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Extended Formulations in Mixed-integer Convex
Programming

Miles Lubin1, Emre Yamangil2, Russell Bent2, and Juan Pablo Vielma1

1 Massachusetts Institute of Technology, Cambridge, MA, USA
2 Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract. We present a unifying framework for generating extended
formulations for the polyhedral outer approximations used in algorithms
for mixed-integer convex programming (MICP). Extended formulations
lead to fewer iterations of outer approximation algorithms and generally
faster solution times. First, we observe that all MICP instances from the
MINLPLIB2 benchmark library are conic representable with standard
symmetric and nonsymmetric cones. Conic reformulations are shown to
be effective extended formulations themselves because they encode sep-
arability structure. For mixed-integer conic-representable problems, we
provide the first outer approximation algorithm with finite-time conver-
gence guarantees, opening a path for the use of conic solvers for con-
tinuous relaxations. We then connect the popular modeling framework
of disciplined convex programming (DCP) to the existence of extended
formulations independent of conic representability. We present evidence
that our approach can yield significant gains in practice, with the so-
lution of a number of open instances from the MINLPLIB2 benchmark
library.

1 Introduction

Mixed-integer convex programming (MICP) is the class of problems where one
seeks to minimize a convex objective function subject to convex constraints and
integrality restrictions on the variables. MICP is less general than mixed-integer
nonlinear programming (MINLP), where the objective and constraints may be
nonconvex, but unlike the latter, one can often develop finite-time algorithms to
find a global solution. These finite-time algorithms depend on convex nonlinear
programming (NLP) solvers to solve continuous subproblems. MICP, also called
convex MINLP, has broad applications and is supported in various forms by
both academic solvers like Bonmin [7] and SCIP [3] and commercial solvers like
KNITRO [9]; see Bonami et al. [8,5] for a review.

The most straightforward approach for MICP is NLP-based branch and
bound, an extension of the branch and bound algorithm for mixed-integer linear
programming (MILP) where a convex NLP relaxation is solved at each node
of the branch and bound tree [17]. However, driven by the availability of ef-
fective solvers for linear programming (LP) and MILP, it was observed in the
early 1990s by Leyffer and others [22] that it is often more effective to avoid
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solving NLP relaxations when possible in favor of solving polyhedral relaxations
using MILP. Polyhedral relaxations form the basis of the majority of the existing
solvers recently reviewed and benchmarked by Bonami et al. [8].

While traditional MICP approaches construct polyhedral approximations in
the original space of variables, a number of authors have considered introducing
auxiliary variables and forming a polyhedral approximation in a higher dimen-
sional space [28,20,30,21]. Such constructions are called extended formulations
or lifted formulations, the motivation for which is the fact that the projection of
these polyhedra onto the original space can provide a higher quality approxima-
tion than one built from scratch in the original space. Tawarmalani and Sahini-
dis [28] propose, in the context of nonconvex MINLP, extended formulations for
compositions of functions. For MICP, Hijazi et al. [20] demonstrate the effective-
ness of extended formulations in the special case where all nonlinear functions
can be written as a sum of univariate convex functions. Their method obtains
promising speed-ups over Bonmin on the instances which exhibit this structure.
Hijazi et al. generated these extended formulations by hand, and no subsequent
work has proposed techniques for off-the-shelf MICP solvers to detect and ex-
ploit separability. Building on these results, Vielma et al. [30] propose extended
formulations for second-order cones. These extended formulations improved so-
lution times for mixed-integer second-order cone programming (MISOCP) over
state of the art commercial solvers CPLEX and Gurobi quite significantly; both
solvers adopted the technique within a few months after its publication.

A major contribution of this work is to propose a new, unifying framework for
generating extended formulations for the polyhedral outer approximations used
in MICP algorithms. This framework generalizes the work of Hijazi et al. [20]
which was specialized for separable problems to include all MICPs whose ob-
jective and constraints can be expressed in closed algebraic form. We begin in
Section 2 by considering conic representability. While many MICP instances are
representable by using MISOCP, reformulation to MISOCP has not been widely
adopted, and MICP is still considered a significantly more general form. We
demonstrate that with the introduction of the nonsymmetric exponential and
power cones, surprisingly, all convex instances in the MINLPLIB2 benchmark
library [1] are representable by a combination of these nonsymmetric cones and
the second-order cone. We discuss how the conic-form representation of a prob-
lem is itself a strong extended formulation. Hence, the guideline to “just solve
the conic form problem” is surprisingly effective.

We note that conic-form problems have modeling strength beyond that of
smooth MICP, in particular for handling of nonsmooth perspective functions
useful in disjunctive convex programming [16]. With the recent development of
conic solvers supporting nonsymmetric cones [27,26], it may be advantageous to
use these solvers over derivative-based NLP solvers, in which case the standard
convergence theory for outer approximation algorithms no longer applies. In Sec-
tion 3, we present the first finite-time outer approximation algorithm applicable
to mixed-integer conic programming with any closed, convex cones (symmetric
and nonsymmetric), so long as conic duality holds in strong form. This algorithm
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extends the work of Drewes and Ulbrich [12] for MISOCP with a much simpler
and more general proof.

