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Abstract. The ever increasing expansion of mobile applications into
nearly every aspect of modern life, from banking to healthcare systems,
is making their security more important than ever. Modern smartphone
operating systems (OS) rely substantially on the permission-based secu-
rity model to enforce restrictions on the operations that each application
can perform. In this paper, we perform an analysis of the permission
protocol implemented in Android, a popular OS for smartphones. We
propose a formal model of the Android permission protocol in Alloy, and
describe a fully automatic analysis that identifies potential flaws in the
protocol. A study of real-world Android applications corroborates our
finding that the flaws in the Android permission protocol can have se-
vere security implications, in some cases allowing the attacker to bypass
the permission checks entirely.

1 Introduction

Modern mobile devices provide a framework for multiple applications to interact
with each other by exporting and invoking APIs. From a security and privacy
perspective, some of the resources shared through the APIs may be considered
more critical than others; for example, an ability to send a text message is
more dangerous than an ability to change the ringtone on the phone. Therefore,
a mechanism that can be used by the developer to control access to critical
resources is essential.

Popular operating systems such as Android, iOS, and Windows Phone imple-
ment a permission-based model for controlling the types of resources that each
application is allowed to access. In this model, a developer protects a critical
resource inside an application by assigning an explicit permission, which must
be obtained by any application that wishes to access the resource. Permissions
are typically granted to an application at the discretion of the end user, who
makes a decision based on the perceived trustworthiness of the application.

In recent years, researchers have identified a number of flaws in the permis-
sion mechanisms that lead to serious security and privacy breaches [1,2,3,4,5,6].
The typical manner in which these problems are discovered involves a careful



scrutiny by security experts, sometimes long after these devices are released.
Many issues are overarching design flaws that require system-wide reasoning—
not easily attainable through conventional analysis methods such as testing and
static analysis, which are more suited for detecting bugs in individual parts of
the system.

Just as techniques in formal methods have proven practical in assessing the
security of network protocols [7], we believe that building a formal model of a
permission protocol and performing a rigorous analysis can identify potential
vulnerabilities and candidate fixes. This paper, unlike prior studies of Android
security (including ours [8]) that leverage code analyses to check a particular
application for vulnerabilities, instead focuses on modeling and analyzing the
Android permission protocol for design flaws. Our model is written in Alloy [9],
a language based on a first-order relational logic, with an analysis engine that
performs bounded verification of models. As far as we are aware, our work is the
first that describes an automated analysis of the Android permission protocol.

Through an analysis of our model, we identified a number of vulnerabilities
in the protocol that allow a malicious application to entirely bypass permission
checks. In particular, we performed a study of a vulnerability that has not been
studied in the security literature before—called the custom permission vulnera-
bility. To confirm that an abstract attack scenario identified during the analysis
is indeed realistic, we demonstrated the attack on concrete Android applications
across different versions of Android. Through our study, we show that the cus-
tom permission vulnerability is widespread, and that many popular applications
are, in fact, susceptible to this type of attacks.

The rest of the paper is structured in the following way. We begin by giving
a brief background on Android and motivating why securing its permission pro-
tocol can be a challenging task (Section 2). We then describe a formal model of
the permission protocol in Alloy (Section 3) and an automated security analysis
of the model (Section 4). We present an experiment to demonstrate the feasi-
bility and prevalence of the custom permission vulnerability in existing Android
applications (Section 5). Finally, we discuss the related work (Section 6) and
conclude with future work (Section 7).

2 Background and Motivation

An application is the primary unit of functionality in Android: A typical device
is constantly running numerous applications to support the user’s needs, such as
a messaging service, a mail client, a navigation application, just to name a few.

The success of Android is in part due to its flexible framework for cross-
application communication and sharing. Each application is organized into a set
of components, which export APIs to other applications, thus enabling reuse
of functionality across multiple project and software vendors. For example, the
developer of a navigation application may encapsulate its map search function-
ality into an individual component, and provide it as a service to the rest of the



device. There are four types of components: service, activity, broadcast receiver,
and content provider, each serving a different purpose.

A potential downside to the open-ended nature of the Android framework
is an increased risk for security and privacy breaches. Some components handle
information that is considered particularly critical, and so freely sharing these
components without discretion may lead to undesirable consequences for the
user. For example, the navigation application may not want to release map
search histories as part of a component API, since a rogue application could use
these data to extrapolate the user’s travel pattern for a malicious purpose.

