
MIT Open Access Articles

RoadTracer: Automatic Extraction of
Road Networks from Aerial Images

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bastani, Favyen, et al. “RoadTracer: Automatic Extraction of Road Networks from Aerial
Images.” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018 IEEE/
CVF Conference on Computer Vision and Pattern Recognition, 18-23 June 2018, Salt Lake City,
Utah, USA, IEEE, 2018, pp. 4720–28.

As Published: http://dx.doi.org/10.1109/CVPR.2018.00496

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/121240

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/121240
http://creativecommons.org/licenses/by-nc-sa/4.0/

RoadTracer: Automatic Extraction of Road Networks from Aerial Images

Favyen Bastani1, Songtao He1, Sofiane Abbar2, Mohammad Alizadeh1, Hari Balakrishnan1,
Sanjay Chawla2, Sam Madden1, David DeWitt1

1MIT CSAIL, 2Qatar Computing Research Institute, HBKU
1{fbastani,songtao,alizadeh,hari,madden,dewitt}@csail.mit.edu, 2{sabbar,schawla}@hbku.edu.qa

Abstract

Mapping road networks is currently both expensive and
labor-intensive. High-resolution aerial imagery provides a
promising avenue to automatically infer a road network.
Prior work uses convolutional neural networks (CNNs) to
detect which pixels belong to a road (segmentation), and
then uses complex post-processing heuristics to infer graph
connectivity. We show that these segmentation methods
have high error rates because noisy CNN outputs are dif-
ficult to correct. We propose RoadTracer, a new method to
automatically construct accurate road network maps from
aerial images. RoadTracer uses an iterative search pro-
cess guided by a CNN-based decision function to derive the
road network graph directly from the output of the CNN.
We compare our approach with a segmentation method on
fifteen cities, and find that at a 5% error rate, RoadTracer
correctly captures 45% more junctions across these cities.

1. Introduction
Creating and updating road maps is a tedious, expensive,

and often manual process today [11]. Accurate and up-to-
date maps are especially important given the popularity of
location-based mobile services and the impending arrival
of autonomous vehicles. Several companies are investing
hundreds of millions of dollars on mapping the world, but
despite this investment, error rates are not small in prac-
tice, with map providers receiving many tens of thousands
of error reports per day.1 In fact, even obtaining “ground
truth” maps in well-traveled areas may be difficult; recent
work [10] reported that the discrepancy between Open-
StreetMap (OSM) and the TorontoCity dataset was 14%
(the recall according to a certain metric for OSM was 0.86).

Aerial imagery provides a promising avenue to auto-
matically infer the road network graph. In practice, how-
ever, extracting maps from aerial images is difficult be-
cause of occlusion by trees, buildings, and shadows (see

1See, e.g., https://productforums.google.com/forum/
#!topic/maps/dwtCso9owlU for an example of a city (Doha, Qatar)
where maps have been missing entire subdivisions for years.

Figure 1. Occlusions by trees, buildings, and shadows make it hard
even for humans to infer road connectivity from images.

Figure 1). Prior approaches do not handle these problems
well. Almost universally, they begin by segmenting the im-
age, classifying each pixel in the input as either road or
non-road [5, 10]. They then implement a complex post-
processing pipeline to interpret the segmentation output and
extract topological structure to construct a map. As we will
demonstrate, noise frequently appears in the segmentation
output, making it hard for the post-processing steps to pro-
duce an accurate result.

The fundamental problem with a segmentation-based ap-
proach is that the CNN is trained only to provide local infor-
mation about the presence of roads. Key decisions on how
road segments are inter-connected to each other are dele-
gated to an error-prone post-processing stage that relies on
heuristics instead of machine learning or principled algo-
rithms. Rather than rely on an intermediate image represen-
tation, we seek an approach that produces the road network
directly from the CNN. However, it is not obvious how to
train a CNN to learn to produce a graph from images.

We propose RoadTracer, an approach that uses an itera-
tive graph construction process for extracting graph struc-
tures from images. Our approach constructs the road net-
work by adding individual road segments one at a time, us-
ing a novel CNN architecture to decide on the next segment
to add given as input the portion of the network constructed
so far. In this way, we eliminate the intermediate image
representation of the road network, and avoid the need for

1

https://productforums.google.com/forum/#!topic/maps/dwtCso9owlU
https://productforums.google.com/forum/#!topic/maps/dwtCso9owlU

extensive post-processing that limits the accuracy of prior
methods.