In Section 4, we generalize the idea of extended formulations through conic
representability by considering the modeling framework of disciplined convex
programming (DCP) [15], a popular modeling paradigm for convex optimization
which has so far received little notice in the MICP realm. In DCP, convex ex-
pressions are specified in an algebraic form such that convexity can be verified
by simple composition rules. We establish a 1-1 connection between these rules
for verifying convexity and the existence of extended formulations. Hence, all
MICPs expressed in mixed-integer disciplined convex programming (MIDCP)
form have natural extended formulations regardless of conic representability.
This view has connections with techniques for nonconvex MINLP, where it is
already common practice to construct extended outer approximations based on
the algebraic representation of the problem [5].

In our computational experiments, we translate MICP problems from the
MINLPLIB2 benchmark library into MIDCP form and demonstrate significant
gains from the use of extended formulations, including the solution of a number
of open instances. Our open-source solver, Pajarito, is the first solver specialized
for MIDCP and is accessible through existing DCP modeling languages.

2 Extended formulations and conic representability

We state a generic mixed-integer convex programming problem as

minimizex,y f(x, y)

subject to gj(x, y) ≤ 0 ∀j ∈ J, (MICONV)

L ≤ x ≤ U, x ∈ Zn, y ∈ Rp+,

where the set J indexes the nonlinear constraints, the functions f, gj : Rn×Rp →
R ∪ {∞} are convex, and the vectors L and U are finite bounds on x. Without
loss of generality, when convenient, we may assume that the objective function
f is linear (via epigraph reformulation [8]).

Vielma et al. [30] discuss the motivation for extended formulations in MICP:
many successful MICP algorithms use polyhedral outer approximations of non-
linear constraints, and polyhedral outer approximations in a higher dimensional
space can often be much stronger than approximations in the original space.
Hijazi et al. [20] give an example of an approximation of an `2 ball in Rn which
requires 2n tangent hyperplanes in the original space to prove that the inter-
section of the ball with the integer lattice is in fact empty. By exploiting the
summation structure in the definition of the `2 ball, [20] demonstrate that an
extended formulation requires only 2n hyperplanes to prove an empty intersec-
tion. More generally, [20,28] propose to reformulate constraints with separable
structure

∑q
k=1 gk(xk) ≤ 0, where gk : R → R are univariate convex functions

by introducing auxiliary variables tk and imposing the constraints∑q

k=1
tk ≤ 0, gk(xk) ≤ tk∀ k. (1)
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A consistent theme in this paper is the representation of the convex functions
f and gj , ∀j ∈ J in (MICONV). Current MICP solvers require continuous differ-
entiability of the nonlinear functions and access to black-box oracles for querying
the values and derivatives of each at any given point (x, y). The difficulty in the
reformulation (1) is that the standard representation (MICONV) does not en-
code the necessary information, since separability is an algebraic property which
is not detectable given only oracles to evaluate function values and derivatives.
As such, we are not aware of any off-the-shelf MICP solver which exploits this
special-case structure, despite the promising experimental results of [20].

In this section, we consider the equally general, yet potentially more useful,
representation of (MICONV) as a mixed-integer conic programming problem:

min
x,z

cT z

s.t. Axx+Azz = b (MICONE)

L ≤ x ≤ U, x ∈ Zn, z ∈ K,

where K ⊆ Rk is a closed convex cone. Without loss of generality, we assume in-
teger variables are not restricted to cones, since we may introduce corresponding
continuous variables by equality constraints. The representation of (MICONV)
as (MICONE) is equally as general in the sense that given a convex function f ,
we can define a closed convex cone Kf = cl{(x, y, γ, t) : γf(x/γ, y/γ) ≤ t, γ > 0}
where clS is defined as the closure of a set S. Using this, we can reformulate
(MICONV) to the equivalent optimization problem

min tf

s.t. tj + sj = 0 ∀j ∈ J, (2)

γf = 1, x = xf , y = yf ,

γj = 1, x = xj , y = yj ,∀j ∈ J,
L ≤ x ≤ U, x ∈ Zn, y ∈ Rp+,
(xf , yf , γf , tf ) ∈ Kf ,
(xj , yj , γj , tj) ∈ Kgj , sj ∈ R+ ∀j ∈ J.

The problem (2) is in the form of (MICONE) with K = Rn+|J|+ ×Kf ×Kg1 ×
· · ·×Kg|J| . Such a tautological reformulation is not particularly useful, however.
What is useful is a reformulation of (MICONV) into (MICONE) where the cone
K is a product K1 × K2 × · · · × Kr, where each Ki is one of a small number
of recognized cones, such as the positive orthant Rn+, the second-order cone
SOCn = {(t, x) ∈ Rn : ||x|| ≤ t}, the exponential cone, EXP = cl{(x, y, z) ∈
R3 : y exp(x/y) ≤ z, y > 0}, and the power cone (given 0 < α < 1), POWα =
{(x, y, z) ∈ R3 : |z| ≤ xαy1−α, x ≥ 0, y ≥ 0}.

