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Abstract

Interferometric gravitational-wave detectors are complex instruments comprised of
a Michelson interferometer enhanced by multiple coupled cavities. Active feedback con-
trol is required to operate these instruments and keep the cavities locked on resonance.
The optical response is highly non-linear until a good operating point is reached. The
linear operating range is between 0.01% and 1% of a fringe for each degree of freedom.
The resonance lock has to be achieved in all five degrees of freedom simultaneously,
making the acquisition difficult. Furthermore, the cavity linewidth seen by the laser
is only ∼ 1 Hz which is four orders of magnitude smaller than the linewdith of the
free running laser. The arm length stabilization system is a new technique used for
arm cavity locking in Advanced LIGO. Together with a modulation technique utilizing
third harmonics to lock the central Michelson interferometer, the Advanced LIGO de-
tector has been successfully locked and brought to an operating point where detecting
gravitational-waves becomes feasible.
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Figure 1: Simplified optical layout of the Advanced LIGO detector. A beamsplitter (BS)
is used to separate the light into an X-arm and a Y-arm. Each arm is comprised of an
input test mass (ITM) and an end test mass (ETM) forming the arm cavity. The Michelson
interferometer is operated near a dark fringe which reflects most of the injected laser power
back towards the laser. The partially transmitting power recycling mirror (PRM) is used
to enhance the circulating power until most of the power is lost internally. The signal
recycling mirror (SRM) is used to enhance the optical response to a gravitational-wave.
The common mode is defined by (Lx +Ly)/2, the differential mode by Lx−Ly, the power
recycling length by lp + (lx + ly)/2, the signal recycling length by ls + (lx + ly)/2, and the
Michelson length by lx − ly. The macroscopic part of the Michelson length is called the
Schnupp asymmetry. The interferometer detector ports are highlighted in the diagram.
This includes the reflection port, pick-off port, and anti-symmetric port. The infrared
transmitted signals are required for full locking (see Section 4). The various frequency
components of the light used to control the five degrees of freedom of the interferometer
are also depicted. The 9 MHz and 45 MHz RF sidebands are used to track the length of the
power and signal recycling cavities, respectively. The 532 nm beam is used to independently
control the two arm cavities. The 1064 nm carrier resonates in all cavities but the signal
recycling one. The inset shows the fundamental noise limits of the Advanced LIGO design
as an amplitude spectral density.
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1 Introduction

A new generation of advanced gravitational-wave detectors is currently under construc-
tion, including Advanced LIGO[1], Advanced VIRGO[2], and KAGRA[3]. Their goal is
to establish the first direct detection of gravitational waves on Earth[4] and to start the
regular observation of astrophysical sources[5–10]. The aim of their design is to measure
gravitational waves with a strain as small as 4 × 10−24/

√
Hz. All advanced detectors

employ kilometer-scale Michelson interferometers which have their best sensitivity in the
100 Hz region. The corresponding requirement for length resolution is then ∼10−19 m rms
within a 100 Hz bandwidth[1]. This high sensitivity requires multiple optical cavities to
enhance the response of the Michelson interferometer (see Fig. 1). First, Fabry-Perot cav-
ities are added to each Michelson arm to effectively increase the arm length by two orders
of magnitude. Secondly, partially transparent mirrors are added to the symmetric and the
anti-symmetric ports of the Michelson interferometer to recycle the laser power and extract
the gravitational wave signal, respectively[11, 12]. These extra optical resonators are called
power recycling cavity and signal recycling cavity. They further enhance the detected sig-
nal, but add the complication of keeping two more cavities on resonance. Additionally, the
Michelson interferometer must be held at the point of minimum output power (dark fringe
condition). In doing so, most of the light returning from the arm cavities is directed back
to the main laser and recycled to the interferometer, increasing the overall sensitivity.