Training the CNN decision function is challenging be-
cause the input to the CNN at each step of the search de-
pends on the partial road network generated using the CNN
up to that step. We find that standard approaches that use
a static set of labeled training examples are inadequate. In-
stead, we develop a dynamic labeling approach to produce
training examples on the fly as the CNN evolves during
training. This procedure resembles reinforcement learning,
but we use it in an efficient supervised training procedure.

We evaluate our approach using aerial images covering
24 square km areas of 15 cities, after training the model on
25 other cities. We make our code and a demonstration of
RoadTracer in action available at https://roadmaps.
csail.mit.edu/roadtracer. We implement two
baselines, DeepRoadMapper [10] and our own segmenta-
tion approach. Across the 15 cities, our main experimental
finding is that, at a 5% average error rate on a junction-
by-junction matching metric, RoadTracer correctly captures
45% more junctions than our segmentation approach (0.58
vs 0.40). DeepRoadMapper fails to produce maps with bet-
ter than a 19% average error rate. Because accurately cap-
turing the local topology around junctions is crucial for ap-
plications like navigation, these results suggest that Road-
Tracer is an important step forward in fully automating map
construction from aerial images.

2. Related Work
Classifying pixels in an aerial image as “road” or “non-

road” is a well-studied problem, with solutions generally
using probabilistic models. Barzobar et al. build geometric-
probabilistic models of road images based on assumptions
about local road-like features, such as road geometry and
color intensity, and draw inferences with MAP estima-
tion [2]. Wegner et al. use higher-order conditional ran-
dom fields (CRFs) to model the structures of the road net-
work by first segmenting aerial images into superpixels,
and then adding paths to connect these superpixels [17].
More recently, CNNs have been applied to road segmen-
tation [12, 6]. However, the output of road segmentation,
consisting of a probability of each pixel being part of a road,
cannot be directly used as a road network graph.

To extract a road network graph from the segmentation
output, Cheng et al. apply binary thresholding and morpho-
logical thinning to produce single-pixel-width road center-
lines [5]. A graph can then be obtained by tracing these cen-
terlines. Máttyus et al. propose a similar approach called
DeepRoadMapper, but add post-processing stages to en-
hance the graph by reasoning about missing connections
and applying heuristics [10]. This solution yields promising
results when the road segmentation has modest error. How-
ever, as we will show in Section 3.1, heuristics do not per-

form well when there is uncertainty in segmentation, which
can arise due to occlusion, ambiguous topology, or complex
topology such as parallel roads and multi-layer roads.

Rather than extract the road graph from the result of seg-
mentation, some solutions directly extract a graph from im-
ages. Hinz et al. produce a road network using a complex
road model that is built using detailed knowledge about
roads and their context, such as nearby buildings and ve-
hicles [8]. Hu et al. introduce road footprints, which are
detected based on shape classification of the homogeneous
region around a pixel [9]. A road tree is then grown by
tracking these road footprints. Although these approaches
do not use segmentation, they involve numerous heuristics
and assumptions that resemble those in the post-processing
pipeline of segmentation-based approaches, and thus are
susceptible to similar issues.

Inferring road maps from GPS trajectories has also been
studied [4, 14, 13]. However, collecting enough GPS data
that can cover the entire map in both space and time is chal-
lenging, especially when the region of the map is large and
far from the city core. Nevertheless, GPS trajectories may
be useful to improve accuracy in areas where roads are not
visible from the imagery, to infer road connectivity at com-
plex interchanges where roads are layered, and to enable
more frequent map updates.

3. Automatic Map Inference
The goal of automatic map inference is to produce a road

network map, i.e., a graph where vertices are annotated with
spatial coordinates (latitude and longitude), and edges cor-
respond to straight-line road segments. Vertices with three
or more incident edges correspond to road junctions (e.g.
intersections or forks). Like prior methods, we focus on in-
ferring undirected road network maps, since the direction-
ality of roads is generally not visible from aerial imagery.