The question of which functions can be represented by second-order cones
has been well studied [23,6]. More recently, a number of authors have considered
nonsymmetric cones, in particular the exponential cone, which can be used to
model logarithms, entropy, logistic regression, and geometric programming [27],
and the power cone, which can be used to model p-norms and powers [19].
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SOC only EXP only SOC and EXP POW only Not representable Total
217 107 7 2 0 333

Table 1. A categorization of the 333 MICP instances in the MINLPLIB2 library ac-
cording to conic representability. Over two thirds are pure MISOCP problems and
nearly one third is representable by using the exponential (EXP) cone alone. All in-
stances are representable by using standard cones.

The folklore within the conic optimization community is that almost all con-
vex constraints which arise in practice are representable by using these cones3,
in addition to the positive semidefinite cone which we do not consider here. To
substantiate this claim, we classified the 333 MICP instances in MINLPLIB2
according to their conic representability and found that all of the instances are
conic representable; see Table 1.

While solvers for SOC-constrained problems (SOCPs) are mature and com-
mercially supported, the development of effective and reliable algorithms for
handling exponential cones and power cones is an emerging, active research
area [27,26]. Nevertheless, we claim that the conic view of (MICONV) is useful
even lacking reliable solvers for continuous conic relaxations.

As a motivating example, we consider the trimloss [18] (tls) instances from
MINLPLIB2, a convex formulation of the cutting stock problem. These instances
are notable as some of the few unsolved instances in the benchmark library and
also because they exhibit a separability structure more general than what can
be handled by Hizaji et al. [20].

The trimloss instances have constraints of the form∑q

k=1
−√xkyk ≤ cT z + b, (3)

where x, y, z are arbitrary variables unrelated to the previous notation in this
section. Harjunkoski et al. [18] obtain these constraints from a clever reformu-
lation of nonconvex bilinear terms. The function −√xy is the negative of the
geometric mean of x and y. It is convex for nonnegative x and y and its epigraph
E = {(t, x, y) : −√xy ≤ t, x ≥ 0, y ≥ 0} is representable as an affine transforma-
tion of the three-dimensional second-order cone SOC3 [6]. A conic formulation
for (3) is constructed by introducing an auxiliary variable for each term in the
sum plus a slack variable, resulting in the following constraints:∑q

k=1
tk + s = cT z + b, (tk, xk, yk) ∈ E ∀k, and s ∈ R+. (4)

Equation (4) provides an extended formulation of the constraint (3), that is, an
equivalent formulation using additional variables.

If we take the MINLPLIB2 library to be representative, then conic structure
using standard cones exists in the overwhelming majority of MICP problems in

3 http://erlingdandersen.blogspot.com/2010/11/which-cones-are-needed-to-represent.

html

http://erlingdandersen.blogspot.com/2010/11/which-cones-are-needed-to-represent.html
http://erlingdandersen.blogspot.com/2010/11/which-cones-are-needed-to-represent.html
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practice. This observation calls for considering (MICONE) as a standard form of
MICP, one which is perhaps more useful for computation than (MICONV) pre-
cisely because it is an extended formulation which encodes separability structure
in a natural and general way. There is a large body of work and computational
infrastructure for automatically generating the conic-form representation given
an algebraic representation, a discussion we defer to Section 4.

The benefits of reformulation from (MICONV) to (MICONE) are quite tan-
gible in practice. By direct reformulation from MICP to MISOCP, we were
able to solve to global optimality the trimloss tls5 and tls6 instances from
MINLPLIB2 by using Gurobi 6.04. These instances from this public benchmark
library had been unsolved since 2001, perhaps indicating that the value of conic
formulations is not widely known.

3 An outer-approximation algorithm for mixed-integer
conic programming

Although the conic representation (MICONE) does not preclude the use of
derivative-based solvers for continuous relaxations, derivative-based nonlinear
solvers are typically not appropriate for conic problems because the nonlinear
constraints which define the standard cones have points of nondifferentiabil-
ity [14]. Sometimes the nondifferentiability is an artifact of the conic reformu-
lation (e.g., of smooth functions x2 and exp(x)), but in a number of impor-
tant cases the nondifferentiability is intrinsic to the model and provides addi-
tional modeling power. Nonsmooth perspective functions, for example, which are
used in disjunctive convex programming, have been particularly challenging for
derivative-based MICP solvers and have motivated smooth approximations [16].
On the other hand, conic form can handle these nonsmooth functions in a nat-
ural way, so long as there is a solver capable of solving the continuous conic
relaxations.

There is a growing body of work as well as some (so far) experimental solvers
supporting mixed second-order and exponential cone problems [27,26], which
opens the door for considering conic solvers in place of derivative-based solvers.
To the best of our knowledge, however, no outer-approximation algorithm or
finite-time convergence theory has been proposed for general mixed-integer conic
programming problems of the form (MICONE).

In this section, we present the first such algorithm for (MICONE) with ar-
bitrary closed, convex cones. This algorithm generalizes the work of Drewes and
Ulbrich [12] for MISOCP with a much simpler proof based on conic duality. In
stating this algorithm, we hope to motivate further development of conic solvers
for cones beyond the second-order and positive semidefinite cones.

We begin with the definition of dual cones.

Definition 1. Given a cone K, we define K∗ := {β ∈ Rk : βT z ≥ 0 ∀z ∈ K} as
the dual cone of K.

