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Abstract

The CMS detector is designed around a large 4 T superconducting solenoid, enclosed
in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required
for the accurate simulation and reconstruction of physics events in the CMS detector,
not only in the inner tracking region inside the solenoid but also in the large and com-
plex structure of the steel yoke, which is instrumented with muon chambers. Using
a large sample of cosmic muon events collected by CMS in 2008, the field in the steel
of the barrel yoke has been determined with a precision of 3 to 8% depending on the
location.

∗See Appendix A for the list of collaboration members
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1 Introduction
The Compact Muon Solenoid (CMS) [1] is a general-purpose detector whose main goal is to
explore physics at the TeV scale by exploiting the proton-proton collisions provided by the
Large Hadron Collider (LHC) [2] at CERN. Its distinctive features include a 4 T superconduct-
ing solenoid with a free bore of a diameter of 6 m and a length of 12.5 m, enclosed inside a
12 000-tonne yoke made of common structural steel [3]. The geometry of CMS is shown in
Fig. 1. The yoke is composed of five three-layered dodecagonal barrel wheels and three endcap
disks at each end. In the barrel region the innermost yoke layer is 295 mm thick and each of the
two outermost ones is 630 mm thick. The yoke contributes to only 8% of the central magnetic
flux density; its main role is to increase the field homogeneity in the tracker volume and to re-
duce the stray field by returning the magnetic flux of the solenoid. In addition, the steel plates
play the role of absorber for the four interleaved layers (“stations”) of muon chambers, which
provide for a measurement of the muon momentum independent of the inner tracking system.
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Figure 1: Schematic views of the CMS detector, with the numbering convention for azimuthal
sectors (S), wheels (W), barrel yoke layers (L) and endcap disks (D). “TC” is the “tail catcher”,
an additional steel layer present in the central barrel wheel only. Left: transverse view at z = 0.
Right: longitudinal view of one quarter of the detector. Wheels on the z < 0 side (not shown)
are labeled W-1 and W-2. The location of the “chimneys” described in Section 3 is indicated
with boxes.

The CMS collaboration has decided to operate the magnet at a central magnetic flux density
of 3.8 T. After the first years of operation, once the aging of the coil is better understood, the
collaboration may decide to operate the magnet at 4 T.

In order to allow accurate reconstruction of track parameters and Monte Carlo simulation of
events, a detailed map of the magnetic field in the entire volume of the CMS detector is needed.
The accuracy of the magnetic field map is discussed in Section 2. Sections 3 and 4 describe the
computation of the CMS field map and its implementation in the CMS software framework,
respectively.

Several techniques have been adopted to directly measure and to monitor the magnetic flux
density B in the various parts of the CMS detector, as discussed in Section 5. In particular, the
field in the central volume of the solenoid was mapped with very good precision. However,
measurements with probes outside the solenoid are not sufficient to constrain the field map
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inside the steel of the yoke to the level of precision required.

During October-November 2008, the CMS Collaboration conducted a month-long data-taking
exercise known as the Cosmic Run At Four Tesla (CRAFT), with the goal of commissioning
the experiment for extended operation [4]. With all installed detector systems participating,
CMS recorded 270 million cosmic ray triggered events with the solenoid at a central magnetic
flux density of 3.8 T. Using these data it was possible for the first time to probe the magnetic
field in the steel of the return yoke using reconstructed muon tracks. The field in the different
parts of the barrel yoke was measured and correction factors for the field map were obtained,
as described in Section 6.

This paper does not cover the study of the field in the endcap yoke. That analysis is more chal-
lenging, since the number of cosmic muons traversing both the inner tracker and the endcap
stations is limited for geometrical reasons.

2 Accuracy of the Magnetic Field Map
The CMS silicon tracker, the central detector for charged particle track reconstruction, is located
centrally inside the superconducting coil of the magnet of the CMS detector. Within that region,
the field has a high strength and is relatively homogeneous. As discussed in Section 5, the field
in the tracker volume has been mapped with an accuracy better than 0.1%. This precision
is crucial for physics analyses as it allows accurate measurements of charged particle track
parameters near the interaction vertex.

