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LesionAir: An Automated,
Low-Cost Vision-Based Skin
Cancer Diagnostic Tool
Current techniques for diagnosing skin cancer lack specificity and sensitivity, resulting in
unnecessary biopsies and missed diagnoses. Automating tissue palpation and morphology
quantification will result in a repeatable, objective process. LesionAir is a low-cost skin
cancer diagnostic tool that measures the full-field compliance of tissue by applying a vac-
uum force and measuring the precise deflection using structured light three-dimensional
(3D) reconstruction. The technology was tested in a benchtop setting on phantom skin
and in a small clinical study. LesionAir has been shown to measure deflection with a
0.085 mm root-mean-square (RMS) error and measured the stiffness of phantom tissue to
within 20% of finite element analysis (FEA) predictions. After biopsy and analysis, a der-
matopathologist confirmed the diagnosis of skin cancer in tissue that LesionAir identified
as noticeably stiffer and the regions of this stiffer tissue aligned with the bounds of the
lesion. A longitudinal, full-scale study is required to determine the clinical efficacy of the
device. This technology shows initial promise as a low-cost tool that could rapidly iden-
tify and diagnose skin cancer. [DOI: 10.1115/1.4039209]

Introduction

More than 3,000,000 nonmelanoma skin cancers [1] and
140,000 melanoma skin cancers [2] afflict people every year in
the U.S.; this translates to one out of every three cancers [3]. One
out of five Americans will develop skin cancer at some point in
their life [4].

Identifying early-stage skin cancer before it has metastasized is
critical, as prompt excision of the lesion nearly guarantees the
patient’s recovery [5,6]. Fortunately, skin cancer generally devel-
ops in the outermost layers of skin, making a possible malignant
tumor visible in the early stage when treatment is likely to be
most successful.

Tissue differentiation is critical for identifying cancerous tissue;
however, without performing a biopsy, it is challenging to charac-
terize tissue types within the same tissue structure. In most clinical
settings, practitioners analyze tissue using nothing more than sight
and touch. Fidelity is limited due to resolution and sensitivity con-
straints of the practitioner; this method is only effective when per-
formed by experienced dermatologists [7].

The ability to accurately diagnose melanoma varies signifi-
cantly between specialists (dermatologists) and nonspecialists
(primary care physicians) with more experience leading to higher
diagnostic accuracy. Dermatologists diagnostic accuracy ranges
from 25% [8] to 89% [9], whereas nonspecialist’s accuracy ranges
from 4% to 80% [8–10]. This is worrisome as the majority of
patients with suspicious skin lesions typically visit their primary
care physician before seeing a dermatologist. Due to these facts,
visual diagnosis is commonly associated with a risk of missed
melanomas (false negative) and unnecessary biopsies (false
positive).

Because of these limitations, the gold standard for diagnosis
has been invasive biopsy and excision, followed by histological
and pathological examination. Studies have found that the ratio of

biopsies of benign lesions to malignant ones can vary from five to
one to as high as 500 to one [11], while at the same time, one-
third of skin cancers are missed [12]; this shows current practices
have neither specificity nor sensitivity, and a better approach is
required.

As technology has advanced, imaging systems using various
modalities have been developed to aid in the diagnosis of mela-
noma. The most basic of these tools is a dermoscope; a special-
ized microscope that enables dermatologists to see subsurface
features. Dermoscopes have been shown to increase diagnostic
accuracy [13], but less than 60% of practitioners use them [11].

More advanced optical methods use imaging probes that give a
range of views, such as total body photography [14], or increased
resolutions, such as confocal microscopy [15] or optical coherence
tomography [16]. Some methods incorporate multispectral imag-
ing and leverage the chromophores to quantify melanin, blood,
and collagen content within a lesion [17].

Research in this area has focused primarily on optical technolo-
gies to automate and assist the dermatologist in diagnosing skin
lesions; however, current devices are complex, expensive, and
designed to be used by a trained dermatologist only as a means of
verifying the initial diagnosis. Most methods focus on measuring
optical responses, which vary with stimulation and have limited
reliability and, thus, are not applicable across all clinical popula-
tions. Technology adoption has, thus, been slow due to these
issues [11].