Android uses a permission-based mechanism to control how applications in-
teract with each other. Before an application can access a component, it must be
granted an explicit permission to do so by the user. Each permission is associ-
ated with a protection level, which indicates the trustworthiness of an application
that may be granted this permission. There are three types of protection levels:
(1) normal, meaning the permission is granted to every application, (2) danger-
ous, granted only at the discretion of the device user, and (3) signature, granted
only to applications from the same developer3. A runtime engine monitors every
invocation of an API operation and ensures that the calling application has the
permission to perform that operation.

An Android device contains a number of built-in permissions for basic fea-
tures, such as sending a text message, turning on GPS, and accessing the In-
ternet. In addition, Android allows a third-party application to define custom
permissions and selectively control access to its components. Typically, permis-
sions are granted to an application at the time of its installation; however, a
special type of permissions called URI permissions may be temporarily granted
and revoked during the lifetime of an application.

The goal of the Android permission protocol is to prevent any unauthorized
access; that is, each application should be able to access only those components
that it is granted permissions for, and no more. Ensuring that the system achieves
this goal, however, is a challenging task, especially since it can be difficult to
predict all the ways in which a malicious application may attempt to misuse the
system. An attack may involve performing a complex but obscure sequence of
operations that would unlikely be encountered during normal usage scenarios.
Identifying such attacks requires system-wide reasoning, and cannot be easily
achieved by conventional analysis methods such as testing and static analysis,
which are more suited at detecting defects in individual parts of the system.

Motivated by this challenge, we explored an approach to analyzing the se-
curity of the Android permission protocol by constructing a formal model and
performing an automated analysis of the model. Two key elements that distin-
guish our approach from previous studies of Android security are as follows:

– System-wide dynamic reasoning: By modeling the behavior of Android
in terms of architectural-level operations (such as installing or removing an
application) executed over a sequence of discrete time steps, we are able to

3 A fourth protection level, signature/system, also exists but is rarely used, and so,
for the purpose of our discussion, will be grouped into signature.



perform system-wide reasoning that would be difficult to achieve using static
analysis or testing. For example, our analysis can explore all possible orders
in which applications are installed and check whether a particular ordering
could be exploited by an attacker (which, in fact, turned out to be the key
to an actual attack that involved custom permissions).

– Concretization: The result of the analysis, performed on an abstract model,
is used to guide an implementation-level analysis that checks a concrete
Android application for the presence of a vulnerability.

This approach demonstrates a potential synergy between model-based and code
analysis techniques for an end-to-end security analysis: A system-level reasoning
is first performed on a high-level model of the system, generating information
about potential vulnerabilities, each of which can be confirmed for presence in the
implementation using techniques such as static analysis, testing, or inspection.

3 Android Permission Model

In this section, we describe a formal model of the Android permission protocol
in Alloy [9], a specification language based on a first-order relational logic. Alloy
is suitable for this modeling task because (1) its flexible core allows one to
model and integrate different aspects of a system, and (2) its backend tool,
the Alloy Analyzer, provides an automated analysis for checking assertions and
generating counterexamples. However, our approach does not prescribe the use
of a particular formalism, and other languages may well be suitable.

Our model is based on the official documentation on Android permissions
from Google [10]. Android is a large and complex operating system, and modeling
it in its entirety would be infeasible. Thus, we focused on the parts of Android
that are relevant to the permission mechanism—how permissions are granted
and maintained, and how they constrain the behavior of an application. As a
result, other aspects of Android (such as intents) are omitted from this model.

One of the challenges that we encountered during our modeling task was
due to the fact that some of the key aspects of the Android permission proto-
col are under-specified in the official documentation. For example, the document
fails to describe what happens to the permissions that have already been granted
when the application that defines those permissions is uninstalled. To avoid over-
specification (and possibly ruling out counterexamples), we deliberately left the
corresponding parts of the model under-specified. This was possible because Al-
loy supports partial modeling: It allows parts of the system to be left unspecified,
allowing the Alloy Analyzer to explore all alternative behaviors.

Figure 1 shows an abridged version of the model in Alloy4, divided into three
parts: (1) the architecture of an Android device (lines 4-19), (2) the Android per-

4 The Alloy keyword sig introduces a signature, which defines a set of elements in the
universe. A signature may contain one or more fields, each introducing a relation
that maps the elements of the signature to the field expression; for example, field
protectionLevel in Permission is a binary relation that maps each Permission object to
its protection level (line 25). The keyword extends creates a subtyping relationship



mission scheme (lines 21-26), and (3) system operations that modify or depend
on the permissions (lines 28-66).