Outside the tracker volume, the field map is calculated with the finite-element computation
described in Section 3. Between the tracker and the first barrel muon station the magnetic
field integral is dominated by the relatively homogeneous field inside the coil (R < 3 m). In
this region, the accuracy of the computation is confirmed by its agreement within 0.06% with
fixed Nuclear Magnetic Resonance (NMR) probes located at R = 2.91 m (cf. Section 5.1). An
additional test of the accuracy of the field map inside the solenoid is given by the comparison
of the predicted and observed bending of cosmic ray tracks between the silicon tracker and the
first muon station. For this purpose, cosmic muons reconstructed with the inner tracker are
extrapolated to the first muon station using the calculated field map. The residual between the
measured and the extrapolated positions, ∆, is computed separately for positive and negative
muons, and their charge-antisymmetric combination ((∆µ+ − ∆µ−)/2) is used to suppress the
possible effect of a residual misalignment. The result is plotted in Fig. 2. The expected effect of
a 0.1% distortion of the field map in the region located between the tracker and the first muon
station, relative to the field inside the tracker, is shown as a reference. We conclude that the
map describes the field in this region within this accuracy.

The muon momentum and charge are mostly determined by the curvature of the reconstructed
track in the tracker [5]. Only at very high transverse momentum a track fit combining hits
in the tracker and in the muon system is expected to improve the resolution, due to the long
additional lever arm with high magnetic field between the outer layer of the tracker and the
muon system. Studies with cosmic muons show that the most critical factor in this global fit is
alignment [6, 7].

A measurement of the muon momentum can also be obtained exclusively using information
from the muon chambers. This “stand-alone” muon reconstruction is used in the hardware-
based Level-1 muon trigger and in the first stage of the High-Level Trigger [8]. The resolution
that can be obtained in this case is limited by multiple scattering, by the finite resolution of
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Figure 2: Residual distances, in the bending plane, between the extrapolation of the tracker
tracks and the measurements in the first muon station, for the CRAFT cosmic muon data set,
as a function of the transverse momentum. Left: wheel 0. Right: wheels ±1. The shaded area
shows the expected effect of a 0.1% distortion of the field map in the region between the inner
tracker and the coil. The solid line represents a fit to the function α/pT.

the muon chambers, and by their alignment. Ideally, the magnetic field map should be known
with sufficient accuracy so that a possible biasing effect on the momentum scale is small com-
pared to the resolution of the momentum measurement. While a systematic momentum bias
is an uncertainty of a fundamentally different nature than the detector resolution, this require-
ment ensures that the efficiency of matching tracker tracks to muon hits for identification and
reconstruction purposes is not reduced, and that the sharpness of trigger turn-on curves is not
affected by spatially inhomogeneous inaccuracies of the field map.

An analytical calculation was used to estimate how the fitted muon momentum is affected by
the inaccuracies of the magnetic field map in the yoke [9]. The largest effects occur if only the
bending power provided by the return field in the yoke is considered, without constraining
the fitted muon tracks to the beamspot (“vertex constraint”). Figure 3 shows at which point
the relative systematic bias on the momentum due to limited knowledge of the field is ten
times smaller than the resolution of the stand-alone momentum measurement deriving from
hit resolution and multiple scattering, under the assumption of perfect detector alignment. The
most stringent condition on B in a single layer is found in the second layer of the return yoke,
where the magnetic field systematic uncertainty is required to be below 5% at intermediate
momentum. If all layers are affected by a fully correlated scaling factor, this value becomes
3%. Thus, to ensure that the systematic uncertainty due to the inaccuracy of the field map is
negligible, the benchmark is set at 3% for the overall scale uncertainty and at 5% for the scale
in individual plates in the barrel return yoke.

These limits are conservative, as they are obtained for the extreme case of a fit with no vertex
constraint. The constrained fit profits from the lever arm and bending power between the
vertex and the first layer of the muon system, improving the precision of the fit for muons
originating from the interaction region and reducing the reliance on the accuracy of the field in
the return yoke by one order of magnitude.
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Figure 3: The systematic uncertainty in the B scale that corresponds to a systematic uncertainty
in the determination of the muon momentum equal to one tenth of the momentum resolution,
for muons reconstructed using the barrel muon spectrometer alone and without a vertex con-
straint. The different curves correspond to a coherent scaling of B in a single yoke layer, without
changing the field in other layers (curves labeled “L1”, “L2”, “L3”) and to a scaling in all layers
with the same factor (curve labeled “All layers”).

