

MIT Open Access Articles

Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Cui, Fangfang et al. "Epitaxial growth of large-area and highly crystalline anisotropic $ReSe_2$ atomic layer." Nano Research 10, 8 (August 2017): 2732-2742 © 2017 Tsinghua University Press and Springer-Verlag Berlin Heidelberg

As Published: http://dx.doi.org/10.1007/s12274-017-1477-7

Publisher: Springer Nature

Persistent URL: https://hdl.handle.net/1721.1/121436

Version: Author's final manuscript: final author's manuscript post peer review, without

publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

Epitaxial growth of large-area and highly crystalline anisotropic ReSe₂ atomic layer

Fangfang Cui¹, Xiaobo Li¹, Qingliang Feng², Jianbo Yin², Lin Zhou³, Dongyan Liu¹, Kaiqiang Liu^{1,4}, Xuexia He¹, Xing Liang¹, Shengzhong Liu¹, Zhibin Lei¹, Zonghuai Liu¹, Hailin Peng², Jin Zhang², Jing Kong³, and Hua Xu¹ (\bowtie)

- ¹ Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
- ² Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- ³ Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- ⁴ School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China

Received: 24 November 2016 Revised: 29 December 2016 Accepted: 5 January 2017

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

KEYWORDS

rhenium diselenide (ReSe₂), epitaxial growth, high crystal quality, anisotropy, optoelectronics

ABSTRACT

The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe₂) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic devices. However, because of its low lattice symmetry and interlayer decoupling, anisotropic growth and out-of-plane growth occur easily, yielding thick flakes, dendritic structure, or flower-like structure. In this study, we demonstrated a bottom-up method for the controlled and scalable synthesis of ReSe₂ by van der Waals epitaxy. To achieve controllable growth, a micro-reactor with a confined reaction space was constructed by stacking two mica substrates in the chemical vapor deposition system. Within the confined reaction space, the nucleation density and growth rate of ReSe2 were significantly reduced, favoring the large-area synthesis of ReSe₂ with a uniform monolayer thickness. The morphological evolution of ReSe₂ with growth temperature indicated that the anisotropic growth was suppressed at a low growth temperature (<600 °C). Field-effect transistors employing the grown ReSe₂ exhibited p-type conduction with a current ON/OFF ratio up to 10⁵ and a hole carrier mobility of 0.98 cm²/(V·s). Furthermore, the ReSe₂ device exhibited an outstanding photoresponse to near-infrared light, with responsivity up to 8.4 and 5.1 A/W for 850- and 940-nm light, respectively. This work not only promotes the large-scale application of ReSe₂ in high-performance electronic devices but also clarifies the growth mechanism of low-lattice symmetry 2D materials.

2 Nano Res.

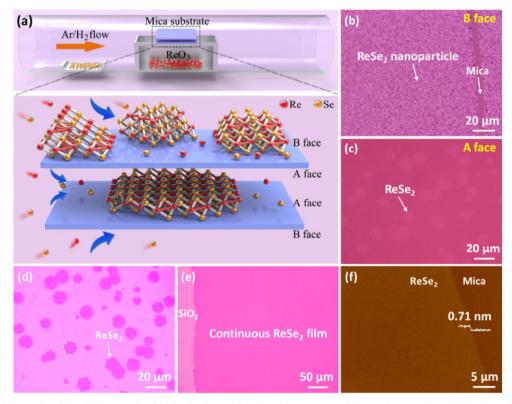
1 Introduction

Recently, Re-based dichalcogenide materials of the form ReX_2 (X = S, Se), which are relatively unexplored transition-metal dichalcogenides (TMDs), have attracted considerable attention because of their unique structure and properties [1–5]. ReX₂ materials, such as rhenium disulfide (ReS₂) and rhenium diselenide (ReSe₂), have a distorted octahedral (1T) crystal structure, resulting from the stabilization of the extra valance electron in each Re atom [6]. The Re atoms within a monolayer form clusters of four Re atoms and interlink in diamondshaped (DS) chains, yielding considerable anisotropy in the electrical and optical properties [2, 7, 8]. The superior anisotropic properties of ReX2 materials, which are similar to those of black phosphorus, endow them with great potential in novel electronic devices [9–13]. Furthermore, unlike WS₂ and MoS₂, the ReX₂ layers are charge-decoupled from each other because of the Peierls distortion in the 1T structure of ReX₂, preventing ordered stacking and minimizing the interlayer overlap of the wave functions [1]. Recently, few-layer ReX2 sheets, which exhibit distinct optical and electrical behaviors from group VI TMDs, have been demonstrated as field-effect transistors (FETs), digital inverters, and photodetectors [9, 14–20].

