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Abstract: We propose simultaneous measurement and reconstruction tailoring (SMaRT) for
quantitative phase imaging; it is a joint optimization approach to inverse problems wherein mini-
mizing the expected end-to-end error yields optimal design parameters for both the measurement
and reconstruction processes. Using simulated and experimentally-collected data for a specific
scenario, we demonstrate that optimizing the design of the two processes together reduces phase
reconstruction error over past techniques that consider these two design problems separately. Our
results suggest at times surprising design principles, and our approach can potentially inspire
improved solution methods for other inverse problems in optics as well as the natural sciences.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Imaging the spatially-varying optical path length differences encountered by light as it passes
through a specimen of interest, i.e., quantitative phase imaging, has wide applicability in many
scientific domains. For example, the spatial distribution of absorption in many biological
specimens does not exhibit high contrast, unlike quantitative phase images of the same specimen.
While interferometry and holography are classical solutions to phase imaging, there also exists
a large family of self-interferometric techniques wherein the axial intensity evolution of a
collimated beam after passing through a specimen of interest is used to numerically estimate the
specimen’s optical path length profile. Members of this family include nonlinear phase retrieval
techniques like Gerchberg–Saxton–Fienup approaches [1, 2] or PhaseLift [3], techniques based
on the transport of intensity equation (TIE) [4–8], and techniques based on contrast transfer
functions (CTFs) [9, 10]. While TIE and CTF techniques usually assume coherent or nearly
coherent illumination, they have been extended to the partially coherent regime as well. Partial
coherence results in loss of high frequency information away from the focal plane [8, 11]; loss of
spatial coherence caused by area sources can be inverted via illumination diversity [12].
Like any other inverse problem, reconstruction quality depends on the design of both the

measurement and reconstruction steps of the imaging method—what measurements do we take,
and how do we then numerically estimate the phase? In standard TIE imaging, transverse
intensity profiles at two closely spaced planes are used to estimate the axial derivative, from
which a phase image is computed via regularized inversion of the Laplace operator. Recent
papers [7, 8, 13–15] suggest measurements at multiple planes for better derivative estimates,
whereas other threads [16, 17] discuss alternatives to Tikhonov regularization for reconstruction.

The optimal reconstruction design naturally depends on the choice of measurements taken,
but conversely the optimal measurement design also depends on the choice of reconstruction
method—we want to avoid wasting resources, such as imaging time or light budget, to collect

                                                                                               Vol. 26, No. 25 | 10 Dec 2018 | OPTICS EXPRESS 32532 

#341547 https://doi.org/10.1364/OE.26.032532 
Journal © 2018 Received 3 Aug 2018; revised 4 Oct 2018; accepted 4 Oct 2018; published 28 Nov 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.26.032532&domain=pdf&date_stamp=2018-11-28


information that the reconstruction method will simply ignore. This principle suggests that it is
suboptimal to design measurements to capture every last bit of information about the specimen and
then design a reconstruction approach based on these measurements. Rather, it would be better to
jointly optimize the design of the two. The seminal wavefront coding papers [18,19] as well as the
ensuing computational photography field followed this general approach, wherein the captured
images themselves may not be the “best” images of the object being photographed, but they yield
higher quality images than standard photography after appropriate numerical postprocessing.
Joint optimization was also leveraged explicitly via what is known as multi-domain optimization
(MDO) in the design of many computational optical systems such as the origami lens [20,21].
Inspired by these approaches, we propose phase imaging via a joint optimization framework we
call simultaneous measurement and reconstruction tailoring (SMaRT), which we now outline.
Our framework builds upon the same motivation as Wiener filtering and related minimum

mean square error (MMSE) estimators, but we extend the classical approach by allowing the
noise statistics (e.g., per-image noise level) to vary as a consequence of measurement design.
This leads to seeking an optimal measurement–reconstruction design pair that minimizes the
expected reconstruction error. More specifically, we parameterize specimens by vectors s in
some Hilbert space S, and we are interested in imaging a class of specimens S0 ⊆ S with prior
probability density function fS0 (s). Given design spacesM0 and R0 for the measurement M and
reconstruction R, respectively, we wish to solve a problem of the form

minimize
M∈M0,R∈R0

∫
fS0 (s)




s − rR

(
pM(s)

)


2

2
ds , (1)

where pM(·) is a stochastic function that describes the noisy forward model for a specific
measurement method M, and rR(·) is a deterministic function that reconstructs an estimate of
s from data, based on reconstruction design R. While the general case is difficult to solve, the
specific case of weak-phase objects illuminated by partially coherent light and imaged through a
standard optical microscope under a fixed time budget enables rewriting Eq. (1) as a regularized
least squares problem of the form

minimize
x1,...,xL



b −∑L
l=1 Alxl



2
2 + γ

(∑L
l=1‖xl ‖

)2
. (2)

The least squares term describes the goodness of fit in the noiseless case, and the squared sum of
norms regularizer models the impact of noise on the reconstruction under a fixed time budget.
In this imaging scenario, measurement design M is a set of possibly-zero exposure times for L
candidate imaging planes, and the reconstruction design R is a set of spectral coefficients so
that rR(·) spectrally mixes the captured images accordingly. Regularization parameter γ is not
hand-tuned, but rather computed from calibration data; the Al matrices and vector b are also a
function of calibration data as well as expected feature size and feature phase height, the only
two user-adjustable parameters in this approach. Optimal M and R are both computed from the
solution x1, . . . , xL to the problem above. Furthermore, it is possible to predict the performance
of the entire imaging process by examining the composite function rR

(
pM(·)

)
.

The key to our SMaRT approach is the formulation of an optimization problem to jointly
design the measurement and reconstruction processes for solving an inverse problem, rather than
manually designing these two processes separately. This ameliorates the effect of human bias
in the design process and allows a numerical algorithm to explore novel recipes that directly
reduce the average reconstruction error. Furthermore, automated design facilitates leveraging
additional information such as specimen statistics and the illumination spectrum, leading to more
performant extraction of phase information compared to previous methods, which usually opt
for simple measurement designs based on few assumptions. For example, knowledge of the
spectrum of a polychromatic source allows us to ameliorate the effects of blurring caused by the
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source not being quasimonochromatic. Simple and intuitive parameters as well as predictable
performance in our approach makes it easy to use in practice, and the concepts introduced in this
paper can potentially be applied to other imaging scenarios as well.

The remainder of the paper is as follows. In Section 2, we derive an expression for the forward
model pM(·) of an optical microscope and list the assumptions needed for the model to be valid; in
Section 3, we use the forward model to derive a convex problem of the form in Eq. (2) and discuss
how to apply it to phase imaging as well as making the solution computationally tractable; in
Section 4, we apply our method to both simulated and experimental data in the context of imaging
a standard phase target; finally, in Section 5, we discuss the implications of our technique.