3 Finite-Element Model of the CMS Magnetic Field
In order to establish a map of the CMS magnetic field, the CMS solenoid and yoke were mod-
eled using the TOSCA finite element program [10]. We summarize here the main features of
this model, which is described in detail elsewhere [11].

The orientation of the CMS reference frame and the naming conventions used in this paper
for the different parts of the steel yoke are shown in Fig. 1. CMS uses a right-handed coor-
dinate system, with the origin at the nominal collision point, the x-axis pointing to the centre
of the LHC, the y-axis pointing up (perpendicular to the LHC plane), and the z-axis along the
anticlockwise-beam direction. The azimuthal angle, φ, is measured from the positive x-axis in
the x-y plane.

The steel yoke is composed of 12 azimuthal sectors, and is therefore to a good approximation
12-fold φ-symmetric, except for a few features:

• the presence of radial passages in steel slabs (“chimneys”) to route cryogenic and
electric connections in sector 3 of wheel−1 (with a depth along z of 39 cm and 84 cm
wide) and sector 4 of wheel +1 (39 cm deep and 54 cm wide);

• the presence of supporting feet in sectors 9 and 11;

• the presence of the carts supporting the endcap disks;

• the presence of a steel plate on the floor under the detector.

The entire length of CMS along the z-axis had to be modeled since the winding of the CMS
solenoid is not exactly z-symmetric, affecting the field in the inner tracker region. However,
due to limitations on the maximum number of nodes in the TOSCA mesh only the x > 0 half
of the CMS detector was modeled. This choice allows an approximated map of the field in the
entire detector to be obtained using the 12-fold symmetry of the yoke with a special treatment
of the features described above, as will be discussed in the next section.
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Figure 4: Representation of the magnetic elements included in the TOSCA model (underground
configuration).

Two different yoke configurations have been modeled. The first (“surface model”) represents
the status of the CMS detector during the mapping campaign of 2006, that was performed in the
surface hall. At that time, the small outermost endcap steel disk shown in Fig. 1 was not present
in the negative-z endcap, and neither were any ferromagnetic parts beyond |z| > 10.86 m, i.e.,
the forward hadron calorimeters and the shielding of the LHC magnets. This configuration is
used only for comparison with the 2006 measurements. The second (“underground model”)
represents the final setup of CMS in the experimental hall.

Figure 4 shows a representation of the model geometry. The predicted magnetic flux density on
a longitudinal section of the CMS detector is shown in Fig. 5. Approximately two thirds of the
magnetic flux return through the barrel yoke, half of which enters directly into the barrel with-
out passing through the endcap disks. One third of the total flux escapes radially, returning
outside the steel yoke. For this reason, particular care has to be taken in modeling boundary
positions. Truly open boundaries cannot be specified with TOSCA. The simplest way to ap-
proximate open boundaries is to compute the field in a large region enclosing the solenoid and
yoke. The effect of different choices for the enclosing volume on the same TOSCA model is
shown in Fig. 6. A small enclosing region (e.g., R < 13 m) forces too much flux to return in the
yoke, causing a distortion in the region instrumented with muon detectors (4 < R < 7.4 m).
By increasing the enclosing region to R < 26 m, the total flux returning through the yoke is
reduced by about 15%. A further increase to a region R < 30 m gives an additional reduction
of only about 1%. The region enclosing the model cannot be enlarged indefinitely without re-
ducing the precision of the calculation, due to the limitations in the number of mesh points in
TOSCA. Except where otherwise specified, the models used in the rest of this paper are com-
puted in the largest of the regions considered in Fig. 6. Any residual effect due to boundary
positions, as well as the effect of additional magnetic material in the experimental cavern (in
particular, reinforcement steel in the concrete walls, that is not included in the model) has to be
estimated and calibrated out with real data, as discussed in Section 6.
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Figure 5: Value of |B| (left) and field lines (right) predicted on a longitudinal section of the CMS
detector, for the underground model at a central magnetic flux density of 3.8 T. Each field line
represents a magnetic flux increment of 6 Wb.
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4 The Field Map for Simulation and Reconstruction
Simulation and reconstruction of events in the CMS detector require knowledge of the magnetic
field in the entire detector, both in the inner tracking region and in the complex configuration
of the steel return yoke. Besides accuracy, computing efficiency of the map interface is a key
requirement, as the map is accessed intensively during the on-line reconstruction in the High-
Level Trigger.

