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Abstract 

The controlled nanoscale patterning of two-dimensional (2D) materials is a promising approach 

for engineering the optoelectronic, thermal, and mechanical properties of these materials to 

achieve novel functionalities and devices. Herein, we demonstrate high-resolution patterning of 

hexagonal boron nitride (h-BN) via both helium and neon ion beams and identify an optimal 

dosage range for both ions that serve as a baseline for insulating 2D materials. Through this 

nanofabrication approach, we demonstrate a grating with a 35 nm pitch, individual structure sizes 

down to 20 nm, and additional nanostructures created by patterning crystal step edges. Raman 

spectroscopy is used to study the defects induced by the ion beam patterning and is correlated to 

scanning probe microscopy. Photo-thermal and scanning near-field optical microscopy measure 

the resulting near-field absorption and scattering of the nanostructures. These measurements reveal 
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a large photo-thermal expansion of nanostructured h-BN that is dependent on the height to width 

aspect ratio of the nanostructures. This effect is attributed to the large anisotropy of the thermal 

expansion coefficients of h-BN and the nanostructuring implemented. The photo-thermal 

expansion should be present in other van der Waals materials with large anisotropy and can lead 

to applications such as nanomechanical switches driven by light.   
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Introduction 

The properties of atomically thin two-dimensional (2D) materials can be drastically modified at 

the nanoscale. Thus, significant effort over the past decade has focused on creating 

nanostructures and nanoscale devices from 2D crystals such as graphene that can manipulate 

their excellent optoelectronic, thermal, and mechanical properties. There has also been recent 

work in creating van der Waals (vdW) heterostructures composed of graphene, hexagonal boron 

nitride (h-BN), and other 2D materials with hybrid properties[1–3] beyond those that can be 

achieved using a single type of 2D crystal. For this reason, h-BN has emerged as an invaluable 

material because it is an ideal substrate for preserving the intrinsic properties of 2D materials and 

nanotubes.[4–6] Moreover, on its own merit, h-BN has become an exciting theoretical and 

experimental platform to study new regimes of light-matter interactions including highly 

confined hyperbolic phonon polaritons (HPPs),[7,8] hybridized surface-phonon-plasmon 

polaritons,[9–11] sub-diffractional focusing and imaging,[12–15] and are predicted to cause emitters 

to preferentially decay via the emission of phonon polariton pairs.[16] h-BN can also be a tunable 

single-photon emitter via atom-like defects which can lead to integration in photonic quantum 

technologies.[17] Lastly, h-BN nanosheets and flakes have recently been shown to have nonlinear 

optical properties and temperature-dependent photoluminescence which may be used in 

multiphoton imaging and quantum photonics.[18,19] To fully exploit the exciting attributes of h-

BN and other vdW materials, we must be able to engineer structures at the meso-and nanoscale. 

Therefore, it becomes crucial to both push the limits of nanoscale patterning techniques and 

understand how these methods subsequently modify the properties of 2D materials, such as the 

absorption and scattering of light and related phenomena. 
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 Recently, neon ion beam lithography has been presented as a method of creating nanostructures 

beyond the reach of most nanofabrication techniques such as electron-beam lithography[20] and has 

been identified as the ideal ion for milling structures at the nanoscale,[21] yet there is still much 

progress that can be made when applying these techniques to vdW materials and heterostructures. 

Previous work that studied the ion beam patterning of 2D materials, has primarily focused on the 

sputtering of monolayer graphene via a gallium ion beam,[22] control of defects and electronic 

doping in encapsulated graphene via a helium ion beam,[23] nanoscale patterning of monolayer 

graphene,[24–27] and nanoscale patterning and electrical-tuning of few-layer molybdenum disulfide 

(MoS2).[28] Recent work has reported the effects of both helium and neon irradiation at 30 keV on 

monolayer graphene and MoS2.[29]
 However, the sub-50 nm patterning of multi-layer and 

insulating vdW crystals such as h-BN is even more challenging due to strong charging effects and 

is yet to be demonstrated. To our knowledge, there have been no studies that provide a 

comprehensive understanding of both the high-resolution (< 50nm) helium and neon ion beam 

patterning in any 2D material and how nanostructuring affects light-matter interactions in the 

material. These aforementioned issues must be studied and resolved if the advantages of direct and 

high-resolution ion beam patterning are to be implemented for tailoring vdW heterostructures at 

the nanometer and near atomic-scale.  

 In this letter, we present high-resolution ion beam patterning of h-BN nanostructures with 

individual feature sizes down to 20 nm and, equally as important, correlate Raman spectroscopy 

to near-field scanning probe based spectroscopy and imaging to study coupling with light. Both 

photo-thermal and scattering-type Scanning Near-Field Optical Microscopy (s-SNOM) imaging 

and spectroscopy[30–32] were used to understand the influence of nanostructuring on absorption, 

scattering, and photo-thermal expansion mediated through the optical phonons in h-BN. We 
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observe a geometry and thickness dependent photo-thermal expansion of h-BN nanostructures that 

can be explained via the large anisotropy of the thermal expansion coefficients of h-BN. 

