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We present the analysis of an unorthodox technique for locking a laser to a resonant optical cavity. Error
signals are derived from the interference between the fundamental cavity mode and higher-order spatial
modes of order two excited by mode mismatch. This scheme is simple, inexpensive and, in contrast to similar
techniques, first-order-insensitive to beam jitter. After mitigating sources of technical noise, performance is
fundamentally limited by quantum shot-noise. c© 2018 Optical Society of America

OCIS codes: 120.2230, 140.4780, 120.3180.

Due to their power gain and non-linear phase response,
resonant optical cavities are routinely employed across a
variety of fields. However, to exploit these useful proper-
ties, cavities must be held resonant with their input laser
fields using a feedback control system, a process known
as locking.

In order to achieve lock, a suitable error signal, de-
scribing the offset of the incoming laser light from res-
onance, must be generated. This procedure ordinarily
involves comparing light which interacts strongly with
the cavity to a stable reference. Common references in-
clude a fixed voltage source (side-of-fringe locking) and
audio- or radio-frequency modulation sidebands (dither
and Pound-Drever-Hall locking respectively) [1]. More
infrequently, polarisation effects are also used to create
locking references (see e.g. [2, 3]).

This Letter analyses the use of a higher-order
Laguerre-Gaussian (LG) mode of order two [4], excited
by mode mismatch, as an alternative reference for cavity
locking. We introduce a theoretical scheme for generating
error signals from this reference and discuss two practical
methods of implementing it. Experimental investigation
confirms our predictions.

As recognised previously [5], techniques based on
higher-order modes (HOMs) are particularly appealing
because they remove the need for external references or
modulation-demodulation stages whilst maintaining the
ability to lock to the top of a resonance peak. Hence
these techniques offer good sensitivity, are relatively sim-
ple and inexpensive, consume little electrical power, are
low-weight, do not require small-aperture modulators in
the beam path and are robust against temperature fluc-
tuations. In addition to general laboratory applications,
these properties make HOM-based techniques ideal for
field-deployable (including satellite-based) instruments,
high-power systems and experiments requiring multiple
control loops.

Moreover, in contrast to prior investigations [6], which
made use of an odd-order HOM as a locking reference,
our technique is first-order insensitive to beam spot mo-

Fig. 1. Optical intensities of the Ψ0 and Ψ2 spatial modes
(left and right axes respectively). Each mode has an in-
tegrated power of 1 W.

tion at the detector. This robustness is particularly ben-
eficial in industrial and suspended-mirror environments.

An optical cavity will decompose any input beam
into its cavity eigenmodes. Our analysis considers a
rotationally-symmetric input beam which is perfectly
aligned to the axis of a spherical-mirror cavity (the z
axis) but whose beam parameters differ slightly from
those of the fundamental cavity mode. In this case,
the cavity eigenmodes excited by the mismatched input
beam are well-approximated by the family of LGm,n=0

modes.
For small (first order in the perturbation) mode mis-

matches only coupling to the two lowest order modes
need be considered. Neglecting common phase factors
irrelevant to our analysis, these modes may be expressed
as

Ψ0(r, z) =
√

2/πω2(z) exp[−r2/ω2(z)], (1)

Ψ2(r, z) =
√

2/πω2(z)[1− 2r2/ω2(z)]

× exp[−r2/ω2(z) + i2γ(z)]

= Ψ̂2 exp[i2γ(z)], (2)
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Fig. 2. The optical setup required to implement our tech-
nique. Only one of the two paths in reflection of the cav-
ity, either 1 or 2, is required. Path 1’s bullseye photodi-
ode consists of an inner circle of radius Rsplit surrounded
by an annulus. The expanded view of the cavity depicts
the fundamental cavity eigenmode using a dashed blue
line and the mismatched input beam in red. Vertical lines
indicate the waist positions and diameters.

where ω(z) = ω0[1 + (z/zR)2]1/2 is the beam spot size
(ω0 being the beam waist; zR = πω2

0/λlaser, the Rayleigh
range), γ(z) = tan−1(z/zR) is the Gouy phase and sub-
scripts indicate the mode order 2m + n. The intensity
distribution of each of these modes is shown in Fig. 1.

Consider a cavity with waist ωcavity
0 at position z = 0.

In the basis of cavity eigenmodes, a 1 W, fundamental
mode, input beam with waist size ωin

0 at position z = δz
(see Fig. 2) may be described as

Ψin
0 = Ψcavity

0 + εΨcavity
2 , (3)

where ε =
δω0

ωcavity
0

+ i
δz

2zcavity
R

, (4)

and δω0 = ωin
0 − ω

cavity
0 [7].

Our scheme generates error signals via the light re-
flected from a resonant optical cavity. The complex am-
plitude reflectivity of a cavity is given by

r(φrt) = ra −
t2arb exp(−iφrt)

1− rarb exp(−iφrt)
, (5)

where φrt is the phase acquired upon one cavity round-
trip, ra and ta are the amplitude reflection and trans-
mission coefficients of the input mirror and rb is the re-
flection coefficient of the end mirror.