An alternative approach exploits the mechanical properties of
skin to aid in medical diagnoses. Cancer causes noticeable varia-
tions in the elastic properties of tissue [18]. The evaluation of the
elastic properties of soft tissue has been performed manually via
palpation to detect various types of cancers for decades. While
effective, manual palpation has limited fidelity and is dependent
on the practitioner. Automating stiffness measurement has the
potential to increase sensitivity and consistency over current
methods, turning a subjective test into a repeatable, objective test
that enables cancer to be diagnosed sooner resulting in a greater
chance of survival. Elastograms—or tissue stiffness maps—can
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be formed from several different methods but are most often con-
structed using acousto-optics [19], ultrasonics [20], or magnetic
resonance [21]. While proven effective, these systems are far too
expensive and cumbersome for clinical adoption [20], which
requires a portable, cost-effective method for quantifying skin
stiffness.

While stiffness is a simple mechanical property that can be
calculated from force and deflection, these two properties are
challenging to accurately apply and measure across a three-
dimensional (3D) surface using low-cost methods.

In this paper, we present a device; we call LesionAir, a low-
cost tissue characterization device for application to skin cancer
detection. The device determines tissue stiffness by applying a
gentle vacuum to the tissue region and measures the full-field tis-
sue deformation through structured light triangulation. The devi-
ce’s camera system also enables morphological clinical features
(such as asymmetry, border irregularity, color variation, and
diameter—commonly referred to by the ABCD acronym) to be
quantified optically. We hypothesize that future analytical techni-
ques can combine the morphology of a lesion, its stiffness, and
demographic data about the patient to provide a multimodal
approach to the diagnosis of skin cancer.

Methods

LesionAir (Fig. 1) consists of two integrated systems to apply
force and measure deflection of tissue: a small vacuum pump and
pressure sensor to create and maintain controllable negative pres-
sure; and a simple, low-cost structured light system to create a
deflection map of the tissue as the pressure is modulated. This ini-
tial prototype connects to a computer which controls these sys-
tems, collects data, and formulates the results. These components
reside in a plastic, light-tight, airtight housing that provides a self-
contained, pressurized environment.

System Design

Vision System. LesionAir’s vision system comprises a ring
light, structured-light projector, and camera. The ring light evenly
illuminates the scene to provide adequate lighting for the camera

to capture standard-lit images. The projector shines a fixed struc-
tured light pattern onto the tissue that the camera uses for
triangulation.

The prototype device captures standard- and structured-lit
images using Allied Vision’s (Newburyport, MA) Manta G-145B
camera with a 16 mm f/1.4 Fujinon lens. This monochrome 1.4
MP camera can capture images at 30 fps.

For standard-lit images, a generic 48-light-emitting diode (LED)
macro ring light evenly illuminates the scene. The ring light, along
with LesionAir’s light-tight enclosure, ensures that all of the images
taken will have standardized lighting and no shadows.

The structured light projector consists of a 5 W white LED,
gobo plate, and an off-the-shelf 16 mm camera lens used to focus
the pattern onto the patient. The gobo was fabricated from a sheet
of 0.1 mm thick 304 stainless steel and is comprised of a 40� 28
array of 40 lm diameter dots with 0.1125 mm spacing between
the dots to form a 4.5 mm� 3.15 mm rectangle.

Force Application System. LesionAir’s force application sys-
tem consists of a pneumatic pump, solid state pressure sensor, and
a flexible seal that acts as a junction between the device and the
skin.

From finite element analysis (FEA) simulations based on mod-
eled skin elasticity, we chose to apply a total negative pressure of
100 mbar over a 6 cm diameter area. This is certainly more force
than what is typically used in manual palpation, but applying this
much force causes significant changes to skin deflection, which
helps mitigate noisy structured light triangulation data.