Cavities can be locked to a resonance using the Pound-Drever-Hall (PDH) reflection
locking technique[13]. This requires adding phase-modulated radio frequency (RF) side-
bands to the input light and detecting the reflected light using a demodulation scheme[14].
A variant of this technique exploits the Schnupp asymmetry [15] to keep the Michelson
operating on a dark fringe. For Advanced LIGO the three main detection ports are in
reflection of the full interferometer, at the anti-symmetric port, and in reflection of the
beamsplitter using a small pick-off beam. With high finesse cavities the Pound-Drever-
Hall technique has a very small linear operating point. Outside this region the error signal
is either negligible or misleading. Furthermore, if the laser frequency sweeps over a reso-
nance faster than the cavity storage time, the light inside the cavity does not have enough
time to fully build up. The resulting Pound-Drever-Hall signal can display multiple Doppler
peaks, further confusing any controls scheme[16–18].

The goal of the initial controls of an advanced detector is to bring all five degrees of
freedom to the linear operating point. These five degrees of freedom consist of the common
mode, differential mode, Michelson length, power recycling length, and the signal recycling
length as described in Fig. 1. Because of the two recycling cavities all degrees of freedom are
strongly coupled. The state of the recycling cavities has a large effect on the signals from the
arm cavities, whereas the state of the arm cavities can completely alter the signals seen by
the dual-recycled Michelson interferometer. In the initially built configuration of LIGO[19,
20] no signal recycling cavity was used[21, 22]. The locking scheme first locked the power-
recycled Michelson interferometer before using a stochastic approach to catch each arm
cavity[23]. This was neither predictable nor robust, and typically required multiple locking
attempts. VIRGO used another approach whereby the arm cavities were locked first,
followed by the power-recycled Michelson interferometer. This locking scheme transmitted
most of the light into the anti-symmetric port to broaden the cavity linewidth of the
power-recycled Michelson interferometer[24]. However, it is unclear how this technique
can be extended to include a signal recycling cavity. For Advanced LIGO a new arm
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length stabilization system was devised to make locking reliable and repeatable, while
being compatible with the new optical configuration.

Id Description Wavelength

I. Infrared PDH reflection locking signal 1064 nm

II. Infrared transmitted signal 1064 nm

III. Fiber phase locked loop (PLL) signal 1064 nm

IV. Green PDH reflection locking signal 532 nm

V. Common mode signal 532 nm

VI. Differential mode signal 532 nm

VII. Input mode cleaner PDH reflection locking signal 1064 nm

Table 1: List of the photodetectors used for length sensing. Numerals are referenced in
Fig. 2.
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Figure 2: Layout of the arm length stabilization system. Only the X-arm is shown. See
Table 1 for a list of detector ports. The system for the Y-arm is identical. In the end
station a laser which is stabilized to a fiber coupled beam coming from the main laser is
locked to the arm cavity using 532 nm light. Until the differential mode servo is engaged
the feedback path to the ETM is used to keep the frequency of the local voltage controlled
oscillator at nominal. In the corner station the main laser is first stabilized to a reference
cavity and then to the suspended mode cleaner, which is formed by the three mirrors MC1,
MC2 and MC3. Initially, for frequencies below ∼10 Hz the error signal of the mode cleaner
is fed back to one of the mode cleaner mirrors, while at higher frequencies it is fed back
to the main laser. After the green laser is locked to the arm cavities, the common mode
signal provides the most accurate reference for stabilizing the main laser frequency. So, it
is used to control the mode cleaner instead. The transmitted 532 nm light of the X-arm
interferes with a frequency-doubled sample beam from the main laser to form the common
mode feedback path. The transmitted 532 nm light from the X and Y-arms are interfered
to form the differential feedback path.
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2 Arm Length Stabilization System