In particular, the narrow bandgap (1.29 eV) and p-type conduction features of ReSe₂, which are rare in most TMDs, are highly desired for electronic and optoelectronic devices. However, to date, most fundamental investigations of ReSe₂ have been largely based on mechanically exfoliated layers synthesized via complex chemical vapor transport [9, 21]. Unfortunately, this method does not allow the controllable and high-throughput manufacturing of two-dimensional (2D) materials. The scalable and controllable deposition of large-area ReSe2 atomic layers is essential for further research and applications. Chemical vapor deposition (CVD) is an efficient approach for the scalable synthesis of high-quality 2D TMDs [22-24]. However, owing to its unusual structure and properties, ReSe₂ is more difficult to fabricate than traditional TMDs such as MoS₂ and WS₂. For example, the distorted 1T structure and the weaker interlayer coupling of ReX₂ can easily cause anisotropic growth and out-of-plane growth; thus, thick-flake, dendritic, and flower-like structures have been largely observed for CVD-synthesized ReS₂ [4, 25, 26]. In the case of 2D ReSe₂, the lower chemical reactivity of Se makes it difficult to synthesize; hence, its preparation has been rare. Recently, Zhai et al. for the first time fabricated ReSe₂ using CVD [27], growing highly crystalline ReSe₂ flakes on a SiO₂/Si substrate. This was a pioneering work in the synthesis of ReSe₂. Currently, the domain size, thickness, and morphology of the ReSe₂ are uncontrollable. Moreover, our understanding of the mechanisms underlying the unusual behavior and the low lattice symmetry of ReSe₂ is lacking, which is important for its controlled growth.

In this study, we demonstrated an effective bottom-up method for the controlled and scalable synthesis of large-area, high-quality ReSe₂ film with uniform monolayer thickness via van der Waals epitaxy. Volatile rhenium trioxide (ReO₃) was used as Re precursor to ensure the growth efficiency, and mica with a low surface energy was used as the substrate to realize the epitaxy growth. To achieve controllable growth, a micro-reactor was constructed by stacking two mica substrates in the CVD system, which reduced the nucleation density and growth rate of ReSe2. Additionally, the weak van der Waals interaction between the atomic flat surface of mica and the adatoms (ReSe₂ cluster) favored the epitaxial growth. The synergy of the confined reaction space with the epitaxial growth contributed to the large-area synthesis of low-lattice symmetry ReSe₂ with uniform monolayer thickness. Furthermore, the nucleation density of the ReSe₂ was modulated by introducing moderate amounts of H₂ as a carrier gas, which not only controlled the vapor pressure of the Re source through modulation of its valence state but also enhanced the low chemical reactivity of Se. The morphological evolution of ReSe₂ with respect to the growth temperature suggested that the anisotropic growth was suppressed at a low growth temperature (<600 °C). Angle-resolved polarized Raman spectroscopy indicated the superior optical anisotropic properties of the grown ReSe₂. FETs employing the grown monolayer ReSe₂ exhibited p-type conduction with a current ON/OFF ratio up to 105 and a hole carrier mobility of 0.98 cm²/(V·s), measured under ambient conditions. Moreover, the ReSe₂ device exhibited an outstanding photoresponse

to near-infrared (NIR) light, with responsivity up to 8.4 and 5.1 A/W for 850- and 940-nm light, respectively. Because of its high crystallinity, superior anisotropy, and controllable growth, ReSe₂ has great potential for applications in future electronic, optoelectronic, and new-concept devices.


2 Results and discussion

To synthesize the monolayer ReSe₂ film, ReO₃ and Se powder were introduced as Re and Se precursors, respectively, in a single-zone furnace, as schematically shown in Fig. 1(a). A mixture of Ar (80 sccm) and H₂ (1 sccm) was used as the carrier gas. The typical growth temperature and growth time were 600 °C and 3 min, respectively. ReO₃ is a far better Re precursor for growing ReSe₂ than metal Re (high melting point of 3,180 °C) and NH₄ReO₄ (yields a low crystal quality)—which were previously used for growing ReS₂ [25, 28]—and can ensure a high growth efficiency and

high crystal quality with a low growth temperature. However, using ReO₃ as Re precursor to grow ReSe₂ introduces a serious problem. When the temperature is increased above 400 °C, the ReO₃ begins to decompose into Re₂O₇ (sublimes easily) and ReO₂ (less volatile) through the following disproportionation reaction, as shown in Fig. S1 in the Electronic Supplementary Material (ESM).