3.1 Permissions

An Android device consists of a number of interacting applications, each con-
taining zero or more components that may export services to other applications.
The set of applications running on a device may change over time as new ap-
plications are installed and existing ones are removed. We model the dynamic
aspect of the system by using a standard Alloy idiom in which an execution is
represented as a sequence of time steps, and each mutable object is associated
with a different state in each time step [9]. To do this, we introduce a set of
totally ordered elements as signature Time, and add it as the last column of
relations that are considered mutable5; for example, the field apps uses Time to
keep track of the installed applications at each time step (line 6).

An application may use permissions to control access to its components by
other applications. Each permission object, shown on line 25, is associated with
a name and a protection level, which can take one of the three values: Nor-
mal, Dangerous, and Signature (in order of increasing criticality). Permissions
can be assigned to an application at two different levels. Each component may
be guarded by at most one permission (represented by the field guard on line
17), which must be acquired by an application before being able to access the
component. In addition, an application may be assigned its own guard (line 13),
which is imposed on every one of its components; when both the application and
one of its components have a guard, the component-specific permission takes the
priority.

Note that the type of the field guard in both Application and Component is
PermName. In other words, the guard does not contain information about the
protection level that is intended for the component being accessed. As discussed
later in the section, this turns out to be a design flaw in Android that can be
exploited by a malicious application for unauthorized access.

In addition to a set of built-in permissions that are available by default on
Android, an application developer may create one or more custom permissions
to protect an application-specific component (lines 7-8). For example, each An-
droid device contains a built-in permission called android.permission.INTERNET,
controlling which applications are allowed to use the built-in component that
provides Internet access. A third-party navigation application may provide its
map search capability as a service to other applications, and define a custom
permission called com.myapp.perm.SEARCH MAP to control its access.

A content provider is a type of storage component containing one or more
database tables that are identified by URIs (line 19)6. By default, obtaining a

between two signatures; an abstract signature has no elements except those belonging
to its extensions, and one sig introduces a signature that contains only one element.

5 The ordering library in Alloy imposes a total order on an input signature (line 1).
6 Other types of components—service, activity, and broadcast receiver—can be treated
equally as far as permissions are concerned, and are omitted from Figure 1.



1 open util/ordering[Time]
2 sig Time {}
3

4 /* Android architecture */
5 one sig Device {
6 apps: Application -> Time , // currently installed applications
7 builtinPerms: set Permission , // permissions built into Android
8 customPerms: Permission -> Time } // currently active custom permissions
9 sig Application {

10 declaredPerms: set Permission , // custom permission declarations
11 usesPerms: set PermName , // permissions it intends to use
12 grantedPerms: Permission -> Time , // permissions currently granted
13 guard: lone PermName ,
14 components: set Component }
15 sig Component {
16 app: Application ,
17 guard: lone PermName }
18 sig URI {} // points to a table inside a content provider
19 sig ContentProvider in Component { paths: set URI }
20

21 /* Permission objects */
22 sig PermName {} -- permission name
23 abstract sig ProtectionLevel {}
24 one sig Normal , Dangerous , Signature extends ProtectionLevel {}
25 sig Permission { name: PermName , protectionLevel: ProtectionLevel }
26 sig URIPermission in Permission { uri: URI }
27

28 /* Invocation operation */
29 pred invoke[t, t’: Time , caller , callee: Component] {
30 caller.app + callee.app in Device.apps.t
31 canCall[caller , callee , t]
32 noChanges[t, t’] }
33 pred canCall[caller , callee: Component , t: Time] {
34 guardedBy[callee] in (caller.app.grantedPerms.t).name }
35 fun guardedBy[c: Component]: PermName {
36 {p: PermName | (p = c.guard) or (no c.guard and p = c.app.guard) } }
37 pred noChanges[t, t’: Time] {
38 Device.apps.t’ = Device.apps.t
39 Device.customPerms.t’ = Device.customPerms.t
40 all a : Application | a.grantedPerms.t’ = a.grantedPerms.t }
41

42 /* Install operation */
43 pred install[t, t’: Time , app: Application] {
44 app not in Device.apps.t
45 Device.customPerms.t’ = Device.customPerms.t + newCustomPerms[t,app]
46 grantPermissions[t’, app]
47 all a : Application - app | a.grantedPerms.t’ = a.grantedPerms.t
48 Device.apps.t’ = Device.apps.t + app }
49 fun newCustomPerms[t: Time , app: Application]: set Permission {
50 {p: app.declaredPerms | p.name not in (Device.customPerms.t).name} }
51 pred grantPermissions[t: Time , app: Application] {
52 app.grantedPerms.t.name = app.usesPerms
53 app.grantedPerms.t in Device.customPerms.t + Device.builtinPerms }
54