Specifically, the largest photo-thermal effect is measured within nanostructures that have the 

largest height to width aspect ratios. To date, this photo-thermal expansion in 2D nanostructures 

has not been reported and can provide great insight into the different ways that nanostructuring 

can effect the optical and mechanical properties of h-BN and other 2D materials with anisotropic 

crystal properties. 

Results and Discussion 

 Ion Beam Patterning. Figure 1 shows the resulting h-BN nanostructures created from a 

variation in the helium and neon ion dosage. A different h-BN flake was used for each ion dosage 

test. Multilayer h-BN flakes used in the ion beam patterning process were prepared by the standard 

exfoliation process[33] from bulk h-BN crystals. The h-BN flakes were annealed to remove organic 

contamination before being exposed to either the helium or neon ion beam patterning (see the 

Experimental Methods Section for details regarding the number of samples and all other 

characterization techniques). Figure 1a is a schematic of the ion bombardment and nanoscale 

patterning process. The different types of interactions created by energetic ions incident on 

materials are well known and explained by previous work.[24] Both the helium (He+) and neon 

(Ne+) ion patterning was performed with a Zeiss Orion NanoFab system at the optimal accelerating 

voltages for high-resolution patterning, 30 keV and 25 keV respectively. An ion dosage sweep was 

conducted with a grating pattern with a 30 nm pitch (smaller grating pitches in Supporting 

Information (SI), Figure S1). Nanoscale patterning in h-BN flakes can be observed by a change 

in the optical contrast of the exposed regions after patterning, Figure 1b. The ion dosages for both 

helium, Figure 1c-f, and neon, Figure 1g-j, were varied between 1,000 pC/cm and 40,000 pC/cm 
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to determine the optimal dosage for nanoscale patterning. Figure 1e-f demonstrate that the helium 

ion dosage of 20,000 pC/cm and 40,000 pC/cm clearly defined the pattern. Figure 1g-j demonstrate 

that all dosages of the neon ion beam defined the pattern. Notably, neon ion dosages of 1,000 

pC/cm and 10,000 pC/cm uniformly patterned the surface without introducing undesired surface 

roughness and undulations. At and above 20,000 pC/cm, the h-BN surface developed undulations 

in height due to the increased sputtering and number of secondary interactions created during the 

recoil of ions within the sample. At these and higher ion dosages, it is likely the beginning of 

bubble formation due to inert gas being implanted in the sample plays a role in forming the 

undulations.[34,35] The dosage ranges for both ions and the qualitative effects can be confirmed by 

simulating the trajectories of the ion beams within the respective samples.  

 Monte Carlos Simulations. To understand the interaction mechanisms between the different 

bombarded ions and the h-BN, Monte Carlo simulations shown in Figure 2 were performed using 

the Stopping and Range of Ions in Matter (SRIM) software package.[36,37] The simulation for 

helium (Figure 2a) shows that the majority of the ions passed through the h-BN with minimal 

interactions. Therefore, the majority of the ion energy was deposited onto the underlying SiO2/Si. 

When compared to helium ions, the neon ions had a greater interaction with the h-BN (Figure 2b) 

and therefore transferred a greater amount of ion energy to the h-BN lattice – resulting in a higher 

sputtering yield. The TRIM simulations confirm the experimental results shown in Figure 1. In 

Figure 2c and 2d, the plots of atomic distributions estimate the number of lattice atoms that 

undergo recoil at each specific target depth. Multiplying the ratio by the ion dose (units of 

atoms/cm2), the ordinate (y-axis) of the plot is converted directly into a density distribution (units 

of atoms/cm3). Even though neon ions have an interaction volume similar to helium ions, their 

larger mass allows for a greater transfer of energy to the target material via elastic collisions 
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(nuclear energy losses) and thus produce a higher sputtering yield.[21,38,39] This explains why Monte 

Carlo simulations predict that the neon ion causes over 10 times more boron and nitrogen ions to 

undergo recoil within the sample when compared to helium. This is in accordance with the number 

of ions required to sputter with helium and neon in the dosage tests performed. Therefore, in terms 

of high-resolution patterning, neon ions provide the best balance between resolution and sputtering 

ability. These results can be taken as bench marks when patterning insulating 2D materials and 

other non-conductive crystalline materials such as diamond which has become an important 

material for quantum communication applications. 

  We highlight that future theoretical studies will be required to understand the intricate details 

of how ion beams interact with h-BN. The transfer of momentum and energy between the incident 

ion and the target material depends on several factors including: the ion energy, ion mass, target 

mass, incidence angles of the ion, lattice displacement energy, and additional effects such as 

crystal orientation and ion channeling.[39,40] Since the collision cascades that lead to sputtering 

depend on the ratio of the target and incident ion mass,[38] the sputtering of boron and nitride should 

not differ drastically from other elements that are of similar atomic mass. Nevertheless, a unique 

challenge of patterning h-BN and other electrically insulating materials comes from the 

accumulation of charge during the milling process which causes potential deflection of the ion 

beam. Thus, it is important to perform parameter sweeps to understand the optimal dosage for each 

material (as demonstrated herein). Since the TRIM model simulates the target material as isotropic 

and amorphous it means that the effects of crystal orientation and channeling effects are not taken 

into account.[41] Therefore, atomistic simulations such as molecular dynamics and density 

functional theory need to implemented to fully capture the effects of ion irradiation on low-

dimensional and multilayered systems such as h-BN. These models have been developed for 
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simple cases of graphene[42] and will need to be extended to new and emerging 

2D materials. Nonetheless, the TRIM model is still used as a standard guideline during 

experimental studies and confirm the nanopatterning results to first order. 

