this set as the set of treatments where we can infer the potential

outcomes, but outside the case where these potential outcomes are equal there

are few cases of interest so we do not include that level of generality.)

These level sets play an important role in our approach, and it is useful

to see what form they can take. For the sharp null hypothesis that there is

no treatment effect whatsoever, V(i,w, H0) is equal to W for all i and all

w. With non-sharp null hypotheses, however, the set V(i,w, H0) may vary,

both by individual and by treatment. For example, in the setting where W =

{0, 1}N , if the null hypothesis allows for a direct effect of an individual’s own

treatment, but not for any effects of other individuals’ treatment status, the set

V(i,w, H0) equals {w′ ∈ W|w′
i = wi}, so that for each individual there are two

possible values for the set, depending on the individual’s own treatment status.

At the other extreme, if the null hypothesis does not impose any restrictions,

then level sets consist of singletons: V(i,w, H0) = {w}. Because within a level

set the treatment effect is zero, we can in principle do randomization inference

on treatment effects for that individual.

It will play an important role later that in general for each unit i these level

sets define a partition of the assignment space W into J level sets W1, . . . , WJ

such that for all w ∈ W, V(i,w, H0) ∈ {W1, . . . , WJ}. If there are no restric-

tions at all, the elements of this partition consist of singletons, but in many

5Manski and Tamer (2002) make use of level sets for non-network data. Related work
on networks makes use of some concepts directly related to level sets. Manski (2013) and
Eckles, Karrer, and Ugander (2014) work with effective treatments, where each effective
treatment corresponds to a level set, one of which is the observed level set. Aronow and
Samii (2013) and Ugander et al. (2013) work with exposure models, which uniquely specify
effective treatments.
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interesting cases the number of elements of this partition is small. For exam-

ple, for the null hypothesis that there are no spillovers, the partition contains

two sets.

3.2 Null Hypotheses on Spillovers

We are interested in testing for the effect of exposure to the treatment for some

individuals on the outcomes for others. We refer to such effects as “spillovers,”

“interactions” or “peer effects.” In the case where they are limited to the effects

of direct neighbors, the peer effects we study are what Manski (1993) calls

“exogenous peer effects.”

First we consider the following three specific hypotheses that allow for a

range of spillovers. Recall that in general the hypotheses we consider are

restrictions on the mapping Y : W 7→ YN .

Hypothesis 1 (No Treatment Effects) Yi(w) = Yi(w
′) for all i, and

all pairs of assignments w,w′ ∈ W.

This is a sharp null hypothesis in the original experiment, because for all

w′ ∈ W the potential outcomes Yi(w
′) can be inferred from the observed

treatment and observed outcomes (w,Y(w)) under the null hypothesis. Thus,

the calculation of Fisher exact p-values is conceptually straightforward.

Next, we consider a weaker null hypothesis that allows for effects of the own

treatment on the own outcome, but not of the own treatment on a neighbor’s

outcome:

Hypothesis 2 (No Spillovers) Yi(w) = Yi(w
′) for all i, and all pairs of

assignment vectors w,w′ ∈ W such that wi = w′
i.

This null hypothesis is the one considered by Aronow (2012). It is not sharp,

because it does not rule out that exposure to the treatment affects the outcome

for the unit exposed. Manski (2013) refers to settings where this hypothesis

holds as settings with “individualistic treatment response.” This null hypothe-

sis is implied by the stable-unit-treatment-value-assumption (SUTVA, Rubin,
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1980). Under this assumption we can simplify the notation to the conventional

one in the causal effect literature where the potential functions are a function

of the own treatment only, Yi(w) = Yi(wi). Because we consider more general

cases, we continue to write the potential outcomes as a function of the full

N -component vector w.

We can go beyond hypotheses ruling out all spillover effects, and allow

for first order, but not higher order, spillover effects. That is, changing the

treatment for neighbors may affect one’s outcome, but changing the treatment

for neighbors-of-neighbors does not change one’s outcome.

Hypothesis 3 (No Second and Higher-Order Spillovers) Yi(w) =

Yi(w
′) for all i, and for all pairs of assignment vectors w,w′ ∈ W such that

wj = w′
j for all units j such that d(i, j) < 2.

Consider the following example where testing for higher order spillovers

may be interesting. Suppose one can observe one’s own treatment as well as

the treatment of one’s network neighbors, for example because of face-to-face

interactions. One can also observe one’s own outcome, but not the outcome

for neighbors. It may well be that in such cases there are spillover effects from

neighbors, but no spillover effects from neighbors-of-neighbors or individuals

even more distant in the network. Testing for higher order spillover effects

could then be interpreted as testing whether the network captures all the

connections.

Some theoretical models (e.g. Toulis and Kao, 2013) model spillover ef-

fects in way that rules out higher order spillover effects. At the same time

some researchers claim to find higher order spillovers effects in empirical work

(e.g., Bond et al., 2012). Our tests are the first exact tests available for such

hypotheses.

We can embed these three hypotheses in a more general one that restricts

k-th order spillover effects for arbitrary k.
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Hypothesis 4 (No k-th and Higher Order Spillovers) For unit i, for

i = 1, . . . , N , Yi(w) = Yi(w
′) for all pairs of assignment vectors w,w′ ∈ W

such that wj = w′
j for all units j such that d(i, j) < k.

(Here we interpret the set of pairs w and w′ such that wi = w′
i for i ∈ ∅

as the set of all w and w′.) The assumption of no effects (Hypothesis 4 with

k = 0) is equivalent to Hypothesis 1, and the assumption of no first and higher

order peer effects (Hypothesis 4 with k = 1) is equivalent to Hypothesis 2, and

the Hypothesis of no second and higher order peer effects (Assumption 4 with

k = 2) is equivalent to Hypothesis 5.

We can also test the hypothesis that there are no direct effects of the own

treatment, while allowing for indirect effects from neighbors.

Hypothesis 5 (No Direct Effects) Yi(w) = Yi(w
′) for all i, and for all

pairs of assignment vectors w,w′ ∈ W such that wj = w′
j for all units j such

that d(i, j) = 1.

The most interesting version of this null hypothesis might be to test whether

the direct effect of the treatment is zero for individuals whose neighbors are

all in the control group. This would imply that there could only be a direct

effect of the treatment for individuals with at least some treated neighbors.

This may be natural in cases where the treatment is some service that requires

interacting with other individuals who have the service.

3.3 Null Hypotheses on Sparsification and Competing

Networks

In the second class of null hypotheses we start with two networks, correspond-

ing to adjacency matrices G1 and G2. In some cases of interest these may be

nested networks, with G1,ij ≤ G2,ij so that G1 is a sparsified version of G2.

Suppose we ask individuals whom they regularly interact with, as well whom

they have ever interacted with. The first network would define edges using

the first question, and the second network would use the second question. For

[13]



example, researchers have used data on emails between employees at Enron to

define a network in terms of a threshold for email volume (Goldenberg, Zheng,

Fienberg and Airoldi, 2009).

Alternatively the two networks could correspond to distinct measures of

interactions without necessarily being nested, so that for some pairs (i, j), we

have G1,ij > G2,ij whereas for other pairs (i′, j′), we have G1,i′j′ < G2,i′j′ . For

example, one network definition may be based on email interactions, where

another network definition is based on instant messaging interactions, or face-

to-face interactions.

We consider the null hypothesis that there is no effect on unit i of the

exposure of unit j if i and j are neighbors in the second network G2, while

allowing for effects on the outcome for unit i of exposure for units j to whom

unit i is a neighbor in the first network G1.

Hypothesis 6 Yi(w) = Yi(w
′) for all i, and for all pairs of assignment vectors

w,w′ ∈ W such that wj = w′
j for all units j such that G1,ij = 1.

3.4 Null Hypotheses on Peer Effect Heterogeneity

Many models of peer effects assume not only that only direct neighbors can

influence an individual’s outcomes, but also that for any individual it is only

the number of treated neighbors that matter, not which of their neighbors got

treated. In other words, if we take an individual i with two neighbors, j and

j′, the outcome for individual i given assignment w with (wj = 0,wj′ = 1)

is the same as the outcome given assignment w′ with (w′
j = 1,w′

j′ = 0).

Such hypotheses are maintained in many structural models of peer effects, for

example the linear-in-means models considered in Manski (1993, 2013).

Formally:

Hypothesis 7 (No Peer Effect Heterogeneity) Yi(w) = Yi(w
′) for all

i, and for all pairs of assignment vectors w,w′ ∈ W such that
∑N

j=1 wj ·Gij =
∑N

j=1 w′
j · Gij .
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An interesting alternative hypothesis could be that in terms of their effect on

outcomes for individual i, high-degree neighbors of i are more or less influential

than low-degree neighbors of i. This hypothesis implies no second and higher

order peer effects, but it is stronger than that. It restricts the range of first

order peer effects that is allowed.

A related hypothesis implies that all that matters is that at least one

neighbor is exposed to the treatment, and that treating additional neighbors

does not affect an individual’s outcome.

Hypothesis 8 (Threshold Peer Effects) Yi(w) = Yi(w
′) for all i, and

for all pairs of assignment vectors w,w′ ∈ W such that 1
{

∑N
j=1 wj · Gij > 0

}

=

1
{

∑N
j=1 w′

j ·Gij > 0
}

.

Here an interesting alternative hypothesis could be the number of treated

neighbors matters.

4 Randomization-based Exact P-values with

Non-sharp Null Hypotheses: Artificial Ex-

periments

This section contains the main conceptual contribution of the paper. We

describe at an abstract level our approach to the problem of non-sharp null

hypotheses. This solution is based on analyzing an artificial experiment that

differs from the experiment actually conducted. The artificial experiment is

chosen to satisfy two conditions. First, it is chosen so that the original null

hypothesis, which was not sharp for the original experiment, is sharp for the

artificial experiment, and second, it is chosen so that the randomization-based

analysis of the artificial experiment is validated by the design of the original

experiment.