An optimized interface [12] to the data obtained from the TOSCA computation described in the
previous section was developed in the framework of the standard CMS software, to be used
for Monte Carlo simulation, High-Level Trigger, and offline reconstruction.

The map is implemented using a dedicated, volume-based geometry model. The detector is
subdivided in volumes, which correspond to the volumes used in TOSCA to define the mag-
netic properties of the different materials. Their boundaries correspond to the field discontinu-
ities due to changes in the magnetic permeability of different materials. The field within each
volume is therefore continuous, allowing track extrapolation algorithms to optimize the step
size. Volumes are organized in a hierarchical structure optimized for fast global search. In ad-
dition, caching and navigation techniques allow simulation and track extrapolation algorithms
to minimize the number of global volume searches.

Within each volume, the field is obtained either by interpolation of the values computed with
TOSCA on a three-dimensional grid adapted to the volume shape so that it is regular in an ap-
propriate coordinate system, or by parameterizations of the TOSCA computation when avail-
able. Although the different volumes constituting the CMS detector can use specific grid tables,
symmetries can be exploited to reduce the memory footprint of the map. In particular, a com-
pact field map of the entire CMS detector has been produced exploiting the 12-fold φ-symmetry
of the yoke, with special treatment of the main φ-asymmetric features described in Section 3.
For this purpose, specific grid tables are used for the three barrel steel layers in the sectors con-
taining chimneys (S3, S4). Specific tables are also used in the bottom sectors (S9, S10, S11) of
the outermost barrel steel layer and of the endcap disks, that are influenced by the presence of
the feet and carts. The field in all other sectors is obtained with appropriate rotations from the
grid tables of sector 1, which is chosen as it is well separated from the φ-asymmetric features
of the yoke. This choice represents a compromise between accuracy, memory footprint, and
complexity of the map.

5 Direct Field Measurements
Detailed measurements of the magnetic field using various sensors were performed in 2006 in
the surface hall. These results have been complemented with new measurements in the cavern
during the CRAFT campaign. In this section, the measured values are compared with the latest
TOSCA computations.

5.1 Measurements within the tracker volume

The field inside the coil was measured in the surface hall, before lowering CMS into the experi-
mental cavern and before the installation of the tracker and of the electromagnetic calorimeter.
A pneumo-mechanical field mapper was used to scan a cylinder of radius 1.724 m and length
7 m, providing precise measurements for 33 840 space points. A detailed description of the
device and of the results is given in Ref. [13].

The field has been measured at several values of B0, the central magnetic flux density: 2, 3,



8 5 Direct Field Measurements

Table 1: Comparison of the magnetic flux density measured by fixed NMR probes inside the
solenoid on the surface and underground, for different coil currents. Each measurement is per-
formed with one single probe, although different probes are used in different operation ranges.
Probes are located at R = 2.91 m, z = −0.01 m. The relative precision of the measurements is
better than 5× 10−5. The prediction of the underground TOSCA model at 18 160 A (B0 = 3.8 T)
for the location of the probe at φ = 44.9◦, where the relative variation of |B| is expected to be
smaller than 3× 10−4 for a displacement of 1 cm, is 3.9181 T.

Current [A] Probe φ Surface [T] Underground [T] ∆ [T]
7 000 −135.1◦ 1.5218 1.5224 −0.0006
9 500 −135.1◦ 2.0616 2.0628 −0.0012

18 160 44.9◦ 3.9176 3.9206 −0.0030

3.5, 3.8 and 4 T. Comparison with the TOSCA model shows excellent agreement with the mea-
surements at B0 = 4 T, with a discrepancy smaller than 5 mT. The model reproduces a small
z−asymmetry of the magnetic flux density caused by one missing turn of the coil out of the
2180 designed turns, which was discovered during the field mapping campaign.