In stable cavities the eigenmodes are not degener-
ate and each experiences a different cavity response by
virtue of the Gouy phase contribution to φrt. Close to
a fundamental-mode resonance, the second-order mode
interacts very weakly with the cavity and hence is avail-
able as a stable reference to which the fundamental mode
can be compared. This effect has previously been used
to create automatic alignment and mode-matching sys-
tems [7–9].

Applying the cavity response to (3) and detecting the
reflected power on a photodiode of area A we have, in
the cavity frame,

P cavity
refl =

∫
A
|r0Ψ0|2︸ ︷︷ ︸

(i)

+ |εr2Ψ2|2︸ ︷︷ ︸
(ii)

+ 2<(ε∗r0r
∗
2Ψ0Ψ∗2)︸ ︷︷ ︸

(iii)

dA

(6)
where ri is the cavity reflectivity for Ψi (here and hence-
forth we omit explicit dependence on φrt) and α∗ and
<(α) denote the complex conjugate and real part of
α ∈ C respectively.

The reflected signal comprises three components.
Terms (i) and (ii) yield absorption-like features around
the Ψ0 and Ψ2 resonant frequencies, respectively, and are
constant elsewhere. Term (ii) may be ignored with im-
punity so long as the Ψ0 and Ψ2 resonances do not over-
lap. The term of interest, describing the interference be-
tween our reference Ψ2 mode and the fundamental cavity
mode Ψ0 is (iii). Converting all complex quantities into
polar coordinates this term may, more instructively, be
written

2 I|εr0r2| sin[θr2 − θr0 + 2γ(z) + θε + π/2] (7)

where I =
∫
AΨ0Ψ̂2 dA and θα denotes arg(α).

As desired, this signal is sensitive to the difference
between the phase of the reflected fundamental mode
and that of the second-order mode, θr2 − θr0 . On pass-
ing through a fundamental-mode resonance, θr0 changes
rapidly whereas θr2 is essentially fixed and zero, there-
fore acting as a stable reference.
θε describes the ‘flavour’ of the cavity mismatch. For

pure waist position (size) mismatches this quantity is
±π/2 (0 or π). By controlling the Gouy phase, γ(z),
either through simple propagation or the construction of
an appropriate telescope, the influence of this and the
remaining terms may be removed to yield a quantity
proportional to sin(θr0) – a bi-polar function, centred
about cavity resonance, which is ideal for use as an error
signal in a feedback control system.

In order to isolate the error signal, care must be taken
over the choice of photodiode geometry. Since we are ex-
amining interference between orthogonal modes, detec-
tion over a conventional single-element photodiode will
yield no signal, i.e. I =

∫∞
0

Ψ0Ψ̂2 2πr dr = 0.
The orthogonality of the interfering modes may be cir-

cumvented by any photodiode which does not sample all
of the incident light. However, following the distribution
of the electric field, a logical choice is to use a two-part,
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radially-split, bullseye photodiode (see Fig. 2, Path 1)
and construct signals proportional to

I =

∫ Rsplit

0

Ψ0Ψ̂2 2πr dr −
∫ ∞
Rsplit

Ψ0Ψ̂2 2πr dr (8)

by subtracting the outputs of the two segments.
Specifically, the error signal is maximised by taking

Rsplit = ω(z)/
√

2, as this is the point where the electric

field of Ψ̂2 changes sign, hence obviating any cancellation
of signal. With this choice I = 2/e.

However, since the Ψ0 power on the two segments of
the photodiode is not balanced, operating in this way
can return impure error signals due to contamination by
term (i) of (6). Hence, this mode of operation is best
reserved for strongly overcoupled, high-finesse cavities.

For more general cavity configurations, this effect is
easily mitigated by setting Rsplit = ω(z)

√
log(2)/2 to

balance the Ψ0 power on each photodiode segment. In
this case I = log(2), representing only a ∼6% loss of
signal.

Removing the influence of variations in Ψ0 power
necessarily dictates that changes in Ψ2 power are dis-
cernible. In particular, the tail of the Ψ2 resonance can
cause small error signal offsets at the Ψ0 lock point.
Again, such offsets are negligible so long as the Ψ0 and
Ψ2 resonances do not overlap significantly. For example,
using the parameters given in Fig. 3, this effect produces
an offset which reduces circulating power by ∼5 ppm.

Although bullseye photodiodes are available they are
by no means commonplace. Hence, we now introduce an
alternative means of implementing our scheme (see Fig. 2
Path 2). Error signals obtained using this implementa-
tion are shown in Fig. 3.

The light reflected from the optical cavity is divided
at a beamsplitter and relayed to two standard single-
element photodiodes. Photodiode A captures the entire
cross-section of the reflected beam, and is therefore sensi-
tive to term (i), allowing us to subtract the contribution
of the Ψ0 resonance dip from our error signal.