2. Forward propagation model

We start with a standard optical microscope layout under Köhler illumination, as shown in Fig. 1.
Light from a single-color light-emitting diode (LED) is collimated by a condenser lens and
illuminates a thin (phase) object of interest placed at the specimen plane. An objective lens and
tube lens form a 4 f system images the specimen onto the intermediate image plane, where a
camera in a standard microcope would capture images. To accomodate phase imaging, we allow
the camera to be translated axially to capture images at varying amounts of defocus. Our imaging
system is typical of TIE imaging and similar to systems for low-coherence inline holography.

axial translation

fcond fcond fobj fobj ftube ftube

camera

condenser
lens

objective
lens

tube lens

area
source
(LED)

specimen

intermediate
image plane

Fig. 1. A standard optical microscope, wherein an area light source at the front focal plane
of a condenser lens illuminates a thin specimen (blue) coincident with the back focal plane.
An objective–tube lens 4 f system forms a magnified image (blue dotted) of the specimen
at the intermediate image plane. Rays passing through the specimen’s center and edge are
shown in gray and dark red, respectively. For clarity, relative sizes are not to scale.

To simplify our model, we assume that the field at the intermediate image plane is a magnified
and diffraction-limited representation of the field immediately after the specimen, since objective
lenses are often highly optimized multi-element lens systems designed to minimize aberration.
This allows us to mathematically model the system as a virtual partially coherent source
illuminating a magnified specimen, whose image is captured at varying amounts of defocus,
both negative and positive. The magnification reduces the effective range of illumination angles
emanating from the virtual source, and it, together with the the numerical aperture (NA) of the
objective lens, also imposes a low spatial bandlimit on the field observed at the intermediate
image plane. These factors enable simplifying assumptions in the mathematical model that we
derive in the rest of the section. Our derivation starts with a parameterization s of the specimen,
continues with expressions for the propagated intensity profiles under both coherent and partially
coherent illumination, and concludes with a model for noisy pixel measurements, yielding the
stochastic forward operator pM(·).
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2.1. Thin specimen parametrization

We consider thin specimens located on some reference plane (which we will denote as z = 0)
with coordinates (x, y) and amplitude transmission profiles of the form

Θ(x, y) = Θ̄ + s(x, y) = Θ̄ + α(x, y) + iβ(x, y), (3)

where Θ̄ is the average transmissivity, s(x, y) is a zero-mean complex-valued function with
α(x, y) and β(x, y) as its real and imaginary components, respectively, and i is the imaginary
unit. In practice, we assume Θ̄ = 1 since we are not interested in illumination intensity for
phase imaging. We assume that the specimen is not dispersive—i.e., an incident coherent field
Uin(x, y) at z = 0 for any wavelength of interest λ induces an output field at z = 0 given by
Uout(x, y) = Θ(x, y)Uin(x, y). We also assume that s(x, y) is spatially bandlimited, and that we
are only interested in the value of s(x, y) within a rectangular area of extent Wx ×Wy . Let positive
integers M and N be defined so that Wx/M and Wy/N are sufficient Nyquist sampling intervals
for the bandlimit of s(x, y). Given these assumptions, we choose to model s(x, y) via a finite
weighted sum of complex phasors, resulting in a periodic function with period Wx and Wy in the
x and y directions, respectively:

s(x, y) ≈
∑M

m=1

∑N

n=1
s̃mn exp(i2πξmx) exp(i2πηny) =

∑
m,n

s̃mnψmn(x, y), (4)

where ξm =
(
m−m̄

)
/Wx and ηn =

(
n−n̄

)
/Wy give the discretized frequencies, and m̄ = bM/2c+1

and n̄ = bN/2c + 1 give the indexes of the zero-frequency component. We define α̃mn and β̃mn

similarly for α(x, y) and β(x, y), respectively. Since α(x, y) and β(x, y) are real-valued functions,
their corresponding Fourier coefficients α̃mn and β̃mn possess symmetry, i.e., α̃mn = α̃

∗
m′n′ and

β̃mn = β̃
∗
m′n′ where m′ = 2m̄ − m, and n′ = 2n̄ − n, and ∗ denotes complex conjugation. Note

that by definition, s̃m̄n̄ = α̃m̄n̄ = β̃m̄n̄ = 0. Thus, we can represent each specimen by a vector s
of length 2MN − 2, which consists of MN − 1 entries corresponding to the α̃mns followed by
MN − 1 entries corresponding to the β̃mns. For the remainder of the paper, we will use

∑
m,n to

denote summing over all pairs of (m, n) except for (m̄, n̄).
We note that we must restrict the region of interest to a finite Wx ×Wy region to make any

numerical approach tractable, and we assume a periodic extrapolation of the specimen to simplify
notation and achieve a model compatible with the discrete Fourier transform. In practice, no
matter what assumptions are made about areas outside the region of interest, there will always be
boundary artifacts that signify a mismatch between these assumptions and reality.

2.2. Noiseless propagated intensity for coherent illumination

We first derive the transverse intensity profile at various propagation distances z when the
specimen is illuminated by a near-normal-incidence unit-amplitude coherent plane wave with
wavelength λ much smaller than the features in the specimen; the magnification and numerical
aperture present in the microscope’s 4 f system satisfies this assumption. The incident field is

Uin(x, y) = exp[i2π(ξx + ηy)], (5)

where frequencies ξ, η describe the angle of the incoming plane wave. The small incidence angle
and large feature size assumptions imply M/(2Wx) + |ξ | � 1/λ, and N/(2Wy) + |η | � 1/λ.
These assumptions allow us to model propagation of the outgoing field Uout(x, y) using the
Fresnel diffraction integral, resulting in a propagated field of the form

Uprop(x, y, z) = φzUin(x, y)
[
1 + sprop(x − λzξ, y − λzη, z; λ)

]
, (6)

                                                                                               Vol. 26, No. 25 | 10 Dec 2018 | OPTICS EXPRESS 32535 



where φz = exp(i2πz/λ) exp
[
−iπλz

(
ξ2 + η2

)]
and

sprop(x, y, z; λ) =
∑

m,n
s̃mnψmn(x, y) exp

[
−iπλz

(
ξ2
m + η

2
n

)]
. (7)

The intensity can thus be written as

Icoherent(x, y, z; ξ, η, λ) = 1 + 2 Re
{
sprop(x − λzξ, y − λzη, z; λ)

}
+|sprop(x − λzξ, y − λzη, z; λ)|2. (8)

For weakly scattering specimens, the quadratic term in Eq. (8) is small, so we can approximate

Icoherent(x, y, z; ξ, η, λ) ≈ 1 + 2 Re
[
sprop(x − λzξ, y − λzη, z; λ)

]
. (9)

This is the weak phase object approximation, a standard approximation used in the CTF
literature [22, 23]. For future reference, we note that the Fourier transform along x and y of
Re

[
sprop(x, y, z; λ)

]
can be written as the following series:∑

m,n

{
α̃mn cos

[
πλz

(
ξ2
m + η

2
n

)]
+ β̃mn sin

[
πλz

(
ξ2
m + η

2
n

)]}
δ(ξ − ξm, η − ηn). (10)

2.3. Noiseless propagated intensity for partially coherent illumination

Using results from the fully coherent case, we now derive an expression for the propagated
intensity I(x, y, z) when we illuminate the specimen with a partially coherent field whose cross
spectral density [24] at the z = 0 plane has the form

W(x1, y1, x2, y2, ω) = I0µ(x1 − x2, y1 − y2, ω), (11)

where x1, y1 and x2, y2 are coordinates on this plane, ω = 2πc/λ is the optical frequency, c is the
speed of light, k = 2π/λ is the wave number, and µ is proportional to the complex degree of
spectral coherence [25] and related to the two-dimensional Fourier transform of a nonnegative
function ρ(a, b, ω) by