4 Solutions reported to Stefan Vigerske, October 5, 2015
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Dual cones provide an equivalent outer description of any closed, convex cone,
as the following lemma states. We refer readers to [6] for the proof.

Lemma 1. Let K be a closed, convex cone. Then z ∈ K iff zTβ ≥ 0 ∀β ∈ K∗.

Based on the above lemma, we will consider an outer approximation of (MICONE):

min
x,z

cT z

s.t. Axx+Azz = b (MIOA(T))

L ≤ x ≤ U, x ∈ Zn,
βT z ≥ 0 ∀β ∈ T.

Note that if T = K∗, MIOA(T) is an equivalent semi-infinite representation
of (MICONE). If T ⊂ K∗ and |T | < ∞ then MIOA(T) is an MILP outer
approximation of (MICONE) whose objective value is a lower bound on the
optimal value of (MICONE).

The outer approximation (OA) algorithm is based on iteratively building up
T until convergence in a finite number of steps to the optimal solution. First,
we define the continuous subproblem for fixed integer value x̂ which plays a key
role in the OA algorithm:

vx̂ = min
z

cT z

s.t. Azz = b−Axx̂, (CP (x̂))

z ∈ K.

The dual of (CP (x̂)) is

max
β,λ

λT (b−Axx̂)

s.t. β = c−ATz λ (5)

β ∈ K∗.

The following lemmas demonstrate, essentially, that the dual solutions to (CP (x̂))
provide the only elements of K∗ that we need to consider.

Lemma 2. Given x̂, assume CP (x̂) is feasible and strong duality holds at the
optimal primal-dual solution (zx̂, βx̂, λx̂). Then for any z with Azz = b − Axx̂
and βTx̂ z ≥ 0, we have cT z ≥ vx̂.

Proof.

βTx̂ z = (c−ATz λx̂)T z = cT z − λTx̂ (b−Axx̂) = cT z − vx̂ ≥ 0. (6)

Lemma 3. Given x̂, assume CP (x̂) is infeasible and (5) is unbounded, such that
we have a ray (βx̂, λx̂) satisfying βx̂ ∈ K∗, βx̂ = −ATz λx̂, and λTx̂ (b− Axx̂) > 0.
Then for any z satisfying Azz = b−Axx̂ we have βTx̂ z < 0.
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Algorithm 1 The conic outer approximation (OA) algorithm

Initialize: zU ←∞, zL ← −∞, T ← ∅. Fix convergence tolerance ε.
while zU − zL ≥ ε do

Solve MIOA(T).
if MIOA(T) is infeasible then

(MICONE) is infeasible, so terminate.
end if
Let (x̂, ẑ) be the optimal solution of MIOA(T) with objective value wT .
Update lower bound zL ← wT .
Solve CP (x̂).
if CP (x̂) is feasible then

Let (zx̂, βx̂, λx̂) be an optimal primal-dual solution with objective value vx̂.
if vx̂ < zU then

zU ← vx̂
Record (x̂, zx̂) as the best known solution.

end if
else if CP (x̂) is infeasible then

Let (βx̂, λx̂) be a ray of (5).
end if
T ← T ∪ {βx̂}

end while

Proof.

βTx̂ z = −λTx̂Azz = −λTx̂ (b−Axx̂) < 0. (7)

Finite termination of the algorithm is guaranteed because integer solutions
x̂ cannot repeat, and only a finite number of integer solutions is possible.

This algorithm is arguably incomplete because the assumptions of Lemmas
2 and 3 need not always hold. The assumption of strong duality at the solution
is analogous to the constraint qualification assumption of the NLP OA algo-
rithm [13]. Drewes and Ulbrich [12] describe a procedure in the case of MISOCP
to ensure finite termination if this assumption does not hold. The assumption
that a ray of the dual exists if the primal problem is infeasible is also not always
true in the conic case, though [6] provide a characterization of when this can
occur. These cases will receive full treatment in future work.

A notable difference between the conic OA algorithm and the standard NLP
OA algorithm is that there is no need to solve a second subproblem in the case
of infeasibility, although some specialized NLP solvers may also obviate this
need [2]. In contrast, Drewes and Ulbrich [12] propose a second subproblem in
the case of MISOCP even when dual rays would suffice.

Finally, the algorithm is presented in terms of a single cone K for simplicity.
When K is a product of cones, our implementation disaggregates the elements
of K∗ per individual cone, adding one OA cut per cone per iteration.
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4 Extended formulations and disciplined convex
programming

While many problems are representable in conic form, the transformation from
the user’s algebraic representation of the problem often requires expert knowl-
edge. Disciplined convex programming (DCP) is an algebraic modeling concept
proposed by Grant et al. [15], one of whose original motivations was to provide a
means to make these transformations automatic and transparent to users. DCP
is not intrinsically tied to conic representations, however. In this section, we
present the basic concepts of DCP from the viewpoint of extended formulations.
This perspective both provides insight into how conic formulations are generated
and enables further generalization of the technique to problems which are not
conic representable using standard cones.