It is necessary that this pressure does not cause any pain or dis-
comfort. The reported pain threshold and pain tolerance levels for
humans is 4 bar and 5–11 bar, respectively [22]. A 100 mbar pres-
sure is significantly below these values and also allows the user to
immediately remove the device if there were to be any discomfort.

A KNF Neuberger (Trenton, NJ) NMP 05 B microdiaphragm
gas sampling pump was selected to evacuate the enclosure. This
pump can produce a 500 mbar vacuum at a flow rate of 0.3 L/min.

The internal pressure is monitored by an Omega PX209-
30VAC5V solid-state pressure transducer with a range of 0 to
�1000 mbar.

The custom seal between the device and the patient resembles a
bellows profile and is capable of forming a seal on a variety of con-
tours to enable the device to be used on different parts of the human
body. The seal was fabricated from a biocompatible silicone rubber
material that will not irritate the skin. Oil- or water-based lubricants
can be applied to the sealing interface to help prevent any air leaks,
and alcohol can be used to sterilize the seal. Significantly curved or
highly variable surfaces can prevent a pressure-tight seal due to the
limited compliance of the seal material.

System Integration. While the camera interfaces with the com-
puter using Ethernet, the lighting system, vacuum pump, and pres-
sure sensor communicate with a personal computer using
Treehopper, a low-cost USB-based open-source platform designed
to connect computers, smartphones, and tablets to embedded elec-
tronics for signal acquisition, control, and interfacing.1 Treehop-
per was selected because it can interface directly with MATLAB

scripts (as well as programs written in Android and C#) without
requiring any embedded programming. A custom printed circuit
board integrates a Treehopper-enabled microcontroller, inputs
from the pressure sensor, output drivers for the ring light and vac-
uum pump, and a constant-current boost converter to drive the
projector LED. A button was added to the system to allow the
user to trigger the software without using a keyboard or mouse.

The enclosure is 3D printed from a high-impact acrylonitrile
butadiene styrene-like material (Somos NeXt). Through-wall con-
nections are sealed using gaskets and O-rings. Internal ribs pro-
vide optimized enclosure strength to material volume ratio. A

Fig. 1 LesionAir device fabricated to demonstrate the pro-
posed methodology 1https://treehopper.io/
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6 cm aperture at the bottom of the enclosure exposes the tissue
region of interest.

The enclosure serves several purposes. It rigidly holds the camera
and projector systems relative to each other and the aperture, ena-
bling a one-time calibration to be valid for all trials. It provides a
pressure-regulated, self-contained internal chamber that is light-tight
so that all recorded images are standardized. It also acts as a modular
platform, so that components can be swapped out if necessary.

Without any attachments, the enclosure measures 14� 11
� 25 cm. In its final form with everything attached, the device is
26� 13� 26 cm and weighs approximately 1.5 kg. The projector is
offset to the side of the camera by approximately 8.4 cm and tilted at
a 45 deg angle to maximize depth resolution. The estimated cost for
the entire bill of materials of the device is $4000.

Data Acquisition. In this section, we present the procedural
flow for a typical use case of LesionAir. For preparation, a clini-
cian identifies a suspect lesion and sanitizes the region to be meas-
ured. The caregiver records a timestamp along with patient
information (patient identification code, age, sex, ethnicity, and
skin tone) and lesion information (location and type). For a clini-
cal trial, the patient information is associated with an anonymous
patient identification code, so the patient cannot be personally
identified.

The clinician centers the device over the region of interest and
places it against the skin. The data acquisition process is started by
pressing the button. Once completed, the device can be removed.
This process is performed twice—once for the lesion and once for
assumed healthy tissue on a region of the body symmetric to the
location of the lesion. The system compares the lesion and nonle-
sion regions to produce relative stiffness measurements. A relative
measurement removes the mechanical boundary condition effects
due to the seal compression from vacuum-induced forces.