µ(∆x, ∆y, ω) =
∬

ρ(a, b, ω) exp
[
−ik

(
a∆x + b∆y

) ]
da db . (12)

The functions ρ and µ are normalized such that
∫
µ(0, 0, ω) dω = 1. Any field of the form

given by Eq. (11) and Eq. (12) can be interpreted as a stochastic incoherent mixture of plane
waves parameterized by ξ = −ω/c and η = −ω/c, with probability density ρ(a, b, ω). Thus, the
resulting intensity can be written as

I(x, y, z) = I0

∭
ρ(a, b, ω)Icoherent(x, y, z;−ka,−kb, 2πc/ω) da db dω . (13)

Substituting in Eq. (9), we obtain

I(x, y, z) ≈ I0 + 2I0 Re
{∭

ρ(a, b, ω)sprop(x + 2πza, y + 2πzb, z; 2πc/ω) da db dω
}

(14)

= I0 +

∫ [
I0

4π2z2 ρ
(
− x

2πz ,−
y

2πz , ω
)]
⊗ 2 Re

{
sprop(x, y, z; 2πc/ω)

}
dω , (15)

whose Fourier transform along x and y is

Ĩ(ξ, η, z) ≈ I0δ(ξ, η) + Ĩreal(ξ, η, z) + Ĩimag(ξ, η, z), (16)
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where the contributions to the intensity by the real and imaginary parts of s(x, y) are given by

Ĩreal(ξ, η, z) = I0
∑

m,n
α̃mnδ(ξ − ξm, η − ηm)P̃real(ξm, ηn, z), (17)

Ĩimag(ξ, η, z) = I0
∑

m,n
β̃mnδ(ξ − ξm, η − ηm)P̃imag(ξm, ηn, z), (18)

and the propagation transfer functions are given by

P̃real(ξm, ηn, z) = 2
∫

cos
[
λπz

(
ξ2
m + η

2
n

)]
µ(−λzξm,−λzηn, ω) dω , (19)

P̃imag(ξm, ηn, z) = 2
∫

sin
[
λπz

(
ξ2
m + η

2
n

)]
µ(−λzξm,−λzηn, ω) dω . (20)

The partially coherent intensity patterns can be interpreted as the convolution of the coherent
intensity patterns with the shape of the area source scaled proportional to propagation distance [11].
For a circular area source with uniform spectrum, i.e., ρ(a, b, ω) = ρ̂(ω) when a2 + b2 < r2

source
and 0 otherwise, we can write µ(−λzξm,−λzηn, ω) = J1(2r̂)/r̂ , where r̂ = πzrsource

(
ξ2
m + η

2
n

)1/2

and J1 is the Bessel function of the first kind and order one.

2.4. Noisy imaging model

We now model the relationship between the propagated intensity and measured pixel values. We
assume that images are captured via an M × N array of sensor pixels covering the same Wx ×Wy

extent used in the definition of the specimen, with one image for each of the propagation distances
z1, . . . , zL . For the (m, n) pixel in the lth image, we model the noiseless measured value as

pixel(noiseless)
lmn

= C1τl

∬
χ(x − xm, y − yn)I(x, y, zl) dx dy , (21)

whereC1 is a constant scaling factor, τl is the exposure time for the lth image, χ(x, y) is the pixel’s
spatial sensitivity profile normalized to

∬
χ(x, y) dx dy = 1, I(x, y, z) is the propagated intensity

derived earlier, and (xm, yn) is the pixel center for the (m, n) pixel. This model relies on the
assumption that the illumination spectrum is narrowband enough so that wavelength-dependent
pixel sensitivity effects do not apply.

For noisy measurements, we assume that: (1) we record� 10 photons per pixel, (2) Poisson
shot noise dominates all other noise sources, and (3) the weak-perturbation assumption of I ≈ I0
applies. While more powerful techniques such as deep neural networks can be applied to low
photon count scenarios (see for example [26]), in this paper we focus on typical imaging scenarios,
where all three assumptions are usually valid. These assumptions allow us to approximate the
noise at all the pixels as independent and identically distributed (i.i.d.) zero-mean Gaussian noise
with variance proportional to exposure time τl and average intensity I0:

pixel(noisy)
lmn

∼ N
(
pixel(noiseless)

lmn
,C2τl I0

)
, (22)

where C2 is another constant scaling factor and I0 is the average intensity. For the special case of
a uniform intensity field, this reduces to N(C1τl I0,C2τl I0). A centered unitary discrete Fourier
transform (DFT) of the pixel values yields

�pixel
(noisy)
lmn =

1
√

MN

M∑̂
m=1

N∑̂
n=1

pixel(noisy)
lm̂n̂

exp
{
−i2π

[
(xm̂ − xm̄)ξm + (yn̂ − yn̄)ηn

]}
(23)

∼ N
(
C1τl Î(ξm, ηn, zl),C2τl I0

)
, (24)
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where Î(ξ, η, z) = χ̃(ξ, η)
[
Ĩ(ξ, η, z) ⊗WxWy sinc(Wxξ) sinc(Wyη)

]
describes the Fourier trans-

form of the intensity after cropping by the sensor area and applying the pixel sensitivity function
χ(x, y), whose Fourier transform is χ̃(ξ, η); we define sinc(a) = sin(πa)/(πa). Given the
derivations in the previous section, Î(ξm, ηn, zl) = I0 when ξm = ηn = 0; for other frequency
coordinates,

Î(ξm, ηn, zl) = I0 χ̃(ξm, ηn)
[
P̃real(ξm, ηn, zl)α̃mn + P̃imag(ξm, ηn, zl)β̃mn

]
. (25)

Let us define the normalized measurements yl as a vector of length MN − 1 whose entries
correspond to �pixel

(noisy)
lmn /(C1τl I0) for m , m̄ and n , n̄. Let us also define nl as a random

vector of length MN − 1 whose entries are i.i.d. Gaussian random variables with zero mean and
variance equal to σ2

l
= C2/(C 2

1 τl I0). For notational convenience, we define y and n to be the
vertical concatenation of y1, . . . , yL and n1, . . . , nL , respectively, and we define measurement
specification M as the collection of exposure times τ1, . . . , τL . We can then express the forward
operator pM as the sum of a deterministic linear function acting on specimen vector s and a
stochastic noise component n, i.e.,

y = pM(s) = Ps + n, (26)

with the linear relationship defined by the L(MN − 1) × 2(MN − 1) sparse matrix P. Let us
index the entries of y and thus the rows of P by the triplet lmn, where 1 ≤ l ≤ L, and (m, n)
takes on values between (1, 1) and (M, N) with the exclusion of (m̄, n̄). Similarly, let us index the
entries of s and thus the columns of P by the triplet pqr , where p and q are spectral coordinates
corresponding to m and n, and r ∈ { 1, 2 } determines whether we are considering the real or
imaginary parts of s̃pq , i.e., spqr = α̃pq if r = 1 and spqr = β̃pq if r = 2. Given these index
definitions, then the (lmn, pqr) entry of matrix P is given by