We start with an experiment E, consisting of a set of values W for the

assignment W, a population P with N units, and an assignment mechanism

p : W 7→ [0, 1]. Although in our applications the set W has the structure
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W = {0, 1}N , this need not be the case in general. In addition we have a null

hypothesis H0 that places restrictions on the function Y : W 7→ YN . Instead

of testing H0 with the data from this experiment using the randomization

distribution implied by p(·), we will analyze a different, artificial, experiment,

for which the randomization-based analysis is validated by the design of the

original experiment. Let the artificial experiment be denoted by E ′. The

difference between the artificial experiment and the original experiment has

three components. Only one is a choice of the researcher; the remaining two

follow from the combination of that choice, the original experiment, and the

null hypothesis of interest.

In general test statistics are functions T : YN × W × XN × G 7→ R, which

are evaluated at (Y(W),W,X,G). The first step is to restrict the population

whose outcomes the test statistic is allowed to vary with. We denote this

subpopulation by PF , and refer to the individuals in this subpopulation as the

focal units, with Fi an indicator that is equal to one for focal units and zero

otherwise. In the special case where the null hypothesis is that of no spillovers

at all, the focal subpopulation corresponds to the subpopulation of fixed units

in Aronow (2012), who refers to its complement as the variant units. However,

because in our approach the artificial experiment may also need to hold fixed

the treatment assignment for some units outside the subpopulation of what

Aronow calls the fixed subpopulation, we use a different terminology. At this

point the choice of focal subpopulation is arbitrary. Its choice does not affect

the validity of the resulting p-values, but as we shall discuss below, it has

a major impact on the power of the test. Let NF be the cardinality of the

set PF , let YF (w) denote the NF -vector of potential outcomes for the focal

units for any treatment w, and let Yobs
F = YF (W) be the vector of realized

outcomes for these units given the actual assignment W. The selection of

this subpopulation can depend generally on the fixed characteristics of the

population X, and the network G. It cannot depend on the assignment W

either directly, or indirectly through dependence on the realized outcome Yobs.
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We now consider test statistics T : YNF × W × XN × G 7→ R, evaluated at

(YF (W),W,X,G).

Given the focal subpopulation PF and the null hypothesis H0, define the

set of subsets of W,

S = ∪w∈W

{

∩i∈PF
V(i,w, H0)

}

.

This set plays a key role in our approach. An important property is that it is

a partition of W.

Proposition 4.1 (Partition of the Assignment Space) S is a partition

of W.

Proof: Because w ∈ ∩i∈PF
V(i,w, H0), it immediately follows that ∪V∈SV =

W. Thus the remaining property to be established is that either (∩i∈PF
V(i,w, H0))∩

(∩i∈PF
V(i,w′, H0)) = ∅ or ∩i∈PF

V(i,w, H0) = ∩i∈PF
V(i,w′, H0). If (∩i∈PF

V(i,w, H0))∩
(∩i∈PF

V(i,w′, H0)) is not equal to the empty set, there must be a w′′ ∈
V(i,w, H0) and w′′ ∈ V(i,w′, H0). Then

YF (w′′) = YF (w′) = YF (w). (4.1)

Hence if there is another element w′′′ ∈ V(i,w′, H0), it must be the case that

YF (w′′′) = YF (w′).

By (4.1) this is equal to YF (w′′), and also be (4.1) this is equal to YF (w).

Hence it must be the case that

YF (w′′′) = YF (w′′) = YF (w′) = YF (w),

and w′′′ ∈ V(i,w, H0). Therefore ∩i∈PF
V(i,w, H0) = ∩i∈PF

V(i,w′, H0), which

finishes the proof. �.

The third component of the artificial experiment consists of a new assign-

ment mechanism p′ : W 7→ [0, 1]. To define this third component we decompose

the original experiment into a stratified experiment. Given the partition S, de-

fine the stratum indicator S : W 7→ {1, . . . , J}, so that the stratum is S(w) = j
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if w ∈ Wj. Now we can think of the original experiment E as a stratified ex-

periment where we first draw the stratum S, with pr(S = j) = pr(W ∈ Wj),

followed by the second stage where we draw W conditional on S, with

p′(w) = pr(W = w|S = j) =

{

p(w)
P

w
′∈Wj

p(w′)
, if pr(S = j) > 0,w ∈ WS,

0 otherwise.

Now we propose to analyze the artificial experiment E ′ = (WS, PF , p′(·)).
The set of restrictions on the values the function Y : W 7→ YN that corre-

sponds to the original null hypothesis translates into a set of restrictions on

the values of the function YF : WS 7→ YNF which gives us the implicit null hy-

pothesis for the new experiment. By contstruction, the set of assignments W

and the focal population PF are chosen so that the null hypothesis is sharp for

this artificial experiment. Formally, for any pair (w,YF (w)) with w ∈ WS,

we can infer the values of YF (w′) for any other value w′ ∈ WS. We dis-

cuss some examples of this in the next section. We then choose a statistic T :

YNF ×W×XN ×G 7→ R that depends only on the outcomes for the individuals

in the focal population, Yobs
F = YF (W). We calculate p-values for this statis-

tic by comparing the realized value of the statistic, T obs = T (Yobs
F ,W,X,G),

to the randomization distribution for T (YF (W),W,X,G) induced by the

modified assignment distribution p′(·).
A key insight is that a randomization-based analysis of the artificial experi-

ment E ′ is validated by the design of the original experiment E. Let us consider

the two modifications–changing the population and using a conditional assign-

ment mechanism–in turn and justify this claim. Choosing a subpopulation of

units based on fixed attributes or pretreatment variables such that the test

statistic varies only with outcomes for these units does cannot invalidate the

p-value because it is valid for any statistic. Second, consider the change in

the assignment mechanism. We can think of the original assignment mecha-

nism, corresponding to the distribution p(·), as a two-stage procedure: first

we choose S, and then the actual assignment is determined either by drawing

according to p′(·) where p′(w) = pr(W = w|W ∈ WS). Thus the artificial

[18]



experiment conditions on the value of S and only exploits the second stage

randomization. In general this may discard information, but it does not affect

the validity.

5 Exact P-values for the Null Hypothesis of

No Spillovers

Here we discuss how exact p-values can be calculated for the hypotheses in-

troduced in Section 3, given randomized assignment of the treatments. To

simplify the discussion we focus in this section initially on a completely ran-

domized experiment, where M units out of N are randomly selected to receive

the treatment (see Imbens and Rubin, 2015 for a general discussion). In Sec-

tion 5.5 we discuss extensions to clustered randomized experiments.

Assumption 5.1 (Random Assignment)

pr(W = w) = 1

/(

N
M

)

,

for all w ∈ {0, 1}N such that
∑N

i=1 wi = M .

To set the stage, let us first consider the case where we test the null hy-

pothesis of no treatment effects whatsoever. In that case for each individual

V(i,w, H0) = W, we can take the subpopulation of focal units to be the entire

population, PF = P, and the partitioning is S = {W}. Then the assignment

mechanism is the same under the artificial experiment as it is under the orig-

inal experiment, p′(·) = p(·), and thus the artificial experiment is identical to

the original experiment.

5.1 Exact P-values for the Null Hypothesis of No Spillovers

when the Network consists of Dyads

To develop some intuition for the problem we first look at the case where the

network has a simple structure. Suppose the population consists of N units

paired into N/2 dyads. For individual i let `(i) ∈ {1, . . . , N} be the index
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of the neighbor of individual i. We are interested in testing the hypothesis

that there are no spillover effects (Hypothesis 2), allowing for the possibility

of direct effects of the own treatment on an individual’s own outcome.

5.1.1 The Artificial Experiment

To create the artificial experiment E ′ we first select the focal subpopulation.

We do this by selecting one member from each pair, and designate that in-

dividual in the pair as the focal individual. This selection can be random,

or based on pretreatment variables, but not on outcome or assignment data.

Let Fi = 1 if an individual is a focal individual and Fi = 0 for non-focal, or

auxiliary individuals. Selecting one focal unit from each pair is not required

for our approach, but it makes intuitive sense. If both members of a pair are

focal units, then the level sets imply that we cannot vary the treatments for

any member of the pair in the artificial experiment. If neither member of the

pair is focal we do not use the outcomes for the two units. In both cases the

pair is essentially dropped from the analysis, so only if there is a single focal

unit in each pair does the pair enter in the analysis.

In the second step, we define the restricted set of assignments WS. Let W

be the full assignment vector. For individual i, V(i,w, H0) = {w′ ∈ W|wi =

w′
i}. Hence

WS = ∩i∈PF
V(i,W, H0) = {w ∈ W|wi = Wi for all i ∈ PF },

allowing only the treatments for the non–focal, or auxiliary units, to vary. Let

MF =
∑

i:Fi=1 Wi be the number of treated focal individuals, and M −MF the

number of treated auxiliary individuals. Then, because there are N/2 auxiliary

individuals, the distribution of assignments p′(·) in the artificial experiment

satisfies

p′(w) = pr(W = w|S) = 1

/(

N/2
M − MF

)

,

for w ∈ WS, and zero otherwise.
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Given the experiment we consider test statistics T : YNF × W × X × G 7→
R. For any statistic in this class we can infer its distribution under the null

hypothesis. We would like to choose the statistic whose distribution is sensitive

to interesting departures from the null hypothesis. We consider two statistics,

motivated by parametric models that allow for spillover effects.