 Atomic Force Microscopy. Once an optimal range for the neon ion dosage was determined, 

a h-BN grating with a 35 nm pitch was fabricated over a 400 μm2 area (with a dosage of 2000 

pC/cm which is equivalent to 12 ions/nm, all other neon ion beam parameters were kept the same 

as in the dosage test). Figure 3 shows the optical and atomic force microscopy (AFM) images and 

cross-sections of the 400 μm2 patterned area. The difference in optical contrast of the grating is 

due to a variation in the thickness due to patterning the crystal step edges present in the exposed 

region. These step edges were present in the thicker portion of the h-BN flake before the ion beam 

patterning process was performed. The topographical variations in the nanopatterned sample are 

explained next and the subsequent effects on the optical properties of these h-BN nanostructures 

are discussed later.  

 AFM of the pattern was done to understand the exact features milled into the h-BN,  

Figure 3b-c. The AFM in Figure 3b shows the bottom right corner of the grating in Figure 3a. 

These scans show crystal step edges in the middle and the bottom of the region which were created 

due to an uneven mechanical exfoliation process. These step edges allowed us to study the 

influence of ion bombardment on a range of h-BN thicknesses and topography. A high-resolution 

AFM scan (using a tetrahedral tip with a 7 nm radius and 7:1 tip aspect ratio) was performed in 

the thinner region of the grating to reach the bottom of the etched features (Figure 3c), see 

Experimental Methods for more information. The cross-section in Figure 3d demonstrates the 

overall height profile of the 400 μm2 grating. After patterning, the thinner region of the h-BN 

grating had an average height of 24 nm with a standard deviation (SD) of 1.5 nm, while the thicker 
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region had an average height of 37 nm with a SD of 4.7 nm. The larger SD in the thicker region 

indicates that the subsequent nanostructures have a more irregular height to width aspect ratio.  

 In general the ion milling process proceeds as below: At the beginning of the milling process, 

the sputtering yield of h-BN should be greater as the ions penetrate the initial side walls of the 

etched nanostructure due to an increased incident angle.[38] As the trenches are made deeper, the 

redeposition of sputtered material in the active milling site increases until the rate of redeposition 

is equal to the rate of sputtering,[41] thus self-limiting the etching depth. The AFM shows that the 

ion beam milling process did reduce the thickness of the h-BN regions exposed to the neon ion 

beam. This effect is seen by the reduction of the thinner region from 37 nm to 24 nm. This 

reduction via milling also occurred in the thicker region of the grating. By observing the heights 

of the crystal step edges in the non-patterned regions of h-BN (Figure 3b and 5b), we deduce that 

the crystal step edges within the thicker region of the grating were flattened out during the milling 

process. The flattened remnants of the crystal step edges can be clearly seen in Figure 3b indicated 

by multiple arrows. The larger variation in nanostructure height within the thicker half of the h-

BN was due to these crystal step edges being directly exposed to the neon ion beam. The exposed 

edges provided a jagged template leading to sharp variations in height after patterning, leading to 

nanostructures with larger aspect ratios. Even though the surface was not ideal in the thicker 

region, the 35 nm pitch pattern is also detected in the first few nanometers of the thicker region. 

Zoomed-in AFM in the SI (Figure S5) demarks the pattern on the top h-BN layers. This contrasts 

with the uniform etch depth on the thinner half of the grating. Figure 3e shows the cross-section 

of a high-resolution AFM in the uniformly patterned section of the grating (thinner region). 

Topography shown in Figure 5b demonstrates that there were no crystal step edges in the thinner 

half of the grating. The semi-flat region at the bottom of each nanostructure profile confirms that 
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the high-resolution AFM tip reached the bottom of each etched feature. It further demonstrates 

that the smallest nanostructures etched were between 6-8 nm deep and ~20 nm wide.  