P(lmn,pqr) =


plmn1 = χ̃(ξm, ηn)P̃real(ξm, ηn, zl) if m = p, n = q, r = 1
plmn2 = χ̃(ξm, ηn)P̃imag(ξm, ηn, zl) if m = p, n = q, r = 2
0 otherwise

. (27)

3. Formulation as a convex optimization problem

The sparsity structure of P suggests a linear reconstruction operator of the form rR(y) = Ry,
where R is a 2(MN − 1) × L(MN − 1) matrix with similar sparsity structure parameterized by
2L(MN − 1) coefficients:

R(pqr,lmn) =

{
xmnrl if m = p, n = q
0 otherwise

. (28)

Let xl be a complex-valued vector of length 2MN − 2 whose entries consist of the xmn1ls, which
parameterize the reconstruction coefficients for recovering the α̃mn components of s from the
lth image, followed by the xmn2ls for likewise recovering the β̃mn components; let x be the
vertical concatenation of the x1, . . . , xL . Therefore, we can say that x is a parameterization for
the reconstruction design R.
As stated previously, the measurement design M is a list of exposure times τ1, . . . , τL ≥ 0

for each candidate imaging plane, with imaging skipped when the exposure time is zero. To
make Eq. (1) meaningful, we must impose some cost for the exposure time, or else we can
unrealistically aim for infinite exposure time in order to reduce noise. We propose a simple light
budget scheme constraining total exposure time to be less than some user-defined constraint τ0.

With these definitions of M and R as well as the stochastic forward model function pM defined
in the previous subsection, we can rewrite Eq. (1) as a constrained convex problem that attempts
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to minimize the expectation of reconstruction error across all possible realizations of specimen s
in specimen class S0 and noise n (which we assume to be uncorrelated):

minimize
x,τ1,...,τL

Es∈S0,n

[
‖ s − R(Ps + n)‖22

]
subject to τ0 ≥

∑
l
τl . (29)

The objective function can be expanded into

Es∈S0,n

[
‖ s − R(Ps + n)‖22

]
= Es∈S0,n


∑
m,n







Rmn

Pmn
©­«
α̃mn

β̃mn

ª®¬ + nmn

 − ©­«
α̃mn

β̃mn

ª®¬








2

2

, (30)

where nmn is an L-vector containing the relevant components of n, and Rmn and Pmn are
nonoverlapping blocks of R and P:

Rmn =
©­«

xmn11 xmn12 · · · xmn1L

xmn21 xmn22 · · · xmn2L

ª®¬ , Pmn =

©­­­­«
p1mn1 p1mn2
...

...

pLmn1 pLmn2

ª®®®®¬
. (31)

Defining matrix Bmn via factoring the specimen’s spectral (raw) covariance matrix Cmn,

BmnB
H
mn = Cmn =


Es∈S0

(
|α̃mn |2

)
Es∈S0

(
α̃mn β̃

∗
mn

)
Es∈S0

(
β̃mnα̃

∗
mn

)
Es∈S0

(
| β̃mn |2

)  , Bmn =
©­«
bmn1 bmn3

bmn2 bmn4

ª®¬ , (32)

we can remove the explicit expectation from the objective function to obtain∑
m,n
‖(RmnPmn − I )Bmn‖22 +

∑
m,n

tr
[
RH
mnRmn En

(
nH
mnnmn

)]
. (33)

We can further reshuffle Eq. (33) into a more familiar form, i.e.,

minimize
x,τ1,...,τL



b −∑L
l=1 Alxl



2
2 +

∑L
l=1 σ

2
l
‖xl ‖22

subject to τ0 ≥
∑

l
τl ,

(34)

where b is a vector of length 4(MN − 1) consisting of the bmn1s followed by the bmn2s, bmn3s
and bmn4s, and Al is a block diagonal matrix whose mnth block Almn is given by

Almn =


(plmn1bmn1 + plmn2bmn2)I

(plmn1bmn3 + plmn2bmn4)I

 . (35)

For completeness, we define σ2
l
‖xl ‖22 = 0 if both xl = 0 and τl = 0 to avoid ambiguity. If

the exposure times in Eq. (34) were fixed, then the σls would become constants, making it a
standard regularized least squares problem obtained in the derivation of the Wiener filter; such a
optimization problem could easily be solved using standard methods such as conjugate gradients.
However, since we are jointly optimizing both reconstruction and measurement design, our
solution is no longer standard Wiener filtering, and we need to rewrite Eq. (34) to solve it.
Note that only the second term in the objective function of Eq. (34) depends on the τls;

therefore, we can reduce Eq. (34) to an unconstrained optimization over only the xls if we can
derive a simplified expression for the minimal value of

∑L
l=1 σ

2
l
‖xl ‖22 given the xls, i.e., solving

minimize
τ1,...,τL

∑L

l=1
σ2
l ‖xl ‖

2
2 subject to τ0 ≥

∑
l
τl . (36)
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The above subproblem has a closed form solution (see Appendix A) where τl is proportional to
‖xl ‖2 for 1 ≤ l ≤ L. We note that this exposure allocation recipe applies to any spectral mixing
reconstruction method where noise energy is equally distributed in the frequency domain and
images are dominated by Poisson noise with more than ∼10 photons per pixel. The closed form
solution for Eq. (36) allows us to rewrite Eq. (34) as an unconstrained convex problem:

minimize
x1,...,xL



b −∑L
l=1 Alxl



2
2 + γ

(∑L
l=1‖xl ‖2

)2
, (37)

where γ = C2/
(
C 2

1 I0τ0
)
is a constant that represents the relative noise level in the system; it is a

value obtained through the calibration and is not a user-selectable regularization parameter. This
objective function has a smooth least-squares term as well as a nonsmooth regularization term that
weakly promotes sparsity in the xls; it can be solved using proximal gradient methods [27–30],
which were designed for minimizing sums of smooth and nonsmooth convex functions. The
appropriate proximal operator for the regularization term is derived in Appendix C.
Once the optimal xls have been found, creating the reconstruction function rR(·) is straight-

forward. The optimal τls can be obtained by setting τl = τ0‖xl ‖2/(
∑

k ‖xk ‖2). The end-to-end
spectral imaging performance of the measurement–reconstruction pair can be analyzed by
observing the entries of the 2 × 2 matrix Hmn = RmnPmn. The diagonal terms give essentially
the discretized transfer function for α(x, y) and β(x, y), whereas the cross-terms denote whether
information about α bleeds into β and vice versa.
Solving Eq. (37) technically yields a measurement design M and reconstruction design R for

estimating the functions α(x, y) and β(x, y) in the general case. For the remainder of this section,
we will discuss how SMaRT can be applied specifically to quantitative phase imaging as well as
how Eq. (37) can be solved efficiently in practice.

3.1. Estimating the covariance for phase imaging

Solutions to Eq. (37) depend on prior knowledge regarding the set S0 of specimens of interest; the
Al matrices and the vector b in Eq. (37) are functions of the Cmns, the (prior) spectral covariance
matrices defined in Eq. (32). We propose a generic two-parameter prior for phase imaging that
works well in our experiments, although more apt Cmns could be derived for specific applications.