The idea of the arm length stabilization system[25, 26] is to lock each arm cavity individ-
ually using lasers mounted behind each end test mass (see Fig. 2), decoupling two of the
five length degrees of freedom. The arm cavities are then kept away from resonance for the
main laser light by offsetting the frequency of the end station lasers. With the main infrared
beam off resonance in the arm cavities, the central dual-recycled Michelson interferometer
is locked using the third harmonic technique (also called 3f technique) as previously demon-
strated by the TAMA300[27] and Virgo[28] interferometers. The 3f technique is based on
the observation that the third harmonics of the phase-modulated RF sidebands produce
error signals that are to first order independent of the arm cavity resonance[29], because
a significant contribution to the 3f signal is due to the beat between the modulation RF
sideband and its second harmonics on the other side of the carrier light. A phase modulator
such as a Pockels cell will produce the second harmonics as a second order term. Neither
the first nor the second harmonics RF sidebands are resonant in the arm cavities when the
carrier is resonant. This allows the dual-recycled Michelson interferometer to stay locked
while the arm cavities are slowly brought into resonance by zeroing the frequency offset.
Once the arm cavities are fixed on resonance, they can no longer produce spurious signals
that disturb the lock of the dual-recycled Michelson interferometer.

An implementation of the arm length stabilization system is shown in Figure 2. The
main laser[30] is a 200 W injection locked Nd:YAG laser operating at 1064 nm (infrared).
The arm length stabilization system uses a doubled Nd:YAG laser operating at 532 nm
(green) deployed at each end station to distinguish them from the main laser. This requires
that the main interferometer optics are dichroic (see Table 2). The requirements for the
green wavelength optics are modest, only requiring a reasonable arm cavity build-up and a
transmitted path to the corner. This path includes the wedge of the beam splitter, which
separates the transmitted green beams of each arm that nominally overlap with the main
infrared beam in the arm cavities.

ETM ITM PRM SRM PR2

1064 nm 3.6 ppm 1.4% 3.1% 37% 229 ppm
532 nm ∼35% 1% — — 100%

Table 2: Transmission properties of the optics for 1064 nm and 532 nm wavelengths. The
green ETM transmission was much higher than anticipated. This adversely affected the
linewidth at 532 nm, but did not prevent the arm length stabilization system from working.
The free spectral range of an arm cavity is 37.5 kHz. The arm cavity linewidth for 532 nm
is 2.9 kHz which corresponds to a finesse of about 13. The linewidth for 1064 nm is 84 Hz
corresponding to a finesse of about 450.

In order to control the offset frequency of the end station lasers relative to the main
laser, the green transmitted light interferes with a sample beam of the main laser which
has been doubled using a second-harmonic-generator. In order to support an RF detection
scheme, the X-arm laser runs at a frequency of 78.92 MHz below the doubled frequency
of the main laser, whereas the Y-arm laser runs at a frequency 78.92 MHz above (see
Table 3). In the corner station, the light of the Y-arm interferes with that of the X-arm
to produce a differential mode signal. The X-arm interferes with the frequency-doubled
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sample beam from the main laser to deduce a common mode signal. Strictly speaking, this
is just the difference between the X-arm and the laser. But, with the differential mode
signal controlled to zero, it becomes a representation of the common mode mismatch.

Location Freq. (MHz) Deviation Comment

Main Laser 0 2∆fmain set by main laser VCO

Reference Cavity 316.8 fixed frequency reference

Fiber 0 fixed shifted back

X-arm laser -78.92 ∆fx down-shifted

Y-arm laser 78.92 ∆fy up-shifted

Differential beat note 157.84 ∆fy −∆fx controlled to zero

Common beat note -78.92 2∆fmain −∆fx offset from resonance

Table 3: Nominal RF frequencies referenced to the 532 nm light. The fiber beam is taken
from the transmitted reference cavity beam, and then shifted back to DC. The main laser
frequency can be actuated relative to the reference cavity using the main laser voltage
controlled oscillator and the double-passed acousto-optic modulator.