5.1.2 Test Statistics

Consider a model for the potential outcomes that does not impose the null

hypothesis of no spillovers. In that case, with a single neighbor for each indi-

vidual, the potential outcome for individual i can be written as a function of the

own treatment wi and the neighbor’s treatment w`(i), or, Yi(w) = Yi(wi,w`(i)).

A natural starting point is to assume that both direct (own) and indirect

(neighbor’s) treatment effects are constant and additive:

Yi(wi, w`(i)) = α + τdirect · wi + τspill · w`(i) + εi. (5.2)

Given this parametric model the null hypothesis of no spillovers corresponds

to τspill = 0. To find a statistic with good power properties for testing our

nonparametric null hypothesis of no-spillovers, we can look at the Lagrange

multiplier or score test statistic for the null hypothesis τspill = 0 in this para-

metric model, assuming homoskedasticity, normality and independence for the

εi. The validity of our proposed testing procedure does not rely on these para-

metric and distributional assumptions, but if they hold, the fact that in that

case the test corresponds to a Lagrange multiplier test would endow the pro-

cedure with large sample efficiency.

In this parametric model the likelihood function for the focal units is

L(σ2, α, τdirect, τspill) =
∏

i:Fi=1

1√
2πσ2

exp

(

− 1

2σ2

(

Y obs
i − α − Wi · τdirect − W`(i) · τspill

)2
)

,

where σ2 is the variance of εi. The sum of the scores, that is, the sum over the

focal units of the derivative of the logarithm of the density under this model
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with respect to τspill, evaluated at τspill = 0, is equal to

S =
1

σ2

N
∑

i=1

W`(i) ·
(

Y obs
i − α − τdirect · Wi

)

.

The statistic we focus on is this sum with α and τdirect replaced by estimates

based on the outcomes for only the focal units. These estimates are

α̂ = Y
obs

F,0, τ̂direct = Y
obs

F,1 − Y
obs

F,0,

where, for w = 0, 1, Y
obs

F,w is the average outcome for focal units with Wi = w

and NF,w is the number of focal units with Wi = w. This leads to the statistic,

after normalizing by the number of focal units,

T dyad
score =

1

NF

∑

i:Fi=1

(

Y obs
i − Y

obs

F,0 − Wi ·
(

Y
obs

F,1 − Y
obs

F,0

))

· W`(i). (5.3)

This statistic is interpreted as the correlation between the neighbors’ treat-

ment status and the focal unit’s outcome, adjusted for the average value of

the outcome for focal units with the same treatment status.

Although such a model appears substantively less plausible, it is also in-

teresting to consider the model in (5.2) without a direct effect:

Yi(wi, w`(i)) = α + τspill · w`(i) + εi. (5.4)

Then the Lagrange multiplier approach leads to the statistic

T dyad
elc =

1

NF

∑

i:Fi=1

W`(i) ·
(

Y obs
i − Y

obs

F

)

=
NF,(1)

NF,(0)

·
(

Y
obs

F,(1) − Y
obs

F,(0)

)

, (5.5)

where for w = 0, 1, Y
obs

F,(w) is the average outcome for focal units with neigh-

bors whose treatment status is W`(i) = w and NF,(w) is the number of focal

individuals whose neighbor has treatment status w. Hence the statistic essen-

tially compares average outcomes for focal units with treated neighbors and

focal units with control neighbors. We refer to this statistic as an edge-level-

contrast statistic for reasons that will become clear below when we generalize

the network structure.
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The first statistic, T dyad
score , yields a more powerful test when there are direct

effects of the treatment, because it adjusts for the estimated direct effects of

treatment. Failing to do so introduces additional noise in the distribution of

the test statistic.

5.2 Artificial Experiments for the Null Hypothesis of

No Spillovers for General Networks

In this section we consider the more general problem of testing for spillover ef-

fects in an unrestricted network setting. We maintain the assumption that the

randomization is at the unit level, with M randomly selected units out of the

population of N units exposed to the intervention. As before we choose a sub-

population of focal individuals whose outcomes we use, with the complement

of this subpopulation the set of auxiliary individuals. This selection may be

random or depend on pretreatment variables. The restricted set of assignments

fixes the assignments for the focal individuals: WS = {w ∈ W|wF = Wobs
F },

allowing only the treatments for the non-focal or auxiliary units to vary. There

are two substantive differences with the setting where the network consists of

pairs. The choice of the statistic is more complicated, and so is the choice of

the focal subpopulation.

5.3 Test Statistics

We consider three test statistics. The first is a modification of a test statistic

previously proposed by Bond et al. (2012); the second is optimal for a par-

ticular data-generating process; and the third is a modification of a statistic

proposed by Aronow (2012).

5.3.1 The Edge-Level Contrast Statistic

The first statistic we consider is a modification of an edge-level statistic used

by Bond et al. (2012). Bond et al. test for the presence of spillovers using the

randomization distribution based on the null hypothesis of no effects of the
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treatment whatsoever. The statistic they use is equal to the difference between

the average, over all edges where the alter is exposed to the treatment, of the

ego’s outcome and the average, over all edges where the alter is not exposed

to the treatment, of the ego’s outcome:

TB(W,Yobs,G) =

∑

i,j 6=i Gij · Wj · Y obs
i

∑

i,j 6=i Gij · Wj
−
∑

i,j 6=i Gij · (1 −Wj) · Y obs
i

∑

i,j 6=i Gij · (1 − Wj)
.

We cannot infer the randomization distribution of this statistic if we only

impose the null hypothesis of no spillovers but allow for direct effects of the

treatment (which is the null hypothesis of interest). Bond et al. report p-

values based on the additional assumption that there are no own effects of the

treatment. Without this additional assumption the p-values reported based

on this statistic are therefore not generally valid. In Appendix A we provide

analytical calculations that show that the size distortions for this statistic can

be substantial in the presence of direct effects of the treatment, as high as 0.2

for a nominal 0.05 level test in simple cases.

However, we can modify the Bond et al. statistic, averaging only over

the subset of edges where the ego is in the focal subpopulation and the alter

is in the auxiliary subpopulation (in the current setting where we test the

null of spillovers this subpopulation is equal to the complement of the focal

subpopulation):

Telc(W,Yobs
F ,G) (5.6)

=

∑

i,j 6=i Fi · Gij · (1 − Fj) · Wj · Y obs
i

∑

i,j 6=i Fi · Gij · (1 − Fj) · Wj
−
∑

i,j 6=i Fi · Gij · (1 − Fj) · (1 − Wj) · Y obs
i

∑

i,j 6=i Fi · Gij · (1 − Fj) · (1 − Wj)
.

We refer to this as the edge-level-contrast statistic. In the case where the

network consists of dyads, it reduces to our second test statistic for the case

of dyads, T dyad
elc in (5.5).

5.3.2 A Score Test Statistic

We motivate the second test statistic in a more systematic way with a struc-

tural model for treatment effects. Suppose we use a simple linear model, a
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simplified version of the linear-in-means model of the type discussed in Man-

ski (1993, 2013) with only exogenous peer effects:

Y obs
i = α0 + τdirect · Wi + τexo ·

N
∑

j=1

Wj · Gij + εi, (5.7)

where Gij = Gij/
∑N

j′=1 Gij′ is a normalized indicator for links. (If
∑N

j′=1 Gij′ =

0, then Gij = 0.) Hence
∑N

j=1 Wj · Gij is the fraction of treated friends.

Testing for spillovers in the context of this model corresponds to testing

the parametric null hypothesis that the exogenous peer effects parameter τexo

is equal to zero. A natural way to derive a powerful test statistic for τexo = 0

in a parametric model, and the basis of Lagrange multiplier tests, is to derive

the average score for τexo, evaluated at τexo = 0 and estimates for the nuisance

parameters (α0 and τdirect in this case). Under the model in (5.9) the score

statistic is proportional to the covariance between the residual under the null

and the fraction of neighbors who are treated,
∑N

j=1 Gij · Wj, leading to

Tscore = Cov

(

Y obs
i − α̂ − τ̂direct · Wi,

N
∑

j=1

Wj · Gij

∣

∣

∣

∣

∣

N
∑

j=1

Gij > 0, Fi = 1

)

. (5.8)

Remark 1 If the network consists of dyads, with one unit in each dyad des-

ignated focal and the other auxiliary, then this statistic is identical to the

statistic T dyad
score in (5.3). As in the case of dyads, this test statistic reduces

variance in the test statistic by normalizing outcomes by the estimated direct

effect of the treatment, at least when direct effects of the treatment ar present.

