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Van der Waals (vdW) heterostructures are an emergent class of metamaterials 

comprised of vertically stacked two-dimensional (2D) building blocks, which provide 

us with a vast tool set to engineer their properties on top of the already rich tunability 

of 2D materials. 1 One of the knobs, the twist angle between different layers, plays a 

crucial role in the ultimate electronic properties of a vdW heterostructure and does 

not have a direct analog in other systems such as MBE-grown semiconductor 

heterostructures. For small twist angles, the moiré pattern produced by the lattice 

misorientation creates a long-range modulation. So far, the study of the effect of twist 

angles in vdW heterostructures has been mostly concentrated in graphene/hexagonal 

boron nitride (h-BN) twisted structures, which exhibit relatively weak interlayer 

interaction due to the presence of a large bandgap in h-BN. 2-5 Here we show that 

when two graphene sheets are twisted by an angle close to the theoretically predicted 

‘magic angle’, the resulting flat band structure near charge neutrality gives rise to a 

strongly-correlated electronic system. 6 These flat bands exhibit half-filling insulating 

phases at zero magnetic field, which we show to be a Mott-like insulator arising from 

electrons localized in the moiré superlattice. These unique properties of magic-angle 

twisted bilayer graphene (TwBLG) open up a new playground for exotic many-body 

quantum phases in a 2D platform made of pure carbon and without magnetic field. 

The easy accessibility of the flat bands, the electrical tunability, and the bandwidth 

tunability though twist angle may pave the way towards more exotic correlated 

systems, such as unconventional superconductors or quantum spin liquids. 
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Exotic quantum phenomena often occur in condensed matter and other systems with high 

density of states. Remarkable examples include superconductivity 7 and the fractional 

quantum hall effect 8. One way of creating high density of states is to have flat bands with 

weak dispersion in momentum space, where the electron kinetic energy is set by the 

bandwidth 𝑊. When the Fermi level lies within the flat bands, Coulomb interactions (𝑈) 

can then greatly exceed the kinetic energy of the electrons and drive the system into 

various strongly correlated phases (
𝑈

𝑊
≫ 1). 9-12 The study of such flat-band systems in 

bulk materials continues to be scientifically important, and the search for new flat-band 

systems, such as in kagome and Lieb lattices as well as in heavy fermion systems, is 

ongoing. 9-15 

  

Recent advances in 2D materials provide a new route for achieving flat bands. An 

inherent advantage in 2D is that the chemical potential of electrons can be continuously 

tuned via electric field effect without introducing extra disorder. In a twisted vdW 

heterostructure, the mismatch between two similar lattices generates a moiré pattern (Fig. 

1b). This additional periodicity, which can have a length scale orders of magnitude larger 

than the underlying atomic lattices, has been shown to create a fractal energy spectrum in 

a strong magnetic field. 2-4 In twisted layers, the interlayer hybridization is modulated by 

the moiré pattern as well. As an example, the band structure of TwBLG can be tailored to 

generate band gaps and band curvatures otherwise absent in the graphene bands. 6, 16-20 

Although the well-known building blocks for vdW heterostructures, such as graphene and 

transition metal dichalcogenides, do not have intrinsic flat bands at low energies, it has 

been predicted theoretically that flat bands may exist in TwBLG. 6, 17-19, 21 In this work, 

we demonstrate experimentally that when the twist angle of TwBLG is close to the 

theoretically predicted ‘magic angle’, the interlayer hybridization induces nearly-flat low-

energy bands. This quenching of the quantum kinetic energy leads to a correlated 

insulating phase at half-filling of these flat bands, which points towards a Mott insulator 

in the localized flat bands.  

 

To zeroth order, the low energy band structure of TwBLG can be considered as two sets 

of monolayer graphene Dirac cones rotated about the Γ point by the twist angle 𝜃 (Fig. 

1d). 6 The difference between the two 𝐾 (or 𝐾′) wave vectors gives rise to the mini 

Brillouin zone (MBZ), shown as a small hexagon, which is reciprocal to the moiré 

superlattice. The Dirac cones near the same valley mix through interlayer hybridization, 

while interactions between distant Dirac cones are exponentially suppressed. 6, 16 As a 

result, the valley itself remains (for all practical purposes) a good quantum number. Two 

experimentally verified consequences of this hybridization are energy gaps that open near 

the intersection of the Dirac cones and renormalization of the Fermi velocity 𝑣𝐹 =

1

ℏ
|∇⃗⃗ �⃗� 𝐸�⃗� |�⃗� =𝐾,𝐾′

 at the Dirac points. 16, 22-24  



3 

 

  

The theoretically calculated ‘magic angles’ 𝜃magic

(𝑖)
, 𝑖 = 1,2, … are a series of twist angles 

at which the Fermi velocity at the Dirac points becomes zero. 6 The resulting low-energy 

bands near these twist angles are confined to less than about 10 meV. These phenomena 

can be qualitatively understood from the competition between the kinetic energy and 

interlayer hybridization energy (Fig. 1e-g). Intuitively, when the hybridization energy 

2𝑤 is comparable or larger than ℏ𝑣0𝑘𝜃 where 𝑣0= 106 m/s is the Fermi velocity of 

graphene and 𝑘𝜃 ≈ 𝐾𝜃 is the momentum displacement of the Dirac cones, the lower of 

the hybridized states is pushed to and crosses zero energy. A detailed treatment gives the 

first magic angle 𝜃magic

(1)
=

√3𝑤

ℏ𝑣0𝐾
, which is approximately 1.1°. 6 Fig. 1c shows an ab initio 

tight-binding calculation of the band structure for 𝜃=1.08°. 18 The labeled flat bands have 

a bandwidth of 12 meV for the E > 0 branch and 2 meV for the E<0 branch (strain effects 

can somewhat modify these values, but not drastically). 25 From a band theory point of 

view, the flat bands should have localized wave function profiles in real space. Fig. 1h 

shows the calculated local density of states for the flat bands. The wave functions are 

indeed highly concentrated in the regions with AA stacking, while small but finite 

amplitudes on the AB and BA regions connect the AA regions and endow a weak 

dispersion to the bands. 21 A brief discussion about the topological structure of the bands 

near the first magic angle is given in the supplementary information. 26 

 