In Section 3.1, we present an overview of segmentation-
based map-inference methods used by current state-of-the-
art techniques [5, 10] to construct a road network map from
aerial images. We describe problems in the maps inferred
by the segmentation approach to motivate our alternative
solution. Then, in Section 3.2, we introduce our iterative
map construction method. In Section 4, we discuss the pro-
cedure used to train the CNN used in our solution.

3.1. Prior Work: Segmentation Approaches

Segmentation-based approaches have two steps. First,
each pixel is labeled as either “road” or “non-road”. Then,
a post-processing step applies a set of heuristics to convert
the segmentation output to a road network graph.

State-of-the-art techniques share a similar post-
processing pipeline to extract an initial graph from the
segmentation output. The segmentation output is first
thresholded to obtain a binary mask. Then, they apply

https://roadmaps.csail.mit.edu/roadtracer
https://roadmaps.csail.mit.edu/roadtracer

Figure 2. Stages of segmentation post-processing. (a) shows the
segmentation output. In (b), a graph is extracted through morpho-
logical thinning [18] and the Douglas-Peucker method [7]. Refine-
ment heuristics are then applied to remove basic types of noise,
yielding the graph in (c).

Figure 3. An example where noise in the segmentation output (left)
is too extensive for refinement heuristics to correct. We show the
graph after refinement on the right. Here, we overlay the inferred
graph (yellow) over ground truth from OSM (blue).

morphological thinning [18] to produce a mask where roads
are represented as one-pixel-wide centerlines. This mask
is interpreted as a graph, where set pixels are vertices and
edges connect adjacent set pixels. The graph is simplified
with the Douglas-Peucker method [7].

Because the CNN is trained with a loss function evalu-
ated independently on each pixel, it will yield a noisy output
in regions where it is unsure about the presence of a road.
As shown in Figure 2(a) and (b), noise in the segmentation
output will be reflected in the extracted graph. Thus, several
methods have been proposed to refine the initial extracted
graph. Figure 2(c) shows the graph after applying three re-
finement heuristics: pruning short dangling segments, ex-
tending dead-end segments, and merging nearby junctions.

Although refinement is sufficient to remove basic types
of noise, as in Figure 2, we find that many forms of noise
are too extensive to compensate for. In Figure 3, we show
an example where the segmentation output contains many
gaps, leading to a disconnected graph with poor coverage.

Algorithm 1 Iterative Graph Construction
Input: A starting location v0 and the bounding box B

initialize graph G and vertex stack S with v0
while S is not empty do
action, α := decision func(G,Stop, Image)
u := Stop + (D cosα,D sinα)
if action = stop or u is outside B then

pop Stop from S
else

add vertex u to G
add an edge (Stop, u) to G
push u onto S

end if
end while

Given this segmentation output, even a human would find
it difficult to accurately map the road network. Because the
CNN is trained only to classify individual pixels in an image
as roads, it leaves us with an untenable jigsaw puzzle of
deciding which pixels form the road centerlines, and where
these centerlines should be connected.

These findings convinced us that we need a different ap-
proach that can produce a road network directly, without go-
ing through the noisy intermediate image representation of
the road network. We propose an iterative graph construc-
tion architecture to do this. By breaking down the map-
ping process into a series of steps that build a road network
graph iteratively, we will show that we can derive a road net-
work from the CNN, thereby eliminating the requirement of
a complex post-processing pipeline and yielding more accu-
rate maps.

3.2. RoadTracer: Iterative Graph Construction

In contrast to the segmentation approach, our approach
consists of a search algorithm, guided by a decision function
implemented via a CNN, to compute the graph iteratively.
The search walks along roads starting from a single loca-
tion known to be on the road network. Vertices and edges
are added in the path that the search follows. The decision
function is invoked at each step to determine the best action
to take: either add an edge to the road network, or step back
to the previous vertex in the search tree. Algorithm 1 shows
the pseudocode for the search procedure.

Search algorithm. We input a region (v0, B), where v0 is
the known starting location, and B is a bounding box defin-
ing the area in which we want to infer the road network.
The search algorithm maintains a graph G and a stack of
vertices S that both initially contain only the single vertex
v0. Stop, the vertex at the top of S, represents the current
location of the search.