 Raman Spectroscopy. To understand the effects of the nanopatterning on the crystal structure 

of h-BN, Raman spectroscopy with a laser spot size of 1.30 μm was used to observe the optically 

active phonons and any subsequent disorder introduced at the nanoscale, including dislocations 

and amorphisation of the h-BN crystal (via vacancies) as previously seen in crystalline 

materials.[35,43] Previous Raman spectroscopy of h-BN has demonstrated a characteristic peak for 

the E2g in-plane optical phonon mode[44–46] at 1366 cm-1. Figure 4 demonstrates the corresponding 

Raman spectra and maps that identify vibrational modes in the sample. Figure 4a shows the Raman 

spectrum measured from three different regions: the non-patterned h-BN (~40 nm in height), 

thinner grating region (~24 nm in height), and thicker grating region (~37 nm in height). Zoomed-

in spectra of the thinner and thicker regions are shown in Figure 4b demonstrating that the h-BN 

peak at 1366 cm-1 is twice as strong in the thicker region compared to the thinner region which is 

reasonable due to the difference in thickness. Figure 4c-d show the Raman maps with the value of 

the integrated area under each corresponding peak within the ranges 1335-1395 cm-1 and 1420-

1480 cm-1. As seen from the Raman spectrum and map, the h-BN phonon peak at 1366 cm-1 was 

sharp and unmodified in the non-patterned region of h-BN and decreased significantly as the 

Raman scan moved from the edge of the pattern and into the grating. When compared to the non-

patterned h-BN in location 3 in Figure 4c there was a ~49 times reduction of the Raman intensity 

in the thicker region and ~234 times reduction in the thinner region. Similar ratios hold regardless 

of what exact location is used for the non-patterned reference. The Raman peak of the third order 

silicon transverse optical (TO) phonon[47,48] at 1450 cm-1 grew stronger in intensity as the scan 

moved from the pattern edge and into the grating as seen in Figure 4d. Moreover, the signal of the 
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silicon TO phonon (underneath the h-BN) was stronger in the thinner region compared to the 

thicker region. The signal from the silicon phonon was most likely strongest in the areas where the 

ion milling of the h-BN made the flake thinner and allowed the laser to couple to the silicon 

underneath the nanostructured h-BN, thus providing a stronger Raman signal intensity. Lastly, we 

note the Raman peak at 1556 cm-1 is not location dependent and is most likely due to ambient 

oxygen as recently reported for related experiments.[49]  

 There are at least three possible reasons for the reduction of the Raman signal for the h-

BN phonon at 1366 cm-1. The first is a reduction normally indicates surface and boundary 

defects that affects the phonons. Secondly, Ne+ ion interstitials within the plane or between the 

h-BN layers could further modify the vibrational modes. These conclusions are supported since 

recent work has shown that exposure of supported graphene to a helium and neon ion beam 

broadens and reduces the intensity of the E2g phonon mode due to increased disorder.[29] 

Although h-BN consists of two different atoms and layered stacks, we expect that these previous 

results on a similar E2g phonon mode inform our measured reduction of the Raman peak in h-

BN. Since ion beam irradiation is known to introduce vacancies, interstitials (Frenkel defects), 

and amorphization of crystalline materials,[39,41] these defects are expected to be responsible for 

the reduction in the intensity of the E2g mode. Lastly, the weaker Raman signal could be from a 

reduced coupling efficiency of the Raman laser into the sample due to increased light scattering 

from the nanostructures. Since this is a far-field measurement, the information obtained about the 

h-BN structures (and phonons) at the nanoscale could be limited; therefore, it is illuminating to 

use nano-imaging and spectroscopy techniques that provide complimentary and necessary 

information about the way these materials are engineered at the nanoscale before they can be 

used in any type of engineered vdW heterostructures and devices. 
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 Photo-thermal Spectroscopy and Imaging. To better understand how the nanoscale 

patterning affected the absorption of light and the coupling to the phonons in h-BN, photo-thermal 

spectroscopy and imaging were performed using an Anasys nanoIR2-S system. We show a 

schematic of the experiment and the resulting photo-thermal spectroscopy and imaging in Figure 

5. The h-BN sample is illuminated with pulsed infrared light with a 1 kHz repetition rate and a 

frequency, OPO, from an optical parametric oscillator (OPO) which is focused on the sample by 

a low numerical aperture (NA) parabolic mirror. A gold-coated AFM tip in contact mode is used 

to increase near-field coupling and subsequently detect the local thermal expansion of the sample 

caused by the absorption of the incident infrared light. According to the photo-thermal detection 

scheme,[50] the mechanical expansion of the sample (due to local heating after light absorption) 

excites the mechanical resonances of the AFM cantilever (while the AFM tip is in contact mode 

with the sample) and the measured amplitude of oscillation is directly proportional to the sample 

absorption.  

 In this experiment, the two distinct absorption peaks correspond to the excitation of phonons 

in both the h-BN and the SiO2 underneath and subsequently provide a chemical signature at the 

nanoscale. Figure 5c-d show the IR spectrum taken from various points in both the thinner and 

thicker regions of the h-BN grating respectively (cross-section shown in Figure 3d). Figure 5c, 

shows an absorption peak for the optical phonon of the SiO2
[50,51] at 1084 cm-1 only inside the 

thinner region and is not observed either in the thicker region or in the non-patterned regions of 

the h-BN (see Figure S6 in the SI for multiple photo-thermal line scans). This peak arises because 

the removal of the top h-BN layers during the ion milling provided increased coupling to the SiO2 

underneath. In Figure 5d, a strong and broad absorption peak at 1368 cm-1 corresponding to the 

TO phonon in h-BN is measured for all points inside the thicker region of the grating – we note 
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that this region has a greater number of layers and has nanostructures with larger aspect ratios 

(which can be seen from the larger SD of 4.5 nm).  The point-to-point spectroscopic differences 

within the h-BN grating were suggested in the Raman spectra, but the differences in the photo-

thermal spectrum were more substantial and clear with the near-field technique. 