The data acquisition process uses a graphical user interface so
the user can see the camera’s view during each stage of operation.
Once the process is initiated, a series of image capture sequences
begin. For each image capture sequence, the system:

(1) Records the pressure inside the chamber
(2) Turns on the structured-light projector
(3) Captures a structured-lit image
(4) Turns off the structured-light projector
(5) Turns on the ring light
(6) Captures a standard-lit image
(7) Turns off the ring light

LesionAir is set to capture images for pressures of 0–100 mbar
in 20 mbar increments. After each image capture sequence, the
pump is turned on until the pressure decreases 20 mbar and the
image acquisition cycle begins again. This is repeated until the
system captures data for all pressure levels.

When finished, the software saves the data and shows all
images to the user, who ensures there are no errors before pro-
ceeding with the data processing.

Data Processing. The system processes the data in three
phases: morphology quantification, scene reconstruction, and stiff-
ness quantification. The initial standard-lit image is segmented to
differentiate the lesion from surrounding tissue using filtering and
dynamic localized thresholding. The ABCDs are then quantified
to assess the morphology. To determine asymmetry, the seg-
mented lesion’s centroid is determined and the areas of the four
quadrants around the centroid are compared. Border irregularity is
quantified by finding the number of pixels on the boundary of the
segmented lesion and comparing them to the number of pixels in
a perfect ellipse determined by the major and minor diameter of
the segmented lesion. Color variation is the range of values of the
grayscale intensity image. The diameter of the lesion is calculated
through the area of the segmented lesion.

The algorithms are designed such that the metrics are larger for
an atypical morphology. A perfectly round, symmetrical lesion

with uniform color will produce a zero for the A, B, and C met-
rics. Diameter is an absolute measurement. The research commu-
nity considers a lesion with a diameter greater than 6 mm
suspicious for melanoma [5].

Next, the surface profile at each pressure state is reconstructed.
For each set of structured light images, the projected pattern is dif-
ferentiated from the background tissue using filtering and dynamic
localized thresholding. The system finds the centroids of the dots
in the pattern using a connected components algorithm. The key-
points of the light pattern is ordered using the algorithm described
in Ref. [23]. The camera and projector calibration matrices are
then used to triangulate and create sparse reconstructions of the
scene. The camera and projection matrices were determined
through a calibration procedure that used Camera Calibration
Toolbox for MATLAB [24] to determine the camera matrix; Pro-
CamCalib [25] was integrated with a custom segmentation and
ordering algorithm to determine the projection matrix.

The sparse reconstruction point clouds are then bicubic-
interpolated to surfaces. Because bicubic interpolation does not
handle discontinuous, limited-domain data, the surfaces must be
carefully cropped in to provide accurate data.

Once the structured light images are converted into surfaces,
the stiffness quantification process can begin. The ambient pres-
sure surface for the lesion and symmetric healthy region are
loaded and used as a reference for the other measurements. The
next surfaces and corresponding pressures are then loaded and the
pressure differential is calculated.

The script determines the overlapping data region between all
of the images and crops any data outside of this region. The surfa-
ces can only be compared where there the data is known. At high
pressures, and consequently high strains, the tissue is deformed
significantly, so only a small part of the high-pressure surface
overlaps with the original undeflected surface, causing the map to
shrink.

Stiffness is determined by dividing the pressure differential by
the calculated surface displacement. The pressure differential for
the lesion and nonlesion images will be slightly different, so this
conversion normalizes the values, so they can be compared. While
not a standards traceable value, the normalized stiffness is a rela-
tive metric created specifically for the patient. Tissue elasticity is
proportional to the normalized stiffness, where the stiffness is also
normalized to remove boundary condition effects by comparing
the lesion stiffness map to the patient’s corresponding nonlesion
stiffness map.

The elasticity of the lesion can thus be qualitatively compared
with the healthy surrounding tissue through analysis of the nor-
malized stiffness map. In the future, a machine-learning algorithm
could compare these elasticity measurements, ABCDs, and patient
demographic information to suggest a diagnosis. This information
can be used to suggest immediate treatment or it can be stored and
compared to a later measurement to determine if the lesion is
evolving, and therefore, potentially cancerous.