�

Remark 2 Note that our approach to deriving the test statistic can be applied

to alternative structural models with different functional forms for outcomes,

the nature of spillovers, etc., and as above, the test statistic is valid irrespective

of the validity of the structural model. The power of the test, however, will

depend on the quality of the model. �

Remark 3 It is also interesting to note that the same score statistic applies

to a different model. Suppose we start with a different version of the linear-
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in-means model of the type discussed in Manski (1993, 2013):

Y obs
i = α0 + τdirect · Wi + τendog · Y obs

(i) + εi, (5.9)

where Y
obs

(i) is the average outcome for i’s neighbors. In this model the spillovers

arise from the direct effect of one’s own treatment on one’s own outcome

(if τdirect 6= 0), combined with what Manski calls endogenous effects of the

neighbors’ outcome on the own outcomes (τendog). This implies that treatment

exposure for non-neighbors can affect one’s outcome if the non-neighbor are

connected through other individuals, with the magnitude of the spillover effects

depending on the distance between the individuals in the network. Although

this endogenous peer effects model implies that spillover effects propagate

throughout one’s network, the score statistic for this model is identical to that

in (5.9), because close to the null of no spillover effects the effects are dominated

by those of direct neighbors. Details for this calculation are presented in

Appendix B. �

5.3.3 The Has-Treated-Neighbor Test Statistic

As the third test statistic, we consider a variation on a statistic based on

distance to the nearest treated unit. Aronow (2012) proposes a test statistic

for spatial or network interference that is the correlation between outcome for

focal units and the distance to the nearest treated auxiliary unit. If distance

is defined in terms of hops between two units in a network and there are many

treated units, then much of the variation in this measure will be between

having a treated unit in one or two hops. So we analyze a related statistic

the uses, instead of the distance to the nearest treated unit, an indicator for

whether any of a unit’s non-focal neighbors are treated. This statistic is the

correlation between this indicator and the outcome, both for focal units:

Thtn =
1

SY obs

F
· STA

1

NF

∑

i∈PF

(

Y obs
i − Y

obs

F

)

· 1P

j Gij ·Wj ·(1−Fj)>0,

where SY obs

F
and STA are the sample standard deviation of the outcome for focal

units and the standard deviation for the indicator, for focal units, of having
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at least one treated auxiliary neighbor. Like the edge-level contrast statistic,

this statistic does not adjust for estimated direct effects of the treatment.

5.4 Choosing the Focal Subpopulation for the Null Hy-

pothesis of No Spillovers

A key feature of our approach is that the researcher needs to choose a focal

subpopulation. This choice, in combination with the null hypothesis, deter-

mines the randomization distribution in the artificial experiment. Although

the p-values are valid irrespective of the choice of focal subpopulation, this

choice may affect the power of the testing procedure substantially.

Here we discuss some algorithms for choosing the subpopulation of focal

units, where the goal is to maximize the power of the test. In general the power

will depend on a number of features of the problem. First, it will depend the

alternative hypothesis, for example whether the spillover effects are linear in

the number or the proportion of treated neighbors. Second, the power will

depend on the choice of statistic. The power will also depend on the network

structure. Finding the focal subpopulation that optimizes power for particular

choice of alternative and a particular test statistic is a difficult problem. Here

we discuss some issues and suggest general solutions that may have good power

in a wide range of settings.

In the case of testing the null of no spillovers, there are three general

principles that apply irrespective of the specific alternative hypothesis and test

statistic. First, because the artificial experiment considers only change in the

treatment for auxiliary individuals, it is important that there are a substantial

number of auxiliary individuals. Second, because the statistic depends only

on outcomes for focal units, it is important that there is a substantial number

of focal units. Third, because the alternative hypothesis involves spillovers

from treated alters to focal egos, and because only changes in the treatment

for auxiliary individuals are considered, it is important that there are many

edges between focal and auxiliary individuals. These principles were helpful
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in the dyad case, where they suggested selecting a single focal individual in

each pair. Some settings may also have additional constraints that guide the

selection of focal units. For example, we might only observe the outcome for a

small fraction of the units even though the treatment is observed for all units

(e.g., Bond et al. (2012) only observe voting status for about 10% of their

population).

5.4.1 Random Selection

As a baseline method we randomly choose 50% of the population to be focal,

with the remainder auxiliary, without regard to the network structure.

5.4.2 Selection Based on ε-Nets

In the second approach to focal unit selection, we aim to select a large set of

focal units that are not adjacent to each other. In particular, we use a method

for finding an ε-net (see, e.g., Gupta, Krauthgamer and Lee, 2003), or a set of

points that is both an ε-packing and an ε-covering, with ε = 2.6 To define an

ε-net on a graph, we let Bε(i) = {j : d(i, j) ≤ ε and j ∈ P} be the set of all

vertices within ε hops of vertex i.

Definition 4 (ε-net in a graph) An ε-net is a set of vertices S ⊆ P such

that: (a) the vertices are mutually at distance at least ε from each other,

d(i, j) ≥ ε for all i, j ∈ S; and (b) the union of all of their ε-balls covers all

vertices, P ⊆ ∪i∈SBε(s).

Ugander, Karrer, Backstrom, and Kleinberg (2013) describe a greedy method

for finding an 3-net, which can be generalized to find a ε-net for other values

of ε. To find a 2-net, we do the following. Starting with an empty set of

focal units and an empty set of auxiliary units we randomly select a seed for

the ε-net. Given the new seed we assign it to the focal subpopulation, and

6A 2-net is also called an independent set and the greedy algorithm we give here con-
structs a maximal independent set. We describe this in terms of ε-nets because larger values
of ε might be used when testing other hypotheses about spillovers.
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we assign all of its neighbors to the auxiliary subpopulation. If at that point

all individuals are assigned to either the focal or the auxiliary subpopulation

we stop. If not, we randomly draw another seed to be assigned to the focal

subpopulation and assign all its neighbors to the auxiliary subpopulation. We

continue randomly selecting new seeds until all individuals are assigned to

either the focal or auxiliary subpopulation. This greedy algorithm leads to a

set of focal units that are not neighbors.

5.4.3 Maximizing the Number of Edge Comparisons

In the third approach we choose the focal subpopulation by attempting to

maximize the number of focal–auxiliary edges,

N(F,G) =
∑

i,j

Fi · Gij · (1 − Fj),

leading to

F∗ = arg max
F

N(F,G).

This approach ignores the fact that the average over the edges may involve

multiple edges with the same ego. This would not change the optimality if the

number of focal-auxiliary edges were the same for all focal individuals, but if

there is substantial variation in the number of such edges one might do better

taking that into account.

Solving this problem exactly is computationally demanding, so we approx-

imate it by using a greedy algorithm. We start by assigning all units to the

auxiliary subpopulation, so that there are no focal-auxiliary edges. We then

calculate for each non-focal unit the number of focal-auxiliary edges that would

get added if unit i gets moved to the focal subpopulation, ∆N,i. Next, add

the individual to the focal subpopulation who bring the biggest gain. This

process continues until no additional focal unit would increase the number of

focal-auxiliary edges.

Suppose we have an initial focal subpopulation F. For auxiliary individ-

ual i consider adding them to the focal subpopulation. That would change
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N(F,G) by the number of the auxiliary neighbors of i minus the number of

focal neighbors of i:

∆N,i = KA,i −KF,i.

This puts a premium on selecting focal units with a larger number of edges.

Because we consider settings where it is the fraction of neighbors that are

treated that matters for the spillover effects, rather than the total number, we

modify this criterion by dividing it by the number of neighbors, and selection

as an additional focal unit the one with the highest value for

δN,i =
KA,i − KF,i

Ki
.

In regular graphs (i.e., where all units have the same number of neighbors)

this change does not matter, but it does in settings with where the degree

distribution has a positive variance. Thus, we sequentially add to the set of

focal units the unit i, among those currently not in the focal subpopulation,

who has the highest value for δN,i, until there is no auxiliary unit with a

positive value for δN,i.

In settings where the network consists of dyads, both the ε-net approach

and maximizing the number of edge comparisons leads to the same result: in

each dyad one randomly selected vertex will be the focal unit and the other

vertex in the dyad will be the auxiliary unit. In that case the random selection

of focal units without regard to network structure will be substantially less

powerful by allowing for the possibility that both individuals in a dyad are

focal or that both are auxiliary.

There are more general connections between this method and the 2-net

method. With the modified, fractional criterion δN,i, this method first selects

a 2-net as the focal units and then continues to add focal units. That is,

this method allows using a larger set of focal units than would be selected by

finding a 2-net.
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5.5 Exact P-values for Spillovers with Clustered Ran-

dom Assignment

Now suppose the randomization is more complex than the one considered in the

previous section, where we randomly selected M units out of the population

of N to receive the treatment. Of particular interest is the generalization with

clustered randomization. In this case the population is first partitioned into

K clusters, P1, . . . , PK , with Pk ⊂ P, Pk ∩ Pl = ∅ if k 6= l, and ∪K
k=1Pk = P.

This partitioning may depend on the network structure. In fact, in graph

cluster randomization, the partitioning is often chosen so as to heuristically

maximize the fraction of edges within that are within clusters, subject to other

constraints (e.g., cluster size), or other related quantities, such as modularity

(Newman, 2006). See Eckles, Karrer, and Ugander (2014) and Ugander, Kar-

rer, Backstrom, and Kleinberg (2013). Let Ci ∈ C = {1, . . . , K} indicate the

cluster that individual i belongs to. In the next step, M of the K clusters are

assigned to the treatment group, implying all units in those M clusters will

be exposed to the treatment, and the remaining units will be assigned to the

control group. More generally, we may consider an unrestricted distribution

for the assignment vector W, specified by the function p : W 7→ [0, 1] for some

set of assignments W that is different from one that assigns equal probability

to all assignments with M treated and M − N control units.

For the original experiment the clustering does not change the fundamen-

tal approach. If we are interested in testing a sharp null hypothesis such as

the null hypothesis of no effect of the treatment whatsoever, we can use ex-

actly the same statistics. The only difference is that when we calculate the

distribution of the statistic under the null, we now do so under the assignment

mechanism defined by the clustering. Because many assignment vectors w

that are possible under complete randomization are ruled out under cluster

randomization, the clustering typically reduces the power of the tests. This

issue is even more of a concern for testing null hypotheses regarding spillovers.

We again select a focal subpopulation PF ⊂ P. For each individual calculate
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the set of assignments that do not change the outcome for that individual

under the null hypothesis, V(i,w, H0). The restricted set of assignments is, as

in the general case, the intersection of these sets over all focal individuals:

WS =
∏

i∈PF

V(i,W, H0).