For the experiment, we fabricated high-quality encapsulated TwBLG devices with twist 

angle precisely controlled to 0.1~0.2° accuracy using a previously developed ‘tear and 

stack’ technique. 16, 27 We have measured four devices that have twist angles near the first 

magic angle 𝜃magic

(1)
≈1.1°. Fig. 2a shows the low-temperature two-probe conductance of 

device D1 as a function of carrier density 𝑛. Near 𝑛 = ±𝑛𝑠 = ±2.7×1012 cm-2 (4e- per 

moiré unit cell for the twist angle 𝜃=1.08°), the conductance is zero over a wide range of 

densities. These insulating states have been previously understood as hybridization 

induced band gaps above and below the lowest energy superlattice bands, and will be 

hereafter referred to as the ‘superlattice gaps’. 16 The measured thermal activation gaps 

are about 40 meV. 16, 26 The twist angle can be estimated from the density required to 

reach the superlattice gaps, which we find to be 𝜃=1.1±0.1° for all of the devices 

reported here. 26 

 

A new pair of insulating phases occurs for a narrower density range near half of the 

superlattice density 𝑛 = ±
𝑛𝑠

2
= ±1.4×1012 cm-2 (2e- per moiré unit cell). These 

insulating states have a much smaller energy scale. Note that this behaviour is markedly 

different from all other zero-field insulating behaviors previously reported in the recent 
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literature (which occur at either ±𝑛𝑠 or at an integer multiple of ±𝑛𝑠), 16, 20 and we shall 

refer to them as half-filling insulating phases (HFIPs). These states are observed at 

roughly the same density for all four devices (Fig. 2a inset). Fig. 2b and Fig. 2c-d show 

the conductance of the HFIPs in device D1 at different temperatures. Above 4 K, the 

system behaves as a metal, exhibiting decreasing conductance with increasing 

temperature. A metal-insulator transition occurs near 4 K. The conductance drops 

significantly from 4 K to 0.3 K, with the minimum value decreasing by 1.5 orders of 

magnitude. An Arrhenius fit gives a thermal activation gap of ~0.3 meV for the HFIPs, 

two orders of magnitude smaller than those of the superlattice gaps. At the lowest 

temperatures the system may be limited by conduction through charge puddles, resulting 

in deviation from the Arrhenius fit.  

  

To confirm the existence of the HFIPs, we performed capacitance measurements on 

device D2 using an ac low-temperature capacitance bridge. 26, 28 The real and imaginary 

components of the ac measurement give information about the change in capacitance and 

the loss tangent of the device, respectively. The latter signal is tied to the dissipation in 

the device due to its resistance. 26 Device D2 exhibits a reduction in capacitance and 

strong enhancement of dissipation at ±
𝑛𝑠

2
 as shown in Fig. 3a, in agreement with an 

insulating phase that results from the suppression in density of states. The insulating state 

at −
𝑛𝑠

2
 is weaker and only visible in the dissipation data. The observation of capacitance 

reduction (i.e. suppression of density of states) for only the n-side HFIP in this device 

may be due to an asymmetric band structure and/or device quality. The reduction 

(enhancement) in capacitance (dissipation) vanishes when the device is warmed up from 

0.3 K to about 2 K, consistent with the behavior observed in transport measurements. 

 

The emergence of HFIPs is not expected in a single-particle picture and appears to be 

correlated with the narrow bandwidth near the first magic angle. In our experiment, 

several separate pieces of evidence support the presence of flat bands. First, we measured 

the temperature dependence of the amplitude of Shubnikov-de Haas (SdH) oscillations in 

device D1, from which we extracted the electron effective mass 𝑚∗ (Fig. 3b, see SI for 

details). 26 For a Dirac spectrum with eight-fold degeneracy (spin, valley, and layer), one 

would expect that 𝑚∗ = √
ℎ2𝑛

8𝜋𝑣𝐹
2 which scales as 𝑣𝐹

−1. The large measured 𝑚∗ near 

charge neutrality in device D1 indicates a 25-fold reduction in 𝑣𝐹 (𝑣𝐹=4×104 m/s, 

compared to 106 m/s in monolayer graphene). This striking reduction of the Fermi 

velocity is an expected characteristic of the flat bands. Furthermore, we analyzed the 

capacitance data of device D2 near the Dirac point (Fig. 3a), finding that a Fermi velocity 

reduced to about 0.15𝑣0 is necessary for a good fit to the data (see Fig. S4 in SI). 26 

Finally, another direct manifestation of such flat bands is the flattening of the 
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conductance minimum at charge neutrality above a temperature of 40 K (𝑘𝑇=3.5 meV), 

as seen in Fig. 3c. While the conductance minimum in monolayer graphene can be clearly 

observed even near room temperature, 29-31 it is smeared out in magic-angle TwBLG 

when the thermal energy 𝑘𝑇 becomes comparable to 
𝑣𝐹𝑘𝜃

2
≈ 4 meV, the energy scale 

spanning the Dirac-like portion of the band (see Fig. 1c).  

 

Due to the localized nature of the electrons, a plausible explanation for the gapped 

behavior at half-filling is the formation of a Mott-like insulator driven by Coulomb 

interaction between electrons.32, 33 To this end, we can consider a Hubbard model on a 

triangular lattice, where each site corresponds to a localized region with AA stacking in 

the moiré pattern (Fig. 1i). Fig. 3d shows the numerically calculated bandwidth of the 

E>0 branch of the low-energy bands for 0.04<𝜃<2° using a continuum model of TwBLG. 
6 The bandwidth 𝑊 is strongly suppressed near the magic angles. The on-site Coulomb 

energy 𝑈 of each site is estimated as 
𝑒2

4𝜋𝜀𝑑
, in which 𝑑 is the effective linear dimension 

of each site (with the same length scale as the moiré period) and 𝜀 is the effective 

dielectric constant including screening. Absorbing 𝜀 and the dependence of 𝑑 on twist 

angle into a single constant 𝜅, we can write 𝑈 =
𝑒2𝜃

4𝜋𝜀0𝜅𝑎
 (𝑎=0.246 nm is the lattice 

constant of monolayer graphene). In Fig. 3d we plot the on-site energy 𝑈 versus 𝜃 for 

𝜅=4-20. As a reference, 𝜅=4 if one assumes 𝜀 = 10𝜀0 and 𝑑 equals 40% of the moiré 

wavelength. For a range of possible values of 𝜅 it is therefore reasonable that 𝑈/𝑊 > 1 

occurs near the magic angles and results in half-filling Mott-like gaps. 32The realistic 

scenario is however much more complicated than these simplistic estimates and would 

require detailed theoretical analysis of the interactions responsible for the correlated gaps. 