Detection of convexity of arbitrary nonlinear expressions is NP-Hard [4], and
since a conic-form representation is a proof of convexity, it is unreasonable to
expect a modeling system to be able to reliably generate these representations
from arbitrary input. Instead, DCP requires users to construct expressions whose
convexity can be proven by simple composition rules. A DCP implementation
(e.g., the MATLAB package CVX) provides a library of basic operations like
addition, subtraction, norms, square root, square, geometric mean, logarithms,
exponential, entropy x log(x), powers, absolute value, max{x, y}, min{x, y}, etc.
whose curvature (convex, concave, or affine) and monotonicity properties are
known. These basic operations are called atoms.

All expressions representing the objective function and constraints are built
up via compositions of these atoms in such a way that guarantees convexity.
For example, the expression exp(x2 + y2) is convex and DCP compliant because
exp(·) is convex and monotone increasing and x2 + y2 is convex because it is
a convex composition (through addition) of two convex atoms. The expression√
xy is concave when x, y ≥ 0 as we noted previously, but not DCP compliant

because the inner term xy has indefinite curvature. In this case, users must
reformulate their expression using a different atom like geomean(x, y). We refer
readers to [15,10] for further introduction to DCP.

An important yet not well-known aspect of DCP is that the composition rules
for DCP have a 1-1 correspondence with the existence of extended formulations
of epigraphs. For example, suppose g is convex and monotone increasing and f
is convex. Then the function h(x) := g(f(x)) is convex and recognized as such
by DCP. If Eh := {(x, t) : h(x) ≤ t} is the epigraph of h, then we can represent
Eh through an extended formulation using the epigraphs Eg and Ef of g and
f , respectively. That is, (x, t) ∈ Eh iff ∃ s such that (x, s) ∈ Ef and (s, t) ∈ Eg.
The validity of this extended formulation follows directly from monotonicty of
g. Furthermore, if Ef and Eg are conic representable, then so is Eh, which is
precisely how DCP automatically generates conic formulations. The conic form
representation is not necessary, however; one may instead represent Ef and Eg
using smooth nonlinear constraints if f and g are smooth.

This correspondence between composition of functions and extended for-
mulations was considered by Tawarmalani and Sahinidis [28], although in the
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(a) Solution time (b) Number of OA iterations

Fig. 1. Comparison performance profiles for the entire data set. Higher is better. Here,
p is the proportion of instances for which the given solver is within a factor of θ of the
best solution time or iteration count.

context of nonconvex MINLP. Composition generalizes the notion of separability
far beyond summations of univariate functions as proposed by Hijazi et al. [20].

DCP, based on the philosophy that users should be “disciplined” in their
modeling of convex functions, describes a simple set of rules for verifying con-
vexity and rejects any expressions not satisfying them; it is not based on ad-hoc
detection of convexity which is common among nonconvex MINLP solvers. DCP
is well established within the convex optimization community as a practical
modeling technique, and many would agree that it is reasonable to ask users
to formulate convex optimization problems in DCP form. By doing so they un-
knowingly provide all of the information needed to generate powerful extended
formulations.

5 Computational results

In this section we present preliminary computational results implementing the
extended formulations proposed in this work. We have implemented a solver,
Pajarito, which currently accepts input as mixed-integer conic programming
problems with a mix of second-order and exponential cones. We have trans-
lated 194 convex problems from MINLPLIB2 representable using these cones
into Convex.jl [29], a DCP algebraic modeling language in Julia which performs
automatic transformation into conic form. We exclude instances without integer
constraints, some which are pure quadratic, and some which Bonmin is unable
to solve within time limits. Pajarito currently implements traditional OA using
derivative-based NLP solvers [7] applied to the conic extended formulation, as
the conic solvers we tested were not sufficiently reliable. Pajarito itself relies on
JuMP [24], and the implementation of the core algorithm spans less than 1000
lines of code. Pajarito will be released as open source in the upcoming months.

Our main comparison is with Bonmin’s OA algorithm, which in 2014 bench-
marks by H. Mittelmann was found to be the overall fastest MICP solver when
using CPLEX as the inner MILP solver [25]. For the MISOCP instances, we
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also compare with CPLEX. Performance profiles [11] of all instances solved by
Bonmin in greater than 30 seconds are provided in Figure 1. Tables 2 and 3 in
the Appendix list the complete set of results. Their highlights are:

1. We observe that the extended formulation helps significantly reduce the num-
ber of OA iterations (Figure 1). This can be seen as a sign of scalability
provided by the extended formulation.

2. Pajarito is much faster on many of the challenging problems (slay,netmod,
portfol classical), although these problems are MISOCPs where CPLEX
dominates (note that CPLEX 12.6.2 already applies extended formulations
for MISOCPs [30]). Pajarito has not been optimized for performance, leading
Bonmin to be faster on the relatively easy instances.

3. Perhaps the strongest demonstration of Pajarito’s strength is the gams01

instance, which was previously unsolved and whose conic representation re-
quires a mix of SOC and EXP cones. The best known bound was 1735.06
and the best known solution was 21516.83. Pajarito solved the instance to
optimality with an objective value of 21380.20 in 6 iterations. Unfortunately,
the origin of the instance is unknown and confidential.