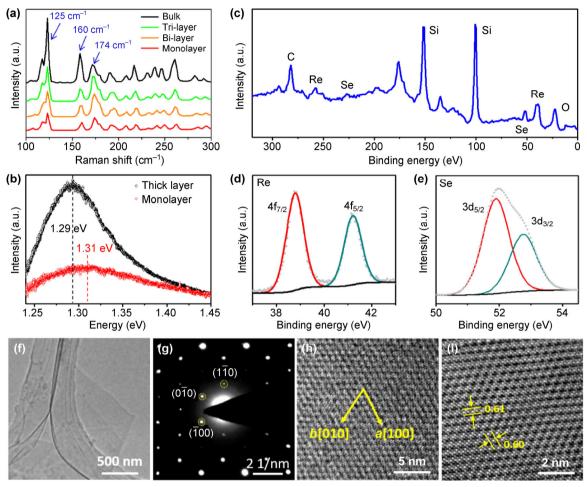
$$3ReO_3 \rightarrow Re_2O_7 + ReO_2 \tag{1}$$

The extremely high volatility of Re₂O₇ (melting point of 220 °C and boiling point of 360 °C) yields superabundant nucleation sites during the growth process, causing the growth of a thick film composed of dense ReSe₂ dots on the substrate (Fig. 1(b)). To solve this problem, two pieces of freshly exfoliated mica were tightly stacked, forming a confined reaction space, and then placed above the ceramic boat (see details in Experimental section). We defined the inside surface of the mica as the A face and the top and

Figure 1 (a) Schematic of the CVD growth of ReSe₂ in the confined reaction space and the surface reaction during the epitaxial growth of the ReSe₂ atomic layer on mica. Optical microscopy (OM) images of ReSe₂ grown on (b) the B face and (c) the A face of a mica substrate. (d) and (e) Optical images of ReSe₂ grown on the A face, after it was transferred onto a SiO₂/Si (300 nm) substrate. (f) AFM image of the as-grown ReSe₂ on a mica substrate.

bottom surfaces, which were exposed to the outside, as the B face. The ReSe₂ grown on the B face (Fig. 1(b)) and A face (Fig. 1(c)) of the mica substrate exhibited obvious differences.

As shown in Fig. 1(a), when two pieces of mica were joined tightly, the small crevice between the two mica substrates functioned as a micro-reactor for the growth of ReSe2. The micro-reactor played a spaceconfinement role, decreasing the concentration of precursors and thus decreasing the nucleation density and growth rate of ReSe₂. As a result, a large-scale ReSe₂ film with domain size up to 20 µm grew on the A faces (Fig. 1(c)), and a continuous monolayer ReSe₂ film was synthesized (Fig. 1(e) and Fig. S2 (in the ESM)) when the growth time was extended to 10 min. Atomic force microscopy (AFM) revealed that the grown ReSe₂ film had a thickness of ~0.71 nm, demonstrating a uniform monolayer [21]. When several pieces of mica were stacked together to form a multilayer-sandwich structure as the growth substrate, a uniform monolayer ReSe₂ film grew on the A face of each piece of mica, indicating the scalable growth of the ReSe₂ film.


We also synthesized ReSe₂ on a SiO₂/Si substrate using the same approach but obtained only flower-like structures (indicating out-of-plane growth) or thick flakes grown on the substrate, as shown in Fig. S3 in the ESM. These are typical features of low-lattice symmetry 2D materials (such as ReS₂), according to recent studies [4, 25, 26]. The obvious differences in the thickness and morphology between products grown on mica and those grown on SiO₂ substrates are attributed to the variation of the migration barrier energy ($E_{\rm m}$) and the substrate–adatom interaction. The $E_{\rm m}$ of adatoms on SiO₂ surface is far larger than that on mica because of the stronger interaction between the adatoms and the SiO₂ substrate, which has numerous unsaturated dangling bonds [29]. The migration coefficient D is related to E_m as follows

$$D \propto e^{-E_{\rm m}/kT} \tag{2}$$

where k is the Boltzmann constant, and T is the substrate temperature [29]. The migration coefficient for the SiO₂ surface is far lower than that for mica with the same growth temperature and time. Hence, the atomically flat surface of mica facilitated precursor

migration during the CVD growth, improving the thickness uniformity of the resulting ReSe₂ layer. Additionally, the weak van der Waals interaction between the mica surface and the ReSe₂ clusters plays a surface-confinement role during the growth process [29, 30], which can efficiently suppress the out-of-plane growth (see detail discussion in S3 in the ESM). Therefore, the combination of space-confined and surface-confined CVD growth is crucial for the controlled fabrication of low-lattice symmetry ReSe₂ materials.