Experimental Setup

Benchtop Validation. Benchtop experiments were used to eval-
uate LesionAir’s measurement accuracy, then the system accuracy
was quantified on a characterized object.

A precise curved surface and a precise flat surface were both
measured to gauge the extremes. Accuracy was determined by
comparing the results of the reprojection depth map to measure-
ments made on the same surfaces by a coordinate measuring
machine.

Repeatability was quantified by measuring the same surface ten
different times with a 10 s delay between the measurements. The
device and measured object were rigidly fixed so they wouldn’t
move between measurements. The measured object was again the
precision ground flat plate.

The system efficacy was evaluated using a three-layer custom
phantom tissue model fabricated from synthetic rubber [26].
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Pilot Study. LesionAir was clinically evaluated in a proof of
concept study at the Dermatology Laser Center in San Marcos,
TX. The general design of the study was to identify a patient with
a potentially malignant lesion and to assess that lesion with
LesionAir prior to biopsy or excision. Along with the standard of
care, the excised lesion was subjected to histopathological review
so that a dermatopathologist could render the diagnosis.

The clinical protocol used to perform testing with LesionAir
was approved by the Committee on the Use of Humans as Experi-
mental Subjects at the Massachusetts Institute of Technology. The
study was approved under Committee on the Use of Humans as
Experimental Subjects Protocol No. 1511310864 and the device
and its use were determined to be a nonsignificant risk.

A trained dermatologist working in a high-volume general med-
ical and surgical dermatology clinic identified a potential patient
to participate in the study. The patient was selected from those
individuals who presented for routine dermatologic visits.

Results

Benchtop Validation Results. For the initial accuracy assess-
ment experiments, a common billiard ball was chosen as a precise
curved reference surface and a precision ground flat plate was
chosen as the precise flat surface. Both were measured by a Zeiss
(Oberkochen, Germany) Eclipse C99/II coordinate measuring
machine to not deviate from true shape by more than 0.025 mm.

The structured light measurement of the billiard ball resulted in
a maximum measured error of 0.293 mm, 0.085 mm root-mean-
square (RMS) error, and 0.051 mm standard deviation. A heat
map and cumulative distribution function are shown in Figs. 2 and
3, respectively. The heat map shows the geometric distribution of
error across the measured area. This was used as a diagnostic tool
to identify where the largest errors were occurring. Manufacturing
defects and optical distortion are likely causes of errors. The
cumulative distribution function of these results reveals that
approximately 50% of the data points have less than 0.05 mm
error and 90% of the points have less than 0.15 mm of error.

The measurements of the precision ground flat plate resulted in
a maximum measured error of 0.282 mm, 0.062 mm RMS error,
and 0.041 mm standard deviation. The cumulative distribution
function of these results is better than the billiard ball, with
approximately 90% of the points with less than 0.1 mm of error.

It is difficult to determine the acceptable range of error for this
method as the stiffness of human tissue can vary up to four orders
of magnitude [27]; thus, the best way to determine the required
design parameters is through an experimental study.

The results of the repeatability experiment were used to quan-
tify the maximum and average deviation in the three principle
Cartesian directions, along with the total magnitude of deviation.
The total average deviation was 0.0112 mm with a maximum
deviation of 0.0274 mm. Again, the results were deemed to be
acceptable for the application.

The phantom models were also measured five times using
LesionAir. The average device measurement deviated from FEA
predictions by 10.0%, 57.8%, and 18.6% for the models with an
exposed lesion, embedded lesion, and without a lesion, respec-
tively [26].

Full-field normalized stiffness maps were also created for the
exposed and embedded phantom models. Qualitative analysis of
the stiffness maps clearly shows a stiffer mass in the center of the
image. The mass has an approximate diameter of 1.5 cm, match-
ing the specification.

These results indicated that the device should be able to suc-
cessfully map variations in skin stiffness and that the stiffness
map can be used to identify the boundaries of a lesion.