Acknowledgements

We thank the anonymous referees for their comments. They greatly improved the
clarity of the manuscript. We also thank one of the anonymous referees for point-
ing out the SOC-representability of the sssd family of instances originally de-
rived in [16]. M. Lubin was supported by the DOE Computational Science Grad-
uate Fellowship, which is provided under grant number DE-FG02-97ER25308.
The work at LANL was funded by the Center for Nonlinear Studies (CNLS) and
was carried out under the auspices of the NNSA of the U.S. DOE at LANL un-
der Contract No. DE-AC52-06NA25396. J.P. Vielma was funded by NSF grant
CMMI-1351619.

References

1. MINLPLIB2 library. http://www.gamsworld.org/minlp/minlplib2/html/.
2. K. Abhishek, S. Leyffer, and J. Linderoth, FilMINT: An outer

approximation-based solver for convex mixed-integer nonlinear programs, IN-
FORMS Journal on Computing, 22 (2010), pp. 555–567.

3. T. Achterberg, SCIP: Solving constraint integer programs, Mathematical Pro-
gramming Computation, 1 (2009), pp. 1–41.

4. A. Ahmadi, A. Olshevsky, P. Parrilo, and J. Tsitsiklis, NP-hardness of
deciding convexity of quartic polynomials and related problems, Mathematical Pro-
gramming, 137 (2013), pp. 453–476.

5. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Ma-
hajan, Mixed-integer nonlinear optimization, Acta Numerica, 22 (2013), pp. 1–131.

6. A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization, So-
ciety for Industrial and Applied Mathematics, 2001.

http://www.gamsworld.org/minlp/minlplib2/html/


12 Lubin, Yamangil, Bent, Vielma

7. P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann,
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Appendix

All computations were performed on a high-performance cluster at Los Alamos
with Intelr Xeonr E5-2687W v3 @3.10GHz 25.6MB L3 cache processors and
251GB DDR3 memory installed on every node. CPLEX v12.6.2 is used as a
MILP and MISOCP solver. We use KNITRO v9.1.0 as an NLP solver for Pa-
jarito. Bonmin v1.8.3 is compiled with CPLEX v12.6.2 and Ipopt 3.12.3 using
the HSL linear algebra library MA97. All solvers are set to a relative optimality
gap of 10−5, are run on a single thread (both CPLEX and KNITRO), and are
given 10 hours of wall time limit (with the exception of gams01 where we give
32 threads to CPLEX for the MILP relaxations).

(a) Solution time (b) Number of OA iterations

Fig. 2. Comparison performance profiles for SOC representable instances

Performance profiles with respect to SOC representable instances are pro-
vided in Figure 2. After reformulating these instances, we are able solve them
using CPLEX as MISOCPs. Although CPLEX dominates, Pajarito is able to
solve more instances than Bonmin in this case.
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Instance Conic rep. Bonmin Iter Bonmin Time Pajarito Iter Pajarito Time CPLEX Time