We start with the assumption that our specimen is a piecewise-constant phase specimen
φ(x, y) where each piece has phase uniformly distributed between −φmax/2 and φmax/2. The
corresponding α(x, y) and β(x, y) functions are given by

α(x, y) = ζ cos[φ(x, y)] − 1, and β(x, y) = ζ sin[φ(x, y)], (38)

where 1/ζ = 2 sin(φmax/2)/φmax is a normalization term to ensure that α(x, y) is zero-mean.
Furthermore, we assume that the probability of any two points belonging to the same “piece”

is equal to exp(−∆xy/∆), where ∆xy is the distance between the two points and ∆ is a parameter,
which we will define as the average feature size. A convex tessellation of the plane where the
number of discontinuities in any line segment is a Poisson distribution would induce this type of
exponential falloff, but here we make no additional assumptions about the exact form of φ(x, y).
Using results from Appendix B, we find that the spectral covariance can be approximated by

Cmn =
2π∆2[

1 + 4π2∆2 (ξ2
m + η

2
n

) ]3/2
©­«
ζ2/2 + ζ/2 − 1 0

0 ζ2/2 − ζ/2
ª®¬ . (39)

Although most specimens are not piecewise-constant, naturally occurring specimens often
have large, nearly constant regions. The Lorentzian-like falloff of the cross spectral density is also
reminiscent of natural image priors with power law falloffs [31–33], which can be stochastically
approximated using a piecewise-constant “dead leaves” model [34].
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We note that in practice, Cmn mismatch results in a noisier phase image, but the reconstructed
images are still predictable, as we can examine rR

(
pM(·)

)
for the transfer function of the imaging

system to interpret the results in context. This is in contrast to a regularized reconstruction
approach using total variation (TV) [17] or nonlinear diffusion [16], which forces reconstructed
phase images to approximate piecewise-constant functions in order to minimize the regularization
term. With our approach, we simply use prior statistics as a way to estimate the approximate
signal-to-noise ratio at each spectral band in order to allocate measurement resources; our
approach does not force compatibility with the prior, and thus our results are also less sensitive
to the design of the prior.

3.2. Accomodating tilt in the illumination

For two optical imaging systems whose illumination are identical except for a constant tilt, the
optimal measurement–reconstruction pair for one can be adapted for the other. Suppose the two
imaging systems’ illumination density functions are related by

ρ2(a, b, ω) = ρ1(a − a0, b − b0, ω). (40)

Then, the reconstruction operator for the second system is the same as multiplying the input
images’ Fourier transform by exp[i2πzl(ξma0 + ηnb0)] and then applying the reconstruction
operator for the first system. This is because the tilt induces a linear phase term in P, which can
be neutralized by an equal and opposite linear phase term in R. Therefore, in practice, SMaRT
allows for a slight tilt in the system, which can be removed using calibration.

3.3. Exploiting symmetry

Directly solving Eq. (37) can present numerical challenges, since the number of unknowns is on
the order of O(LMN), leading to slow convergence and high storage costs. One saving grace is
that the solution x1, . . . , xL is usually highly redundant. The optical layout of a microscope is
often circularly symmetric about the imaging axis, and the spectral covariance of the specimen is
circularly symmetric as well, leading to nearly circularly symmetric solutions. Therefore, we
propose a modification to Eq. (37) to exploit these symmetries.
Let T ∈ R(MN−1)×K be an interpolation operator that takes K coefficients and interpolates

them linearly into an M × N image, while disregarding the center pixel. In other words, we have
a real-valued interpolation map vector t of length MN − 1, and its mnth element is given by
1 ≤ tmn ≤ K . We then define the (mn, k)th entry of T to be

T(mn,k) =


1 + btmnc − tmn if k = btmnc
tmn − btmnc if k = btmnc + 1
0 otherwise

. (41)

Let matrices I2 and I4 be 2 × 2 and 4 × 4 identity matrices, respectively, and let Q be an
equalization operator for T so that TQ has unit singular values and that QTTTTQ = I ; we can
easily construct Q from the singular value decomposition of the tridiagonal matrix TTT . With
these definitions, we propose an efficient approximation to Eq. (37) by replacing b and the Als
with b̂ and the Âls given by

b̂ =
[
I4 ⊗

(
QTTT

)]
b, Âl =

(
I4 ⊗ QT

) [(
I4 ⊗ TT

)
Al(I2 ⊗ T )

]
(I2 ⊗ Q), (42)

where ⊗ denotes the Kronecker (tensor) product. We can then solve the resulting problem for
an optimal x̂ and compute xapprox = I2 ⊗ (TQ)x̂; the regularization term in the convex problem
remains unchanged because QTTTTQ = I .
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We note that the bracketed expression in Âl’s definition is sparse and thus can be compactly
stored in memory, and only one copy of Q needs to be stored, regardless of the size of L. If
T is an operator that interpolates K coefficients into a radially symmetric image, then as long
as the illumination pattern ρ(a, b, ω) is radially symmetric about some point (a0, b0), the only
approximation error incurred is with the pixel function ξ(x, y), which is usually not circularly
symmetric. However, in practice this error can be ignored, as the pixel function is usually a
rough approximation as well.

3.4. Pruning

While the regularizer in Eq. (37) is a mild sparsity promoter, solutions for large L usually still
yield many nonzero τls, some of them very small. This can create two problems in practical
applications. First, having too many positions introduces a lot of mechanical motion into the
experimental apparatus, which may be undesirable as it can disturb the specimen, gradually cause
the apparatus to go out of alignment, and increase the amount of time needed to capture the
images, since the image sensor has to wait for any residual motion to subside before exposing.
Second, very short exposure times easily violate the assumption of Gaussian noise with variance
proportional to average intensity, because quantization noise and readout noise start dominating
the desired signal, neither of which scale with average intensity.

We propose a pruning method that, while not yielding a globally optimal solution, still results
in a practical measurement–reconstruction design pair. We start by solving Eq. (37) for the full
set of possible positions (or terminating after a fixed number of iterations) and then iteratively
prune the positions. In each iteration, we remove a small set of positions corresponding to those
with the lowest exposure times (or zero exposure), and then recompute Eq. (37) with the reduced
set of positions. This is repeated until either: (1) the number of positions is reduced below
a certain threshold, or (2) the shortest exposure time is above a certain threshold, or (3) the
computed expected error is more than some relative threshold compared to the full position set
solution. Since the initial number of unknowns can be large, pruning improves results in practice
by speeding up convergence speed, allowing better results in a fixed amount of iterations. A
similar approach has been applied successfully in the deep learning literature [35,36]; we can
also imagine pruning as a variant of orthogonal matching pursuit [37], wherein we remove basis
vectors instead of adding them before recomputing coefficients.

4. Imaging a phase target

We now apply our SMaRT approach to image a standard phase resolution target. For illumination,
we use a Newport M-20X objective to focus light from a Thorlabs LED4C1 installed with the
amber LED module (nominal wavelength 590 nm) onto a 25 µm pinhole placed at the front focal
plane of a 50 mm focal-length plano-convex lens. The collimated light illuminates the specimen,
which is then imaged using a Mitsutoyo 10X Plan Apo objective (NA = 0.28) and a 100 mm
plano-convex tube lens for a total magnification of 5× at the intermediate image plane. Both
plano-convex lenses have diameters of 25 mm. Images of the propagated intensity were captured
using a UI-2240-M camera with pixel pitch 4.65 µm placed on a Newport XMS50 linear stage,
with tilt correction followed by cropping to produce 1001 × 1001 pixel images.