At each step, the decision function is presented with G,
Stop, and an aerial image centered at Stop’s location. It can

Figure 4. Exploring a T intersection in the search process. The
blue path represents the position of the road in the satellite im-
agery. Circles are vertices in G, with Stop in purple and v0 in or-
ange. Here, the decision function makes correct decisions on each
step.

decide either to walk a fixed distance D (we use D = 12
meters) forward from Stop along a certain direction, or to
stop and return to the vertex preceding Stop in S. When
walking, the decision function selects the direction from
a set of a angles that are uniformly distributed in [0, 2π).
Then, the search algorithm adds a vertex u at the new loca-
tion (i.e., D away from Stop along the selected angle), along
with an edge (Stop, u), and pushes u onto S (in effect mov-
ing the search to u).

If the decision process decides to “stop” at any step, we
pop Stop from S. Stopping indicates that there are no more
unexplored roads (directions) adjacent to Stop. Note that
because only new vertices are ever pushed onto S, a “stop”
means that the search will never visit the vertex Stop again.

Figure 4 shows an example of how the search proceeds
at an intersection. When we reach the intersection, we
first follow the upper branch, and once we reach the end
of this branch, the decision function selects the “stop” ac-
tion. Then, the search returns to each vertex previously ex-
plored along the left branch. Because there are no other
roads adjacent to the upper branch, the decision function
continues to select the stop action until we come back to the
intersection. At the intersection, the decision function leads
the search down the lower branch. Once we reach the end
of this branch, the decision function repeatedly selects the
stop action until we come back to v0 and S becomes empty.
When S is empty, the construction of the road network is
complete.

Since road networks consist of cycles, it is also possi-
ble that we will turn back on an earlier explored path. The
search algorithm includes a simple merging step to handle
this: when processing a walk action, if u is within distance
3D of a vertex v ∈ G, but the shortest distance in G from
Stop to v is at least 6D, then we add an edge (u, v) and don’t
push u onto S. This heuristic prevents small loops from be-
ing created, e.g. if a road forks into two at a small angle.

Lastly, we may walk out of our bounding box B. To

avoid this, when processing a walk action, if u is not con-
tained in B, then we treat it as a stop action.

CNN decision function. A crucial component of our al-
gorithm is the decision function, which we implement with
a CNN. The input layer consists of a d × d window cen-
tered on Stop. This window has four channels. The first
three channels are the RGB values of the d × d portion of
aerial imagery around Stop. The fourth channel is the graph
constructed so far, G. We render G by drawing anti-aliased
lines along the edges of G that fall inside the window. In-
cluding G in the input to the CNN is a noteworthy aspect
of our method. First, this allows the CNN to understand
which roads in the aerial imagery have been explored ear-
lier in the search, in effect moving the problem of exclud-
ing these roads from post-processing to the CNN. Second,
it provides the CNN with useful context; e.g., when encoun-
tering a portion of aerial imagery occluded by a tall build-
ing, the CNN can use the presence or absence of edges on
either side of the building to help determine whether the
building occludes a road.

The output layer consists of two components: an action
component that decides between walking and stopping, and
and an angle component that decides which angle to walk
in. The action component is a softmax layer with 2 outputs,
Oaction = 〈owalk, ostop〉. The angle component is a sig-
moid layer with a neurons, Oangle = 〈o1, . . . , oa〉. Each oi
corresponds to an angle to walk in. We use a threshold to
decide between walking and stopping. If owalk ≥ T , then
walk in the angle corresponding to argmaxi(oi). Other-
wise, stop.

We noted earlier that our solution does not require com-
plex post-processing heuristics, unlike segmentation-based
methods where CNN outputs are noisy. The only post-
processing required in our decision function is to check a
threshold on the CNN outputs and select the maximum in-
dex of the output vector. Thus, our method enables the CNN
to directly produce a road network graph.

4. Iterative Graph Construction CNN Training

We now discuss the training procedure for the decision
function. We assume we have a ground truth map G∗ (e.g.,
from OpenStreetMap). Training the CNN is non-trivial: the
CNN takes as input a partial graph G (generated by the
search algorithm) and outputs the desirability of walking
at various angles, but we only have this ground truth map.
How might we use G∗ to generate training examples?