55 /* Uninstall operation */
56 pred uninstall[t, t’: Time , app: Application] {
57 app in Device.apps.t
58 Device.apps.t’ = Device.apps.t - app
59 Device.customPerms.t’ = Device.customPerms.t - app.declaredPerms
60 all a : Application - app | a.grantedPerms.t’ = a.grantedPerms.t }
61

62 /* Event trace definition */
63 fact traces {
64 all t: Time - last | let t’ = t.next |
65 some app: Application , c1 ,c2: Component |
66 install[t, t’, app] or uninstall[t, t’, app] or invoke[t, c1, c2] }

Fig. 1: A snippet of the Alloy model of the Android permission protocol.



permission on a content provider grants access to all of its tables. To allow more
fine-grained control, Android provides a special type of permissions called URI
permissions (line 26), which can be used to grant access to a particular URI
inside a content provider.

Finally, an application specifies its intent to access a component by including
the name of the associated permission as one of its uses-permissions (line 11).
When an application is installed, the device determines the set of permissions
that should be granted to the application using usesPerms.

3.2 System Behavior

Three types of operations relevant to the Android permission scheme are de-
scribed in the Alloy model: invoking a component, which succeeds only when
the calling application has the appropriate permission, and installing and unin-
stalling an application, which may modify the custom permissions on the device.

Invoke Operation The operation of a component invoking another component
is expressed as predicate invoke (lines 29-32), which evaluates to true if and only
if caller successfully invokes callee between time steps t and t’. The predicate is,
in turn, defined as a conjunction of three constraints: both caller and callee must
belong to some application on the device (line 30), caller must have the permis-
sion to access callee (31), and no changes are made to the active permissions
during the invocation (32).

The predicate canCall defines what it means for caller to be able to invoke
callee at time step t (lines 33-34); that is, caller must possess the permission that
guards callee7. Note that callee may be guarded by no permission at all (i.e.,
guardedBy may return an empty set), in which case canCall is trivially satisfied;
in other words, a component without a guard can be accessed by any other
component.

Recall that a component’s guard is simply the name of a permission, and so
its protection level, by design, plays no role in determining whether caller should
be allowed to invoke callee. While not explicitly stated in the Android documen-
tation, this design decision relies on one critical assumption: If an application
possesses a permission to access a component with a certain protection level,
then it must have been authorized by the user to do so during its installation.
However, as our analysis will reveal, this assumption is false: It is possible for
a malicious application to obtain a permission to a component with a high pro-
tection level (e.g., dangerous), even though the authorization was intended for
a lower protection level (e.g., normal). Section 4 describes this attack in detail.

Install Operation The first constraint in install describes the precondition for
the operation: app must not already exist on the device at time t (line 44). The
four constraints that follow describe the effect of the operation on the device:

7 Keywords + and in are union and subset operators, respectively.



– If app declares its own custom permissions, they are added to the device,
except those that already exist on the device at time t; function newCustom-
Perms describes exactly those new permissions to be added (lines 49-50).

– Every permission that app requests in its usesPerms is granted to the new
application by the device (lines 51-53).

– The permissions granted to other applications on the device are unaffected.
– Finally, app is added to the set of existing applications on the device.

Note that the process of granting a permission through the user’s approval
is implicit in this model; grantPermissions simply sets the granted permissions to
those in the application’s usesPerms (line 52), without describing how a decision
about each permission is made. This modeling choice reflects the rather coarse-
grained nature of Android permissions: Unless an application is granted every
one of its uses-permissions, it will not be installed on the device (i.e., the user
has no ability to selectively grant permissions8.). In other words, the details of
how permissions are granted are not relevant to our analysis, because the effect
of installation is always the same: Each installed application will possess all of
the permissions that it requests.

Uninstall Operation This operation removes the specified application app
from the device, as well as all of its associated custom permissions. The permis-
sions granted to every other application remains the same during the operation.

Trace Definition The fact9 traces defines the behavior of the system as a set
of traces that it may produce (lines 62-66). Conceptually, a trace is a sequence
of time steps, where between each pair of adjacent steps, t and t’, one or more of
the system operations takes place10. Given this definition, a satisfying instance
of the model found by the Alloy Analyzer will correspond to exactly one of the
possible traces of the system.