Frequency offsets are adjusted using voltage controlled oscillators (VCO). The perfor-
mance of these VCOs is critical for operations. The linewidth of the combined arm and
power recycling cavities is only 1 Hz, requiring the VCOs to have a root-mean-square (rms)
frequency noise of the same order. In order to cover at least one free spectral range of an arm
cavity, the frequency tuning range needs to be at least 37.5 kHz, which is much larger than
the range of a crystal oscillator. Microwave resonators on the other hand have sufficient
range, but their frequency noise exceeds the requirement. A frequency difference divider is
used to combine the low noise of a fixed frequency crystal oscillator with the divided-down
output of a microwave resonator. Dividing the output of a microwave oscillator reduces
both its range and its phase noise by the divisor. We use a 1.05 GHz microwave oscillator
with a range of ±140 MHz. Dividing it by 128 and adding it to a 71 MHz crystal oscillator
gives us a 79.2 MHz VCO with a range of ±1 MHz. The root-mean-square frequency noise
has been measured to be around 15 Hz. For the corner station VCOs we use a second stage
frequency difference divider. Dividing the output of the first stage by 10 and again adding
it to 71 MHz yields a 78.92 MHz VCO with a range of ±100 kHz and a frequency noise
below 2 Hz. The frequency noise of both these VCOs are below requirement.

Since the frequency range of the main laser when locked to the reference cavity is only
±2 MHz, the initial frequency error of the end station lasers has to be less. On the other
hand, a free running NPRO laser can drift by tens of MHz. To counter this, we take a
sample of the main laser beam and send it to the end station using a fiber. The fiber
absorption at 532 nm is large, so we use the 1064 nm light. The end station lasers are
themselves doubled Nd:YAG lasers. Their 1064 nm output is locked to the fiber output
using a phase-locked loop (PLL). The reference of the phase locked loop is given by a
79.2 MHz VCO, after its frequency is divided down by two. This in turn guarantees that
the green light of the end station lasers is set to a frequency offset near 79.82 MHz, either
above or below that of the main laser depending on the sign of the PLL. Since the main
laser is first stabilized to a fixed-spacer reference cavity and then a suspended mode cleaner,
its frequency fluctuations are suppressed by several orders of magnitude in the frequency
band of interest. Locking the free-running end station laser to the fiber output has the
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Figure 3: X-arm locking sequence and common mode arm length stabilization. In the
first two seconds at point I, the end station laser tries to acquire a cavity lock. Both the
VCO control signal and the arm cavity build-up are wildly fluctuating. At point II, the
end station laser locks on the fundamental arm cavity mode indicated by the full build-up
of the green cavity power. Once the cavity is locked, the corner station common VCO
is locked to the transmitted beat note. Then, the common mode feedback path to the
mode cleaner is engaged. At point III, the common mode is fully engaged and the offset
is swept to find the infrared resonance, as seen by the arm cavity flashes of the 1064 nm
light. Subsequently, at point IV, the common mode VCO is set to infrared resonance as
seen by the full cavity build-up. Due to alignment fluctuations the infrared cavity power
drifts around its set point, but the cavity build-up stays near 90% on average.

added benefit of reducing its frequency noise far enough that it can be locked to the arm
cavity directly. The additional noise added by the fiber is not significant. Phase locking the
end station lasers to the fiber output also brings the laser frequency close to the operation
point by adjusting the laser’s thermal controls, and ensures that the laser is not close to a
mode-hopping region.

The end station laser is locked to the arm cavity using the Pound-Drever-Hall reflection
locking technique. The error signal is fed back to the “tune” input of the local VCO.
Now, the arm cavity serves as a much better frequency reference for the end station laser,
suppressing any noise introduced by the fiber. The transmitted light from each cavity is
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then sampled in the corner station using a dichroic mirror. First, the light from the X-arm
interferes with the frequency-doubled sample beam from the main laser, and the common
mode VCO is locked to this beat note using a phase locked loop. Then, the VCO control
signal is used as an error signal to offset the main laser frequency. We use the main laser
frequency for the common mode control rather than feedback to the test masses, since it
has higher range and bandwidth. The frequency of the main laser can be changed using an
acousto-optic modulator (AOM) which is driven by the main laser VCO. Since the main
laser is locked to the input mode cleaner, we offset its length at frequencies below ∼20 Hz
and feed directly back to the VCO of the main laser at frequencies above. We introduce a
frequency offset in the tune input of the common mode VCO. This in turn will shift the
control signal feeding back to the VCO which is used to adjust the relative offset between
the frequency of the main laser and the frequency of the green laser in the X-end station.
For each free spectral range of the main 1064 nm light, there are two arm cavity resonances
for the 532 nm light. As a first step we look for the infrared resonance in the X-arm by
moving the main laser frequency to its nominal resonance frequency and to a point a full
free spectral range away. We choose the frequency which gives us a resonance of the main
laser light. This single arm locking sequence is shown in Fig. 3. Finally, we move the
frequency of the main laser to a fixed 500 Hz offset away from resonance.