For optimal representation of these data, a φ-symmetric parametrization has been implemented
using an expansion of the magnetic scalar potential over spherical harmonics represented in a
cylindrical coordinate system, satisfying the Laplace equation [14]. The expansion coefficients
fitted from the measured field values resulted in a map of the field in the volume comprising
the inner tracker that agrees with the φ-averaged measurements within 0.2 mT. This fit includes
a refinement of the estimated gains and offsets of the Hall probes, with the overall scale set by
NMR probe measurements, confirming and further improving the initial 5× 10−4 accuracy of
the calibration. This analysis confirms the excellent quality of the field mapper measurements.
The parametrization is available for processing as an option for applications that require the
highest possible accuracy and for studies of systematic uncertainties related to the magnetic
field. The default setting for simulation, tracking, and High-Level Trigger is to use the standard
map based on TOSCA (cf. Section 3), which is sufficiently precise and computationally less
demanding.

Simulation studies have shown that the different magnetic environment inside the experimen-
tal cavern has effects on the overall scale of the field in the yoke. However, the effect on the field
inside the solenoid is negligible. This has been confirmed by comparing measurements with
fixed NMR probes installed near the inner wall of the superconducting coil cryostat, taken at
the same coil current on surface and underground (see Table 1). At the time of the underground
measurements, the inner tracker and the electromagnetic calorimeter were installed inside the
solenoid. It can be concluded that the measurements of the field on the surface are applicable
also for operation in the cavern.

In conclusion, the field in the CMS inner tracker region is known to better than 0.1%, and
the agreement of the TOSCA model with the measurements at B0 = 4 T is better than 5 mT
everywhere in the mapped region. Moreover, hit position residuals for tracks extrapolated
from the tracker to the first muon station (see Fig. 2) validate the predicted field integral outside
the mapped region. This allows the field in the inner tracker region to be used as a reference to
probe the field in the yoke with cosmic tracks, as will be discussed in Section 6.
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5.2 Measurements of the field inside the yoke

A measurement of the average magnetic flux density inside the steel blocks of the CMS yoke
was performed in the surface hall in 2006, with a system of 22 flux loops [11] made of 315–495
turns wound around the steel plates of sector 10 in the barrel wheels W0, W-1, and W-2, and
in the endcap disks D-1 and D-2, as shown in Fig. 7. The areas enclosed in the flux loops vary
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Figure 7: Location of flux loops (lines) and Hall probes (circles), projected on transverse (left)
and longitudinal (right) sections of CMS.

from 0.3 to 1.7 m2 in the barrel wheels and from 0.5 to 1.2 m2 in the endcap disks. During a
”fast” discharge of the coil (190 s time constant) from the full current to zero, voltages with
amplitudes up to 3–4.5 V were induced in the loops. The integration of the measured voltages
allows the average magnetic flux density in the steel blocks to be derived. At a central magnetic
flux density of 4 T, the measured magnetic flux densities in the barrel wheels vary from 0.6 to
2.1 T. In the endcap disks, the measurements vary from 1.4 to 2.3 T.

The measured magnetic flux density is reduced by the residual magnetization of the steel af-
ter the fast discharge. Half of the maximum remanent field, that in the different plates varies
between 54 and 85 mT depending on the steel type, is taken as an uncertainty on the measure-
ment. The precision of the voltage measurements results in an additional uncertainty of 1.5%
on the measured flux. The total uncertainty is therefore estimated to be 2% to 7% in the different
loops. A comparison with the prediction of the TOSCA surface model shows that the average
ratio of measured over calculated values is 0.97 in the barrel, with a standard deviation of 0.07,
and 0.93 in the endcap, with a standard deviation of 0.04. For some of the measurements, large
discrepancies were found (reaching 22% in the barrel and 14% in the endcaps). The current
understanding of the measurements, and in particular of the actual remanent magnetization
in each yoke plate, is not sufficient to use them to constrain the field map to a precision of the
order of 3–5%, as required for physics analysis. More precise measurements of the magnetic
flux density within the steel plates, also in sectors other than S10, are possible using recon-
structed tracks from cosmic rays, as discussed in Section 6. With cosmic rays detected in the
underground experimental hall, it is also possible to observe and correct for effects due to the
magnetic environment of the cavern; this is not possible with the available flux loop measure-
ments, which were performed in the surface hall.