Other Parts Due to limited space, Figure 1 omits details about other aspects
of the permission protocol that are present in the full Alloy model, including:
different types of components (beside content providers), dynamic allocation and
checking of URI permissions, and application signatures. The complete model is
available online at our project site11.

4 Analysis

In this section, we describe an automated analysis to check whether the Android
permission protocol, as specified in our model, satisfies its goal of preventing
unauthorized access.
8 While outside the scope of our analysis, previous studies have pointed this out as a
major source of usability and privacy issues in Android [1].

9 An Alloy fact is a constraint that holds for every satisfying instance of the model.
10 This trace definition precludes stuttering, as we did not deem it necessary for this

model; however, an operation that represents noop could be added to allow it.
11

http://sdg.csail.mit.edu/projects/android

http://sdg.csail.mit.edu/projects/android


1 assert NoUnauthorizedAccess {
2 all t, t’ : Time , callee , caller : Component |
3 invoke[t, t’, caller , callee] implies authorized[caller ,callee ,t] }
4

5 // True iff caller is authorized to invoke callee
6 pred authorized[caller ,callee: Component , t: Time] {
7 let pname = guardedBy[callee],
8 grantedPerm = caller.app.grantedPerms.t & name.pname ,
9 requiredPerm =

10 (callee.app.declaredPerms + Device.builtinPerms) & name.pname |
11 some pname implies
12 equalOrHigher[grantedPerm.protectionLevel ,
13 requiredPerm.protectionLevel] }

Fig. 2: Assertions on the Android permission protocol.

An Alloy assertion is used to state a property that the model is expected to
satisfy. When prompted to check an assertion, the Alloy Analyzer explores all
possible behaviors of the system and finds a counterexample, if any, that cor-
responds to a violation of the assertion. The analysis is exhaustive but bounded
up to a user-specified scope on the size of the domains: If there is a counterex-
ample within the scope, the analyzer is guaranteed to find it, but absence of a
counterexample does not imply the validity of the assertion. In practice, many
system flaws can be demonstrated with a small number of objects [11], and if
desired, the user can iteratively re-analyze the model with larger scopes to gain
further confidence.

An important security property of Android is that every component invoca-
tion is authorized ; that is, when a component invokes another component, the
caller must have been granted the permission that was declared by the developer
to protect the callee.

This property is formally specified as Alloy assertion NoUnauthorizedAccess
in Figure 2. Predicate authorized describes what it means for component caller to
be authorized to invoke callee. Its definition relies on two different types of per-
mission: grantedPerm represents the permission that is granted to caller during its
installation; requiredPerm, on the other hand, represents the custom permission
that was declared specifically to guard callee. Then, caller is considered autho-
rized to invoke callee only if the protection level of grantedPerm is equal to or
higher than that of requiredPerm.

4.1 Custom Permission Vulnerability

Analysis When prompted to check the assertion, the Alloy Analyzer returns a
counterexample trace that demonstrates how a design flaw in Android may lead
to a violation of the property. The analysis was performed with a scope of 5 on
the size of each domain, and took approximately 4 seconds to complete12.

12 The analysis was performed on a Mac OS X machine with 1.8 GHz Intel Dual Cores
and 4GB of RAM.



(a)

(b)
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Fig. 3: A counterexample showing an
unauthorized access of component vic-
tim by malicious Application1 through a
custom permission misuse.

A visualization of the counterex-
ample is shown in Figure 3. In this
trace, Application0 declares a custom
permission (Permission1) to guard its
component (labeled victim) with the
protection level of Signature, mean-
ing that only those applications that
share the same signature should be
able to access it. A separate, ma-
licious application, Application1, by-
passes the signature requirement by
exploiting a design oversight in An-
droid: Namely, it allows multiple ap-
plications to define custom permis-
sions with the same name, but with-
out a clear specification of which one
should take precedence when they
have different protection levels.

To carry out this type of at-
tack, Application1 declares its own
custom permission (Permission0) with
the same name as Permission1 but
with the lowest protection level, Nor-
mal. The attack comprises of the fol-
lowing three operations:

– Step (a): Application1 is installed
before Application0, activating its
custom permission (Permission0)
with the Normal protection level
on the device.

– Step (b): Application0 is installed,
but a custom permission with the
same name is already active, and
so Permission1 is ignored. As a
result, Application1 continues to
hold the same permission that it
was granted in Step (a).