The same procedure is repeated for the Y-arm with the difference that the beat note is
taken from the interference between the transmitted beams of the two arm cavities. The
differential mode VCO frequency has to be doubled first, since the beat note is at twice
the single arm offset. Unlike the common mode controls, the signal of the differential mode
VCO is fed back to the differential position of the end test masses. Again, we have to make
sure that the green resonance in the Y-arm corresponds to a resonance of the main laser.
Finally, the microscopic length difference between the two arm cavities is set to nominally
zero. A critical component to this stage of lock acquisition is the ability to control the
test masses. The end test masses are suspended in quadruple pendula in order to isolate
them from seismic noise. To further mitigate the motion of the test mass, there are two
active isolators: external pre-isolators and in-vacuum seismic isolators [31, 32]. The seismic
isolation systems have sufficiently high performance that alignment control is not necessary
during these initial steps. Then, each of the upper three masses in the coupled pendula
is actuated with magnetic coils. Meanwhile, the lowest stage, the end test masses have
electro-static drivers, which have less drive strength, but also have less actuation noise.

A modification made during the commissioning of the arm length stabilization system
was the addition of the corner station PLLs for the common and differential modes. In
principle, the corresponding phase-frequency discriminators directly provide the desired
error signals, but in practice these introduced transients which the system was ill prepared
to handle. The PLLs are required to clean-up the error signal and reduce the transients
introduced into the controls system.

3 Noise Budget

The arm length stabilization system was successfully employed at both Advanced LIGO
observatories; one detector is located in Hanford, WA and the other in Livingston, LA.
To ensure reliability and robustness, a detailed study of the noise introduced by the arm
length stabilization system was conducted. Using a separate stabilized laser source in
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Figure 4: Noise budget of the arm length stabilization system with only the common mode
degree-of-freedom controlled. The frequency fluctuations of the infrared light incident to
the interferometer are shown. The solid red trace I is the out-of-loop noise measured with
both the green and main infrared beams locked to the X-arm. The dashed red trace II is the
corresponding rms in units of Hz. The remaining traces are the noise sources inherent to
the arm length stabilization method imposed on the main laser beam, and used to explain
the overall noise. The black trace III is phase noise produced from fringe wrapping of the
common mode beat note. The dark orange trace IV comes from a measurement of the
test mass longitudinal displacement noise. The green curve V and the blue curve VI are
the sensing noise of the common mode and reflection servo error signal imposed on the
out-of-loop measurement, respectively. Finally, the dashed black trace VII and the dashed
light blue trace VIII are estimates of the fiber and laser noise, respectively.

the end station introduces fiber noise, laser frequency noise, and noise from the reflection
locking servo onto the corner station laser. The heterodyne measurement determining
the common mode degree of freedom contributes sensing noise to the overall arm length
stabilization noise. Ultimately, these noise sources have no effect once the interferometer
reaches its operational point and the end station lasers are turned off. However, these noise
sources limit the accuracy and repeatability of the lock acquisition.