The beam propagating towards Photodiode B is
clipped significantly by an adjustable iris. Thus, Pho-
todiode B plays the role of the central part of a bullseye
photodiode and is sensitive to term (iii).

The final error signal for use in a feedback
control or measurement system is of the form
Photodiode B− c× Photodiode A, where the constant
c ∈ R is chosen to null sensitivity to term (i) and depends
on photodiode responsivities and transimpedance gains.
For matched photodiodes, c = 1− exp[−2R2

iris/ω
2(z)].

The Gouy phase and spot size at a bullseye de-
tector are interdependent. The use of an adjustable iris
as the effective clipping aperture eliminates this diffi-
culty, with the Gouy phase at the iris now defining
the relative phase of the interfering spatial modes. This
phase is easily controlled by placing a waist-forming
lens upstream of the aperture such that the beam ex-
plores a wide range of Gouy phases over a reason-
able propagation distance. Modifying the position and
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Fig. 3. Uppermost axes – Theoretical error signal ob-
tained using two conventional photodiodes and the fol-
lowing cavity parameters; Plaser = 1 W, λlaser =
1064 nm, Lcavity = 1.3 m, r2

a = 0.95, r2
b = 0.99, ROCa

= ROCb = 4 m, ε = −0.01 + i0.005. The width of the
linear part of the error signal is set by the full-width-
half-maximum-power cavity linewidth. The feature near
to φrt = −π/2 is an error signal for the Ψ2 resonance.
In this case the fundamental mode acts as the phase ref-
erence. Lower axes – Error signals during tuning of iris
position for various deviations, ∆γ(z), from the optimal
Gouy phase. At each location the radius of the iris is
adjusted such that the error signal is zero far from reso-
nance.

radius of the aperture independently, one quickly ap-
proaches the optimal configuration given by, assuming
θr2 = 0, γ(ziris) = kπ/2− π/4− θε/2, k ∈ Z and, as be-
fore, Riris = ω(z)/

√
2. The lower axes of Fig. 3 illustrate

the signals one might observe during this tuning process.
The accuracy with which the optimal configuration can
be achieved in practice could require further examination
if this technique were to be used in exacting applications
such as metrological standards.

Using two conventional photodiodes removes the need
for specialised hardware at the expense of sensitivity.
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Fig. 4. Output of three photodiodes shown in Fig. 2 (up-
per axes) and the resulting error signal (lower axes) as
the laser frequency is swept across Ψ0 resonance. Trans
DC has been normalised and Photodiode B’s response
has been scaled to match that of Photodiode A. At the
time of this measurement, 70% of the input light was
coupled into the Ψ0 mode. Such large mode mismatch is
not a requirement of this technique.

Since we do not detect all of the light, our signal is re-
duced by 50% with respect to optimal detection on a
bullseye photodiode.

To validate our theoretical analysis, we applied the
two-photodiode version of our scheme to a high-finesse
optical cavity. The technique was found to be extremely
robust against errors in iris radius and placement. Ex-
perimental data are shown in Fig. 4. Future practical
investigations should explore the long-term stability of
this method.

A comparable technique, relying on an HG10 mode [4]
as the phase reference, has been developed previously [6].
Although this alternative offers an 8% improvement in
theoretical sensitivity, we believe that the scheme de-
scribed herein is superior for a number of reasons.

Foremost amongst these its insensitivity to beam jit-
ter in reflection of the cavity. Odd-order-mode techniques
are linearly sensitive to beam motion. This dependency

can be mitigated but not without increasing the com-
plexity of the scheme (‘double-pass tilt locking’), some-
what limiting its appeal. In contrast the sensitivity for
even-order-mode techniques, such as ours, is quadratic.
To appreciate this consider that, for the circularly sym-
metric modes under discussion, the power transmitted
through an iris decreases with relative beam-iris motion,
independent of the direction of the motion.

Our scheme does introduce a new sensitivity to beam
spot size changes. However, such changes are rare and
occur on thermal timescales whereas alignment fluctu-
ations are common and exist over a wide range of fre-
quencies.

Odd modes are excited by cavity misalignment while
even modes arise due to mode mismatch. In gen-
eral, achieving excellent cavity alignment is undemand-
ing while attaining equivalent mode-matching efficiency
requires extraordinary measures [9]. Therefore, pre-
existing second-order modes suitable for use as a lock-
ing reference are almost invariably present, even after a
system has been finely adjusted, and do not need to be
purposely introduced. In contrast, exciting an additional
HG10 reference mode requires that the cavity be inten-
tionally misaligned, establishing noise coupling pathways
and reducing shot-noise limited performance.

We have presented the analysis of an alternative means
of locking a laser to a resonant optical cavity. This tech-
nique offers the possibility of shot-noise-limited perfor-
mance whilst remaining uncomplicated and low-cost. Ex-
perimental investigation has confirmed our theoretical
calculations and shown the technique to be simple to
apply and robust against errors in implementation.
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