 Direct photo-thermal imaging was conducted for the top right of the grating (located in the 

thicker region), topography shown in Figure 5e. Figure 5f-g demonstrate the photo-thermal images 

collected by scanning the tip while illuminating the sample with one specific wavelength of light. 

The respective wavenumbers (wavelengths) chosen in Figure 5f-g were 1368 cm-1 (on resonance) 

and 1600 cm-1 (off resonance). The photo-thermal image at 1368 cm-1 shows a clear and strong 

absorption peak at the h-BN phonon mode. This indicates that the photo-thermal technique can 

excite and couple to the phonons in the lattice and subsequently measure the mechanical expansion 

of the nanostructured h-BN due to the absorption of light.  

 Although the Raman signal for the h-BN phonon mode at 1368 cm-1 inside the thicker region 

is reduced by an order of magnitude (~49 times smaller), the photo-thermal response inside point 

5 of the grating is increased by an order of magnitude (~11 times larger) when compared to the 

non-patterned h-BN in point 8, Figure 5b-d. These measured ratios are consistently within the 

same order of magnitude regardless of the points chosen. Normally a weak Raman signal depicts 

substantial defects and strong disorder in a 2D crystalline lattice (as frequently observed in 

graphene[52,53]). However, in this case, even though the Raman signal inside the grating is very 

weak, the photo-thermal measurement shows strong absorption at the phonon resonance which 

suggests that the lattice is not completely disordered by the ion beam nanostructuring. Moreover, 

it is possible that the h-BN layers beneath the top few nanometers of the flake were protected from 
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the ion milling process and obtained minimal damage as suggested previously for encapsulated 

graphene.[23]  

 By examining the topography of the grating, we conclude that the above seemingly 

contradictory measurements were the result of: (i) There was stronger near-field coupling due to 

the nanopatterning of the surface that produced sharp edges in each nanostructure that strongly 

interacted with the AFM tip in the photo-thermal measurement. This interaction then transferred 

more energy to the phonon modes of the h-BN nanostructures and any unperturbed h-BN layers 

beneath the surface. (ii) The larger height to width aspect ratio of the h-BN nanostructures in the 

thicker region allowed a larger thermal expansion out of plane. Elaborating on the second 

mechanism above: it is possible the nanostructuring localized the phonons and subsequently 

increased heating in the h-BN nanostructures leading to enhanced mechanical expansion. This can 

be explained because the extreme anisotropy of the h-BN lattice, which contributes to its 

hyperbolic optical properties,[12] also results in a drastic difference between the thermal expansion 

coefficient in the a-direction (basal plane) and the c-direction (orthogonal to the basal plane). 

Specifically, h-BN has a large and positive thermal expansion coefficient of 38 x 10-6/K in the c-

direction[54] (as opposed to the small and negative coefficient -2.7 x 10-6/K in the a-direction). 

Originally emphasized by I. M. Lifshits, the increased absorption of light (and subsequent heating) 

in this highly anisotropic crystal leads to acoustic “bending” waves[55] which cause the significant 

expansion in the c-direction and contraction in the a-direction. This mechanism has been 

theoretically and experimentally investigated for other bulk layered crystals such as GaS, GaSe, 

and InSe.[56] Moreover, the sputtering of the nanoscale lines (and thus the elimination of covalent 

bonds between adjacent boron and nitrogen atoms) in the basal plane likely allowed the crystal to 
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contract further in the a-direction and forced the nanostructure to preserve its volume by expanding 

in the c-direction, contributing to the large photo-thermal effect.  

 Scattering-type Scanning Near-field Optical Microscopy. Since the photo-thermal 

technique has only recently been used to study atomically thin vdW materials, we employed the 

use of a complimentary technique to ensure that abnormal tip interactions were ruled out as the 

main reason for the observed large absorption values. Infrared nano-imaging was conducted using 

a Neaspec s-SNOM. Figure 6 contains the measurements taken of the entire h-BN grating and of 

smaller regions at 1368 cm-1 and 1425 cm-1 respectively to understand how the phonon vibrations 

and any possible HPPs supported by the sample were modified by the nanopatterning. Figure 6a 

depicts the AFM of the entire h-BN grating. The respective s-SNOM (scattering amplitude) images 

in Figure 6b and 6c show a stronger scattered signal from the nanostructures in the thicker region 

(similar to the stronger absorption signal from the photo-thermal measurement in Figure 5). Figure 

6d-f demonstrate topographic and s-SNOM images of the 9 μm2 area in the respective white dashed 

boxes in Figure 6a-c. For both sets of s-SNOM measurements, the AFM tip clearly distinguished 

the topography of the patterned h-BN while collecting a stronger scattering amplitude from the 

areas that had large height to width aspect ratios. The difference in measured scattering amplitudes 

within the grating may be partially due to the difference in the number of h-BN layers underneath 

each measured point. Furthermore, for the measurements in Figure 6d-f, it is possible that the 

standard tip used for the s-SNOM was too large to fully interact with the bottom of each individual 

nanostructure. In spite of the above details, the stronger scattering signal from the thicker region 

of the grating cannot be solely attributed to poor tip interactions because this area of the sample 

also has the etched grating “on top” as shown in the SI. Since both the photo-thermal and s-SNOM 
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measured stronger signals from the thicker region of the grating, it is concluded that the measured 

photo-thermal expansion is not erroneous and was attributed to the nanostructuring.  