 

The SdH oscillation frequency, shown on the right-hand axis of Fig. 3b, also supports the 

existence of Mott-like correlated gaps at half-filling. Near the charge neutrality point, the 

oscillation frequency closely follows 𝑓SdH =
𝜙0|𝑛|

𝑁
 where 𝜙0 =

ℎ

𝑒
 is the flux quantum 

and 𝑁 = 4 indicates the spin and valley degeneracies. Surprisingly, at |𝑛| >
𝑛𝑠

2
 we 

observe oscillation frequencies that corresponds to straight lines 𝑓SdH =
𝜙0(|𝑛|−

𝑛𝑠
2

)

𝑁
 in 

which 𝑁 has a reduced value of 2. Moreover, these lines extrapolate to zero exactly at 

the densities of the HFIPs 𝑛 = ±
𝑛𝑠

2
. These oscillations point towards small Fermi 

pockets that result from doping the HFIP states, which might originate from charged 

quasiparticles near a Mott-like insulator phase.34 The halved degeneracy of the Fermi 

pockets might be related to the spin-charge separation predicted in a Mott insulator.34 
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These results are also supported by Hall measurements at 0.3 K presented in the 

supplementary information, that show a “resetting” of the Hall densities when the system 

is electrostatically doped beyond the Mott-like states. 26 

 

The HFIPs at ±
𝑛𝑠

2
 are suppressed by the application of a magnetic field. Figures 4a-b 

shows that both insulating phases start to conduct at a perpendicular field of 𝐵=4 T and 

recover normal conductance by 𝐵=8 T. A similar effect is observed for in-plane 

magnetic field. 26 The insensitivity to field orientation suggests the suppression of the 

HFIPs is due to a Zeeman effect rather than an orbital effect, as the latter would be 

affected only by the perpendicular component of the magnetic field. For an effective g-

factor 𝑔 = 2 due to electron spin, the Zeeman energy needed to suppress the HFIPs is 

approximately 𝑔𝜇𝐵𝐵=0.5 meV, on the same order as the thermal excitation energy scale. 

 

Our data point towards the presence of a spin-singlet Mott-like insulator ground state at 

half-filling and zero magnetic field (Fig. 4e). The application of an external magnetic 

field can polarize the excitations in the spectrum of the correlated states according to their 

spin. When the Zeeman energy exceeds the charge gap, charge conduction can therefore 

occur (Fig. 4f). In a typical Mott insulator, the ground state usually has an 

antiferromagnetic spin ordering below the Néel temperature. On a triangular lattice, 

however, the frustration prevents the fully anti-parallel alignment of adjacent spins. 

Possible ordering schemes include 120° Néel order and rotational symmetry breaking 

stripe order. 35 It is yet unclear whether the spin-singlet ground state in TwBLG is 

fulfilled by any of the above ordering schemes or simply disordered at low temperatures. 

In the HFIPs of TwBLG it is also possible that the ordering, if any, occurs in conjunction 

with the valley degree of freedom. Therefore, a complete theoretical treatment of this 

problem should at least involve considering a two-band Hubbard model on a triangular 

lattice. 

 

We also comment on other competing mechanisms for creating a half-filled insulating 

state in a system with flat bands. Among the possibilities, charge density waves (CDW) 

in 2D are often stabilized by Fermi surface nesting, which can in principle occur near the 

half-filling of a 2D Brillouin zone. 36 However, the nesting is not sufficient to fully gap 

out the entire Fermi surface to achieve an insulating state. In order to create a global gap 

at half-filling, at least a doubling of the unit cell would be necessary, which could be 

created by a commensurate CDW or lattice relaxation due to strain. Scanning tunneling 

experiments conducted at temperatures below 1 K may be able to differentiate such 

mechanisms. 

  

In summary, our work demonstrates that graphene can be transformed through van der 

Waals engineering into a flat-band system in which correlation effects play a fundamental 



7 

 

role. Through its easy gate tunability, magic-angle TwBLG provides a novel playground 

for studying the Mott transition, which may provide insight into strongly-correlated 

materials, notably high-temperature superconductivity. The richness of the combined spin 

and valley degrees of freedom on a triangular lattice could also give rise to other exotic 

quantum phases such as quantum spin liquids.37 

 

 

Methods 

 

Sample Preparation 

Device D1, D2 and D4 are fabricated using a modified ‘tear & stack’ technique detailed 

in previous works.16, 27 Monolayer graphene and hexagonal boron nitride (h-BN, 10 to 30 

nm thick) are exfoliated on SiO2/Si chips and examined with optical microscopy and 

atomic force microscopy. We use a Poly(Bisphenol A carbonate) 

(PC)/Polydimethylsiloxane (PDMS) stack on a glass slide mounted on a micro-

positioning stage to first pick up h-BN flake at 90˚C. Then we use the van der Waals 

force between h-BN and graphene to tear a graphene flake at room temperature. The 

separated graphene pieces are manually rotated by an angle 𝜃 about 0.2~0.3° larger than 

the desired twist angle and stacked together again, resulting in a precisely controlled 

TwBLG structure. The TwBLG is then encapsulated by picking up another h-BN flake on 

the bottom, and the entire stack released onto a metal gate at 160˚C. The final device 

geometry is defined by electron-beam lithography and reactive ion etching. Device D3 is 

fabricated using a slightly different procedure, where independent graphene flakes are 

stacked together. The edges of graphene flakes are aligned under optical microscope to 

obtain small twist angles. 

 

Measurements 

Transport measurements are performed using a standard low frequency lock-in amplifier 

with excitation frequency of 10~20 Hz and excitation voltage of 100 µV, in a He-3 

cryostat. The current flowing through the device is amplified by a current pre-amplifier 

and then measured by the lock-in amplifier. 

 

Capacitance was measured using a low-temperature balanced capacitance bridge. 28 The 

reference capacitance 𝐶ref used in our experiment is approximately 40 fF, and the device 

geometrical capacitance is approximately 7 fF. The ac excitation voltage used in our 

measurements is 3 mV at 𝑓 =150 kHz. 

 

Supplementary Information 

Supplementary Information is available in the online version of the paper. 