An additional measurement of the magnetic flux density in the yoke is provided by a system
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Table 2: Hall probe measurements in the underground cavern at a central magnetic flux density
B0 = 3.8 T, compared with the values predicted by TOSCA for the same locations. Sensors are
labeled according to the steel block they are located close to (cf. Fig. 1) and their φ, z position.

φ = 285◦ φ = 255◦

z [m] Data [T] Calc [T] Data/Calc Data [T] Calc [T] Data/Calc
TC W0 1.273 −0.39 −0.37 1.06

L1

W0 1.273 −0.96 −0.97 0.99 −0.95 −0.97 0.98
W-1 −1.418 −1.02 −0.97 1.06 −0.96 −0.97 0.99
W-1 −3.964 −1.13 −1.12 1.00 −1.13 −1.13 1.01
W-2 −4.079 −1.14 −1.13 1.02 −1.16 −1.13 1.02
W-2 −6.625 −0.26 −0.31 0.82 −0.28 −0.33 0.87

L2

W0 1.273 −0.89 −0.95 0.94 −0.89 −0.95 0.94
W-1 −1.418 −0.90 −0.96 0.93 −0.90 −0.96 0.94
W-1 −3.964 −0.87 −0.90 0.96 −0.87 −0.90 0.96
W-2 −4.079 −0.87 −0.90 0.96 −0.86 −0.90 0.96
W-2 −6.625 −0.34 −0.41 0.84 −0.34 −0.41 0.84

L3

W0 1.273 −0.82 −0.88 0.93 −0.82 −0.88 0.93
W-1 −1.418 −0.82 −0.89 0.92 −0.82 −0.89 0.92
W-1 −3.964 −0.75 −0.78 0.96 −0.76 −0.78 0.96
W-2 −4.079 −0.75 −0.78 0.96 −0.76 −0.78 0.96
W-2 −6.625 −0.37 −0.49 0.76

of Hall probes mounted between the steel blocks at selected places. These probes provide
continuous monitoring and are important to verify the long-term stability of the field. The
probes are mounted close to the steel blocks, but the local magnetic flux density can only be
measured in the air, and therefore it is difficult to use these measurement to constrain the field
map within the yoke plates. However, they can indicate overall distortions of the model, if any.

As an example, a set of measured values at a central magnetic flux density of 3.8 T is presented
in Table 2 for sensors in the barrel wheels at φ = 255◦ and 285◦. As shown in Fig. 7, barrel
sensors are located close to the front face of steel blocks, in the gap between two neighboring
wheels. In these gaps, the field is mostly axial and the magnetic flux density is about two-thirds
of the flux density in the center of the steel plate.

The Hall probes used in Table 2 were calibrated at 1.4 T, with a precision better than 0.1%.
The observed deviations can be related to the modeling of the gaps and of local features or
inhomogeneities of the steel block at the place where the probes are mounted. To highlight a
possible overall distortion of the model, the ratio of the measured and calculated field has been
averaged for all probes located in the same gap. Results are shown in Table 3. In the second
and third yoke layers of the barrel, the data indicate a lower field than predicted by the TOSCA
calculation. A larger discrepancy is present in the gap between the barrel and the endcap.

In the endcaps, Hall probes are installed between disks, to monitor the field close to the steel
surface. In this region, the field is small (with measured values in the range between 0.01 and
0.34 T) and almost axial, so the measured values cannot be easily related to the field in the steel
disks, which is large and radial (cf. Fig. 5).
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Table 3: Ratio of the measured and calculated values of Table 2, averaged for the probes located
in the same gap (or in z-symmetric gaps in case of W0/W-1). The largest observed difference
between any two of the values that are averaged together is 0.08.