The distribution of the assignments in the artificial experiment is, as before,

the conditional probability given that W ∈ WR:

p′(w) =
p(w)

∑

w′∈WS
p(w′)

,

for w ∈ WS, and zero elsewhere. The artificial experiment is now characterized

by the triple (WS, PF , p′(·)).
For any statistic T : WS × YNF × X × G 7→ R, we can infer its exact

distribution under the null hypothesis of no spillovers, using the randomization

distribution induced by the clustered randomization. Thus we can use the same

statistics as before, e.g., the edge-level-contrast statistic or the score statistic.

The change in the distribution of the treatment affects the power of the tests,

but does not fundamentally change the approach.

To illustrate what practical issues the clustered randomization raises, con-

sider the edge-level-contrast statistic Telc. This statistic is equal to the differ-

ence in the average outcome for focal units over all edges between one focal

unit and one auxiliary unit, where the auxiliary unit is treated and the average

outcome for focal units over all edges where the auxiliary unit is in the control

group. Because treatments for units in the same clusters as focal units do not

vary in WS because of the cluster randomization, the power of the tests will

be severely reduced if the clusters are constructed in such a way that there are

few between-cluster edges. Although such clustering designs may be effective

in estimating total causal effects that include both direct effects and spillover

effects, e.g., Eckles, Karrer, and Ugander (2014) and Ugander, Karrer, Back-

strom, and Kleinberg (2013), they may be less suited towards distinguishing

between the two effects.
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6 Exact P-values for the Null Hypothesis of

No Higher Order Peer Effects

Now consider the case where we are interested in the null hypothesis of no

higher order peer effects, Hypothesis 5. We focus again on the case with

complete random assignment, although that is not critical. Define H to be

the matrix indicating neighbors of neighbors, so that

Hij =

{

1 if i 6= j ∧ Gij = 0 ∧
(

∑N
k=1 Gik · Gjk > 0

)

0 otherwise.

Again select a focal subpopulation PF . The change in the null hypothesis does

not impose restrictions on the choice of the focal subpopulation, although the

implications of this choice for the power are different compared to the case

where the null hypothesis ruled out the presence of any spillovers. The differ-

ence with the previous null hypothesis of no spillovers is in the definition of the

restricted set of assignments WS. Given this null hypothesis, for individual i,

the level set V(i,w, H0) now consists of the set of assignments w′ such that

the assignments are the same for i and for all i’s neighbors

V(i,w, H0) = {w′ ∈ W|w′
i = wi ∧

(

w′
j = wj for all j s.t. Gij = 1

)

}.

Then, as before, the restricted set of assignments is the intersection over all

focal units of these sets:

WS = ∩i∈PF
V(i,W, H0).

We can conceptualize this set in terms of a partition of the population into

three subpopulations. Given the subpopulation of focal units PF , define the

set of buffer units PB who are not focal, but who have one or more neighbors

who are focal:

PB =

{

i ∈ P

∣

∣

∣

∣

∣

Fi = 0 ∧
(

N
∑

j=1

Gij · Fj > 0

)}

,
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and the set of auxiliary units PA who are not focal, nor do they have neighbors

who are focal:

PA =

{

i ∈ P

∣

∣

∣

∣

∣

Fi = 0 ∧
(

N
∑

j=1

Gij · Fj = 0

)}

.

Then the restricted set of assignments keeps fixed the assignment for units

who are not auxiliary, that is, for focal and buffer units:

WS = {w ∈ W|wi = Wi if i ∈ PF ∪ PB}.

To visualize this consider a very simple example with a population with

three units, with the only edge between individuals 1 and 2, corresponding to

the following adjacency matrix:

G =





0 1 0
1 0 0
0 0 0



 .

Suppose we choose unit 1 to be the focal unit, PF = {1}. Then the set of

neighbors of focal units, or the set of buffer units is PB = {2} and the set of

auxiliary units is PF = {3}. Suppose the actual assignment is W = (0, 0, 0).

Then

WS = W(1,W, H0) = {(0, 0, 0), (0, 0, 1)},

allowing only the assignments for the auxiliary unit to vary.

Now, the experiment we consider is that of randomly assigning W within

the set WS. Under those assignments we know all the potential outcomes for

focal individuals. The new assignment mechanism is, as before, the conditional

assignment probability given the assignments for non-auxiliary units, p′(w) =

pr(W = w|W ∈ WS), and the artificial experiment is

E ′ = (WS, PF , p′(·)).

6.1 Test Statistics

Let us now consider test statistics for this setting.
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6.1.1 An Edge-Level-Contrast Statistic

A natural approach to generalizing the edge-level-contrast statistic would be to

focus on pairs of neighbors-of-neighbors, one focal and one auxiliary, and use

as the test statistic the average outcome for focal units with treated auxiliary

neighbors-of-neighbors minus the average outcome for focal units with control

auxiliary neighbors-of-neighbors whose treatment varies in the restricted set.

In order to define the latter condition, let PA again be the set of auxiliary

units, units who are not focal and who do not have any focal neighbors, and

let Ai be an indicator for the event that unit i is an auxiliary unit. Then the

edge-level-contrast statistic is:

T HO
elc =

∑

i,j 6=i Fi · Hij · Aj ·Wj · Y obs
i

∑

i,j 6=i Fi · Hij · Aj · Wj
−
∑

i,j 6=i Fi · Hij · Aj · (1 − Wj) · Y obs
i

∑

i,j 6=i Fi · Hij · Aj · (1 − Wj)
.

(6.10)

As a practical matter, tests for higher order spillovers while allowing for first

order spillovers are likely to have less power than tests for first order spillovers.

A first reason is that generally one would expect higher order spillover effects

to be small relative to direct effects and first order spillover effects. Second,

in the procedure discussed here, we restrict the set of assignments WR that is

exploited in the calculation of the p-values by fixing not just the assignment

for focal units, but also the assignment for all their neighbors. For a given set

of focal units the test for first order spillover effects would have a much larger

set of auxiliary units than the test for higher order spillover effects. To counter

this, it may be important to restrict the size and characteristics of the set of

focal units when analyzing tests for higher order spillover effects.

6.1.2 A Score Statistic

As an alternative to the edge-level-contrast statistic, we consider a score statis-

tic based on a linear-in-means model of the type considered in Manski (1993,

2013), Goldsmith-Pinkham and Imbens (2013) and others, and previously here
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in Section 5.3.2. Under the null, we model the spillovers as additive and linear

in the indicator for the own treatment and the fraction of neighbors treated:

Y obs
i = α + τdirect · Wi + τspill ·

N
∑

j=1

Wj · Gij + εi,

where as before, Gij = Gij/
∑N

m=1 Gim, and zero if individual i has no neigh-

bors.

Assuming the assignment to treatment is completely random, we can, given

this model, estimate the parameters α, τdirect and τspill by least squares. We

can then consider a more general model that allows second order effects of the

treatment in addition to the first order effects captured by τspill:

Y obs
i = α + τdirect · Wi + τspill ·

N
∑

j=1

Wj · Gij + τsecond ·
N
∑

j=1

Wj ·H ij + εi,

where Hij = Hij/
∑N

m=1 Him if
∑N

m=1 Him > 0, and Hij = 0 if
∑N

m=1 Him = 0.

The score statistic for the second-order spillover effect τsecond is then propor-

tional to the covariance between the estimated residual from this regression

and the fraction of second-order neighbors who are treated:

T high
score = Cov

(

Y obs
i − α̂ − τ̂direct · Wi − τ̂spill ·

N
∑

j=1

Wj · Gij ,

N
∑

j=1

Wj · Hij

∣

∣

∣

∣

∣

N
∑

j=1

Hij > 0

)

.

(6.11)

This score statistic is very similar to that in the discussion of the null hypoth-

esis of no spillovers, with two modifications. First, the outcome is now also

adjusted for the first order spillover effect, by subtracting τ̂spill ·(
∑N

j=1 Wj ·Gij),

and second, we look at the correlation of this adjusted outcome with the frac-

tion of second order neighbors who is treated, instead of the fraction of direct

neighbors who is treated.

6.2 Choosing the Focal Subpopulation for the Null Hy-

pothesis of No Higher Order Spillovers

Given the structure of the artificial experiment for the null of no higher order

spillovers, the key to statistical power is, in addition to the usual requirement
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for a sufficient number of focal units, the presence of auxilliary units (those

who are not neighbors of any focal units) who are also neighbors of neighbors of

focal units. Thus, we choose the focal subpopulation to, at least approximately,

maximize the number of focal-auxiliary pairs where the auxiliary unit is a

neighbor of a neighbor of the focal unit.

Suppose we have a focal subpopulation PF , now with corresponding buffer

and auxiliary subpopulations PB and PA. Consider adding a currently non-

focal (buffer or auxiliary) individual i to the focal subpopulation, changing

the focal subpopulation to P̃F and the auxiliary subpopulation to P̃A. Then

F̃j = Fj if j 6= i, and F̃i = 1, Fi = 0. In addition, Ãi = 0, and Ãj = Aj ·(1−Gij)

for j 6= i: neighbors of i are removed from the set of auxiliary units. The

number of new edges used in the edge-level-contrast statistic as a result of the

change is the number of auxiliaray units that are neighbors of neighbors of i:

N
∑

j=1

Ãj · Hij =
N
∑

j=1

Aj · (1 − Gij) · Hij =
N
∑

j=1

Aj · Hij.