 

Data Availability 



8 

 

The data that support the findings of this study are available from the corresponding 

authors upon reasonable request. 
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Figure Captions 

 

Figure 1. (a) Schematic of the twisted bilayer graphene (TwBLG) devices. The TwBLG 

is encapsulated in h-BN flakes of 10~30 nm thickness. The conductance is measured with 

a voltage bias of 100 µV while varying the local bottom gate voltage. (b) The moiré 

pattern as seen in TwBLG. The moiré wavelength 𝜆 =
𝑎

2 sin
𝜃

2

  where 𝑎 = 0.246 nm is 

the lattice constant of graphene and 𝜃 is the twist angle. (c) The band structure of 

𝜃=1.08° TwBLG calculated with an ab initio tight-binding method. The bands shown in 

blue are the flat bands under study in this work. (d) The MBZ is constructed from the 

difference between the two 𝐾 (𝐾′) wave vectors from the two layers. Hybridization 

occurs between Dirac cones within each valley, while intervalley processes are strongly 

suppressed. (e-g) Illustration of the effect of interlayer hybridization for (e) 𝑤 = 0, (f) 

2𝑤 ≪ ℏ𝑣0𝑘𝜃 and (g)2𝑤 ∼ ℏ𝑣0𝑘𝜃. (h) Calculated local density of states (LDOS) for the 

flat bands with E > 0 at 𝜃=1.08°. The electron density is strongly concentrated at the 

regions with A-A stacking order, while mostly depleted at A-B and B-A stacked regions. 

(i) Top view of a simplified model of the stacking order. 
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Figure 2. (a) Measured conductance of magic-angle TwBLG device D1 with 𝜃=1.08°. 

Dirac point is located at 𝑛 = 0. The lighter shaded regions are superlattice gaps at carrier 

density 𝑛 = ±𝑛𝑠 = ±2.7×1012 cm-2. The darker shaded regions denote HFIPs at ±
𝑛𝑠

2
. 

Inset shows the density locations of half-filling insulating phases (HFIPs) in four 

different devices. The method for obtaining the error bars is explained in the 

supplementary information.26 (b) Minimum conductance values in the two HFIPs in 

device D1, labeled by corresponding colors as defined in (a) and (c-d). The dashed lines 

are fits of the formula exp(−Δ/2𝑘𝑇) to the data, where Δ ≈0.31 meV is the thermal 

activation gap. (c-d) Temperature dependent conductance of D1 from 0.3~1.7 K near the 

(c) p-side and (d) n-side HFIPs.  
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Figure 3. (a) Capacitance measurements of device D2 at 0.3 K (blue trace) and 2 K (pink 

trace). The change in the measured capacitance (upper traces), Δ𝐶, is plotted on the left 

axis, and the loss tangent (lower traces) is shown on the right axis. For density 

corresponding to half-filling ±
𝑛𝑠

2
, reduction in Δ𝐶 (on p-side only) and enhancement in 

loss tangent (on both sides) are observed (0.3 K data). These effects disappear in the 2 K 

measurements. (b) The effective mass 𝑚∗ and oscillation frequency fSdH as extracted 

from temperature-dependent SdH oscillations. The fitting curves are 𝑚∗ = √
ℎ2𝑛

8𝜋𝑣𝐹
2, 

assuming a uniform Fermi velocity 𝑣𝐹. For magic-angle device D1 the estimated Fermi 

velocity 𝑣𝐹=4×104 m/s is 25-times reduced from that in pristine graphene, 𝑣0=1×106 

m/s. The measured oscillation frequencies point towards the existence of small Fermi 

pockets that start from the HFIPs with one half the degeneracy of the main Fermi surface 

of the Dirac points. Shaded regions at half-filling and full-filling correspond to the shaded 

rectangles in Fig. 2a. (c) Gate-dependence of the conductance of D1 at different 

temperatures from 4.5 K to 120 K. The curves are vertically shifted for clarity. (d) The 

comparison between the bandwidth 𝑊 for the E > 0 flat band branch in TwBLG and the 

on-site energy 𝑈 for different twist angles. Near the magic angles 𝜃magic

(𝑖) ≈1.1°,0.5°, …, 

𝑈 > 𝑊 is satisfied for a range of possible 𝜅 (defined in the main text), and the system 

can be driven into a Mott-like insulator.  
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Figure 4. 𝐵⊥ dependence of the conductance of the HFIPs for D1 on (a) p-side and (b) 

n-side. The white line cuts show the conductance at the labeled fields. (c) Arrhenius plot 

of the conductance of the p-side HFIP at different magnetic fields. The inset shows the 

thermal activation gap extracted from fitting the data of the main plot with 

exp(−Δ/2𝑘𝑇). (d-f) Schematic density of states (DOS) pictures. The single-particle flat-

bands (both E>0 and E<0 bands are shown, with EF in the E>0 band, i.e. n-doping) in (d) 

is split into upper and lower Hubbard bands by interactions (e). This occurs when EF is at 

half-filling of the upper band. Upon applying a Zeeman field, the excitations can be 

further polarized and close the charge gap when the Zeeman energy is comparable to the 

gap (f). Purple shading denotes a spin-degenerate band, while blue and red shading 

denote spin-up and spin-down bands respectively. CNP abbreviates for charge neutrality 

point. The shape of the DOS drawn here is purely illustrative and does not represent the 

actual DOS profile (see supplementary information for a numerical result).26 
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I. SAMPLE FABRICATION AND MEASUREMENT

Device D1, D2 and D4 are fabricated using a modified ’tear & stack‘ technique detailed in

our previous work [1] and Ref. [3, 4]. Briefly speaking, monolayer graphene and hexagonal

boron nitride (h-BN, 10 nm to 30 nm thick) are exfoliated on SiO2/Si chips and examined

with optical microscopy and atomic force microscopy. We use PC/PDMS stack on a glass

slide mounted on a micro-positioning stage to first pick up the h-BN flake. Then we use the

van der Waals force between h-BN and graphene to tear a graphene flake. The separated

graphene pieces are manually rotated by a twist angle θ and stacked on each other, resulting

in the desired TwBLG structure. The resulting stack is encapsulated with another h-BN

flake at the bottom and put onto a metal gate. The final device geometry is defined by

electron-beam lithography and reactive ion etching. Electrical connections to the TwBLG

are made by one-dimensional edge contacts [5]. Device D3 is fabricated using a slightly

different procedure, where independent graphene flakes are stacked together. The edges of

graphene flakes are aligned under an optical microscope to obtain small twist angles.

All transport measurements are performed using standard lock-in techniques with excita-

tion frequency between 10 Hz to 20 Hz and excitation voltage Vdrive = 100 µV. The current

flowing through the sample is amplified by a current pre-amplifier and then measured by

the lock-in amplifier.