Gap W0/W±1 Gap W-1/W-2 Gap W-2/endcap
L1 1.01 1.01 0.84
L2 0.94 0.96 0.84
L3 0.92 0.96 0.76

6 Measurements with Cosmic Ray Tracks
About 3% of the muon tracks collected during CRAFT cross the acceptance of the inner tracker.
This sample can be used to verify the accuracy of the magnetic field map in the yoke using
the information provided by the muon chambers, and taking the precise measurement of the
track momentum in the inner tracker as a reference. This section describes a method to obtain
average correction factors for the scale of the field map in each plate of the CMS barrel yoke.

6.1 The analysis method

In the barrel yoke, four stations of Drift Tube (DT) chambers are interleaved with the three
steel yoke layers, as shown in Fig. 1. Each DT chamber can measure the direction of the track in
the transverse plane (φ) with a resolution of about 1.8 mrad [15] based on eight measurement
planes. The track deflection in the transverse plane between two consecutive stations, i and
i + 1, is an ideal quantity to probe the field in the yoke plates, as it is directly related to the
integral of the field along the track path:

(φi+1 − φi)pT = −0.3 q
∫ i+1

i
~uφ · ~B× d~l (1)

where q is the muon charge, pT is the muon transverse momentum in units of GeV/c, B is
expressed in Tesla, and l in meters.

The transverse bending is dominated by the axial component of the field, Bz. The azimuthal
component of the field, Bφ, is small given the cylindrical symmetry of the barrel yoke, and
does not contribute to the bending in the transverse plane. Although the radial component,
Br, contributes to Eq. (1), its effect is small and can be neglected, both because Br � Bz in the
barrel steel plates given the geometry of the yoke (cf. Fig. 5), and because tracks selected in this
analysis have small angles with respect to the radial direction. Systematic effects due to this
approximation are discussed in Section 6.3.

In order to relate the path integral in Eq. (1) to the average field inside the yoke plate, the stray
field in the short path between the chambers and the steel plate can be neglected, and the track
path length in the transverse plane can be approximated with the thickness L of the steel plate.
With this approximation:

∫ i+1

i
~uφ · ~B× d~l ' 〈Bz〉L (2)

where 〈Bz〉 is effectively averaged along the trajectory of the particle crossing the layer between
stations i and i + 1.

The goal of the study presented here is not to obtain directly the value of 〈Bz〉 from Eq. (2),
but to compare it with the same quantity predicted by the magnetic field map, to highlight and
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possibly correct for average discrepancies. For this purpose, track parameters reconstructed
in the CMS inner tracking system are extrapolated to the muon spectrometer, where they are
compared with the measurements of the muon chambers, for each muon separately. The ex-
trapolation of track parameters and of their error matrices is performed taking into account
multiple scattering and energy loss. These were tuned to reproduce statistically the results of
the detailed GEANT4 simulation of CMS. The simulation of the energy loss in the material
between the tracker and the muon system, amounting to about 3 GeV, is correct to within an
accuracy of 0.2 GeV, according to comparisons with measurements [9].

The magnetic field map is used both for the measurement of the track momentum in the inner
tracker and to predict the track bending in the extrapolation. Given that the accuracy of the
magnetic field map in the region inside the solenoid is good, the momentum measured by the
inner tracker can be taken as reference. A systematic difference between the track direction
measured in the DT chambers and the direction of the extrapolated tracks can therefore be at-
tributed to a difference between the true magnetic field integral along the particle path and the
corresponding integral in the field map used for the extrapolation. Using Eq. (1), it is possible
to measure the bias of the field integral in the steel layer placed between two consecutive DT
stations:

∆ = [(φ
prop
i+1 − φdata

i+1 )− (φ
prop
i − φdata

i )] · pT ∝
∫ i+1

i
~uφ · ~Bmap × d~l −

∫ i+1

i
~uφ · ~Btrue × d~l, (3)

where φ
prop
i and φdata

i are the bending angles at the ith DT station for the propagated track and
for the track segment reconstructed in the DT chamber, respectively; pT is the muon momen-
tum, assumed constant along the path between the two stations and obtained from the extrapo-
lation of the inner tracker track to the middle plane between the stations, accounting for energy
loss; and

∫ i+1
i ~uφ · ~Btrue × d~l and

∫ i+1
i ~uφ · ~Bmap × d~l are the true field path integral between the

ith and the i + 1th DT station and the one estimated using the field map, respectively.