 Lastly, the observation of propagating phonon polaritons in the non-patterned region of the 

sample confirms the high quality of the original h-BN flakes and rules out any contamination or 

unintentional surface modification as causing the increased absorption or scattering signal from 

the grating. Propagating phonon polaritons in the non-patterned regions are clearly seen at  

1425 cm-1 as previously demonstrated in other work.[7] These HPPs were not observed with the 

photo-thermal microscope (Figure 5) due to the lower signal strength of the illumination/detection 

technique. Interestingly, Li et al.[57] very recently demonstrated concave wavefronts of a diverging 

polariton beam in a h-BN grating structure with a 100 nm pitch. Although the thicker region of the 

h-BN grating in this work did have a stronger scattering amplitude, the s-SNOM technique did not 

conclusively demonstrate HPPs propagating within the patterned grating region. Thus, we can only 

speculate that the protected layers underneath the pattern or the grating itself can sustain HPPs, 

but that would require a systematic study of nanostructure geometry, grating pitch, and h-BN 

thickness that is beyond the intent of this study. Further studies can pursue the direct connection 

between the photo-thermal expansion and phonon polaritons in these types of high-resolution 

nanostructures. Finally, it should be of great interest that this large photo-thermal expansion 

property should be experimentally verifiable in 2D crystals of gallium sulfide (GaS), gallium 

selenide (GaSe), and indium selenide (InSe) which have only been very recently explored.[58,59] 

Conclusion 

In summary, we for the first time demonstrated that high-resolution (< 50nm) ion beam patterning 

of insulating multilayer vdW materials (in this case h-BN) is possible and provides a way of 

modifying the properties of 2D materials at the nanoscale. We show that Ne+ is a better candidate 



 18

than He+ for direct high-resolution patterning of vdW materials. Although Raman spectroscopy of 

the nanostructured h-BN provides information of defects and the active phonons, it cannot 

completely elucidate the full optical response and properties of nanostructured materials. For this 

reason, we used photo-thermal spectroscopy and imaging on a nanopatterned crystalline vdW 

material and demonstrated a large photo-thermal response that was dependent on the height to 

width aspect ratio of nanostructures. The role of extreme anisotropies and expansion coefficients 

with opposite signs provides physical intuition for the enhanced photo-thermal effect. This work 

provides a baseline for the continued exploration of nanoscale patterning of vdW materials with 

ion beams. It also shows that correlated far-field and near-field characterization techniques will be 

especially important as vdW heterostructures are explored and engineered with nanoscale 

precision. 

 

Experimental Section  

Number of Samples: We used a total of four different h-BN flakes for this publication: For one 

helium and one neon ion sample, we performed four different dosages (1,000 pC/cm, 10,000 

pC/cm, 20,000 pC/cm, and 40,000 pC/cm). For the helium ion sample found in the SI, we 

performed 4 different pitches (30 nm, 20 nm, 10 nm, and 5 nm). Lastly, we preformed one large-

area 400 μm2 sample at 2,000 pC/cm with neon which was studied via both Raman spectroscopy 

and scanning probe microscopy. Additionally, this study chose to focus on a single large-area 

sample for multi-characterization because to the authors’ knowledge no publication to date on 

2D material nanopatterning has presented a complete end-to-end study using several 

characterization techniques to confirm light-matter interaction effects after ion beam 

nanopatterning. The neon ion beam patterning process was not the limiting factor since it took 
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approx. one hour to complete the 400 μm2 grating. In this case, each large area scan with Raman, 

high-resolution AFM, photo-thermal, and s-SNOM required long acquisition times (8-12 hours) 

and several sessions to take reliable data with high enough resolution. 

 

Sample Preparation: Silicon wafers with a 285-nm-thick thermal oxide were used as substrates 

for all samples. The substrates were cleaned with O2 plasma using a Plasma-Preen system 

(Plasmatic Systems, Inc.) for 30 seconds before any h-BN flakes were mechanically exfoliated 

onto the substrate. The h-BN flakes were exfoliated from bulk samples synthesized under high 

pressure as previously reported by Watanabe, K. et al. After exfoliation, the samples were 

annealed in 1:1 ratio O2/Ar mixture at 500 ºC for 4 hours to remove organic contamination 

remaining from the exfoliation process. To avoid organic contamination from ambient air, 

samples were cleaned with O2 plasma at 30 W for 30 seconds immediately before they were 

placed in the ORION NanoFab. We note that without the last O2 plasma cleaning step, carbon 

deposition was seen on other samples where the exposed region of the h-BN crystal was 

patterned with either helium or neon ions. 