batch Exp 2 0.60 1 4.95 –
batchdes Exp 1 0.07 1 4.76 –
batchs101006m Exp 10 1.88 3 7.67 –
batchs121208m Exp 4 3.14 3 11.01 –
batchs151208m Exp 6 7.97 3 14.63 –
batchs201210m Exp 8 14.92 2 29.09 –
clay0203h SOC 9 0.90 5 6.53 0.35
clay0203m SOC 10 0.40 6 6.74 0.37
clay0204h SOC 3 3.60 1 6.27 1.61
clay0204m SOC 3 0.33 1 5.14 1.02
clay0205h SOC 4 20.89 3 28.76 8.93
clay0205m SOC 6 5.50 3 12.67 1.77
clay0303h SOC 9 0.97 5 7.29 0.54
clay0303m SOC 10 0.58 7 7.36 0.68
clay0304h SOC 11 5.27 9 17.96 1.42
clay0304m SOC 16 2.84 13 22.99 2.13
clay0305h SOC 4 23.81 3 56.93 23.32
clay0305m SOC 7 6.16 3 16.14 2.51
du-opt SOC 61 0.76 7 8.69 1.54
du-opt5 SOC 22 0.22 4 6.66 1.97
enpro48pb Exp 2 0.22 1 5.04 –
enpro56pb Exp 1 0.22 1 5.11 –
ex1223 ExpSOC 3 0.07 1 5.47 –
ex1223a SOC 1 0.03 0 4.57 0.01
ex1223b ExpSOC 3 0.07 1 5.52 –
ex4 SOC 2 0.13 2 5.80 0.86
fac3 SOC 6 0.15 2 5.22 0.07
netmod dol2 SOC 33 167.49 7 53.04 12.58
netmod kar1 SOC 102 56.45 12 13.75 7.68
netmod kar2 SOC 102 56.35 12 13.68 7.66
no7 ar25 1 SOC 2 25.19 3 69.55 54.34
no7 ar3 1 SOC 4 71.04 3 95.84 126.09
no7 ar4 1 SOC 5 85.87 4 110.70 48.97
no7 ar5 1 SOC 7 69.23 5 117.65 32.60
nvs03 SOC 1 0.06 1 4.89 0.00
slay04h SOC 5 0.19 2 5.22 0.14
slay04m SOC 5 0.11 2 5.20 0.18
slay05h SOC 9 0.60 3 5.73 0.37
slay05m SOC 7 0.18 3 5.51 0.16
slay06h SOC 12 1.94 2 5.56 0.69
slay06m SOC 9 0.29 2 5.27 0.42
slay07h SOC 15 5.04 3 6.61 0.98
slay07m SOC 12 0.66 3 5.67 0.67
slay08h SOC 22 27.27 3 7.41 1.50
slay08m SOC 21 2.89 2 5.43 0.96
slay09h SOC 36 163.31 3 9.01 1.93
slay09m SOC 28 17.22 3 6.12 1.54
slay10h SOC 80 8155.02 4 26.13 7.55
slay10m SOC 77 1410.08 4 9.08 1.80
syn05h Exp 2 0.09 1 4.75 –
syn05m Exp 2 0.07 1 4.73 –
syn05m02h Exp 1 0.06 1 4.79 –
syn05m02m Exp 1 0.07 1 4.80 –
syn05m03h Exp 1 0.07 1 4.86 –
syn05m03m Exp 1 0.07 1 4.83 –
syn05m04h Exp 1 0.07 1 4.85 –
syn05m04m Exp 1 0.08 1 4.85 –
syn10h Exp 1 0.04 0 4.46 –
syn10m Exp 2 0.04 1 4.79 –
syn10m02h Exp 1 0.09 1 4.92 –
syn10m02m Exp 2 0.09 1 4.85 –
syn10m03h Exp 1 0.08 1 4.91 –
syn10m03m Exp 1 0.08 1 4.85 –
syn10m04h Exp 1 0.11 1 5.03 –
syn10m04m Exp 1 0.11 1 5.01 –
syn15h Exp 1 0.06 1 4.86 –
syn15m Exp 2 0.07 1 4.79 –
syn15m02h Exp 1 0.09 1 5.00 –
syn15m02m Exp 1 0.09 1 4.92 –
syn15m03h Exp 1 0.13 1 48.61 –
syn15m03m Exp 2 0.11 1 4.94 –
syn15m04h Exp 1 0.14 1 5.77 –
syn15m04m Exp 2 0.14 1 5.10 –
syn20h Exp 2 0.10 2 5.14 –
syn20m Exp 2 0.06 1 4.81 –
syn20m02h Exp 2 0.15 2 5.70 –
syn20m02m Exp 2 0.10 2 5.24 –
syn20m03h Exp 1 0.13 1 5.55 –
syn20m03m Exp 2 0.15 2 5.34 –
syn20m04h Exp 1 0.19 1 6.03 –
syn20m04m Exp 2 0.27 2 5.60 –
syn30h Exp 3 0.12 3 5.61 –
syn30m Exp 3 0.09 3 5.40 –
syn30m02h Exp 3 0.21 3 6.34 –
syn30m02m Exp 4 0.19 3 5.69 –
syn30m03h Exp 3 0.40 3 6.86 –
syn30m03m Exp 3 0.27 3 6.16 –
syn30m04h Exp 3 0.49 3 7.91 –
syn30m04m Exp 4 0.42 3 6.60 –
syn40h Exp 4 0.19 3 5.74 –
syn40m Exp 4 0.97 2 5.20 –
syn40m02h Exp 3 0.31 3 6.74 –
syn40m02m Exp 3 0.24 3 5.97 –
syn40m03h Exp 4 0.59 4 8.66 –
syn40m03m Exp 5 0.52 4 7.17 –
syn40m04h Exp 4 1.02 4 10.42 –
syn40m04m Exp 5 0.87 5 9.25 –

Table 2. MINLPLIB2 instances. “Conic rep” column indicates which cones are used
in the conic representation of the instance (second-order cone and/or exponential).
CPLEX is capable of solving only second-order cone instances. Times in seconds.
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Instance Conic rep. Bonmin Iter Bonmin Time Pajarito Iter Pajarito Time CPLEX Time