After implementing the arm length stabilization method to bring the main infrared
beam on resonance in the X-arm, an out-of-loop noise measurement was taken by measuring
the frequency difference between the infrared beam and the arm cavity resonance using
the infrared PDH reflection signal. This measurement was taken without the dual-recycled
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Michelson interferometer locked. The rms frequency noise was between 10 Hz and 30 Hz for
frequencies above 0.01 Hz. This is good enough to set the arm cavity off resonance and get
enough build-up to switch the controls to the arm cavity infrared transmitted signals (see
Section 4). The solid red trace in Fig. 4 depicts the frequency noise of the infrared input
light with the cavity pole at 42 Hz removed, meanwhile the dashed red trace represents its
root-mean-square.

The end station laser is based on a non-planar ring oscillator (NPRO) and its free-
running frequency noise is approximately 1×104 Hz/

√
Hz× 1 Hz

f between 1 kHz and 10 kHz.
This noise gets suppressed by locking it to the fiber-coupled sample beam from the corner
up to the servo bandwidth of about 20 kHz. On the other hand, the noise introduced by
the fiber gets added to the laser frequency. The fiber noise is roughly 3 Hz/

√
Hz at 1 kHz,

and then subsequently falls off as 1/f. With the laser locked to the cavity the combined
laser frequency noise is suppressed by the reflection locking servo up to its bandwidth of
approximately 3 kHz. Finally, since we are looking at the transmitted beam in the corner
station, the green cavity further suppresses this noise above the cavity pole of 1.5 kHz.
This noise dominates at 500 Hz and above, as seen by the dashed black and light blue
traces representing the fiber and laser frequency noise respectively. Fig. 4 includes the
sensing noise of the end station reflection servo error signal imposed in the out-of-loop
measurement (blue trace).

Acoustic noise at the corner station accounts for the frequency noise from 60 Hz to about
1 kHz. Specifically, a large in-air periscope contributes to the peaks around 65 Hz−75 Hz,
and 95 Hz− 105 Hz. Similarly, an in-vacuum periscope produces the sharp peak at 68 Hz.
The forest of peaks between 250 Hz and 700 Hz come from opto-mechanical structures
along the beam paths. These periscopes and optics lie along the beam path of the green
transmitted light and the frequency-doubled sample beam from the main laser. Since the
beat note is locked with a phase locking loop, this sensing noise is imposed on the corner
VCO up to the loop bandwidth at 30 kHz. Since the common mode signal is fed back to the
input mode cleaner length and to the VCO of the main laser above ∼ 20 Hz, this acoustic
noise is further imposed onto the laser frequency noise of the main infrared laser. The green
trace in Fig. 4 is the common mode sensing noise as measured by the control signal at the
corner VCO and propagated to the main laser frequency noise, clearly demonstrating that
the acoustic noise dominates this frequency region.

At frequencies well below 1 Hz the noise is due to angular fluctuations of the arm
cavity mirrors. Angular misalignments of the cavity cause higher order modes to couple
into the cavity[33]. This in turn introduces an offset to the reflection locking signal[34].
This offset is much larger for the green reflection locking signal, because the low finesse
leads to insufficient suppression of higher order modes. The transverse mode spacing for
532 nm is 5.5 kHz, which is only 2 times larger than the cavity bandwidth. Our design
called for a ∼ 10 times higher green cavity finesse, but unfortunately the dichroic coating
for the current end test masses is far out of specification for green (see Table 2). Meanwhile,
between 0.4 Hz and 1 Hz, the noise is due to longitudinal displacement motion of the test
masses. The displacement noise is ∼ 1 × 10−8 m/

√
Hz or 700 Hz/

√
Hz at 1 Hz, and falls

off steeply due to the seismic isolation system. This noise is suppressed by the common
mode stabilization of the interferometer.