For calibrating the camera’s noise level, we took uniform field images at various exposure
levels; we assumed C1 = 1 and estimated C2 ≈ 1.33 × 10−4. Using a one-second exposure of the
target, we obtained an estimate of I0 ≈ 0.113. We set τ0 = 3 s and L = 385 for uniformly spaced
z positions 250 µm apart between ±24 mm. For our phase imaging prior, we set the average
feature size ∆ = 59.7 µm and φmax = 0.3 rad. We also pruned down to 7 images on either size of
z = 0. Solving Eq. (37) using the proximal gradients algorithm given in [30] with the symmetry
modifications as well as pruning yielded a measurement design shown in Fig. 2; computation
was via MATLAB, taking ∼23 min on a quad-core Intel Xeon W3520 CPU. The corresponding
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transfer functions for the real and imaginary parts of the transmission profile, shown in Fig. 3,
were computed from the forward model and the optimal reconstruction design.
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Fig. 2. Positions and exposure times computed using SMaRT are shown in dark green, with
those for GP-TIE shown in tan. Total exposure time for the two methods are the same.
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Fig. 3. Estimated transfer function for the real (α, left) and imaginary (β, right) components
of the specimen s(x, y) are shown in green. The dashed tan line indicates the effective
transfer function for comparison images generated using the GP-TIE and TIE methods.
A normalized frequency of 1.0 corresponds to the maximum frequency allowable by the
numerical aperture and magnification of the system.

Although the LED emanates light in a narrow range of wavelengths, its polychromaticity is
still an important factor; to see its importance, we also compute a measurement–reconstruction
pair (which we will call SMaRT-qm), assuming that the illumination was quasimonochromatic
and well approximated by a single wavelength. Furthermore, to facilitate comparison with
Gaussian process regression transport of intensity equation phase imaging (GP-TIE) [8], a similar
state-of-the-art method, we incorporate an additional set of measurements to capture one image
at z = 0 in addition to 14 images at positions exponentially spaced between z = ±250 µm and
z = ±24 mm, with exposures at 0.2 s each; this recipe is shown in Fig. 2 as well. For comparison
with standard TIE, we took 1 s exposures at z = 0,±300 µm (TIE short) as well as z = 0,±10 mm
(TIE long). We used code provided by [8] and adjusted the Tikhonov parameter to match the low
frequency cutoff of our method, as shown in Fig. 3.

With CTF theory, the closest propagation distance offering the highest contrast for a particular
spatial frequency is inversely proportional to the square of the frequency, and both SMaRT
and GP-TIE approaches use different propagation distances to capture different sets of spatial
frequencies. However, from Fig. 2, SMaRT’s distribution of positions is clearly trimodal
compared to the first-principles exponential placement of positions suggested by the GP-TIE
approach. It appears that SMaRT chose not to incorporate intermediate positions since they are
not as cost efficient as splitting exposure time between a set of positions close to z = 0 and a set
of positions far from z = 0 on either side. This sounds surprising at first but can be explained as
follows. Since contrast transfer functions are nearly periodic in z, falling off only as a function of
partial coherence, the intensity pattern at a position far away from z = 0 contains not only low
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frequency components, but also partial information about intermediate frequency components.
Therefore, we can obviate positions intentionally designed for intermediate frequency components
and allocate more time to other positions, reducing noise levels for the remaining images.

To verify our approach, we applied the computed SMaRT measurement–reconstruction pair as
well as the GP-TIE and TIE methods to both simulated and experimental data of a phase-only
Siemens star spoke pattern.

4.1. Simulation

For ground truth, we computed a 40-spoke Siemens star phase object with a diameter of 2092.5 µm
and height of 0.3 rad at the intermediate image plane with an effective sampling interval of
4.65/9 µm and filtered the result to remove all frequency components that cannot be captured
due to the NA and magnification of the system before downsampling to a sampling rate equal to
the pixel pitch (4.65 µm). Simulated noisy images of size 1001 × 1001 were used to reconstruct
phase images using the SMaRT, SMaRT-qm, GP-TIE and TIE approaches. The center 501 × 501
pixel region containing the star is shown in Fig. 4, and two smaller regions of the object are
shown magnified in Fig. 5 and Fig. 6 for the SMaRT, SMaRT-qm and GP-TIE approaches. Cross
sections of the reconstruction are shown in Fig. 7 (we omit SMaRT-qm for clarity), with the
resulting error for the SMaRT and GP-TIE approaches shown in Fig. 8.

ground truth TIE (short) [0.340 rad rmse] TIE (long) [0.0911 rad rmse]

GP-TIE [0.0576 rad rmse] SMaRT [0.0341 rad rmse] SMaRT-qm [0.0365 rad rmse]

A

B

C

phase
(rad)

0.5

0.0

−0.5

Fig. 4. Ground truth and reconstructed phase images of a simulated Siemens star target;
root-mean-square error in radians is given in brackets for each reconstruction. Crops “A” and
“B” are shown magnified in Fig. 5 and Fig. 6, respectively. Cross sections of the reconstructed
phase and reconstruction error along the dashed line “C” are visualized in Fig. 7 and Fig. 8,
respectively. The scale bar indicates 500 µm on the intermediate image plane and 100 µm in
the specimen.

Reconstructed images in Fig. 4 as well as cross sections in Fig. 7 show that standard TIE
results in either sharp yet cloudy images (TIE short) or blurry images with good low frequency
performance (TIE long). Both SMaRT and GP-TIE leverage diversity to keep both high
frequency and low frequency components, yielding significantly better reconstructions. However,
the magnified crops in Fig. 5 and Fig. 6 show that SMaRT is more efficient at combating
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ground truth GP-TIE

SMaRT SMaRT-qm

Fig. 5. Magnified crops of the region indicated by “A” in Fig. 4.

ground truth GP-TIE

SMaRT SMaRT-qm

Fig. 6. Magnified crops of the region indicated by “B” in Fig. 4. The center in the ground
truth is a flat circle because of the diffraction limit.
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Fig. 7. Reconstructed phase of simulated Siemens star along the dashed line “C” in Fig. 4.
The ground truth is shown by the gray gradient.
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Fig. 8. Reconstruction error for simulated Siemens star along the dashed line “C” in Fig. 4.

noise, resulting in cleaner spokes in the center of the target as well as flatter phase in uniform
regions. Similarly, the rms error values in Fig. 4 and the cross section of the error in Fig. 8
support this observation. Lastly, we see in Fig. 5 and Fig. 6 the importance of considering
the polychromaticity of the source, as the SMaRT-qm results—which assume monochromatic
illumination—are markedly blurrier than the SMaRT results.

4.2. Experiment

Using the computed measurement design, we captured images of a Benchmark Technologies
quantitative phase resolution target, which has a refractive index 1.52 with various binary
phase patterns. We imaged the 50 nm height Siemens star, corresponding to a phase height of
∼0.277 rad. Tilt in the illumination was estimated by using the computed reconstruction function
rR(·) on the ±24 µm images individually, finding centroids of the same small point feature in both
images and then estimating the slope of the tilt. Images of size 1280 × 1024 from the camera
were then adjusted for tilt and cropped to 1001 × 1001 before reconstruction using either the
SMaRT, GP-TIE or TIE methods. Reconstructed images, close-ups and cross sections of the
phase are shown in Fig. 9, Fig. 10 and Fig. 11, respectively.