– Step (c): The malicious compo-
nent inside Application1 is able
to access victim, despite not hav-
ing the same signature as Applica-
tion0.

Evaluating a Fix One potential fix
to this flaw is to disallow multiple applications that define a custom permission



with the same name from simultaneously existing on the device. In our Alloy
model, this fix can be expressed by adding the following constraint to the install
operation from Figure 1:

1 // can ’t install if a declared perm is named the same as existing one
2 no p : app.declaredPerms | p.name in (Device.customPerms.t).name

Re-analyzing the assertion NoUnauthorizedAccess, however, reveals another coun-
terexample. This scenario begins in the same way as the one in Figure 3, where
a malicious application (App1) defines its own custom permission with the same
name as another permission, but with a lower protection level. Furthermore, an-
other malicious application (App2) that uses this permission is installed. In the
next step, App1 is uninstalled, and its associated custom permission is removed
from the device. However, Android fails to revoke the same permission from ap-
plications that use it (namely, App2), resulting in a dangling permission. When
the victim application (App0) is installed, App2 is still able to access the victim
component, but with the lower protection level that was defined by App1.

This demonstrates that simply disallowing an installation of applications
with duplicate permissions is not sufficient. The uninstall operation must also be
amended to ensure that granted permissions are revoked when an application
that declares those permissions is uninstalled. This can be done by modifying
the constraint on line 60 in Figure 1 as follows:

1 all a: Application - app |
2 a.grantedPerms.t’ = a.grantedPerms.t - app.declaredPerms

4.2 Other Vulnerabilities Found

Our analysis revealed two other types of vulnerabilities in the permission proto-
col. Due to limited space, we only briefly discuss them here, and refer the reader
to our project site for more detail.

URI Permission Flaw A malicious application can obtain a URI permission
to a part of a content provider that it is not authorized to access. This vulner-
ability is due to another flaw in the Android permission protocol: granted URI
permissions are not revoked when the associated content provider is uninstalled,
leaving dangling permissions that can be exploited for a similar type of attack
as in Section 4.1.

To our knowledge, this vulnerability with URI permissions is a previously un-
known one. However, further study revealed that the vulnerability exists up to
Android version 2.3.7; in newer devices, the URI permissions are revoked during
uninstallation, disallowing the attack. Our analysis detected this as a counterex-
ample because the model, reflecting the current Android documentation, was
deliberately under-specified with respect to the effect of uninstallation on URI
permissions.



Improper Delegation A malicious application may be able to indirectly in-
voke a component, without having a permission to do so, by interacting with a
third component that possess the permission. This vulnerability has been iden-
tified as the permission re-delegation attack in previous work by Felt and her
colleagues [12]; our analysis was able to automatically rediscover it.

5 Experiments

A rigorous analysis of a formal model, such as the one described in Section 4,
can be used to identify potential flaws at the design level, but by itself does
not form a complete security analysis of the system. Instead, the formal analysis
must be complemented with a systematic analysis of the concrete system to
confirm whether those flaws can lead to realistic vulnerabilities, and subsequently
attacks.

In this section, we present an experimental study to answer the following two
research questions:

– RQ1: Can the flaws identified in our formal analysis of Android permission
protocol cause an actual attack with serious security consequences?

– RQ2: How susceptible are real-world Android applications to security at-
tacks that are due to these flaws in Android permission protocol?

In particular, we focus on the custom permission vulnerability in Section 4.1, as
it has not been previously studied in the literature13. To address RQ1, we devel-
oped demonstrative applications that represent postulated malicious behaviors
in the generated counterexample in Figure 3, and observe whether the permission
requirement could be bypassed as in the scenario. For RQ2, we performed a study
on hundreds of real-world Android applications and quantitatively measured the
prevalence of the security vulnerability due to the flaws found in Android per-
mission protocol.

5.1 Demonstration of the Attack

To test the feasibility of the Alloy counterexample in Figure 3, we developed
a skeletal address book application that corresponds to the victim application
in the trace (cf. Application0 in Fig. 3). Figure 4(a) partially shows an Android
manifest file14 for this application. It defines a custom permission, named AD-
BOOK READ, with the signature protection level (lines 2–3). This permission is
then specified as a guard (in line 7) to protect access to the AddrBookProvider
component (lines 4–9), which stores the content of the address book.

13 The URI permission vulnerability is omitted since it exists only on an outdated
version of Android, and the improper delegation flow has already been studied in [12].