 

Helium and Neon Ion Patterning: Ion beam patterning was performed at the Carl Zeiss Ion 

Microscopy Innovation Center (IMIC) using a commercial ORION NanoFab system. An ion 

dosage sweep was conducted with a computer-generated grating pattern. The helium ion beam 

patterning was done at 30 keV using a 5 mm working distance, 5 μm aperture, spot size of 4.10, 

and a beam current of 1 pA. The grating patterns were written using a single line using a 0.5 nm 

pixel. The dosage was varied from 1,000-40,000 pC/cm and the pitch was varied from 30 nm-5nm 

(smaller pitches in SI, Figure S1). 
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The neon ion beam patterning was done at 25 keV using a 5 mm working distance, 10 μm aperture, 

spot size of 4.00, and a beam current of 1 pA. The grating patterns were written using a single line 

using a 0.5 nm pixel. The dosage was varied from 1,000-40,000 pC/cm and the pitch was varied 

between 30 nm and 35 nm depending on the specific pattern. 

 

Monte Carlo Simulations of Ion Beam Interaction: The ion beam interactions with the sample were 

calculated with 100 simulated ions using the SRIM software package (http://www.srim.org/). The 

helium ion case was calculated using the following structure schematic: 56.5 nm of h-BN (top), 

285 nm SiO2 (middle), and Si substrate (bottom). The neon ion case was calculated using the 

following structure schematic: 45 nm of h-BN (top), 285 nm SiO2 (middle), and Si substrate 

(bottom).  

 

Atomic Force Microscopy: Initial atomic force microscopy was done with a Veeco Dimension 

3100 AFM and BudgetSensors TAP300AL-G-10 Silicon AFM probe with a 10 nm tip radius. 

Secondary verification of the pitch and mill depth of the 400 μm2 h-BN grating was done with a 

Nanosensors SSS-FMR AFM probe with a 5 nm tip radius in the Veeco 3100 and an Olympus 

AC240BSA-R3 probe with a 7 nm tip radius and 7:1 tip aspect ratio in an Asylum Research Cypher 

S.  The gratings were scanned in the direction perpendicular to the patterned lines. We highlight 

that the high-resolution tips were necessary to reach the bottom of the etched features. Analysis 

was done with WSXM[60] freeware. 
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Raman Spectroscopy: Raman spectroscopy was done using a HoribaLab Raman system operating 

at room temperature with a 532 nm laser working at 100% power (~50 mW) with an Olympus 

long working distance (LWD) 50x objective (0.50 NA), 1800 gr/mm grating, and a 500 μm pin 

hole. The 26 x 26 point Raman map was done with a 1 μm point-to-point pixel distance, 2 

accumulations per point to reduce noise, and a 30 second acquisition time per point. The laser spot 

size through the microscope objective was calculated as 1.22 λ / NA = 1.30 μm. 

 

Photo-thermal Spectroscopy and Imaging: Near field photo-thermal (absorption) measurements 

were conducted using an Anasys nanoIR2-S. The optical parametric oscillator has a 10 ns pulse 

width and a 1 kHz fixed repetition rate. It is estimated that the system never exceeds an illumination 

power of 175 microwatts at the sample. The illuminated sample area can be estimated to be tens 

of microns in diameter since the light is focused on the sample by a low NA parabolic mirror at 

70º from the vertical. Therefore, we do not expect to have enough power to measure any nonlinear 

optical properties. The amplitude of the induced mechanical oscillations on the AFM cantilever 

was monitored at 170 kHz (with a bandwidth of 50 kHz). The oscillations of the cantilever (and 

subsequent ring down) were analyzed by a Fast Fourier Transform to obtain all frequencies of 

oscillation. The photo-thermal spectrums were collected within the range of 900-2000 cm-1 with a 

resolution of 4 cm-1.  

 

Scattering-type Scanning Near-field Optical Microscopy: The infrared nano-imaging experiments 

described in the main text were performed using a scattering-type scanning near-field optical 

microscope (s-SNOM). The s-SNOM is a commercial system (www.neaspec.com) based on a 

tapping-mode atomic force microscope (AFM). In the experiments, we use a commercial AFM tip 
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(tip radius ~10 nm) with a PtIr coating. The AFM tip is illuminated by monochromatic quantum 

cascade lasers (QCLs) (www.daylightsolutions.com), covering a frequency range of 

900 – 2400 cm-1 in the mid-infrared. The s-SNOM nano-images were recorded by a pseudo-

heterodyne interferometric detection module with an AFM tapping frequency of 270 kHz and 

tapping amplitude around 70 nm. To subtract the background signal, the s-SNOM output signal 

was demodulated at the third harmonic of the tip tapping frequency. 