The computed phase from experimental data exhibits behavior similar to the results from the
simulated data—both SMaRT and GP-TIE easily outperform single distance TIE reconstructions,
but SMaRThas a slight edge in noise performance compared toGP-TIE. TheGP-TIE reconstruction
appears to be more sensitive to low frequency noise, as seen in Fig. 9. Furthermore, Fig. 10
shows SMaRT reconstructing the flat areas of the phase target with less noise than GP-TIE; the
high frequency center area of the target is also cleaner in the SMaRT result.
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Fig. 9. Reconstructed phase images of actual Siemens star. Crops “A” and “B” are shown
magnified in Fig. 10. Cross sections of the reconstructed phase along the dashed line “C”
are visualized in Fig. 11. The scale bar indicates 500 µm on the intermediate image plane
and 100 µm in the specimen.

GP-TIE [crop A] SMaRT [crop A]

GP-TIE [crop B] SMaRT [crop B]

Fig. 10. Crops of reconstructed Siemens star for regions indicated by “A” and “B” in Fig. 9.
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Fig. 11. Reconstructed phase for the actual Siemens star along the dashed line “C” in Fig. 9.

5. Discussion

We have demonstrated that a SMaRT joint optimization approach can be used to reduce
reconstruction error in self-interferometric phase imaging by designing the measurement process
jointly with the reconstruction process. Our approach leverages additional information such
as the estimated spatial spectral distribution of the specimen class being imaged as well as the
spectrum of the polychromatic illumination source to compute an informed decision on how
to allocate imaging exposure times, resulting in better noise performance under a fixed photon
budget compared to previous techniques.
While we employed a piecewise-constant phase model as a prior, this prior serves only as a

guide for estimating the spectral signal-to-noise ratio and does not force the reconstructed phase
images to appear piecewise-constant, unlike many other nonlinear methods. Since we do retrieve
the real and imaginary parts of the specimen’s transmission profile, our method can be readily
adapted to image other weakly-scattering specimens with a different prior, for example replacing
standard CTF methods in electron microscopy or X-ray phase imaging, where there may be
spatially-varying absorption in addition to optical thickness variations. One can also potentially
build a collection of spectral covariance matrices suitable for various imaging scenarios, with
more accurate priors when more information is known about the specimen to be imaged.
Although we used a translation stage to image different axial positions, movement can be

minimized via judicious use of liquid lenses. Furthermore, while we assumed for simplicity that
the objective–tube lens system is diffraction limited, it is trivial to incorporate information about
shift-invariant aberrations such as spherical aberration into the forward operator. In general,
the resolution of phase images generated by our method is primarily limited by the numerical
aperture of the objective lens and any unaccounted optical aberrations in the system.
One path for improvement is that our method cannot be directly applied to arbitrary phase

specimens, as large phase differences violate the small-perturbation assumption that we use in
estimating noise and modeling the propagated intensity. Automatic differentiation machinery
commonly used for deep neural networks, as well as suitable application of transmission cross
coefficients from the nonlinear electron microscopy literature, can potentially extend our approach
to strong phase objects in the future. Furthermore, we can also directly leverage deep neural
networks, converting our model-driven framework to a data-driven framework and solving Eq. (1)
using stochastic gradient descent methods.

Appendix A. Optimal exposure allocation subproblem

We give a solution for problems of the form

minimize
v1,...,vK

K∑
k=1

γk/vk subject to
K∑
k=1

vk ≤ v0, (43)
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where the γks are all positive. First we note that the objective function and constraints are
all convex. Furthermore, any solution to the problem must satisfy the Karush-Kuhn-Tucker
conditions [38, 39]. The stationarity condition requires that the optimal vk = 1

u

√
γk for some

constant u ≥ 0. u cannot be zero because that would make vk infinite and violate primal feasibility.
Thus, complementary slackness requires

∑
k vk = v0. Therefore, the optimal vk must be equal to

vk = v0
√
γk/
√
γtotal, where

√
γtotal =

∑
k

√
γk . (44)

This implies that Eq. (43) attains an optimal value of γtotal/v0.
For our specific problem in Eq. (36), we can write the subproblem in the form of Eq. (43) by

setting γk = C2‖xk ‖22
/ (

C 2
1 I0

)
and vk = τk . This yields an optimal value of γ

(∑L
l=1‖xl ‖2

)2, where
γ = C2/

(
C 2

1 I0τ0
)
. The lth optimal exposure time can be obtained via τl = τ0‖xl ‖2

/ (∑L
l′=1‖xl′ ‖2

)
.

Appendix B. Spectral covariance of a piecewise-constant vector function

We consider an ensemble of piecewise-constant two-dimensional real vector-valued functions
p(x, y) where the values v for individual pieces of this function are independent and identically
distributed (i.i.d.) according to some continuous statistical distribution with density function
fV(v). We define lines through this function using parameters s and θ to specify the line and
parameter r to specify position on this line, i.e.,

l(r; s, θ) = p(r cos θ − s sin θ, r sin θ + s cos θ). (45)

The cross-correlation of the ensemble p(x, y) in polar coordinates is given by

Ci j(ρ, θ) = Exy

[
pi(x, y)pj(x + ρ cos θ, y + ρ sin θ)

]
= Ers

[
li(r; s, θ)l j(r + ρ; s, θ)

]
. (46)

Given some r for l(r; s, θ), we assume the probability that l(r + ρ; s, θ) is still in the same “piece”
and hence has the same value is equal to exp(−ρ/∆). Since the pieces of this function are i.i.d.,

Ers

[
li(r; s, θ)l j(r + ρ; s, θ)

]
= E

(
vivj

)
exp(−ρ/∆) + E

(
vi

)
E
(
vj

) [
1 − exp(−ρ/∆)

]
(47)

= E
(
vi

)
E
(
vj

)
+

[
E
(
vivj

)
− E

(
vi

)
E
(
vj

) ]
exp(−ρ/∆). (48)

The (raw) spectral covariance, i.e., the Fourier transform of the cross-correlation, can be computed
via the Hankel transform of the exponential, yielding

E
(
vi

)
E
(
vj

)
δ( fx, fy) +

[
E
(
vivj

)
− E

(
vi

)
E
(
vj

) ] 2π∆2[
1 + 4π2∆2 ( f 2

x + f 2
y

) ]3/2 . (49)

Appendix C. On the squared sum of norms penalty term

We consider a problem of the form

minimize
x

1
2



Ax − b


2

2 +
1
2

(∑n

i=1
wi ‖xi ‖2

)2
, (50)

where wi > 0 are weights, and x1, . . . , xn are m-length non-overlapping partitions of x ∈ Cnm.
Without loss of generality, we can assume that x consists of the x1, . . . , xn vertically concatenated.
Let us denote the least squares term f (x) and the penalty term g(x).
We note that g(x) is a convex function of x, since it is the composition of a nondecreasing

convex function s(ν) = max{0, ν}2 and a convex function, the weighted sum of `2 norms. Since
f (x) is also a convex function, the above problem can be solved by convex optimization. While
f (x) is also smooth, g(x) is not smooth, e.g., when one or more of the xis are zero. This suggests
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the use of a proximal gradient method [27–29] to solve Eq. (50), and thus we require the proximal
operator for g(x), defined as:

Proxαg (x) = arg min
y

{
1
2 ‖y − x‖22 + α

2

(∑n

i=1
wi ‖yi ‖2

)2
}
, (51)

where α > 0, and y1, . . . , yn form the same partition of y as the x1, . . . , xn do of x. We note the
following property of the optimal y and hence yis:

Theorem 1. The optimal yi for Eq. (51) are of the form yi = βixi , where βi ∈ [0, 1].