14 A manifest file contains, among other things, declarations of uses and custom per-
missions for an application.



1 //(a) Address book -------------------------------
2 <permission android:name="com.example.ADBOOK_READ"
3 android:protectionLevel="signature" />
4 <application android:label="AddressBook">
5 <provider android:name=".AddressBookProvider"
6 android:authorities=".AddressBookProvider"
7 android:readPermission="com.example.ADBOOK_READ"
8 <!--android:grantUriPermissions="true"-->
9 >

10 </provider>
11 </application>
12 //(b) Custom permission vulnerability--------------
13 <permission android:name="com.example.ADBOOK_READ"
14 android:protectionLevel="normal" />
15 <uses-permission android:name=
16 "com.example.ADBOOK_READ" />
17 <application android:label="MalApp">
18 <activity
19 android:name=".MalActivity"
20 android:label="MalApp" >
21 <intent-filter>
22 <action android:name="MAIN" />
23 <category android:name="LAUNCHER" />
24 </intent-filter>
25 </activity>
26 </application>

Fig. 4: Snippets of the demonstrative applica-
tions that represent the counterexample sce-
narios shown in Fig. 3.

As declared in its manifest,
the AddrBook application does
not grant access to its data to
any other application. It is thus
expected that only applications
that explicitly request the AD-
BOOK READ permission and
are signed with the same signa-
ture will be allowed to read the
address book contents.

Next, we developed an ap-
plication that represents postu-
lated malicious behaviors in the
Alloy counterexample. Figure
4(b) shows part of the manifest
file implementation for MalApp
(corresponding to Application1
in Fig. 3). Similar to the ad-
dress book application, it de-
clares the ADBOOK READ per-
mission, albeit with a lower
protection level, normal. It fur-
ther includes a uses-permission element to declare that it requires the self-
declared custom permission (lines 15–16). The MalActivity component, which
represents the malicious component in the counterexample, then simply sends a
query to the AddrBookProvider component.

The two applications were signed with different keys to reflect a real sce-
nario, where they would be from different developers. We then installed and
executed them, according to the counterexample, on two versions of the An-
droid SDK—2.3.7 and 4.4.4—under the Genymotion15 emulator. We repeated
the experiments with different combinations of protection levels for AddressBook
andMalApp. In all cases, we observed thatMalApp was successfully able to access
the content of the address book, confirming the feasibility of the attack.

5.2 Prevalence of the Vulnerability

To estimate the prevalence of this vulnerability among real Android applications,
we examined 1,500 applications collected from two repositories: (1) popular free
applications from Google’s Play Store16 and (2) open-source applications from
the F-Droid repository17.

An application is at risk of containing a custom permission vulnerability if (1)
it defines a custom permission used to protect a component API and (2) it does
not implement an additional, dynamic check to ensure that the calling applica-
tion is authorized to access the API. We constructed a custom static analysis

15 www.genymotion.com
16 http://play.google.com/store/apps
17 https://f-droid.org/
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Fig. 5: (a) Frequency of component types protected by custom permissions; (b)
Categorization of custom permissions based on their protection levels.

tool to check these two conditions. For each application, our tool decompiles the
related Android package file to extract its manifest file. It then pairs the mani-
fest file with the corresponding application’s bytecode to perform the following
checks:

– Permission: The tool checks the manifest file for any declaration of cus-
tom permissions, and whether those permissions are actually used to guard
components.

– Dynamic enforcement: There is a programmatic but limited method for
an application to protect itself against the custom permission attack. If it
knows a whitelist of trusted calling applications, then it can implement a
dynamic check to reject calls from unknown applications (however, it may
not be possible to construct such a list for an open-ended application that is
designed to interact with many applications). The tool analyzes the bytecode
for the presence of this optional check by searching for the use of built-in
Android functions such as getCallingUid, which returns the caller’s informa-
tion.

Results The total numbers of custom permissions defined within the apps for
our Google Play and F-Droid test sets are 536 and 171, respectively. 201 (47.26%)
of the apps in our Google Play test set define at least one custom permission,
whereas this number is just 67 (6.42%) for the F-Droid repository. The average
number of custom permissions per app for those that define at least one custom
permission is 2.64. Out of the apps that define custom permissions, 116 (57.71%)
apps in the case of Google Play and 45 (67.16%) in the case of F-Droid use those
permissions to protect their components. Just under 5% of all the apps in our
test set perform the dynamic check.

According to Figure 5(a), about 61% of the components protected by custom
permissions are of type Service or Broadcast Receiver. This is important because
the lack of a visible user interface in these types of components promotes pos-
sibilities for a stealthy permission re-delegation attack [12]. More than 85% of



custom permissions are defined at signature or dangerous protection levels that
regulate access to critical APIs, as shown in Figure 5(b).