4.1. Static Training Dataset

We initially attempted to generate a static set of train-
ing examples. For each training example, we sample a re-
gion (v0, B) and a step count n, and initialize a search.
We run n steps of the search using an “oracle” decision

Figure 5. A CNN trained on static training examples exhibits prob-
lematic behavior during inference. Here, the system veers off of
the road represented by the blue path.

function that uses G∗ to always make optimal decisions.
The state of the search algorithm immediately preceding
the nth step is the input for the training example, while
the action taken by the oracle on the nth step is used to
create a target output O∗

action = 〈o∗walk, o
∗
stop〉, O∗

angle =
〈o∗1, . . . , o∗a〉. We can then train a CNN using gradient de-
scent by back-propagating a cross entropy loss between
Oaction and O∗

action, and, if o∗walk = 1, a mean-squared
error loss between Oangle and O∗

angle.
However, we found that although the CNN can achieve

high performance in terms of the loss function on the train-
ing examples, it performs poorly during inference. This is
because G is essentially perfect in every example that the
CNN sees during training, as it is constructed by the oracle
based on the ground truth map. During inference, however,
the CNN may choose angles that are slightly off from the
ones predicted by the oracle, resulting in small errors in G.
Then, because the CNN has not been trained on imperfect
inputs, these small errors lead to larger prediction errors,
which in turn result in even larger errors.

Figure 5 shows a typical example of this snowball ef-
fect. The CNN does not output the ideal angle at the turn;
this causes it to quickly veer off the actual road because
it never saw such deviations from the road during training,
and hence it cannot correct course. We tried to mitigate this
problem by using various methods to introduce noise on G
in the training examples. Although this reduces the scale
of the problem, the CNN still yields low performance at in-
ference time, because the noise that we introduce does not
match the characteristics of the noise introduced inherently
by the CNN during inference. Thus, we conclude a static
training dataset is not suitable.

4.2. Dynamic Labels

We instead generate training examples dynamically by
running the search algorithm with the CNN as the decision
function during training. As the CNN model evolves, we
generate new training examples as well.

Given a region (v0, B), training begins by initializing an
instance of the search algorithm (G,S), where G is the par-
tial graph (initially containing only v0) and S is the vertex
stack. On each training step, as during inference, we feed-
forward the CNN to decide on an action based on the output

Figure 6. A naive oracle that simply matches Stop to the closest
location on G∗ fails, since it directs the system towards the bottom
road instead of returning to the top road. Here, the black circles
make up G, while the blue corresponds to the actual road position.

layer, and update G and S based on that action.

In addition to deciding on the action, we also determine
the action that an oracle would take, and train the CNN to
learn that action. The key difference from the static dataset
approach is that, here, G and S are updated based on the
CNN output and not the oracle output; the oracle is only
used to compute a label for back-propagation.

The basic strategy is similar to before. On each train-
ing step, based on G∗, we first identify the set of angles R
where there are unexplored roads from Stop. Next, we con-
vert R into a target output vector O∗. If R is empty, then
o∗stop = 1. Otherwise, o∗walk = 1, and for each angle θ ∈ R,
we set o∗i = 1, where i is the closest walkable angle to θ.
Lastly, we compute a loss between O and O∗, and apply
back-propagation to update the CNN parameters.

A key challenge is how to decide where to start the walk
in G∗ to pick the next vertex. The naive approach is to start
the walk from the closest location in G∗ to Stop. However,
as the example in Figure 6 illustrates, this approach can di-
rect the system towards the wrong road whenG differs from
G∗.

To solve this problem, we apply a map-matching algo-
rithm to find a path in G∗ that is most similar to a path in
G ending at Stop. To obtain the path p in G, we perform a
random walk in G starting from Stop. We stop the random
walk when we have traversed a configurable number of ver-
tices w (we use w = 10), or when there are no vertices
adjacent to the current vertex that haven’t already been tra-
versed earlier in the walk. Then, we match this path to the
path p∗ in G∗ to which it is most similar. We use a standard
map-matching method based on the Viterbi algorithm [15].
If v is the endpoint of the last edge in p∗, we start our walk
in G∗ at v.

Finally, we maintain a set E containing edges of G∗ that
have already been explored during the walk. E is initially
empty. On each training step, after deriving p∗ from map-
matching, we add each edge in p∗ to E. Then, when per-
forming the walk in G∗, we avoid traversing edges that are
in E again.