Proof. Since the expression in Eq. (51) is also the dual of a convex function, strong duality
implies that there exist ε1, . . . , εn ≥ 0 such that the optimal y is also a solution to the following
constrained optimization problem:

minimize
y

(∑n

i=1
wi ‖yi ‖2

)2

subject to ‖yi − xi ‖22 ≤ ε2
i , ∀i ∈ { 1, . . . , n } .

(52)

Since s(ν) = max{0, ν}2 is nondecreasing, the above problem is equivalent to:

minimize
y

∑n

i=1
wi ‖yi ‖2

subject to ‖yi − xi ‖22 ≤ ε2
i , ∀i ∈ { 1, . . . , n } .

(53)

As now the function to be minimized is separable and the constraints are separable as well, the
optimal value of each yi can be solved separately via:

minimize
yi

‖yi ‖2 subject to ‖yi − xi ‖2 ≤ εi , (54)

which has closed form solution yi = max
{
0, ‖xi ‖2−εi

‖xi ‖2

}
xi .

Therefore, in order to solve Eq. (51), we can instead solve the following:

minimize
β1,...,βn

∑n

i=1
1
2 (βi − 1)2‖xi ‖22 + α

2

(∑n

i=1
wiβi ‖xi ‖2

)2

subject to βi ≥ 0, ∀i ∈ { 1, . . . , n } .
(55)

Define γ1, . . . , γn to be elements of vector γ where γi = βi ‖xi ‖2, and likewise ξ1, . . . , ξn to be
elements of vector ξ where ξi = ‖xi ‖2. Hence, the above problem is equivalent to the following
nonnegative least squares formulation:

minimize
γ

γTγ − 2ξTγ + αγTwwTγ subject to γ � 0. (56)

Once the optimal γ are obtained, we can then compute the optimal yis. While any nonnegative
least squares algorithm can be used to solve Eq. (56), we note the following property about our
specific problem:

Lemma 1. Let γ̂ denote the nonzero components of the optimal γ for Eq. (56), and let ξ̂ and ŵ
denote the corresponding elements of ξ and w, respectively. Then, the γ̂ must satisfy:

γ̂ = ξ̂ − s?ŵ, where s? =
(
ŵTξ̂

)/ (
α−1 + ŵTŵ

)
. (57)
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Proof. Since the zero-valued entries of γ annihilate corresponding components of the expression
to be minimized in Eq. (56), we can reduce that expression to

l(γ̂) = γ̂Tγ̂ − 2ξ̂Tγ̂ + αγ̂TŵŵTγ̂ = γ̂TW γ̂ − 2ξ̂Tγ̂ (58)

=




W 1/2γ̂ −W−1/2 ξ̂



2

2
+ O(1), (59)

whereW = I + αŵŵT. Since α > 0,W is invertible, and thus l(γ̂) has minimizer

γ̂ =

(
I − αŵŵT

1 + αŵTŵ

)
ξ̂ , (60)

via the Sherman-Morrison formula, and minimal value equal to −ξ̂Tγ̂.

We now consider the following theorem regarding the solution to Eq. (56):

Theorem 2. Consider a vector γ � 0; let P ⊆ { 1, . . . , n } denote the indexes of entries that are
positive. Then, γ is a solution to Eq. (56) if and only if the following statements are true:

γi = ξi − s?wi, ∀i ∈ P. (61)
ξi ≤ s?wi, ∀i < P. (62)

where s? is as it is defined in Lemma 1.

Proof. By inspection, we note that αŵTγ̂ = αwTγ = s?, based on the definition of s? and the
structure of γ. Thus, the first and second statements are equivalent to

γ̂ + αŵwTγ = ξ̂ , αw̄wTγ � ξ̄ , (63)

where w̄ and ξ̄ are entries of w and ξ , respectively, that correspond to the zero-valued entries of
γ. Thus, both statements being true is equivalent to:

0 =
(
I + αwwT

)
γ − ξ − u, (64)

where the entries ui of u are zero for i ∈ P and nonnegative for i < P. This equation itself is
equivalent to the stationarity condition of the Karush-Kuhn-Tucker (KKT) conditions, and the
structure of u is equivalent to the combination of complementary slackness and dual feasibility.
Primal feasibility is satisfied by the nonnegativity of γ assumed by the theorem. Thus, satisfying
the two statements of the theorem under the assumed conditions is equivalent to the KKT
conditions. Since the primal problem exhibits strong duality, γ is a solution to Eq. (56) if and
only if it satisfies the two statements.

Without loss of generality, let’s assume that

ξ1/w1 ≥ ξ2/w2 ≥ · · · ≥ ξn/wn, (65)

since we can sort and unsort the entries as needed if this assumption doesn’t hold. Under this
assumption, we have the following corollary:

Corollary 1. If Eq. (65) holds and γ is a solution to Eq. (56), then P = { 1, . . . , n? } for some
0 ≤ n? ≤ n, with n? = 0 if and only if ξ = 0.

Proof. P is a contiguous range of indexes via a combination of Eq. (62) and Eq. (65). If n?
is zero, then P = ∅ and hence 0 � ξ . Since the elements of ξ are norms, the only possible
conclusion is that ξ = 0. Now, suppose ξ = 0, then since s?wi ≥ 0 by construction, no γi > 0
can exist via Eq. (61) and thus P = ∅.
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With these observations, we propose Algorithm 1 for computing Eq. (51). This algorithm has
asymptotic complexity equal to O

(
mn + n2) , where the O(mn) part is due to computing the `2

norms in step 3 and rescaling in step 18, whereas the O
(
n2) part is due to the while loop of at

most n iterations wherein each iteration requires inner products of vectors of at most length n.
Sorting the elements only takes O(n log n) time and is dominated by the other operations.

Algorithm 1 Proximal operator for squared (weighted) sum of norms.
1: function ProxSSL2(α, x1, . . . , xn, w)
2: for all i ∈ { 1, . . . , n } do
3: ξi ← ‖xi ‖2
4: end for
5: if ξ = 0 then
6: return 0, . . . , 0
7: end if
8: Sort the wis, and ξis so that Eq. (65) is satisfied.
9: P ← { 1, . . . , n }
10: while either Eq. (61) or Eq. (62) is false for P do
11: Remove the largest index from P.
12: end while
13: Compute the final γ given resulting P.
14: Undo the sorting in step 8 for the ξis and γis.
15: for all i ∈ { 1, . . . , n } do
16: yi ← xiγi/ξi
17: end for
18: return y1, . . . , yn
19: end function
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