II. SUPPLEMENTAL TRANSPORT DATA

A. Full Temperature Dependence of Device D1

Fig. S1 shows the full temperature dependence of the conductance of device D1 from

0.3 K to 300 K. The metallic behavior at all densities from 4 K to 100 K except for the

superlattice gaps (A±) are clearly seen in Fig. S1(b).

Lines labeled B-, D, B+ correspond to below, at, and above the Dirac point respectively.

The conductance values at these densities completely merge at about 50 K, indicative of the

narrow bandwidth as described in the main text.

The thermal activation gaps of the superlattice insulating states at A± can be obtained by

fitting the temperature dependence of the conductance at these densities. Detailed discussion

about the superlattice gaps in non-magic-angle devices are published in Ref. [1]. The fit
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to Arrhenius formula exp(−∆/2kT ) yields ∆ = 32 meV for the A- gap and 40 meV for the

A+ gap. For comparison, the same gaps measured in θ = 1.8◦ TwBLG are slightly larger at

50 meV and 60 meV for the gaps at negative and positive densities respectively [1].
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FIG. S1. (a) Temperature dependence of conductance of device D1 from 0.3 K to 300 K. (b) The

conductance versus temperature at five characteristic carrier densities labeled A± (superlattice

gaps), B± (above and below the Dirac point) and D (the Dirac point) in (a). The arrow denotes

the temperature above which the conductances at B± merge with D. The solid lines accompanying

A± are Arrhenius fit to the data.

B. Magnetotransport in Devices D1 and D3

Magnetoconductance data for device D1 and D3 are plotted in Fig. S2. Magnetic field

is applied perpendicular to the sample plane.

As in any clean metallic electronic system, Landau levels become visible above a certain

magnetic field, and the conductance shows an oscillatory behavior periodic in 1/B. Here

we observe the onset of quantum oscillation at 1.3 T in D1 and 2 T in D3 (much weaker).

The degeneracy of each Landau level is given by nd = B/φ0 where φ0 = h/e is the flux

quantum. Therefore the filling factor ν = n/nd = nφ0/B can be directly read out from the

slope of each Landau level. The observed Landau levels near the charge neutrality point
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FIG. S2. Magneto-conductance of two different samples D1 (also shown in main text) and D3.

Both measurements are taken at temperatures T ≤ 0.3 K.

in magic-angle samples have a filling factor sequence of ±(4, 8, 12, . . .), in contrast to the

±(2, 6, 10, . . .) sequence seen in monolayer graphene [6] or ±(4, 12, 20, . . .) observed in non-

magic-angle TwBLG (which is just twice that of monolayer graphene) [1, 7]. We find this

sequence in all measured TwBLG devices with θ < 1.3◦. The same sequence is also observed

in Ref. [4] at 0.97◦.

The observation of superlattice gaps near n = ±2.7× 1012 cm−2 and half-filling insulating
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phases (HFIPs) near n = ±1.4× 1012 cm−2 is consistent across both devices. The HFIPs

are also suppressed at a similar magnetic field, between 4 and 6 T. The HFIPs in device D3

also disappear when warmed up to 4 K.

The slopes of the Landau levels are used to accurately calibrate the density axis n ac-

cording to n = νB/φ0 once the filling factor ν is known. This calibration of the density is in

agreement with the parallel plate estimation n ≈ CgVg/e to within 10 %, where Cg = εh−BN/t

is the gate capacitance per unit area of h-BN, t is the thickness of h-BN, and Vg is the gate

voltage.

C. In-plane magnetotransport data for D1

To reveal the origin of the HFIPs and its suppression in a magnetic field, we have per-

formed magneto-transport measurements in an in-plane configuration, i.e. the magnetic

field vector is parallel to the sample plane. Fig. S3 shows the measured conductance as a

function of carrier density n and in-plane magnetic field B‖.
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FIG. S3. In-plane magnetic field dependence of the conductance of D1. The measurement is taken

at a higher temperature of T ≈ 2 K. The color scale is chosen to emphasize the HFIPs.

The in-plane measurement is taken at a higher temperature of T ≈ 2 K. Combined with

the degradation of the sample quality resulting from the thermal cycling that was necessary
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in order to change the field orientation, the HFIPs are not as well developed as in the

previous measurements (Fig. S2). However, the gradual suppression of the HFIPs is still

unambiguously observed when B‖ is above about 6 T, slightly higher but similar to the 4 T

to 6 T threshold for the perpendicular field (see Fig. S2 and main text Fig. 4a-b). Based on

these observations, we conclude that the suppression of HFIPs in a magnetic field originates

from the Zeeman effect on the electron spins rather than some orbital effect.

D. Transport data in device D4

1. Four-probe measurement and ±3-filling states

Transport measurements in both D1 and D3 were performed in a two-probe configura-

tion. Although it is generally advised to perform four-probe measurements in transport

experiments, we find that the existence of multiple insulating states (both the superlattice

gaps at ±ns and HFIPs at ±1
2
ns) frequently lead to noisy or negative Rxx signals due to

the region in the device near the voltage probes becoming insulating at a slightly different

carrier density. In our case where we are mostly interested in the insulating behaviours on

the order of 100 kΩ to 1 MΩ, a contact resistance of at most a few kΩ that is typical in

edge-contacted graphene device does not obscure the present data[5]. Thus we believe that

the two-probe data presented throughout the paper is fully trustable and gives an accurate

presentation of the device characteristics.

Here we show the measurements in a fourth device D4 which has a twist angle of θ =

(1.16± 0.02)◦. Device D4 was measured in a four-probe configuration so that the contact

resistance is removed. Both the superlattice insulating states and the HFIPs do not have

very high impedance in D4 (probably due to disorder and/or inhomogeneity), and therefore

the previously described issues with four-probe measurements did not occur. Fig. S4 shows

the two-probe and four-probe conductances in device D4 measured at 0.3 K.