The number of old edges no longer used in the statistic after adding unit i to

the focal subpopulation is determined by the set of individuals who used to

be auxiliary but become buffer units as a result of being neighbors of i. This

leads to number of edges being dropped equal to

N
∑

k=1

N
∑

j=1

Fk · (Aj − Ãj) · Hkj +

N
∑

k=1

Fk · Ai · Hki

=
N
∑

k=1

N
∑

j=1

Fk · Aj · Gij · Hkj +
N
∑

k=1

Fk · Ai · Hki

Thus, the addition of unit i to the focal subpopulation would increase the

number of comparisons by

∆N,i =
N
∑

j=1

Aj · Hij −
N
∑

k=1

N
∑

j=1

Fk · Aj ·Gij · Hkj −
N
∑

k=1

Fk · Ai · Hki

=
N
∑

j=1

(Aj −Ai · Fj) · Hij −
N
∑

k=1

N
∑

j=1

Fk · Aj · Gij · Hkj .
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In cases where the alternative is proportional to the share of treated neighbors-

of-neighbors, one may wish to optimize by choosing as the next focal unit the

unit i with the highest value for

δN,i =

∑N
j=1(Aj − Ai · Fj) · Hij

∑N
j=1 Hij

−
N
∑

k=1

Fk ·
∑N

j=1 Aj · Gij · Hkj
∑N

j=1 Hkj

,

with the stopping rule based on whether the maximum value of δN,i over all

remaining non-focal units i is positive or not.

This algorithm will lead to a focal subpopulation with a large number of

neighbors-of-neighbors who are auxiliary units.

7 Exact P-values for the Null Hypothesis on

Competing Network Specifications

In this section we consider null hypothesis regarding competing specifications

of the network. We have two specifications of the network, G1 and G2, with

for some pairs (i, j), G1,i,j 6= G2,i,j. We test Hypothesis 6 that Yi(w) = Yi(w
′)

for all i, and for all pairs of assignment vectors w,w′ ∈ W such that wj = w′
j

for all units j such that G1,ij = 1.

Given a set of focal units, the buffer subpopulation is now the subpopula-

tion of units that are not focal, but that are neighbors with focal units under

network G1. The set of auxiliary units is the set of non-focal and non-buffer

units.

V(i,w, H0) = {w′ ∈ W|w′
i = wi ∧

(

w′
j = wj for all j s.t. Gij = 1

)

}.

Then, as before, the restricted set of assignments is the intersection over all

focal units of these sets:

WS = ∩i∈PF
V(i,W, H0).

Next, we consider the choice of test statistics. First we consider an edge-

level-contrast statistic. For all pairs of focal units and treated auxiliary units
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who are neighbors according to the second network, G2, we average the out-

come of the focal unit, and subtract the average, over all all pairs of focal

units and control auxiliary units who are neighbors according to the second

network:

T CN
elc =

∑

i,j Fi · G2,ij · Aj · Wj · Y obs
i

∑

i,j Fi · G2,ij · Aj · Wj
−
∑

i,j Fi · G2,ij · Aj · (1 − Wj) · Y obs
i

∑

i,j Fi · G2,ij · Aj · (1 − Wj)
.

(7.12)

For the score statistic we first estimate the effect of spillovers from the first

network as in the previous section. For focal units we then calculate the

covariance of the residual from this regression with the fraction of neighbors

from the second network who are treated:

T CN
score = Cov

(

Y obs
i − α̂ − τ̂direct · Wi − τ̂spill ·

∑N
j=1 Wj · G1,ij
∑N

j=1 G1,ij

,

∑N
j=1 Wj ·G2,ij
∑N

j=1 G2,ij

∣

∣

∣

∣

∣

N
∑

j=1

G2,ij > 0

)

.

(7.13)

To choose the focal subpopulation we again use a greedy algorithm, starting

with the empty set at the subpopulation of focal units. We then sequentially

add new focal units, one at a time, by choosing the currently non-focal unit

whose inclusion in the focal subpopulation would add the most paths between

focal and auxiliary units of length two, but not of length one.

8 Exact P-values for the Null Hypothesis on

Peer Effect Heterogeneity

In this section we consider a null hypothesis for heterogeneity in the treatment

effects, Hypothesis 7: Yi(w) = Yi(w
′) for all i, and for all pairs of assignment

vectors w,w′ ∈ W such that
∑N

j=1 wj · Gij =
∑N

j=1 w′
j · Gij . What we are

interested in here is testing whether it matters which of one’s neighbors are

treated, given the number of treated neighbors. It may be that neighbors

with particular characteristics are more influential than others. This maybe

correspond to neighbors with similar characteristics as the ego, or neighbors
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who have a more central place in the network, neighbors with whom the eog

has more interactions, or neighbors with particularly high values for particular

characteristics.

Given a focal subpopulation, the level set is

V(i,w, H0) =

{

w′ ∈ W

∣

∣

∣

∣

∣

w′
i = wi ∧

(

N
∑

j=1

w′
j · Gij =

N
∑

j=1

wj · Gij

)}

.

As usual, the restricted set of assignments is the intersection over all focal

units of these sets:

WS = ∩i∈PF
V(i,W, H0).

To choose a test statistic we focus on the score approach. Under the null

hypothesis we can estimate the direct and spillover effects by least squares,

and calculate the residual

Y obs
i − α̂ − τ̂direct · Wi − τ̂spill ·

∑N
j=1 Wj · Gij
∑N

j=1 Gij

.

There is a variety of alternative hypotheses we can consider. Here we focus on

one where the effect of neighbor j being treated on the outcome of individual

i is proportional to the degree of that unit (i.e., the number of neighbors Kj

that this neighbor j has). This leads to

Cov

(

Y obs
i − α̂ − τ̂direct · Wi − τ̂spill ·

∑N
j=1 Wj · Gij
∑N

j=1 Gij

,

∑N
j=1 Wj · Kj · Gij
∑N

j=1 Kj · Gij

∣

∣

∣

∣

∣

N
∑

j=1

Kj ·Gij > 0

)

.

(8.14)

To implement this test we also need to choose the focal subpopulation. In

this case it is important for focal units to have variation their friends’ degree.

Thus we need focal units with at least two neighbors. For each unit i we

calculate for all their non-focal neighbors j how many non-focal neighbors this

neighbor j has:

Uij = 1Gij=1 · (1 − Fj) ·
N
∑

j′=1,j′ 6=i

(1 − Fj′) · Gjj′ .
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Then we calculate the average and the standard deviation of this measure over

all the neighbors of unit i:

U i =

∑

j:Gij=1
(1 − Fj) · Uij

∑

j:Gij=1
(1 − Fj)

, SU,i =





1

Ki − 1

∑

j:Gij=1

(1 − Fj)
(

Uij − U i

)2





1/2

.

Our approach now is to select, sequentially, focal units with high values for

SU,i.

9 Simulations

In this section, we carry out two sets of Monte Carlo simulations to assess the

properties of the proposed procedures. In the first set, we focus on testing

the null hypothesis of no spillovers in the context of general networks. In the

second, we focus on the comparison of two networks, one sparser than the

other, and test the null hypothesis that all spillovers are first-order spillovers

in the sparser network.

9.1 Monte Carlo Set Up I: Testing for the Presence of

Spillovers

The following components of the simulations are common to all designs in the

first Monte Carlo set up. First consider the potential outcomes. Let w0 be

the N -component vector with all elements equal to zero. Then, the baseline

potential outcomes with no units exposed to the treatment are drawn from a

Gaussian distribution:

Yi(w0) ∼ N (0, 1), independent across all units.

Let w(0,i) be the N -component vector with all elements equal to zero other

than the ith element, which is equal to one. We assume a constant additive

direct (own) treatment effect:

Yi(w(0,i)) − Yi(w0) = τdirect,
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for all i = 1, . . . , N . Let Ki be the number of peers for unit i and let Ki,0 and

Ki,1 be the number of control and treated peers. Then we assume a constant

additive spillover effect that is proportional to the number of treated peers:

Yi(w) = Yi(w0) + wi · τdirect +
Ki,1

Ki
· τspill.

If τspill is equal to zero the null hypothesis of no spillover effects holds. If

τspill 6= 0, the null hypothesis is violated.

The assignment to treatment is completely random with a fixed number of

treated and control individuals. In all simulations there are 599 individuals,

300 treated individuals and 299 control individuals.

The Monte Carlo designs vary along five dimensions.

1. Network Structure: We consider two network structures.

In the first network structure we take a network of friendships from one of

the high schools represented in the Add Health data. For details on the

design of this data set see http://www.cpc.unc.edu/projects/addhealth/.

We use a subset containing information on 599 students with at least

one friend in the school. On average each student has 5.1 friends, with a

standard deviation of 3.1, and the number of friends ranging from 1 to 18.

In these simulations we keep the network fixed across the simulations.

In the second network structure we sample Watts–Strogatz (1998) small

world networks with k = 10 and probability of rewiring p = 0.1. The

degree distribution thus has mean 10 and standard deviation 1.37. The

size of the network is the same as in the Add Health network, 599.

2. Statistic: We consider three statistics.

The first is the edge-level-contrast statistic Telc, equal to the difference

in average ego outcomes over all edges with focal egos and treated al-

ters and the average of ego outcomes over all edges with focal egos and

control alters, as given in (5.6). The second is the score statistic Tscore

given in (5.8), motivated by a Manski-style linear-in-means model with
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endogenous peer effects. The third is the Aronow statistic Thtn, which

is the difference in average outcomes for focal units with at least one

treated neighbor and those with only control neighbors.

3. Own Treatment Effect: We allow the own treatment effect τdirect to

take on the values 0 and 4.

4. Spillover Effect: We allow the spillover effect τspill to take on the

values 0 and 0.4 to assess size properties of the test under the null hy-

pothesis as well as power of the test under the alternative hypothesis.