5. Evaluation
Dataset. To evaluate our approach, we assemble a large
corpus of high-resolution satellite imagery and ground truth
road network graphs covering the urban core of forty cities
across six countries. For each city, our dataset covers a re-
gion of approximately 24 sq km around the city center. We
obtain satellite imagery from Google at 60 cm/pixel reso-
lution, and the road network from OSM (we exclude cer-
tain non-roads that appear in OSM such as pedestrian paths
and parking lots). We convert the coordinate system of the
road network so that the vertex spatial coordinate annota-
tions correspond to pixels in the satellite images.

We split our dataset into a training set with 25 cities and a
test set with 15 other cities. To our knowledge, we conduct
the first evaluation of automatic mapping approaches where
systems are trained and evaluated on entirely separate cities,
and not merely different regions of one city, and also the
first large-scale evaluation over aerial images from several
cities. Because many properties of roads vary greatly from
city to city, the ability of an automatic mapping approach to
perform well even on cities that are not seen during training
is crucial; the regions where automatic mapping holds the
most potential are the regions where existing maps are non-
existent or inaccurate.

Baselines. We compare RoadTracer with two baselines:
DeepRoadMapper [10] and our own segmentation-based
approach. Because the authors were unable to release their
software to us, we implemented DeepRoadMapper, which
trains a residual network with a soft intersection-over-union
(IoU) loss function, extracts a graph using thresholding and
thinning, and refines the graph with a set of heuristics and a
missing connection classifier.

However, we find that the IoU loss results in many
gaps in the segmentation output, yielding poor performance.
Thus, we also implement our own segmentation approach
that outperforms DeepRoadMapper on our dataset, where
we train with cross entropy loss, and refine the graph using
a four-stage purely heuristic cleaning process that prunes
short segments, removes small connected components, ex-
tends dead-end segments, and merges nearby junctions.

Metrics. We evaluate RoadTracer and the segmentation
schemes on TOPO [3], SP [16], and a new junction met-
ric defined below. TOPO and SP are commonly used in
the automatic road map inference literature [4, 14, 17, 1].
TOPO simulates a car driving a certain distance from sev-
eral seed locations, and compares the destinations that can
be reached in G with those that can be reached in G∗ in
terms of precision and recall. SP generates a large number
of origin-destination pairs, computes the shortest path be-
tween the origin and the destination in both G and G∗ for
each pair, and outputs the fraction of pairs where the short-
est paths are similar (distances within 5%).

Figure 7. Average Fcorrect and Ferror over the 15 test cities.

However, we find that both TOPO and SP tend to assign
higher scores to noisier maps, and thus don’t correlate well
with the usability of an inferred map. Additionally, the met-
rics make it difficult to reason about the cause of a low or
high score.

Thus, we propose a new evaluation metric with two
goals: (a) to give a score that is representative of the in-
ferred map’s practical usability, and (b) to be interpretable.
Our metric compares the ground truth and inferred maps
junction-by-junction, where a junction is any vertex with
three or more edges. We first identify pairs of correspond-
ing junctions (v, u), where v is in the ground truth map and
u is in the inferred map. Then, fv,correct is the fraction of in-
cident edges of v that are captured around u, and fu,error is
the fraction of incident edges of u that appear around v. For
each unpaired ground truth junction v, fv,correct = 0, and
for each unpaired inferred map junction u, fu,error = 1. Fi-
nally, if ncorrect =

∑
v fv,correct and nerror =

∑
u fu,error, we

report the correct junction fraction Fcorrect =
ncorrect

junctions in G∗

and error rate Ferror =
nerror

nerror+ncorrect
.

TOPO and our junction metric yield a precision-recall
curve, while SP produces a single similar path count.

Quantitative Results. We evaluate performance of the
three methods on 15 cities in the test set. We supply starting
locations for RoadTracer by identifying peaks in the output
of our segmentation-based approach. All three approaches
are fully automated.

Both RoadTracer and the segmentation approaches have
parameters that offer a tradeoff between recall and error rate
(1 − precision). We vary these parameters and plot results
for our junction metric and TOPO on a scatterplot where

Figure 8. Average TOPO recall and error rate over the test cities.