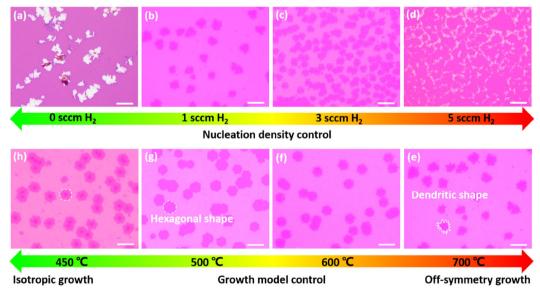
The Raman spectra of as-grown monolayer, bi-layer, tri-layer, and bulk ReSe₂ samples were collected using a 532-nm excitation laser (Fig. 2(a)). A series of Raman modes occupied the frequency range of 100 to 300 cm⁻¹, which well matches the spectra for mechanically exfoliated ReSe₂ samples [10, 21]. The characteristic Raman peak at 125 cm⁻¹ corresponds to an E_g-like mode, and the peaks at 160 and 174 cm⁻¹ correspond to A_g-like modes. Notably, the Raman spectra show a slightly sensitivity to the layer number because of the interlayer decoupling of the ReSe₂ [21, 31]. Photoluminescence (PL) measurements were performed to determine the bandgap of the grown ReSe₂ film (Fig. 2(b)). From bulk to monolayer ReSe₂, the energy position of the PL shifted slightly from 1.29 to 1.31 eV, indicating that the bandgap of ReSe₂ increased as the number of layers decreased. This is because thinning the flake did not enhance the quantum confinement of the electrons in the system, and neighboring monolayers in the flake were largely electronically decoupled [1, 10]. Additionally, owing to the indirect-bandgap nature of ReSe₂, the peak intensity was relatively weak for the monolayer ReSe₂ and increased monotonically as layers increasing [10]. These spectral features of the CVD-grown ReSe₂ exhibit stark contrast to the typical behavior of Moand W-based TMDs, where the PL intensity of the monolayer is enhanced by orders of magnitude as a result of the crossover from the indirect bandgap in the bulk material to the direct bandgap in monolayers [32]. Furthermore, the CVD-grown ReSe₂ had strong optical anisotropic properties, as indicated by the angle-resolved polarized Raman spectra (see below). Owing to its narrow bandgap and unusual anisotropy, ReSe₂ has great potential for application in future Nano Res.

Figure 2 Characterization of the composition and structure of the CVD-grown ReSe₂ film. (a) Raman and (b) fluorescence spectra of as-grown ReSe₂ with different numbers of layers (excitation wavelength 532 nm). (c) Full XPS spectra of the grown ReSe₂ sample. (d) and (e) Detailed XPS signals of the Re 4f and Se 3d spectra, respectively. (f) Low-resolution TEM image of the ReSe₂ supported on a TEM grid. (g) SAED patterns and (h) HRTEM image of the ReSe₂. (i) Fast Fourier transform-filtered image of the ReSe₂ shown in (h).

optoelectronic devices, such as photodetectors for NIR or polarized light.

X-ray photoemission spectroscopy (XPS) was performed to confirm the elemental composition and bonding of the grown ReSe₂ samples. Five elements are represented in the spectra (Fig. 2(c)): the signals of Re and Se come from the ReSe₂ samples, those of Si and O come from SiO₂ substrate, and that of C comes from the poly(methyl methacrylate) (PMMA) residue generated during the wet transfer process. Detailed information regarding the Re and Se signals is presented in Figs. 2(d) and 2(e), respectively. The core-level peaks corresponding to the Re 4f_{7/2} and 4f_{5/2} are located at ~38.8 and ~41.2 eV, respectively. The Se 3d peak around 52.0 eV can be divided into Se 3d_{5/2}

and Se 3d_{3/2}, which have peak positions of ~51.9 and ~52.8 eV, respectively. These features are consistent with the XPS spectra for the ReSe₂ bulk crystal. Additionally, the ratio of nearly 1:2 of Re to Se suggests that the CVD-grown ReSe₂ was reasonably stoichiometric.


To further analyze the crystallographic structure of the grown ReSe₂, we performed high-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED) by transferring ReSe₂ onto a TEM grid. Figure 2(f) shows a low-magnification TEM image of the ReSe₂ film, in which a clean and uniform membrane is observed. The SAED patterns clearly resolve the a[100] and $b[1\bar{1}0]$ orientations of the distorted 1T crystal, suggesting that

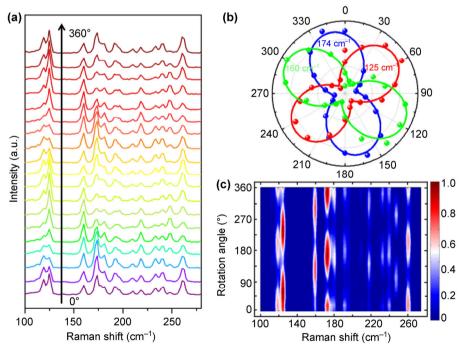
6 Nano Res.

our ReSe₂ is of high quality (Fig. 2(g)). The HRTEM image in Fig. 2(h) shows a clear lattice fringe with interplanar distances of 0.61 and 0.60 nm between the two vicinal DS chains in the directions of b and a (Fig. 2(i)), respectively.