5. Location and Number of Focal Units: We compare three methods

for choosing the focal units. In the first we randomly select 300 (approx-

imately half) the individuals to be focal. In the second we use the ε-net

approach. In the Add Health network this approach leads to 213 (36%)

focal individuals, and in the small world networks it leads on average to

98 (16%) focal individuals. In the third we maximize the number of edge

comparisons, weighted by the number of neighbors, using the procedure

described in Section 5.4.3. In the Add Health network this approach

leads to 237 (40%) focal individuals, and in the small world networks it

leads on average to 128 (21%) focal individuals.

We approximate the p-value by drawing from the randomization distribu-

tion of the statistic under the null 1, 000 times, and calculating the proportion

of of the draws where the absolute value of the statistic is larger than the

absolute value of the statistic calculated on the actual data. We then report

the fraction of replications, over 4, 000 replications, where the p-value is less

then 0.05.

The results are presented in Table 1. We note a couple of the findings.

First of all, when the null hypothesis is true, the tests all perform as expected,

with the p-values less than 0.05 the appropriate number of times. When the

null hypothesis is false we do see that the tests have substantial power. As
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discussed in the theoretical sections, the choice of focal units matters substan-

tially for the power of the tests. Random selection of focal units performs

quite poorly compared to more systematic ways of choosing the focal units.

Both the method based on optimizing the number of focal-nonfocal friendships

and the ε-net approach work substantially better. The choice of test statis-

tic also matters a great deal. the score statistic, designed to be optimal for

interesting alternatives performs better than the edge-level-contrast statistic

or the Aronow statistic. The structure of the network appears to matter less.

Results for the Add Health network and the small world network are similar.

9.2 Monte Carlo Set Up II: Testing for Sparsification

In the second set of simulations we focus on tests for the presence of spillovers

beyond the first order spillover of a sparser network. In the simulations we take

the original Add Health network with 599 students as the baseline network.

We create a sparser network by randomly cutting each edge in the Add Health

network with probability q, where either q = 0.9 or q = 0.5. This leads to

a network with average degree 0.43 (if we cut 90%) or 2.57 (if we cut 50%),

compared to 5.15 in the original network.

We randomly assign 300 of the students to the treatment. We then simulate

outcome data according to the linear in means model:

Y obs
i = τdirect · Wi + τspill · W (i) + εi,

where W (i) is the fraction of neighbors who are treated, with weight 0 ≤ λ ≤ 1

for edges that are only present in the second, less sparse, network:

W (i) =

(

∑N
j=1 (G1,ij + λ · (G2,ij − G1,ij)) Wj
∑N

j=1 (G1,ij + λ · (G2,ij − G1,ij))

)

.

If λ = 0 the sparsification is appropriate because the edges only in the second

network do not matter. If λ = 1, the edges in the second network are just as

important as those in the first network. We simulate the εi as independent

and identically distributed, with N (0, 1) distributions.
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We focus on two statistics. For the first statistic, Tscore, based on the

covariance of the residual based on the model under the null and the share of

treated second-network neighbors in (7.13). The specific statistic we focus on

is the correlation between this residual and the fraction of treated neighbors

for the focal individuals. The second statistic, Telc, is the difference of two

averages over all edges between focal and auxiliary individuals in (7.12). The

focal subpopulation is selected using the greedy algorithm described in Section

7.

We present results for a number of designs in Table 2. Again the test work

as expected when the null hypothesis is true. The power of the test is generally

higher if the spillover effect is larger τspill = 0.4 rather than τspill = 0.1), not

surprisingly given that under the alternative the spillover effect for the second

network neighbors is proportional to that for the first network neighbors. It

is also higher if the sparsification of the network is more substantial (q = 0.9

rather than q = 0.5). Finally, as expected the score based statistic has more

power than the edge-level-contrast.

10 Conclusion

In this paper we develop new methods for testing hypotheses with experi-

mental data in settings with a single network. We focus on the calculation

of Fisher-type, exact, finite sample, p-values. The complication is that the

hypotheses we are interested in are not sharp, so that conventional methods

for calculating exact p-values need to be modified. We show that by analyzing

an artificial experiment, different from the one actually performed, one can

calculate exact p-values for interesting hypotheses regarding spillovers, spar-

sification of networks, and peer effect heterogeneity. We illustrate approaches

for selecting test statistics as well as the details of the artificial experiment to

maximize statistical power. We illustrate the new methods by carrying out

simulations.
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Appendix A: Why the Bond et al Randomization P-values are Not Valid

Bond, Fariss, Jones, Kramer, Marlow, Settle, and Fowler (2013), Bond et al. from
hereon, are also interested in testing for spillovers (Hypothesis 2). They wish to use testing
procedures that are robust to the network structure. We show here analytically that there
procedures are not valid in general, and can lead to over-rejections of 0.05-level tests at rates
as high as 0.20 because they ignore the variation arising from own treatment effects.

Bond et al. focus on the difference between the average of an ego’s outcome over all edges
where the alter is exposed, and the average over all edges where the alter is not exposed:

TB(W, Y, G) =

∑

i,j 6=i Gij · Wj · Yi
∑

i,j 6=i Gij · Wj

−
∑

i,j 6=i Gij · (1 − Wj) · Yi
∑

i,j 6=i Gij · (1 − Wj)
. (A.1)

Under Hypothesis 2 the expected value of this statistic is zero, which makes it promising for
testing this hypothesis. However, because of the network structure there may dependence
between the terms in each of these averages, and its variance is difficult to estimate for a
general network structure.

Bond et al. look at a randomization-based distribution for this statistic to test the null
hypothesis of no spillovers. The distribution is obtained by re-assigning the treatment vector
W, assuming there is no effect of the treatment whatsoever, and deriving from there the
quantiles of the TB distribution. This implicitly assumes for these calculations that there is
no effect of the treatment whatsoever (Hypothesis 1), which is stronger than the no-spillover
null hypothesis (Hypothesis 2) that they are interested in testing. The reason for this is
that if one allows for direct effects of the treatment on the own outcomes, and only assumes
no spillovers, one cannot infer the value of the statistic TB for alternative values of the
treatment assignment vector: the no-spillover null hypothesis is not sharp. The concern is
that using the randomization that is based on a stronger null hypothesis is not innocuous.
Bond et al justify the use of this method using simulations in which the stronger null is true.

Here we show through analytic calculations for a particular example that p-values based
on these calculations are not valid, even in large samples, let alone in finite samples, and
that the deviations from nominal rejection probabilities can be substantial. In general,
because their calculations ignore one source of variation in the distribution of the statistic,
the p-values will be too small, leading to rejections of 0.05-level tests at rates as high as
0.20.

We focus on an example with a particular network structure that allows us to simplify
the large sample approximations. The population consists of 2 · N units, partitioned into
N pairs. Out of these 2 · N units N units are randomly selected to be exposed to the
active treatment. We maintain the assumption that there are no spillovers. The potential
outcomes are

Yi(0) = 0, and Yi(1) = 1,

so that the direct treatment effect is equal to 1. The N pairs can be partitioned into three
sets: M00 pairs with both units exposed to the control treatment, M01 pairs with exactly
one unit exposed to the control treatment and one unit exposed to the active treatment, and
M11 pairs with both units exposed to the active treatment. The number of each of these
sets, M00, M01, and M11 are random, but, because the total number of pairs is fixed at N ,
it follows that M00 +M01 +M11 = N , and because exactly N units are exposed to the active
treatment, it must be the case that M00 = M11. Hence we can rewrite these numbers in
terms of a scalar random integer: define M = M11, so that M00 = M , and M01 = N −2 ·M .
The expected value of M is N · (1/2) · ((N − 1)/(2 · N)) ≈ N/4. However, the variance
is not N · (1/4) · (3/4) because of the fixed number of treated units. We can approximate
the large sample distribution of

√
N(M/N − 1/4) by looking at the joint distribution for
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(
√

N · (M00/N − 1/4),
√

N · (M01/N − 1/2),
√

N · (M11/N − 1/4)), based on independent
random assignment to the treatment for each unit. This leads to





√
N · (M00/N − 1/4)√
N · (M01/N − 1/2)√
N · (M11/N − 1/4)





d−→ N









0
0
0



 ,
1

16
·





3 −2 −1
4 −2

3







 .

This implies that

( √
N · (M11/N − 1/4)√

N · (2 · M11/N + M01/N)

)

d−→ N
((

0
0

)

,
1

16
·
(

3 4
12

))

.

Now define M = M11 and condition on M01/N + 2 · M11/N = 0. Because the correlation
between

√
N · (M11/N −1/4) and

√
N · (M01/N +2 ·M11/N is ρ = 4/sqrt24, the conditional

variance of
√

N ·(M11/N−1/4) given
√

N ·(M01/N+2·M11/N = 0 is (3/16)·(1−ρ2) = 1/16,
and

√
N ·

(

M

N
− 1

4

)

d−→ N
(

0,
1

16

)

.

Now consider the statistic TB. We calculate first the actual distribution of this statistic
under the randomization distribution. Then we compare this to the distribution Bond et al
use for the calculation of p-values.

There are 2 · N edges. Out of these N have treated alters and N have control alters.
For the N edges with treated alters 2 ·M11 = 2 ·M have treated egos, and so have realized
outcome equal to Yi(1) = 1, and M01 = N − 2 · M have control egos, and so have realized
outcomes equal to Yi(0) = 0. The average realized outcome for egos with treated alters is
therefore 2 · M/N . Similarly, for the N edges with control alters, there are 2 · M00 = 2 · M
edges with control egos and realized outcomes Yi(0) = 0, and M01 = N − 2 · M edges with
treated egos and thus Yi(1) = 1, leading to an average realized outcome equal to 1−2 ·M/N .
Hence the value of the statistic is

TB = 2 · M

N
−
(

1 − 2 · M

N

)

= 4 ·
(

M

N
− 1

4

)

.