Scheme Correct Long Short NoPath
DeepRoadMapper 0.21 0.29 0.03 0.47

Seg. (Ours) 0.58 0.14 0.27 0.01
RoadTracer 0.72 0.16 0.10 0.02

Table 1. SP performance. For each scheme, we only report re-
sults for the threshold that yields the highest correct shortest paths.
Long, Short, and NoPath specify different reasons for an inferred
shortest path being incorrect (too long, too short, and discon-
nected).

Figure 9. Tradeoff between error rate and recall in a small crop
from Boston as we increase the threshold for our segmentation
approach. The junction metric error rates in the crop from left to
right are 18%, 13%, and 8%. The map with 18% error is too noisy
to be useful.

one axis corresponds to recall and the other corresponds
to error rate. For DeepRoadMapper and our segmentation
approach, we vary the threshold used to produce a binary
mask. We find that the threshold does not impact the graph
produced by DeepRoadMapper, as the IoU loss pushes most

outputs to the extremes, and thus only plot one point. For
RoadTracer, we vary the walk-stop action threshold T .

We report performance in terms of average Fcorrect and
Ferror across the test cities in Figure 7, and in terms of aver-
age TOPO precision and recall in Figure 8.

On the junction metric, RoadTracer has a better Ferror for
a given Fcorrect. The performance improvement is most sig-
nificant when error rates are between 5% and 10%, which
is the range that offers the best tradeoff between recall and
error rate for most applications—when error rates are over
10%, the amount of noise is too high for the map to be us-
able, and when error rates are less than 5%, too few roads
are recovered (see Figure 9). When the error rate is 5%,
the maps inferred by RoadTracer have 45% better average
recall (Fcorrect) than those inferred by the segmentation ap-
proach (0.58 vs 0.40).

On TOPO, RoadTracer has a lower error rate than the
segmentation approaches when the recall is less than 0.43.
Above 0.43 recall, where the curves cross, further lower-
ing T in RoadTracer yields only a marginal improvement
in recall, but a significant increase in the error rate. How-
ever, the segmentation approach outperforms RoadTracer
only for error rates larger than 0.14; we show in Figure 9
that inferred maps with such high error rates are not usable.

We report SP results for the thresholds that yield highest
number of correct shortest paths in Table 1. RoadTracer
outperforms the segmentation approach because noise in the
output of the segmentation approach causes many instances
where the shortest path in the inferred graph is much shorter
than the path in the ground truth graph.

Our DeepRoadMapper implementation performs poorly
on our dataset. We believe that the soft IoU loss is not well-
suited to the frequency of occlusion and complex topology
found in the city regions in our dataset.

Qualitative Results. In Figure 10, we show qualitative re-
sults in crops from four cities from the test set: Chicago,
Boston, Salt Lake City, and Toronto. For RoadTracer and
our segmentation approach, we show inferred maps for the
threshold that yields 5% average Ferror. DeepRoadMapper
only produces one map.

RoadTracer performs much better on frequent occlu-
sion by buildings and shadows in the Chicago and Boston
regions. Although the segmentation approach is able to
achieve similar recall in Boston on the lowest threshold (not
shown), several incorrect segments are added to the map.
In the Salt Lake City and Toronto regions, performance is
comparable. DeepRoadMapper’s soft IoU loss introduces
many disconnections in all four regions, and the missing
connection classifier in the post-processing stage can only
correct some of these.

We include more outputs in the supplementary mate-
rial, and make our code, full-resolution outputs, and videos

Figure 10. Comparison of inferred road networks in Chicago (top), Boston, Salt Lake City, and Toronto (bottom). We overlay the inferred
graph (yellow) over ground truth from OSM (blue). Inferred graphs correspond to thresholds that yield 5% average Ferror for RoadTracer
and our segmentation approach, and 19% Ferror for DeepRoadMapper (as it does not produce results with lower average error).

showing RoadTracer in action available at https://
roadmaps.csail.mit.edu/roadtracer.