From Fig. S4 it is clear that the four-probe and two-probe measurements essentially

show the same features, while some weak signals appear to be better resolved in the four-

probe measurements. In the four-probe data, we not only observe the HFIPs at half-filling

(±2 electrons per moiré unit cell), we also see evidence for odd-filling insulating phases at

±3 electrons per moiré unit cell as weak reduction in the conductance curve. Note that the
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FIG. S4. Four-probe (upper panel) and two-probe (lower panel) conductance measured in device

D4 at T = 0.3 K. The colored vertical bars and the corresponding numbers indicate the associated

integer filling inside each unit cell of the moiré pattern. Besides clear observation of the HFIPs

at half-filling (±2), we also observe weak drops in the four-probe conductivity that point towards

three-quarter-filling states at ±3.

existence of insulating behaviours at other integer fillings of the flat bands than ±2 is a result

to be expected in the Mott-like insulator picture, and further lends support to our claim

that the correlated insulating behavior originates from the on-site Coulomb interaction.
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FIG. S5. Hall measurement in device D4 (θ = 1.16◦) at 0.3 K, 4 K, 10 K and 30 K. The upper panel

shows the Hall coefficients RH and the lower panel shows the Hall density nH = −1/(eRH). The

colored vertical bars and the corresponding numbers indicate the associated integer fillings in the

moiré unit cell. The x-axis is the gate-induced total charge density n, while the Hall density nH

and its sign indicates the number density and characteristic (electron/hole) of the carriers being

transported.
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2. Hall measurement

We have also measured the device D4 in a Hall configuration (Rxy). Fig. S5 shows the

low-field linear Hall coefficient RH = Rxy/B and Hall density nH = −1/(eRH) versus gate-

induced charge density n. In a uniformly gated single-carrier 2D electronic gas, one expects

that nH = n. This is what we have measured in the density range -1.3∼1.3× 1012 cm−2 at

0.3 K. Near the half-filling states n = ±ns/2, however, the Hall density abruptly jumps from

nH = n to a small value close to zero (but not changing its sign). Beyond half-filling, nH

follows nH = n±ns/2, a new trend that is consistent with quasiparticles that are generated

from the half-filling states. This ‘resetting’ effect of the Hall density gradually disappears

as the temperature is raised from 0.3 K to 10 K, in agreement with the energy scale of the

Mott-like states. At higher temperatures, the Hall density is linear with n but the slope is no

longer one, which might be related to the thermal energy kT being close to the bandwidth,

resulting in thermally excited carriers with opposite polarity reducing the net Hall effect.

We note that in good correspondence with the quantum oscillation data shown in Fig.

3b, we only see the behaviors of the new quasiparticles on one side of the Mott-like state,

e.g. the side further from the charge neutrality point; between the charge neutrality point

and the Mott-like state, we see an abrupt change from the typical large Fermi surface of the

single-particle bands to a small Fermi surface of the new quasiparticles. This may result

if the effective mass of the quasiparticles on one side of the Mott-like gap is considerably

greater than the other side, so that the oscillation and Hall effect become difficult to observe

very close to the metal-insulator transition.

E. Determination of Twist Angles

Accurate determination of the twist angles of the samples is of utmost importance in

understanding the magic-angle physics. We use two independent methods to determine the

twist angle from transport data.
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1. Superlattice density

The superlattice density ns, defined by the density required to fill one band in the super-

lattice, is related to the twist angle by

ns =
4

A
≈ 8θ2√

3a2
, (1)

where A is the unit cell area, a = 0.246 nm is the lattice constant of graphene.

At approximately 1◦ < θ < 3◦, the superlattice densities ±ns are associated with a

pair of single-particle bandgaps at their corresponding Fermi energy [1, 19]. Therefore, the

measured density of the superlattice insulating states can be used to directly estimate θ

according to Eq. (1). Due to localized states, the accurate value of ns is difficult to pinpoint

at zero magnetic field, and the estimated θ is accurate to about 0.1◦ to 0.2◦. Fig. S6 shows

the resistivity (resistance for magic-angle device D1) for four different samples of twist angles

θ = 1.38, 1.08, 0.75, 0.65◦ respectively. At θ = 1.38, 1.08◦, the positions of the superlattice

gaps clearly provide an estimation of θ.

However, it is noted in Ref.[4] that the apparent resistance peaks in the transport data

may not correspond to ns but instead 2ns, once the twist angle is below 1◦. We have

observed a similar phenomenon when twist angle is as small as 0.65◦. This complicates the

determination of twist angles, since one encounters an ambiguity of whether the feature one

observes corresponds to ns or 2ns, which can result in the twist angle wrong by a factor of
√

2.

To more accurately determine the twist angle and avoid this ambiguity, we use the fact

that each band edge of the miniband structure has its own Landau levels [1, 3, 19]. Fig.

S7(a) shows the derivative of magneto-conductance data of device D1. The Landau levels

emanating from ns = (2.7± 0.1)× 1012 cm−2 can be clearly seen, which translates to θ =

(1.08± 0.02)◦ according to Eq. (1). Since the intersection points of the Landau levels can

be determined relatively accurately (uncertainty of about 1× 1011 cm−2), the twist angle

can be determined with an uncertainty of about 0.02◦ near the first magic angle.

2. Hofstadter’s Oscillation

The effect of applying strong magnetic fields such that the magnetic length becomes

comparable with the unit cell size is well described by Hofstadter’s butterfly model [8].
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FIG. S6. Resistivity (resistance for θ = 1.08◦) measurements for four samples with different twist

angles, θ = 1.38, 1.08, 0.75 and 0.65◦. The solid arrows point towards superlattice features at ±ns,

and empty arrows point to ±2ns. HFIPs have only been observed in first-magic-angle samples so

far.

In density space, this model is better captured in Wannier’s picture [9]. In the Wannier

diagram, all Landau levels are described by n/ns = φ/φ0 + s, where φ is the magnetic flux

through a unit cell. s = 0 labels the main Landau fan and s = ±1 is the (first) satellite

fan, etc. Adjacent Landau fans intersect when φ/φ0 = 1/q or equivalently 1/B = qA/φ0,

where q is an integer. Therefore, in the experiments one would expect to see Landau level

crossings at periodic intervals of 1/B, where the periodicity is proportional to the unit cell

area A. This effect has been observed in other 2D superlattice systems, and can be utilized

to cross-check the twist angles extracted from other methods [10–12].
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FIG. S7. (a) Derivative of magneto-conductance data of device D1, measured at 4 K. The dashed

fans labels the main (green) and satellite (blue) Landau fans respectively. (b) The derivative of

magneto-conductance data of device D2 plotted as a function of 1/B. The horizontal lines have a

uniform spacing of 0.033 T−1.

Fig. S7(b) shows the magneto-transport data (first derivative with respect to density) of

device D2 at higher doping densities, plotted versus n and 1/B. A periodic crossing of Lan-

dau levels is clearly observed near −9× 1012 cm−2. The periodicity is (0.033± 0.001) T−1,

which gives A = (1.37± 0.04)× 10−12 cm2 and θ = (1.12± 0.01)◦, compared to θ =

(1.12± 0.02)◦ extracted using the previous method (ns = (2.9± 0.1)× 1012 cm−2).