The actual distribution of the normalized statistic, under random assignment, is

√
N · TB =

√
N ·

(

4 · M
N

− 1

)

d−→ N (0, 1) .

Now consider the distribution used by Bond et al for the calculation of their p-values.
They calculate the randomization distribution, assuming that there are no effects of the
treatment whatsoever. Under this randomization distribution, there are always N egos
with treated alters, and N egos with control alters. Out of the 2 · N units there are N
with realized outcome equal to 1 and N with realized outcome equal to 0, so that the total
average outcome is exactly 1/2. Hence, if the average of the outcome for the egos with
treated alters is equal to Y t, the average of the outcome for egos with control alters is equal
to Y c = 1−Y t. Therefore the difference in the average outcome for egos with treated alters
and the average outcome for egos with control alters is equal to 2 · Y t − 1. To infer the
randomization distribution used by Bond et al, we need to infer the distribution of Y t under
their randomization distribution. We can write Y t as

Y t =
1

N

2N
∑

i=1

W p
i · Yi,
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where W p
i is an indicator for unit i having a treated alter. We are interested in this distribu-

tion under random assignment of Zi, with
∑2N

i=1 Zi = N , for fixed Y. (It is the treating of Y

as fixed that is not correct here – if we change the treatment of the alter for unit i we may be
changing the value of the outcome for uniti’s alter. Thus the Yi are stochastic, leading to ad-
ditional variation in the test statistic that is not taken into account in the B procedure.) Note

that
∑2·N

i=1 Yi = N and
∑2·N

i=1 W p
i = N . The treatments (and thus the peer treatments) are

randomly assigned, with pr(W p
i = 1) = 1/2 and pr(W p

i = 1|W p
j = 1) = (N − 1)/(2 ·N − 1).

Define Di = 2 · W p
i − 1 so that W p

i = (Di + 1)/2, and

E[Di] = 0, D2
i = 1, E[Di · Dj ] = − 1

2 ·N − 1
, for j 6= i.

Now

Y t =
1

N

2N
∑

i=1

Yi ·
Di + 1

2

=
1

N

2N
∑

i=1

Yi ·
1

2
+

1

2N

2N
∑

i=1

Yi · Di =
1

2
+

1

2N

2N
∑

i=1

Yi ·Di.

Then

E
[

Y t

]

= 1/2,

and

V
(

Y t

)

=
1

4 · N2
·E





(

2N
∑

i=1

Yi ·Di

)2


 =
1

4 · N2
·E





2N
∑

i=1

D2
i · Y 2

i +

2N
∑

i=1

∑

j 6=i

Di · Dj · Yi · Yj





=
1

4 · N2
·

2N
∑

i=1

Yi +
1

4 ·N2
·

2N
∑

i=1

∑

j 6=i

Yi · Yj · E[D1 · D2]

=
1

4 · N − 1

4 · N2
·N · (N − 1) · 1

2 · N − 1

=
1

4 · N − 1

4 · N · N − 1

2 ·N − 1
≈ 1

8 · N .

Hence the variance of N ·Y t is equal to 1/8, and thus the variance of Bond et al randomization
distribution is 4 ·N ·V(Y t) which is equal to 0.5. The actual distribution has variance equal
to 1, which is twice as large. The implication is that the for a two-sided test at the 0.05 level
the rejection probability based on using the incorrect Bond et al randomization distribution
is 0.157. Bond et al implicitly use the wrong variance of 0.5 for the test statistic, leading to

pr
(√

2 · |TB| > 1.96
)

= pr
(

|TB| >
√

2 · 1.96
)

= pr

(

|TB| >
1.96√

2

)

≈ pr (|TB| > 1.386) ≈ 0.157.

We carried out a small simulation study to verify these analytic calculations. We use N =
1000 pairs, 10,000 replications, and use 1,000 draws from the randomization distribution.
We reject the null hypothesis if the Bond et al p-value is less than 0.05. This leads us to
reject at a rate equal to 0.153, close to the theoretical rejection rate we calculated above
which is equal to 0.157. (A 95% confidence interval for the rejection rate is (0.144, 0.163)).

[48]



Appendix B: Derivation of the Score Test Statistic for the Null of No Spillovers

In terms of the potential outcomes the linear-in-means model in (5.9) corresponds to

Y(w) = α0·
(

I − τendog ·G
)−1·ιN+τdirect·

(

I − τendog · G
)−1

w+
(

I − τendog ·G
)−1

ε. (B.1)

The expected value of the observed outcomes given the assignment is, given the random
assignment,

E[Yobs|W = w] = E[Y(w)] = α0·
(

I − τendog · G
)−1

ιN+τdirect·
(

I − τendog · G
)−1

w. (B.2)

Under the null hypothesis that τendog = 0, the least squares estimates for the remaining
parameters based on outcomes for focal units are

α̂0 = Y
obs

F,0, and τ̂direct = Y
obs

F,1 − Y
obs

F,c,

where, for w = 0, 1, Y
obs

F,w is the average outcome for focal units with Wi = w,

Y
obs

F,w =
1

NF,w

∑

i:Fi=1,Wi=w

Y obs
i , ,

and NF,w is the number of focal units with Wi = w. Hence the residual under the null is

ε̂null
i = Y obs

i − α̂0 − Wi · τ̂direct.

Under normality of the outcome the score for τendog = 0 is proportional to the covariance
of the residual under the null and the derivative of the expectation in (B.2), with respect to
τendog, evaluated at τendog = 0. The derivative of the expectation at τendog = 0 is

∂

∂τdirect

E[Yobs|W] = α0 ·GιN + τdirect ·GW = α0 ·G(ιN −W) + (τdirect +α0) ·GW.

Substituting Y
obs

F,0 for α0 and Y
obs

F,1 − Y
obs

F,0 for τdirect suggests that a natural test statistic

would be the covariance of the residual under the null and Y
obs

F,0 ·G(ιN −W) + Y
obs

F,1 ·GW.
This leads to the following average score:

1

NF

∑

i∈PF







(

Y obs
i − Y

obs

F,0 − Wi · (Y
obs

F,1 − Y
obs

F,0)
)

·
N
∑

j=1

Gij ·
(

(1 − Wj) · Y
obs

F,0 + Wj · Y
obs

F,1

)







.

Because
∑N

j=1 Gij = 1, in combination with the fact that the residuals average to zero, it
follows that the score statistic is proportional to the covariance between the residual under
the null and

∑N

j=1 Gij · Wj, which is the fraction of treated neighbors, leading to the score
statistic

Tscore = Cov



Y obs
i − Y

obs

F,0 − Wi · (Y obs

F,1 − Y
obs

F,0),

N
∑

j=1

Wj ·Gij

∣

∣

∣

∣

∣

∣

N
∑

j=1

Gij > 0, Fi = 1





= Cov



Y obs
i − α̂ − τ̂direct ·Wi,

N
∑

j=1

Wj ·Gij

∣

∣

∣

∣

∣

∣

N
∑

j=1

Gij > 0, Fi = 1



 ,

which is the expression in (5.8).
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Table 1: Rejection Rates of Null Hypothesis of No Spillovers

Own Spillover Focal Vertex Selection
Network Statistic Effect Effect Random ε-net δN,i

Add Health Tscore 0 0 0.059 0.056 0.045
Telc 0 0 0.058 0.054 0.044
Thtn 0 0 0.059 0.039 0.046

Tscore 4 0 0.056 0.053 0.051
Telc 4 0 0.051 0.048 0.059
Thtn 4 0 0.050 0.053 0.051

Tscore 0 0.4 0.362 0.463 0.527
Telc 0 0.4 0.174 0.299 0.413
Thtn 0 0.4 0.141 0.296 0.327

Tscore 4 0.4 0.346 0.461 0.529
Telc 4 0.4 0.083 0.102 0.123
Thtn 4 0.4 0.069 0.088 0.116

Small World Tscore 0 0 0.046 0.048 0.054
(K = 10, prw = 0.1) Telc 0 0 0.048 0.040 0.057

Thtn 0 0 0.041 0.049 0.050

Tscore 4 0 0.055 0.046 0.050
Telc 4 0 0.049 0.054 0.055
Thtn 4 0 0.053 0.054 0.044

Tscore 0 0.4 0.155 0.090 0.131
Telc 0 0.4 0.112 0.092 0.128
Thtn 0 0.4 0.059 0.042 0.065

Tscore 4 0.4 0.153 0.095 0.154
Telc 4 0.4 0.060 0.060 0.061
Thtn 4 0.4 0.047 0.047 0.050
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Table 2: Rejection Rates of Null Hypothesis of No Spillovers Be-
yond the First Order Spillovers from the Sparsified Network,
AddHealth data, 10,000 Replications

Prop of Links Dropped
Statistic τdirect τspill λ q = 0.9 q = 0.5

Tscore 0 0.1 0 0.051 0.051
Telc 0 0.1 0 0.050 0.049

Tscore 0 0.4 0 0.051 0.050
Telc 0 0.4 0 0.050 0.050

Tscore 4 0.1 0 0.052 0.046
Telc 4 0.1 0 0.049 0.046

Tscore 4 0.4 0 0.058 0.048
Telc 4 0.4 0 0.051 0.047

Tscore 0 0.1 0.5 0.060 0.055
Telc 0 0.1 0.5 0.054 0.048

Tscore 0 0.4 0.5 0.212 0.108
Telc 0 0.4 0.5 0.121 0.069

Tscore 4 0.1 0.5 0.057 0.053
Telc 4 0.1 0.5 0.052 0.047

Tscore 4 0.4 0.5 0.212 0.112
Telc 4 0.4 0.5 0.061 0.051
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