6. Conclusion

On the face of it, using deep learning to infer a road
network graph seems straightforward: train a CNN to rec-
ognize which pixels belong to a road, produce the poly-
lines, and then connect them. But occlusions and light-
ing conditions pose challenges, and such a segmentation-
based approach requires complex post-processing heuris-
tics. By contrast, our iterative graph construction method
uses a CNN-guided search to directly output a graph. We
showed how to construct training examples dynamically for
this method, and evaluated it on 15 cities, having trained
on aerial imagery from 25 entirely different cities. To our
knowledge, this is the largest map-inference evaluation to
date, and the first that fully separates the training and test
cities. Our principal experimental finding is that, at a 5% er-

ror rate, RoadTracer correctly captures 45% more junctions
than our segmentation approach (0.58 vs 0.40). Hence, we
believe that our work presents an important step forward in
fully automating map construction from aerial images.

7. Acknowledgements

This research was supported in part by the Qatar Com-
puting Research Institute (QCRI).

References
[1] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. A com-

parison and evaluation of map construction algorithms us-
ing vehicle tracking data. GeoInformatica, 19(3):601–632,
2015. 6

[2] M. Barzohar and D. B. Cooper. Automatic finding of main
roads in aerial images by using geometric-stochastic models
and estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(7):707–721, 1996. 2

https://roadmaps.csail.mit.edu/roadtracer
https://roadmaps.csail.mit.edu/roadtracer

[3] J. Biagioni and J. Eriksson. Inferring road maps from global
positioning system traces. Transportation Research Record:
Journal of the Transportation Research Board, 2291(1):61–
71, 2012. 6

[4] J. Biagioni and J. Eriksson. Map inference in the face of
noise and disparity. In Proceedings of the 20th Interna-
tional Conference on Advances in Geographic Information
Systems, pages 79–88. ACM, 2012. 2, 6

[5] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan.
Automatic road detection and centerline extraction via cas-
caded end-to-end convolutional neural network. IEEE Trans-
actions on Geoscience and Remote Sensing, 55(6):3322–
3337, 2017. 1, 2

[6] D. Costea and M. Leordeanu. Aerial image geolocalization
from recognition and matching of roads and intersections.
arXiv preprint arXiv:1605.08323, 2016. 2

[7] D. H. Douglas and T. K. Peucker. Algorithms for the re-
duction of the number of points required to represent a digi-
tized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization,
10(2):112–122, 1973. 3

[8] S. Hinz and A. Baumgartner. Automatic extraction of urban
road networks from multi-view aerial imagery. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 58(1):83–98,
2003. 2

[9] J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka. Road
network extraction and intersection detection from aerial im-
ages by tracking road footprints. IEEE Transactions on Geo-
science and Remote Sensing, 45(12):4144–4157, 2007. 2

[10] G. Máttyus, W. Luo, and R. Urtasun. DeepRoadMapper:
Extracting road topology from aerial images. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3438–3446, 2017. 1, 2, 6

[11] G. Miller. The Huge, Unseen Operation Behind the Ac-
curacy of Google Maps. https://www.wired.com/
2014/12/google-maps-ground-truth/, Dec.
2014. 1

[12] V. Mnih and G. E. Hinton. Learning to detect roads in high-
resolution aerial images. In European Conference on Com-
puter Vision, pages 210–223. Springer, 2010. 2

[13] Z. Shan, H. Wu, W. Sun, and B. Zheng. COBWEB: A robust
map update system using GPS trajectories. In Proceedings of
the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, pages 927–937. ACM, 2015. 2

[14] R. Stanojevic, S. Abbar, S. Thirumuruganathan, S. Chawla,
F. Filali, and A. Aleimat. Kharita: Robust map inference us-
ing graph spanners. arXiv preprint arXiv:1702.06025, 2017.
2, 6

[15] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,
H. Balakrishnan, S. Toledo, and J. Eriksson. VTrack: Ac-
curate, energy-aware road traffic delay estimation using mo-
bile phones. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, pages 85–98. ACM,
2009. 5

[16] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler. A
higher-order CRF model for road network extraction. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1698–1705, 2013. 6

[17] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler. Road
networks as collections of minimum cost paths. ISPRS Jour-
nal of Photogrammetry and Remote Sensing, 108:128–137,
2015. 2, 6

[18] T. Zhang and C. Y. Suen. A fast parallel algorithm for
thinning digital patterns. Communications of the ACM,
27(3):236–239, 1984. 3

https://www.wired.com/2014/12/google-maps-ground-truth/
https://www.wired.com/2014/12/google-maps-ground-truth/