synthes1 Exp 3 0.04 2 5.04 –
synthes2 Exp 3 0.05 2 4.98 –
synthes3 Exp 6 0.10 2 5.00 –
rsyn0805h Exp 1 0.14 1 4.92 –
rsyn0805m Exp 2 0.25 2 5.22 –
rsyn0805m02h Exp 5 0.71 5 7.31 –
rsyn0805m02m Exp 4 2.16 4 7.24 –
rsyn0805m03m Exp 3 4.08 3 7.76 –
rsyn0805m04m Exp 2 2.31 2 6.78 –
rsyn0810m Exp 2 0.24 1 4.94 –
rsyn0810m02h Exp 3 0.58 3 6.45 –
rsyn0810m02m Exp 4 5.78 3 6.83 –
rsyn0810m03h Exp 3 1.36 3 7.62 –
rsyn0810m03m Exp 3 6.04 3 8.66 –
rsyn0810m04h Exp 3 1.31 2 7.71 –
rsyn0810m04m Exp 4 3.77 3 8.14 –
rsyn0815h Exp 1 0.27 1 23.50 –
rsyn0815m Exp 2 0.23 2 5.25 –
rsyn0815m02m Exp 5 1.94 4 7.14 –
rsyn0815m03h Exp 5 5.21 5 16.04 –
rsyn0815m03m Exp 4 4.59 5 10.16 –
rsyn0815m04h Exp 3 2.03 3 10.43 –
rsyn0815m04m Exp 4 7.78 3 10.68 –
rsyn0820h Exp 3 0.42 2 5.59 –
rsyn0820m Exp 2 0.24 2 5.29 –
rsyn0820m02h Exp 3 0.59 2 6.72 –
rsyn0820m02m Exp 3 1.90 3 6.90 –
rsyn0820m03h Exp 2 1.37 2 7.76 –
rsyn0820m03m Exp 3 5.14 3 8.83 –
rsyn0820m04h Exp 4 2.66 4 11.59 –
rsyn0820m04m Exp 3 8.65 3 11.52 –
rsyn0830h Exp 3 0.41 3 5.95 –
rsyn0830m Exp 4 0.37 4 6.19 –
rsyn0830m02m Exp 5 1.83 5 15.68 –
rsyn0830m03h Exp 2 1.45 2 9.04 –
rsyn0830m03m Exp 4 3.45 4 10.15 –
rsyn0830m04h Exp 3 2.35 3 12.59 –
rsyn0830m04m Exp 4 11.47 4 15.82 –
rsyn0840h Exp 2 0.30 2 5.69 –
rsyn0840m Exp 2 0.26 3 5.72 –
rsyn0840m02h Exp 3 0.72 2 7.34 –
rsyn0840m02m Exp 4 1.53 3 7.73 –
rsyn0840m03h Exp 3 1.85 3 11.07 –
rsyn0840m03m Exp 5 2.47 5 12.41 –
rsyn0840m04h Exp 2 2.40 2 44.19 –
rsyn0840m04m Exp 4 7.62 4 22.33 –
sambal SOC 0 0.03 0 4.52 0.00
gbd SOC 1 0.04 0 4.55 0.00
ravempb Exp 4 0.33 1 5.22 –
portfol classical050 1 SOC >989 >36000 12 37.77 3.31
m3 SOC 1 0.68 0 4.58 0.07
m6 SOC 1 0.16 1 5.18 0.17
m7 SOC 1 0.59 0 4.84 0.69
m7 ar25 1 SOC 1 0.37 1 5.19 0.16
m7 ar2 1 SOC 1 2.19 1 7.01 1.58
m7 ar3 1 SOC 1 1.88 1 6.79 0.82
m7 ar4 1 SOC 1 0.35 0 4.77 0.84
m7 ar5 1 SOC 1 0.34 0 5.71 0.98
fo7 SOC 3 27.68 4 42.88 23.67
fo7 2 SOC 2 12.52 2 16.70 4.88
fo7 ar25 1 SOC 4 9.87 4 27.18 9.92
fo7 ar2 1 SOC 2 8.68 3 19.63 11.04
fo7 ar3 1 SOC 3 11.61 3 31.28 22.16
fo7 ar4 1 SOC 2 9.61 2 15.68 10.27
fo7 ar5 1 SOC 1 5.66 1 8.95 12.67
fo8 SOC 2 79.50 3 82.41 52.92
fo8 ar25 1 SOC 3 45.80 4 144.43 63.09
fo8 ar2 1 SOC 3 59.24 4 161.68 60.09
fo8 ar3 1 SOC 1 14.65 1 14.78 37.85
fo8 ar4 1 SOC 1 10.53 1 16.48 62.60
fo8 ar5 1 SOC 2 23.26 1 34.09 59.75
fo9 SOC 3 534.56 4 209.68 227.52
fo9 ar25 1 SOC 6 1430.17 6 6221.39 1240.89
fo9 ar3 1 SOC 1 16.77 1 22.69 103.84
fo9 ar4 1 SOC 2 40.77 1 60.73 785.75
fo9 ar5 1 SOC 2 39.47 3 134.95 725.60
flay02h SOC 2 0.09 2 5.18 0.02
flay02m SOC 2 0.05 2 5.12 0.04
flay03h SOC 8 0.40 8 7.08 0.20
flay03m SOC 8 0.17 8 6.74 0.24
flay04h SOC 24 19.92 24 30.22 1.14
flay04m SOC 22 4.43 22 16.03 1.00
flay05h SOC 181 6583.08 164 6593.05 96.62
flay05m SOC 180 3258.45 171 4938.36 68.91
flay06h SOC >30 >36000 >32 >36000 6958.36
flay06m SOC >68 >36000 >55 >36000 4752.04
o7 SOC 9 1623.33 8 3060.63 526.94
o7 2 SOC 5 435.47 5 663.47 128.95
o7 ar25 1 SOC 4 259.10 3 510.12 455.29
o7 ar2 1 SOC 1 41.51 1 137.82 68.66
o7 ar3 1 SOC 4 338.68 3 642.90 875.63
o7 ar4 1 SOC 7 1486.87 7 2239.11 535.17
o7 ar5 1 SOC 4 309.86 4 777.35 216.84
o8 ar4 1 SOC 4 2736.05 3 10438.68 8447.35
tls2 SOC 7 0.19 4 5.27 0.10
tls4 SOC 88 260.67 7 18.58 6.15
gams01 ExpSOC >19 >36000 6 23414.37 –

Table 3. MINLPLIB2 instances, continued.
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