Slow path length variations between the X-arm transmission and the frequency-doubled
sample beam from the main laser create up-converted phase noise from 1 Hz to 10 Hz.
While the arm cavity is locked, the green transmission path to the photodetector can move
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freely. As this path varies by multiple wavelengths, the fringe pattern produced by the
two beams changes. This fringe wrapping causes an effective motion at higher harmonics
and thus up-converted noise with a spectrum that falls off as 1/f . We measured this effect
by looking at the difference between the main laser sample beam and the infrared pick-off
beam used for locking the power recycling cavity. Since the latter beam travels the same
path as the green transmitted beam, this allowed us to measure the path length variations
of the input path relative to the green path. The resulting noise spectrum is depicted as
the solid black trace in the figure. Notably, since this noise depends on the motion of freely
moving suspended mirrors, it varies with the variation of the seismic noise.

Other sensing noise, such as electronics noise and shot noise, are not significant. The
noise for the differential mode of the arm length stabilization system looks almost identical.
The only real difference is the absence of the fringe wrapping effect, since the two green
transmitted beams used for the heterodyne measurement travel nearly the same path.

4 Full Interferometer Locking

The full locking sequence is as follows: First each arm cavity is locked on the green laser
using the arm length stabilization system. Secondly, the green corner station signals for
common and differential modes are engaged. The differential mode is nominally set to
0 Hz, whereas the common mode is offset by about 500 Hz. With both arm cavities set off-
resonance the dual-recycled Michelson interferometer is locked using the 3f technique[29].

Advanced LIGO uses two modulation frequencies to control the dual-recycled Michel-
son: One is used to sense the length of the power recycling cavity, and the other is used
to sense the length of the signal recycling cavity and the Michelson length. Since all mod-
ulation frequencies have to pass through the input mode cleaner at a multiple of its free
spectral range, the first modulation is set to the free spectral range frequency of 9.1 MHz.
The second modulation frequency should be far enough away as not to interfere with the 3f
signals of the first modulation. The fifth harmonic at 45.5 MHz is used. Both modulation
frequencies are resonant in the power recycling cavity, but not in the arm cavities. While
the carrier operates on a dark fringe at the anti-symmetric port, the RF sidebands do not.
They transmit to the anti-symmetric port due to the macroscopic Schnupp asymmetry and
their frequency offset from the carrier. The higher harmonics will have a higher transmis-
sion into the signal recycling cavity and can be used to sense its length. The traditional
1f signals, which are derived from a beat note between the carrier and the sidebands, are
used in the final configuration to control all degrees of freedom except the differential arm
length. In its final configuration the differential arm length uses a DC offset scheme [35].
The 3f technique is based on the observation that a phase modulator produces harmonics
at all multiples of the modulation frequency. At small modulation depth the strength of
the higher harmonics declines rapidly. Neither the first-order, second-order, nor any other
higher-order modulation sidebands will be resonant in the arm cavities. Hence, their beat
note at three times the modulation frequency can be used to deduce the lengths of the
dual recycled Michelson interferometer, with little sensitivity to the resonance condition of
the arm cavities. In reality, the arm cavity resonance condition does have a small effect on
the 3f signals, but the effect is not large enough to cause significant problems during lock
acquisition. Since the 3f signals are much weaker than the standard 1f signals controls have
to be switched over to the 1f signal during the final steps of the lock acquisition sequence.
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Figure 5: Lock sequence of the full interferometer. The top panel shows the intracavity
power for each arm cavity as well as for the power recycling cavity. The input power is
currently 0.75 W. The center panel shows the power in reflection, whereas the bottom panel
shows the 1f signal in reflection of the interferometer. During period I each arm cavity is
locked using the green laser in the end station and then switched over to the corner station
signals for common and differential mode. During phase II the arm cavities are scanned
to find the resonance for the infrared light. At point III both the arm cavities are moved
off resonance by 500 Hz, and the recycling cavities are aligned from the initial misaligned
state. At point IV the dual recycled Michelson interferometer is locked using 1f signals and
immediately switched over to the 3f signals. A build-up of 2 W can be seen in the power
recycling cavity. At point V the power in the arm cavities is approximately 4 W and the
common and differential controls are switched from the green transmitted signals in the
corner to the arm cavity transmitted infrared power and the anti-symmetric port Pound-
Drever-Hall signal, respectively. The arm cavities are then brought closer to resonance and
the power build-up increases. Once we reach VI, we have a significant reflection locking
signal, which is now used to control the common mode. Finally, in phase VII, the dual
recycled Michelson interferometer is switched to the 1f signals. The power in each arm
cavity reaches approximately 3 kW, whereas the recycling gain reaches a value around 30.
The reflected power decreases to about 3% indicating that most of the laser power is lost
in the detector. During future commissioning work, the power into the interferometer will
be increased significantly, aiming for the final intra-cavity power to be roughly 200 times
higher.
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The complete locking sequence is shown in Fig. 5. With the dual-recycled Michelson
interferometer locked on 3f, and the arm cavities controlled by the arm length stabilization,
the frequency offset in the common arm length must ultimately be brought to 0 Hz in order
to bring the carrier beam into resonance in the arm cavity. To do so, the VCO used as
a reference for the beat note between the green transmission and infrared reference beam
is adjusted. Since the VCO is locked to the beat note and the VCO control signal is fed
back to the input mode cleaner length and main laser frequency, adjusting the tune offset
of the VCO inherently adjusts the main laser’s frequency. In principle, all that is required
is to reduce the common mode offset to 0 Hz and engage the Pound-Drever-Hall 1f signals
for common and differential mode. However, the noise in the arm length stabilization
system is larger than the linewidth of the double cavity resonance. This prohibits full
power build-up, and does not yield a good common mode locking signals for the infrared
light.