Usually, the lower chemical reactivity of Se makes Se-based TMDs more difficult to synthesize than S-based TMDs [26]. Moreover, as previously illustrated, the ReO₃ tends to be disproportionate to the volatile Re₂O₇, which complicates the synthesis of ReSe₂. We improved and modulated the growth of the ReSe2 crystals by tuning the H₂ content in the carrier gas (Fig. 3). When ReSe₂ was grown without H₂, the oversaturated Re₂O₇ vapor in the reactor caused an excessive growth rate, leading to large, thick flakes (Fig. 3(a)). In contrast, when a small amount of H₂ (1 sccm) was introduced into the growth system, a monolayer ReSe₂ film was be obtained (Fig. 3(b)) owing to the reduction of the volatile Re₂O₇ into the lowervalence state ReO_{3-x}. On the other hand, H₂ can enhance the chemical reactivity of Se by reducing it into H₂Se [33-36]. As a result, the nucleation density of the ReSe₂ increased significantly with the increase of the H_2 content (Figs. 3(b)–3(d)). Of course, excessive H_2 (>10 sccm) decreased the growth efficiency of the ReSe₂ because the volatile Re_2O_7 was completely reduced into less-volatile ReO_2 or Re, as shown in Fig. S4 in the ESM. Therefore, introducing an appropriate amount of H_2 is important for controlling the thickness and nucleation density of $ReSe_2$.

Notably, the morphology of ReSe₂ differed significantly according to the growth temperature, changing from a regular hexagon at low temperatures to an irregular dendritic shape at high temperatures (Figs. 3(e)-3(h)). The dendritic morphology of the ReSe₂ indicates the anisotropic growth, which is a typical growth feature of low-lattice symmetry 2D materials and is attributed to the anisotropic interfacial energy induced by the distorted 1T structure [28]. The temperature-modulated morphological evolution is explained by the temperature-dependent migration coefficient of the adatoms on the substrate (see Eq. (2)) [37]. At high growth temperatures, the large migration energy of the adatoms caused them to freely diffuse on the surface of the substrate, and they tended to attach to the ReSe2 edge (or crystal axis) with a favorable energy. In this case, the fast atomic diffusion apparently caused the anisotropic growth, yielding the irregular dendritic morphology of the ReSe₂. In contrast, at low growth temperatures, because of the

Figure 3 Control of the nucleation density and morphology of $ReSe_2$ by modulating the H_2 concentration and growth temperature. (a)–(d) OM images of the $ReSe_2$ film grown using the mixture of Ar (80 sccm) and H_2 as a carrier gas with H_2 flow rates of (a) 0, (b) 1, (c) 3, and (d) 5 sccm. (e)–(h) OM images of $ReSe_2$ grown at (e) 700, (f) 600, (g) 500, and (h) 450 °C, at an H_2 flow rate of 1 sccm. All of these OM images were measured for samples transferred from mica onto SiO_2/Si (300 nm). The scale bar represents 20 μ m. The growth time was 3 min for all of these experiments.


slow atomic diffusion and the inhibited attachment and detachment of the adatoms at the ReSe₂ edges, the ReSe₂ grew at different edges with nearly the same rate; thus, the anisotropic growth was suppressed. Our results indicate that the anisotropic growth of ReSe₂ was significantly reduced at low temperatures (<600 °C), yielding materials with a regular morphology. Recent studies on the growth of Re-based TMDs showed that there are sub-domains in its crystal structure and that the Re chain direction changes from one sub-domain to another [7, 27, 38]. According to these studies, the hexagon ReSe2 domain should be composed of six sub-domains, which is similar to that of recently reported CVD-grown ReS₂ [38]. Furthermore, the Raman spectra of ReSe₂ grown at different temperatures indicate that high-quality ReSe₂ was obtained over the entire temperature range, as shown in Fig. S5 in the ESM. Therefore, the growth temperature played an important role in controlling the morphology of ReSe₂.

For revealing the optical anisotropy of the CVD-grown ReSe₂, the Raman scattering response for linearly polarized excitation (532 nm laser with *x*-direction

polarization) was examined. The measurements were performed by varying the polarization direction (θ) of the incident laser from 0° to 360° with 10° steps. Figure 4(a) depicts the evolution of the Raman spectrum with respect to θ . Here, we observe that the peak intensity of each Raman mode varied significantly with a period of 180°, and the peak positions remained unchanged. This dependence is clearly observed in the polar plots (Fig. 4(b)) and the 2D mapping (Fig. 4(c)) of the peak intensity with respect to the rotation angle of the laser polarization direction. The intensity of the Raman mode of ReSe₂ under polarized incident light is theoretically calculated as follows

$$I \propto |a\cos\theta + d\sin\theta|^2 + |d\cos\theta + b\sin\theta|^2$$
 (3)

where a, b, and d are the values determined by the vibration of each Raman mode [10]. Figure 4(b) shows the plots of the peaks at 125, 160, and 174 cm⁻¹, which well match the calculation results. Because modifying the relative angle between the laser polarization direction and the crystal orientation results in the variation of the Raman intensities, we

Figure 4 Angle-dependent polarized Raman spectra of the grown ReSe₂. (a) Polarized Raman spectra with respect to the rotation angle (θ) of the laser polarization direction. (b) Polar plots for the ReSe₂ modes corresponding to peak intensities of 125 cm⁻¹ (red line), 160 cm⁻¹ (green line), and 174 cm⁻¹ (blue line) with respect to θ . (c) 2D mapping of the Raman spectra with respect to the rotation angle θ (intensity is normalized with respect to the strongest peak at 125 cm⁻¹).

can utilize polarization-resolved Raman measurements to identify the crystal orientation of the CVD-grown ReSe₂.