III. CAPACITANCE MEASUREMENT

A. General Description

In order to measure a tiny capacitance change between the TwBLG device to the metal

gate, we use a balanced capacitance bridge as illustrated in Fig. S8 [13].

The capacitance bridge is first ‘balanced’ by adjusting the ratio Vd/Vref such that the

output from the pre-amplifier is close to zero. When balanced, any small change of the

device capacitance C is linearly proportional to the output signal. The reference capacitance

Cref used in our experiment is approximately 40 fF, and the device geometrical capacitance

is approximately 7 fF. The ac excitation used in our measurements is 3 mV at f = 150 kHz.
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FIG. S8. Schematic for the low-temperature capacitance bridge. The X and Y outputs from the

lock-in amplifier refer to the in-phase and out-of-phase components respectively. C and R are the

capacitance and resistance of the sample. Vg is the DC gate voltage. All connections into and out

from the cryostat are made with coaxial cables.

The in-phase and out-of-phase components of the measured signal are (to the leading

order) proportional to the change in capacitance ∆C/Cref and dissipation ωCRseries, respec-

tively (ω = 2πf). Therefore from the out-of-phase component, one can in principle extract

the effective resistance Rseries in series with the device capacitance C. In reality, due to the

complications that the actual resistance is distributed across the device, and that the device

capacitance only constitutes about 1/5 of the total measured capacitance (the remainder

being stray capacitance from bonding pads and bonding wires), the dissipation data should

be interpreted as a qualitative measure of the device resistance.

B. Estimation of the Fermi velocity

The measured capacitance is the series sum of geometric capacitance Cgeom and quantum

capacitance Cq. The latter is directly proportional to the density of states (DOS) in TwBLG.

Therefore, by analyzing the quantum capacitance Cq as a function of carrier density n, one

can extract the dependence of DOS on n, and subsequently deduce the Fermi velocity.

In the zero temperature limit, the quantum capacitance is related to the DOS by Cq =

e2D(EF ), where EF is the Fermi energy. A model system for TwBLG near the charge

neutrality consists of massless Dirac fermions with Fermi velocity vF and 8-fold degeneracy
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to Eq. (6) with different Fermi velocities. v0 = 1× 106 m s−1 is the Fermi velocity in pristine

graphene.

(spin, valley, layer), the DOS is [14–16]

D(EF ) =
4

π

EF
(~vF )2

. (2)

Since EF = ~vFkF is related to the density n by

n = 8 · 1

(2π)2
· πk2F =

2

π

E2
F

(~vF )2
, (3)

EF = ~vF
√
nπ

2
, (4)

where the factor 8 comes from spin, valley, and layer, the quantum capacitance of the

TwBLG is therefore written as

Cq = e2
2
√

2√
π~vF

√
|n|+ nd. (5)

Due to disorder, the spatially averaged DOS at the Dirac point (n = EF = 0) will not be

absolutely zero. Therefore a phenomenological nd ∼ 1× 1010 cm−2 is added in the expression

above [14].

The measured capacitance is then

1

C
=

1

Cgeom

+
1

Cq
. (6)
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In Fig. S9, we show the measured capacitance near the Dirac point and fitting curves

according to Eq. (6) and Eq. (5). The Cgeom is again approximated by the DC gating

capacitance Cg ≈ 7.5 fF. We find that using parameters vF = 0.15× 106 m s−1 and nd =

1.0× 1010 cm−2 gives a reasonable fit to the data measured at both T = 300 mK and T ≈ 2 K.

Finally, we note that the fitting for vF is sensitive to the value used for Cgeom. For

example, using a Cgeom value 30 % larger than the value we used above, we find a Fermi

velocity of vF = 0.1× 106 m s−1. Similarly, using a value 15 % smaller than the said value we

find vF = 0.2× 106 m s−1. Nonetheless, the analysis present here suffices to demonstrate that

the Fermi velocity is indeed greatly reduced in the capacitance device D2. The slightly larger

Fermi velocity compared to that measured in the transport device D1 vF = 0.04× 106 m s−1

can be attributed to the slightly larger twist angle of device D2 θ = 1.12◦, which is further

from the first magic angle θ
(1)
magic ≈ 1.05◦ than device D1 θ = 1.08◦.

IV. ERROR BAR IN FIG. 2A INSET IN MAIN TEXT

The error bars in Fig. 2a are deduced using the following criteria:

1. For the transport devices D1, D3 and D4, the endpoints of the error bars correspond

to the points where the conductance rises to 10 % of the peak value on that side.

2. For the capacitance device D2, since the peaks are very sharp (see Fig. 3a in main

text), the error bar corresponds to the entire width of peaks in the Rseries data.

V. QUANTUM OSCILLATIONS AND EXTRACTION OF m∗

We performed magnetotransport measurements from 0.3 K to 10 K. At each gate volt-

age, a polynomial background of resistance in B is first removed, and then the oscillation

frequency and the effective mass is analyzed. Examples of the SdH oscillations and their

temperature dependences at a few representative gate voltages are shown in Fig. S10. Tem-

perature dependence of the most prominent peak is fitted with the Lifshitz-Kosevich formula

applied to conductance

∆R ∝ χ

sinh(χ)
, χ =

2π2kTm∗

~eB
, (7)

and the cyclotron mass m∗ is extracted from the fitting.

29



-10
 0

 10

10 5 4 2
a

B (T)

-10
 0

 10

10 5 4 2

-5

 0

 5 b

-5

 0

 5

-8

 0

 8

0.1 0.2 0.3 0.4 0.5

c

Δ
R

 (
kΩ

)

1/B (T-1)

-8

 0

 8

0.1 0.2 0.3 0.4 0.5
 0

 1

0 5 10

N
or

m
al

iz
ed

 A
m

p.
 (

a.
u.

)

T (K)

a
b
c

 0

 1

0 5 10

FIG. S10. Temperature-dependent magneto-conductance of device D1 at gate voltage (a) Vg =

−2.28 V, (b) Vg = −0.68 V and (c) Vg = 1.08 V. The temperatures are from dark to bright, 0.3 K,

1.7 K, 4.2 K and 10.7 K respectively. The figure on the right summarizes the oscillation amplitudes

of the most prominent peaks in (a-c). The curves are fitted according to the L-K formula Eq. (7).