The results show that custom permissions are widely used by real-world
Android applications to guard critical APIs. Most developers do not perform
any additional check to ensure that incoming APIs are from trusted callers,
suggesting that they may be unaware of the custom permission vulnerability,
despite its potential for security breaches.

6 Related Work

The custom permission vulnerability in Section 4.1 was first described in a blog
post by an independent security researcher [13]. However, despite its potential
security consequences, the vulnerability has not received widespread attention
among Android developers; as revealed by our study in Section 5, a significant
number of Android applications are still vulnerable to this attack. To our knowl-
edge, the vulnerability has not been studied in the academic literature.

We are aware of two previous works that describe a formalization of the An-
droid permission protocol. Shin and his colleagues encoded a formal model of
the protocol in Coq and proved a set of security properties using its interactive
theorem proving facility [14]. The main difference between their work and ours
is in the kind of analysis performed. A successful Coq proof provides a stronger
theoretical guarantee than an Alloy analysis, which is bounded to finite domains
in the universe. On the other hand, the Alloy Analyzer is capable of generat-
ing counterexamples, which we found tremendously helpful for identifying the
vulnerabilities in the system. Even though the properties proven were similar to
ours, their analysis failed to identify the custom permission vulnerability, because
the definition of the installation operation in their model is over-constrained —
their model prevents an application from being installed if it declares a per-
mission that already exists on the device, ruling out behavior that would have
revealed the attack.

Fragkaki et al. describe a logical formalization of a permission model similar
to the one used in Android [15]. However, they only performed an informal
analysis of the model, and did not identify the custom permission vulnerability.

Most of the previous works in Android security involve performing manual
inspection or program analysis to identify a particular vulnerability in Android
applications [2,4,6,8,16,17,18,19]. Two previous projects deal specifically with
permission vulnerabilities in Android. Felt and her colleagues performed a study
of existing applications for permission usage and discovered that many of them
are “overprivileged” (i.e., given more permissions than they need) [1]. However,
their study does not consider custom permissions. In a separate work, Felt et al.
describe a type of attack called permission re-delegation, and show that many
existing Android applications are vulnerable to this type of attack [12].

A number of static analysis tools, such as ComDroid [16], Epicc [17], Flow-
Droid [19], have been developed to detect a flow of malicious data within an
application or between multiple applications. However, these tools do not deal
with permission-related vulnerabilities.



More recently, we developed COVERT [8], an approach for compositional
analysis of Android inter-application vulnerabilities. COVERT uses static anal-
ysis techniques to extract a formal model of Android apps. It then performs the
analysis for inter-application vulnerabilities in a modular way, permitting the
results of such analyses to be composed to support incremental verification of
apps as they are installed, updated, and removed.

These research efforts are mainly focused on analyzing a particular appli-
cation (or a set of apps, in case of COVERT) by extracting relevant security
behaviors from it. In contrast, our work focuses on analyzing the general under-
lying Android permission protocol itself, and identifying design flaws that may
be applicable to all Android applications.

7 Conclusion

In this paper, we presented a formal model of the Android permission protocol
in Alloy, and an automated analysis that identified a number of flaws in the
protocol that cause serious security vulnerabilities. We also performed a study
of one of the vulnerabilities and showed that it is prevalent among many existing
Android applications.

It is notable that underspecification of the Android permission protocol was
essential; it allowed us to avoid specifying aspects of behavior that were not
clear in the documentation, and led to the discovery of vulnerabilities that had
eluded an earlier analysis of the very same protocol by others (which, due to
the use of a theorem prover based on a functional language, had not supported
underspecification).

While this paper has focused on the analysis of Android, we believe that our
approach can be applied to other types of mobile devices that rely on permissions,
such as iOS and Windows Phone. By building a precise model of the permission
mechanism and subjecting it to exhaustive analysis, the device designer may
be able to discover potential vulnerabilities, instead of relying solely on manual
scrutiny by security experts.

We plan to further explore the synergy between formal analysis of a high-level
system model and implementation-level techniques, as mentioned in Section 2.
We are currently working on an end-to-end security analysis framework that
combines a model-based detection of system-level attacks with a suite of static
analysis tools that can identify particular types of vulnerabilities; our target
domains include web security, mobile devices, and system-of-systems. We believe
that our work in this paper presents a first step towards this goal.
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