 

Supporting Information 

Supporting information (SI) for AFM scans and photo-thermal spectroscopy and imaging is 

included. 
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Figure 1. Hexagonal boron nitride (h-BN) ion beam nanopatterning. a) Schematic of ion 
bombardment and nanoscale patterning. b) Optical micrograph of an example h-BN flake after 
ion beam patterning (dashed white box contains dosage test area). c-f): Atomic force 
microscope scans (topography) of helium ion dosages at 30 keV. The array of patterned lines 
in each dosage test goes from left to right. Each line is etched from top to bottom. The horizontal 
artifacts in each scan are instrument noise. c) 1,000 pC/cm. d) 10,000 pC/cm. e) 20,000 pC/cm. 
f) 40,000 pC/cm. The helium dosages between 20,000 and 40,000 pC/cm clearly defined the 
pattern (highlighted with the blue boundary). g-j): Atomic force microscope scans of neon ion 
dosages at 25 keV. g) 1,000 pC/cm. h) 10,000 pC/cm. i) 20,000 pC/cm. j) 40,000 pC/cm. Neon 
dosages between 1,000 and 10,000 pC/cm clearly defined the pattern without undesired surface 
ripples and roughness (highlighted with the blue boundary).  
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Figure 2. Monte Carlo simulations of ion trajectories. Simulations comparing the range and 
trajectory of a) 30 keV He+ ions in 56.5 nm-thick h-BN and b) 25 keV Ne+ ions in 45 nm-thick 
h-BN on top of the SiO2 substrate. c-d) Atomic distributions for each simulation provide the 
number of ions that undergo recoil at a specific target depth. When comparing the plots, the Ne+ 
ion causes over 10 times more boron and nitrogen ions to undergo recoil throughout the sample 
which is consistent with the dosage tests performed.  
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Figure 3. h-BN grating with optimal neon dosage. a) Optical micrograph of a 400 μm2 h-BN 
grating fabricated via neon ion beam patterning at 25 keV. The difference in optical contrast is due 
to a gradient in height which was created by patterning the crystal step edges found in the exposed 
region. b-c) AFM scans of the h-BN grating. There are two distinct regions in the grating with 
different average thicknesses and standard deviations measured for the nanostructure heights. b) 
100 μm2 scan of bottom right corner in Figure 3a denoted by the white dashed box (scanned with 
a standard AFM tip radius of 10 nm). c) 1 μm2 scan of the milled pattern in the thinner region of 
the grating (scanned with a high-resolution AFM tip radius of 7 nm). d) Cross-section of the entire 
grating which is represented by the blue dashed line in Figure 3a. e) Cross-section of the 1 μm2 

scan in the thinner region confirming a pitch of 35 nm, a mill depth between 6-8 nm, and a 
nanostructure width of ~20 nm. 
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Figure 4. Raman spectroscopy and Raman maps. a) Raman spectrum comparing three regions 
of the sample: thinner region, thicker region, and non-patterned. The corresponding positions for 
spectra 1-3 are labeled on the Raman maps in c-d. The peaks identified are the h-BN optical phonon 
mode at 1366 cm-1, third order silicon TO phonon at 1450 cm-1, and ambient oxygen at 1556 cm-

1. b) Plot comparing the Raman spectra inside the thinner and thicker region of the grating. c-d) 
Raman maps showing the value of the integrated area under the peaks found within the ranges 
1335-1395 cm-1 and 1420-1480 cm-1. All maps are normalized to the maximum counts found 
within each wavenumber range. c) Intensity map of the h-BN phonon peak found within 1335-
1395 cm-1. d) Intensity map of the silicon TO phonon peak found within 1420-1480 cm-1.  
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Figure 5. Photo-thermal infrared spectroscopy and imaging. a) Schematic of the photo-thermal 
illumination/detection system. b) AFM image with the location of photo-thermal (absorption) 
spectra taken. c) Photo-thermal spectra taken from four different locations along the thinner region 
of the h-BN grating, showing a strong SiO2 absorption peak at ~1084 cm-1. d) Photo-thermal 
spectra taken from four different locations along the thicker region of the h-BN grating, showing 
a strong and broad h-BN absorption peak at ~1368 cm-1. e) AFM image of the top right corner of 
the h-BN grating indicated by the white dashed box in Figure 5b. f) Photo-thermal image of the 
top right corner at ~1368 cm-1. g) Photo-thermal image of the same region at 1600 cm-1. No photo-
thermal contrast was detected, indicating no absorption or mechanical expansion. 
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Figure 6. Scattering-type Scanning Near-field Optical Microscopy (s-SNOM). a) 28 x 28 μm2 

topography scan taken of the entire grating structure. b) s-SNOM image taken at 1368 cm-1. The 
thicker region of the grating scatters more light than the thinner region. c) s-SNOM image taken at 
1425 cm-1. Propagating hyperbolic phonon polaritons are seen in the non-patterned regions of the 
sample. d) 9 μm2  topography scan, region highlighted by the white box in Figure 6a. e) 9 μm2 s-
SNOM image taken at 1368 cm-1. f) 9 μm2 s-SNOM image taken at 1425 cm-1. 
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Photo-thermal microscopy measures the near-field absorption of nanostructured hexagonal 

boron nitride (h-BN) and reveals a large photo-thermal expansion in the nanostructures. This 

effect is attributed to the anisotropy of the thermal expansion coefficients of h-BN and the 

nanostructuring implemented. The photo-thermal expansion should be present in other van der 

Waals materials and may lead to nanomechanical switches driven by light. 
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