Transport measurements were performed to characterize the electrical and photoelectric properties of our CVD-grown ReSe₂ film. Figure 5(a) shows a schematic of an FET device made from the ReSe₂ film. The linear source-drain current–voltage ($I_{\rm ds}$ – $V_{\rm ds}$) characteristic suggests that Ohmic contacts were formed between the Cr/Au metal pads and ReSe₂ (Fig. 5(b)). The ReSe₂ device exhibited p-type conduction with a current ON/OFF ratio up to 10^5 and a threshold voltage of -10 V (Fig. 5(c)). According to the equation for the carrier mobility

$$\mu = \frac{L}{WV_{\rm ds}C_{\rm g}} \cdot \frac{\mathrm{d}I_{\rm ds}}{\mathrm{d}V_{\rm g}} \tag{4}$$

where L, W, C_g , and V_g represent the channel length, channel width, gate capacitance per unit area, and gate voltage, respectively; the field-effect hole mobility of this ReSe₂ FET was calculated to be 0.98 cm²/(V·s).

The mobility of the CVD-grown ReSe₂ was lower than that of the exfoliated samples (9.78 cm²/(V·s)) but exhibited great improvement over that of a recently reported CVD-grown sample $(1.36 \times 10^{-3} \text{ cm}^2/(\text{V} \cdot \text{s}))$ [27]. Importantly, early reports of CVD-grown ReS₂ and MoS₂ also indicated relatively low mobilities, but the mobility increased with further study and optimization of the growth conditions. The grain boundary between the sub-domains of ReSe₂ may be one reason for the mobility decrease and can be improved via the controlled growth of single-crystal ReSe₂. Furthermore, the ReSe₂ device exhibited an outstanding photoresponse to NIR light (Fig. 5(d)), with responsivity up to 8.4 and 5.1 A/W for 850 and 940 nm light, respectively. It had a fast photoresponse, with photocurrent rise and decay stage times up to the millisecond level (Fig. S6 in the ESM). These results are comparable to those of mechanically exfoliated ReSe₂ flakes (responsivity: 55.5 A/W at 633 nm), indicating the high crystal quality of our grown material [16, 39]. The p-type conduction and narrow bandgap of ReSe₂, which are rare in most TMDs,

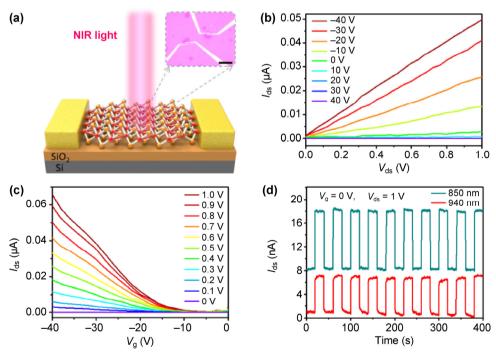


Figure 5 Electrical and photoelectrical properties of the device made from the CVD-grown ReSe₂ sample. (a) Typical OM image of the ReSe₂ device on a 300-nm SiO₂/Si substrate. The scale bar represents 20 μm. (b) I_{ds} vs. V_{ds} characteristics of our ReSe₂ FET device at various gate voltages. (c) I_{ds} vs. V_g curve for the same device at various values of V_{ds} . (d) I_{ds} vs. time when the device was illuminated with 850- and 940-nm light at an irradiance of 6.07 and 6.97 mW/cm², respectively. The measurement was performed at a constant V_{ds} (1 V) in ambient air, with a working device area of 19 μm².

endow it with great potential for application in future electronic and optoelectronic devices.

3 Conclusions

A large-area and highly crystalline ReSe₂ film with a uniform monolayer thickness was synthesized on mica substrates by van der Waals epitaxy. The constructed micro-reactor, which plays a space-confinement role to reduce the nucleation density and the growth rate of ReSe₂, is critical for the controlled growth of ReSe₂ with the volatile ReO₃ as Re precursor. The outof-plane growth and anisotropic growth of ReSe₂, which are serious problems in the preparation of low-lattice symmetry 2D materials, were suppressed by growing it on a low-surface energy substrate (mica) at a low temperature (450-700 °C). The angle-dependent polarized Raman spectra of the grown ReSe₂ confirmed its strong anisotropy. Moreover, the electrical and photoelectric properties of the grown ReSe₂ were comparable to those of mechanically exfoliated ReSe₂ flakes. Our research not only promotes the large-scale application of ReSe₂ in high-performance electronic devices but also clarifies the synthesis mechanism of low-lattice symmetry 2D materials.