Two methods to overcome this issue have been studied: self-locking and the use of
the transmitted infrared power. Self-locking relies on the occasional build-up that occurs
when the double cavity fringe is close to resonance. When this build-up occurs, the main
reflection locking signal self-engages, as described in Ref.[36]. The first lock, however, was
achieved using the infrared transmitted signals instead. These signals do not suffer from
most of the noise sources dominating the arm length stabilization system. In particular,
the noise generated by the end station laser, the acoustic noise on the green transmitted
light, the up-conversion noise and the noise due to angular drifts are not present. Angular
fluctuations couple strongly in our case because the green arm cavity finesse is quite low and
provides insufficient suppression of higher order optical modes. We first reduce the common
mode offset to an intermediate point, where there is partial power build-up in the arm
cavities. Then, the differential mode controls are switched from the arm length stabilization
system to the Pound-Drever-Hall reflection locking signal at the anti-symmetric port, while
the common mode controls are switched from the arm length stabilization system to a signal
derived from the transmitted arm cavity power for the infrared light[37–39]. When a cavity
is off-resonance, the transmitted power can be used as a locking signal by subtracting a fixed
offset. Increasing the size of the subtracted offset will bring the cavity closer to resonance.
However, using the transmitted power will not work when exactly on resonance. Once the
power builds up to about the half of the maximum, the Pound-Drever-Hall reflection locking
signal in reflection of the interferometer becomes available. At this point, the common
mode controls are switched over to the final configuration, and full lock is achieved. The
detector is now at its operational point and is in a state where gravitational-wave detection
is possible.

5 Conclusions

We successfully demonstrated lock acquisition in Advanced LIGO. This method utilizes
the third harmonics of the RF sidebands to sense and control the dual-recycled Michelson.
Meanwhile, the arm length stabilization system simultaneously controls the arm cavities
without disturbing the 3f signals using a different wavelength. We have shown that we have
sufficient signal-to-noise ratio during the entire process and that all major noise sources
are understood. This unequivocally shows the usefulness of multi-color interferometry to
control complex non-linear optical systems.
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Advanced LIGO is the first of the new generation of gravitational wave detectors to
achieve full lock. This important milestone demonstrates that all important subsystems
are installed and functional. We have established a reliable, robust and repeatable locking
sequence which will allow us to achieve a high duty cycle during observation. The new
locking scheme brings the instrument into a linear operating regime and enables us to
investigate the interferometer’s sensitivity to gravitational waves.
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