Within the flat bands, the quantum oscillations universally disappear at 10 K except very

close to the Dirac point, again consistent with the large electron mass and greatly reduced

Fermi velocity near the first magic angle.

The quantum oscillations in device D1 is shown in Fig. S2(a). At a first glance, it may

seem that the Landau levels emanating from the Dirac point ‘penetrate’ the half-filling Mott-

like states and continue towards the band edges. However, upon closer examination this is

not the case. Fig. S11 shows the same data as in Fig. S7a, but plotted versus 1/B instead

of B. Here it can be seen that at densities beyond the half-filling states the oscillations are

clearly not converging at the Dirac point, but instead the half-filling states themselves. The

oscillation frequencies extracted from this data are plotted in Fig. 3b.
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FIG. S11. Quantum oscillations in device S1 with twist angle of 1.08◦. Left: raw experimental

data plotted versus n and 1/B. Right: same data with a polynomial background in B removed for

each density. The green boxes denote the range of density for the half-filling insulating states.

VI. SOME THEORETICAL AND NUMERICAL INSIGHTS IN TwBLG NEAR

MAGIC ANGLES

A. Band Structure near the Magic Angles

The general evolution of the band structure of TwBLG above the first magic angle is

described in a number of earlier works [17–22]. The low-energy band structure consists of

two Dirac cones (each is 4-fold degenerate due to valley and spin), with a renormalized Fermi

velocity

vF (θ) =
1− 3α2

1 + 6α2
≈ 1− 9α2(α ≤ 1), (8)

where α = w/v0kθ is the dimensionless interlayer hopping amplitude [18](w, v0 are the

interlayer hopping energy and original Fermi velocity in graphene, kθ ≈ Kθ is the interlayer

momentum difference). vF (θ) passes through zero at α = 1/
√

3, which defines the first magic

angle θ
(1)
magic. To the best of our knowledge the detailed evolution of the band structure near

the magic angles has not been addressed in the literature. Specifically, we ask the following

question: as the Fermi velocity at the Dirac points changes sign, how does the associated

winding number evolve? Close to a Dirac point, the effective two-band Hamiltonian can be
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FIG. S12. E+ dispersion from Eq. (11) for different vF and m = 0.5. The kx and ky scale is

[−2, 2], the colorscale for the energy axis is [0, 10]. The associated winding number of each band

touching point is labeled in the figure.

written as

H(k) = vF (θ)σ · k +O(k2) =

 O(k2) vF (θ)k† +O(k2)

vF (θ)k +O(k2) O(k2)

 , (9)

in which k = kx + iky. When vF (θ) → 0 near the first magic angle, the terms linear in k

vanish and the dispersion is dominated by the next-leading-order k2 terms. A simple form

of the k2 term is

H(k) =

 0 vF (θ)k† + 1
2m

k2

vF (θ)k + 1
2m

k†2 0

 , (10)

m is a parameter with the dimension of mass. In fact, this Hamiltonian describes the

low-energy band dispersion of monolayer graphene with third-nearest-neighbor hopping [23,

24], as well as bilayer graphene with Bernal stacking and trigonal warping [24–26]. The
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eigenvalues of this Hamiltonian are

E±(k) = ±
√

[vFkx +
1

2m
(k2x − k2y)]2 + [vFky −

1

m
kxky]2. (11)

The evolution of the dispersion described by Eq. (11) with varying vF and constant m = 0.5

is shown in Fig. S12. The winding number associated with a Dirac point is defined by

w =
i

2π

∮
C

〈k| ∇k |k〉 · dk, (12)

where C is a loop around that Dirac point. The winding number follows a conservation law

when the motion and merging of Dirac points are considered [27]. The winding number of

each band touching point is labeled in Fig. S12.

When vF → 0 there exist three additional Dirac points with opposite winding numbers

(−1) to the main Dirac point (+1). Therefore at vF = 0 when all four Dirac points merge,

the winding number is −2, since the total winding number cannot change.

The simple Hamiltonian form of Eq. (10) is an educated guess. We performed numerical

calculations of the winding number using the continuum model for TwBLG [18, 22] and

the numerical method in Ref. [28]. The results are summarized in Fig. S13. We find that

near the first magic angle, θ
(1)
magic = 1.064◦, the picture described in Fig. S12 is exactly what

happens at each corner of the mini Brillouin zone (MBZ). The complication that arises when

one considers the entire MBZ is that, for a given valley (e.g. K), the two inequivalent corners

of the MBZ have the same winding number, because they are the hybridized result of the

same valley (K) of opposite layers (see Fig. 1d of the main text). Global time reversal

symmetry is preserved by mapping to the other valley (K ′). Therefore, for a given valley

K, when the twist angle is reduced from large angles where the winding numbers of the

two corners are (+1, +1) to the first magic angle where the winding numbers are (-2,-2), a

net winding number change ∆w = 6 occurs between the two lowest energy bands. Further

theoretical work is necessary to elucidate the physics behind this winding number evolution

near the first magic angle.

In summary, we have shown that at exactly the first magic angle, the Dirac point at each

corner of the MBZ (Ks and K ′s) becomes a parabolic band touching with winding

number -2, similar to bilayer graphene with Bernal stacking except that the two corners

have the same winding number. The calculation corresponding to the first magic angle in

Fig. S13 can be fit to a paraboloid, giving an effective mass of m = 1.1me. This value can
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FIG. S13. The evolution of the low-energy band structure of TwBLG near the first magic angle

θ
(1)
magic = 1.064◦. The coloring shows the hotspots of the Berry curvature at each band touching

point. The energy axis spans an extremely small range of −50 µeV to 50 µeV. The momentum

axes are measured by Kθ ≈ Kθ and the range for both kx/Kθ and ky/Kθ is [−0.1, 0.1]. The center

of the momentum space is the Ks point of the MBZ, and the thick lines denotes the Ks – Ms – K ′s

direction. All results are shown for the K-valley continuum description of TwBLG [18].

be viewed as the asymptotic limit of the effective mass near the charge neutrality point as

vF → 0 (θ → θ
(1)
magic).

B. Density of States (DOS) in Magic-Angle TwBLG

Despite our simplistic representation of the DOS in the flat-bands of magic-angle TwBLG

in Fig. 4d-f, the actual single-particle DOS profile of TwBLG is rather complex with multiple

van Hove singularities (vHs). Here we show a DOS versus energy plot calculated with the

continuum model as presented in [18] for θ = 1.08◦.
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