Pilot Study Results. The selected pilot study patient was a 60
year old Caucasian male with Fitzpatrick type I-II skin. This
patient was new to the clinic and presented for a full skin exami-
nation. It was noted that the patient had a lesion along the right
jawline measuring approximately 8–10 mm in diameter. From the
patient history, the patient reported that this lesion was relatively
new over the last year.

Clinical examination of the lesion revealed it to be a skin-
colored papule with some hyperkeratosis over the center. The
lesion felt fairly indurated throughout without any evidence of
hyperpigmentation. The clinical presentation of this lesion was
consistent with a basal cell carcinoma, while dermatopathology
diagnosed the lesion as a stage 3 malignant melanoma.

Normalized stiffness maps, an example of which is shown next
to a clinical image of the lesion in Fig. 4, were created from the
acquired data and overlaid onto the standard-lit images for quali-
tative evaluation. The normalized stiffness mapping consistently
indicates a well-defined region of increased relative stiffness. This
increased stiffness is virtually uniform throughout the entire
lesion. This is completely consistent with the clinical assessment
of induration of lesion and the histologic confirmation of a solid
nodule of fibrotic tumor mass. While the lesion position was not
quantitatively verified, the mapping appears to match up very well
with the lesion position.

The results of the automated ABCD morphology quantification
for the patient are shown in Fig. 5. The segmentation algorithm

Fig. 2 Measured error heat map of a billiard ball for the pre-
sented structured light system

Fig. 3 Cumulative distribution function of measured error of a
billiard ball for the presented structured light system
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had difficulty correctly segmenting the lesion, since its appearance
was not that of a typical melanoma; however, the diameter measure-
ment was larger than 6 mm, consistent with a high cancer probability.

Conclusions

LesionAir accomplished the preliminary goals of the research
by demonstrating an automated, repeatable, objective process to
detect relative changes in the stiffness of tissue. The presented
platform is simple-to-use, economical, and portable, while still
providing accurate results, as demonstrated by its use in a clinical
setting.

The pilot study showed that LesionAir is capable of differenti-
ating between stiff tissue and normal tissue. The sample size of
the pilot study was too small to achieve results with statistical sig-
nificance, but the promising results warrant a continued investiga-
tion of the efficacy of the device and method. Subsequent studies
will help determine if the device is able to definitively confirm a
cancer diagnosis, or just provide additional information about a

lesion that a specialist can use to make a diagnostic decision. In
particular, since it takes so long to see an experienced dermatolo-
gist, trained clinician use of LesionAir could help to better triage
large numbers of patients with legions.

The method described in this research has shown promise as a
diagnostic tool, but additional development and testing are
required as discussed earlier. Most importantly, a larger scale, lon-
gitudinal clinical trial is required. Given the four orders of magni-
tude that skin stiffness varies by, modeling acceptable deflection
measurement error is nearly impossible; such a clinical trial would
provide the needed empirical data necessary to validate the resolv-
ing capability of the proposed device. The initial intent of the
method was not to evaluate the relative stiffness of a lesion versus
an area of healthy tissue for an immediate diagnosis, but instead
to look at the evolution of a lesion. Significant changes in stiffness
and morphology over time correlate directly with an increased
chance of skin cancer. A multiyear study would require lesions to
be measured daily, weekly, or monthly to verify how fast they
evolve and how soon this change can be identified.

A large dataset from a longitudinal study would also be benefi-
cial in creating a robust classification algorithm. It is hypothesized
that a machine learning neural network classifier would be ideal
for this application. The neural network could be trained using the
ABCD metrics and normalized stiffness maps as inputs. This pro-
cess would provide an algorithm to give all subsequent measured
lesions a score on how likely they are to be cancerous.

Finally, the method needs to be miniaturized to the initially pro-
posed smartphone form factor with real-time processing capabil-
ities. The device was designed with miniaturization in mind, such
that all of the components necessary are already included on the
phone, or easy to add through a simple hardware attachment.
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