4 Experimental

4.1 Growth and transfer of ReSe₂ monolayer

The CVD growth was performed in a single temperature-zone tubular furnace at the atmospheric pressure. Before the growth, ReO₃ powder (purity of 99.9%) and Se powder (purity of 99.99%) were placed at the center and the outside edge (~300 °C) of the hot zone, respectively. Two (or several) pieces of freshly cleaved fluorophlogopite mica substrate (1 cm2 in size) were stacked to form a micro-reactor, simply by placing one piece onto another. The electrostatic force between the two mica substrates caused them to adsorb together tightly. Then, the micro-reactor (stacked mica substrates) was placed onto a ceramic boat containing ReO₃ in the hot center of the tube furnace (Fig. 1(a)). A mixture of Ar (80 sccm) and H_2 (1–10 sccm) was used as the carrier gas during the whole growth process. The furnace temperature was increased to the growth temperature (450–700 °C) at a rate of 25 °C/min and then maintained for 3–10 min for the ReSe₂ growth. The as-grown ReSe₂ film was transferred onto a SiO₂/Si (300 nm) substrate via the PMMA-mediated transfer method. A hydrofluoric acid (20 wt.%) solution was used as the etchant to exfoliate the ReSe₂ film from the mica substrate.

4.2 Characterizations of epitaxial monolayer ReSe₂

The morphology and structure of the ReSe₂ film were examined using OM (Olympus BX51), AFM (Bruker Dimension ICON), Raman spectroscopy (Renishaw), and field-emission TEM (Tecnai G2 F20). A lacey C film supported on Cu grids was used for the TEM characterization, onto which the ReSe₂ layer was transferred via a method similar to that described in the previous paragraph. The composition of the ReSe₂ sample was confirmed by XPS (Kratos Analytical). The fluorescence spectra were measured using a homemade spectrometer. For angle-resolved polarized Raman measurements, a polarization analyzer was placed in the path of the incident laser to obtain the x-direction polarized light, and the polarized Raman spectra were obtained by rotating the laser polarization direction using a half-wave plate.

4.3 Device fabrication and electrical measurement

The monolayer $ReSe_2$ film was transferred onto a SiO_2/Si (300 nm) substrate. The device was fabricated using standard electron-beam lithography and liftoff procedures. Electrical contacts with the $ReSe_2$ sample were formed by the thermal evaporation of 5 nm of Cr and 50 nm of Au. The electrical and photoelectrical properties were measured using an Agilent B2912A source-meter unit in ambient air. Light-emitting diodes with wavelengths of 850 and 940 nm were used as the light source in the photoelectric measurements of the $ReSe_2$ device.

Acknowledgements

The authors acknowledge the insightful suggestions and comments from Dr. S. C. Zhang and N. N. Mao at Peking University. This work was supported by the National Natural Science Foundation of China (Nos.

51502167 and 21473110), and the fundamental Research Funds for the Central Universities (No. GK201502003), L. Z. and J. K. acknowledge the funding by the Center for Integrated Quantum Materials under NSF (No. DMR-1231319).

Electronic Supplementary Material: Supplementary material (thermogravimetric analysis of ReO₃, scalable growth of large-area ReSe₂ film by using space-confined CVD growth, substrate dependent growth behavior of ReSe₂, effect of hydrogen concentration on the ReSe₂ growth, Raman spectrum of ReSe₂ grown at different temperature, and photoresponse dynamic of ReSe₂ photodetector) is available in the online version of this article at http://dx.doi.org/10.1007/s12274-017-1477-7.

References

- [1] Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS₂ due to electronic and vibrational decoupling. *Nat. Commun.* 2014, 5, 3252.
- [2] Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe₂ and ReS₂. ACS Nano 2016, 10, 2752–2760.
- [3] Hart, L.; Dale, S.; Hoye, S.; Webb, J. L.; Wolverson, D. Rhenium dichalcogenides: Layered semiconductors with two vertical orientations. *Nano Lett.* 2016, 16, 1381–1386.
- [4] Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Largearea bilayer ReS₂ film/multilayer ReS₂ flakes synthesized by chemical vapor deposition for high performance photodetectors. *Adv. Funct. Mater.* 2016, 26, 4551–4560.
- [5] Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe₂ by nanoscale strain engineering. *Nano Lett.* 2015, 15, 1660– 1666.
- [6] Zhong, H. X.; Gao, S. Y.; Shi, J. J.; Yang, L. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS₂ and ReSe₂. *Phys. Rev. B.* 2015, 92, 115438.
- [7] Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS₂: Two-dimensional semiconductor with tunable in-plane anisotropy. *ACS Nano* 2015, 9, 11249–11257.
- [8] Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der

- Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS₂ probed by Raman spectroscopy and scanning transmission electron microscopy. *Nano Lett.* **2015**, *15*, 5667–5672.
- [9] Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS₂ field-effect transistors. *Nat. Commun.* 2015, 6, 6991.
- [10] Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. *Nano Res.* 2015, 8, 3651–3661.
- [11] Zhang, L. M.; Liu, K. H.; Wong, A. B.; Kim, J.; Hong, X. P.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.; Yang, P. D. Three-dimensional spirals of atomic layered MoS₂. *Nano Lett.* 2014, 14, 6418–6423.
- [12] Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. *Angew. Chem., Int. Ed.* 2015, 54, 2366–2369.
- [13] Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. *Nat. Nano* 2015, 10, 517–521.
- [14] Corbet, C. M.; McClellan, C.; Rai, A.; Sonde, S. S.; Tutuc, E.; Banerjee, S. K. Field effect transistors with current saturation and voltage gain in ultrathin ReS₂. *ACS Nano* **2015**, *9*, 363–370.
- [15] Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS₂. Adv. Funct. Mater. 2016, 26, 1169–1177.
- [16] Yang, S. X.; Tongay, S.; Yue, Q.; Li, Y. T.; Li, B.; Lu, F. Y. High-performance few-layer Mo-doped ReSe₂ nanosheet photodetectors. *Sci. Rep.* 2014, 4, 5442.
- [17] Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS₂ for weak signal detection. *Adv. Funct. Mater.* 2016, 26, 1938–1944.
- [18] Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS₂-based field-effect transistors and photodetectors. *Adv. Funct. Mater.* 2015, 25, 4076–4082.
- [19] Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe₂/MoS₂ p-n heterojunctions. *Nano Res.* 2016, 9, 507–516.

- [20] Liu, S. J.; Huang, L.; Wu, K. D.; Wei, Z. M.; Huang, B. J.; Meng, X. Q.; Tongay, S.; Liu, J.; Li, J. B.; Chen, H. D. Tuned polarity and enhanced optoelectronic performances of few-layer Nb_{0.125}Re_{0.875}Se₂ flakes. *Appl. Phys. Lett.* **2016**, 109, 112102.
- [21] Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe₂: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.
- [22] Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. *Acc. Chem. Res.* 2015, 48, 56–64.
- [23] Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. *J. Am. Chem. Soc.* 2012, *134*, 6132–6135.
- [24] Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS₂. J. Am. Chem. Soc. 2015, 137, 15632–15635.
- [25] He, X. X.; Liu, F. C.; Hu, P.; Fu, W.; Wang, X. L.; Zeng, Q. S.; Zhao, W.; Liu, Z. Chemical vapor deposition of high-quality and atomically layered ReS₂. Small 2015, 11, 5423–5429.
- [26] Gao, J.; Li, L.; Tan, J. W.; Sun, H.; Li, B. C.; Idrobo, J. C.; Singh, C. V.; Lu, T. M.; Koratkar, N. Vertically oriented arrays of ReS₂ nanosheets for electrochemical energy storage and electrocatalysis. *Nano Lett.* 2016, 16, 3780–3787.
- [27] Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe₂ flakes for anisotropic raman property and optoelectronic application. *Adv. Mater.* 2016, 28, 8296–8301.
- [28] Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS₂). Adv. Mater. 2015, 27, 4640–4648.
- [29] Wang, Q. S.; Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Safdar, M.; Zhan, X. Y.; Wang, F. M.; Cheng, Z. Z.; He, J. Van der waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. *Nano Lett.* 2015, 15, 1183–1189.

- [30] Jiang, Y.; Zhang, X.; Wang, Y.; Wang, N.; West, D.; Zhang, S. B.; Zhang, Z. Vertical/planar growth and surface orientation of Bi₂Te₃ and Bi₂Se₃ topological insulator nanoplates. *Nano Lett.* 2015, 15, 3147–3152.
- [31] Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe₂ nanosheets. *ACS Nano* **2016**, *10*, 8067–8077.
- [32] Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS₂. *Nano Lett.* 2010, 10, 1271–1275.
- [33] Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe₂ grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.
- [34] Mitioglu, A. A.; Galkowski, K.; Surrente, A.; Klopotowski, L.; Dumcenco, D.; Kis, A.; Maude, D. K.; Plochocka, P. Magnetoexcitons in large area CVD-grown monolayer MoS₂ and MoSe₂ on sapphire. *Phys. Rev. B.* 2016, 93, 165412.
- [35] Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and fewlayer MoSe₂ films on SiO₂ substrates. *Nano Lett.* 2014, 14, 2419–2425.
- [36] Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe₂. ACS Nano 2014, 8, 5125–5131.
- [37] Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS₂ atomic layers on mica substrate. *Adv. Mater.* 2016, 28, 5019–5024.
- [38] Wu, K. D.; Chen, B.; Yang, S. J.; Wang, G.; Kong, W.; Cai, H.; Aoki, T.; Soignard, E.; Marie, X.; Yano, A. et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS₂ monolayer films. *Nano Lett.* 2016, 16, 5888–5894.
- [39] Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B. S.; Li, S.; Li, J. B.; Wei, S. H. Layer-dependent electrical and optoelectronic responses of ReSe₂ nanosheet transistors. *Nanoscale* 2014, 6, 7226–7231.