The bending angles measured are potentially affected by residual misalignment. However,
misalignment affects the measured angles of positive and negative muons in the same direc-
tion, while a distortion of the field map has an opposite effect on the propagated direction
of tracks of opposite charge. The charge-antisymmetric combination of the mean values of
the distributions of ∆ for positive and negative muons crossing a given sector, in the form
(〈∆〉µ+ − 〈∆〉µ−)/2, is not influenced by the misalignment effects, under the assumption that
positive and negative muons have the same momentum spectrum.

Equation (2) can be used to relate the right side of Eq. (3) with the average flux density in the
yoke plate. The systematic uncertainties deriving from the assumptions used in writing these
two expressions can be suppressed normalizing Eq. (3) to the bending expected from the field
map:

[(φ
prop
i+1 − φdata

i+1 )− (φ
prop
i − φdata

i )] · pT

(φ
prop
i+1 − φ

prop
i ) · pT

=
〈Bmap

z 〉 − 〈Btrue
z 〉

〈Bmap
z 〉

|i+1/i. (4)

Charge-antisymmetric combinations are computed separately for the numerator and the de-
nominator of the expression on the left side. Each yoke plate is treated separately. The expres-
sion on the right side represents the relative discrepancy of the flux density averaged over a
single yoke plate.

The ratio 〈Btrue
z 〉/〈Bmap

z 〉 is computed using Eq. (4). It can be interpreted as the corrective scal-
ing factor that has to be applied to the ~B vector given by the magnetic field map, in each point
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Table 4: Scaling factors for the field map described in Section 4, averaged between opposite
wheels. Reported errors represent the statistical uncertainty only.

wheels ±2 wheels ±1 wheel 0
L1 0.99 ± 0.04 1.004 ± 0.004 1.005 ± 0.005
L2 0.96 ± 0.02 0.958 ± 0.003 0.953 ± 0.003
L3 0.92 ± 0.08 0.924 ± 0.003 0.906 ± 0.003

within the considered steel yoke plate, in order to obtain the best estimate of Btrue
z that repro-

duces the measured track bending as observed in that plate.

6.2 Results in the barrel yoke

This technique was applied on the sample of cosmic rays collected during the CRAFT cam-
paign [4]. Only runs with stable magnet conditions at a central magnetic flux density of
3.8 T were selected. The inner tracker and the DT chambers were aligned using cosmic muon
tracks, survey measurements and optical systems [7, 16, 17]. DT segments reconstructed in
the transverse plane (R− φ) were required to include at least seven hits out of the eight avail-
able measurement planes in a chamber. Tracks to be used in the analysis were required to
be reconstructed by the inner tracker with at least 10 hits and to have a momentum within
15 < pT < 100 GeV/c. In addition, the extrapolated track path was required to pass through
all four DT stations in the same sector and wheel. About one million tracks survive these pre-
selection requirements.

For the computation of scaling factors to be used to calibrate the field map, additional selection
criteria were applied in addition to the pre-selection requirements, to select data of the best
quality. Only runs of certified good quality by the Data Quality Monitoring system for both the
Drift Tube system and the inner tracker were used, and tracks were selected with a transverse
impact parameter with respect to the centre of CMS, |d0|, less than 0.4 m and a longitudinal
impact parameter, |dz|, less than 1 m. This tighter selection retains about 0.6 million events.
The reduction in the size of the event sample is mostly due to the increased pointing require-
ment and, therefore, is especially severe (about a factor 5) in wheels ±2. Scaling factors were
computed using the field map described in Section 4. Results for all sectors of a given layer and
wheel, as well as results for opposite wheels, were found to be compatible within statistical un-
certainties, as expected given that the main φ- and z-asymmetric features are described in this
map; they have, therefore, been averaged. The resulting factors, listed in Table 4, are adopted
as correction factors for the magnetic flux density in the map used in the CMS software for
reconstruction and simulation.

The values measured with tracks show the same trend as observed with Hall probe measure-
ments in the barrel (first two columns of Table 3), although a direct numerical comparison is
not possible, as the Hall probe measurements are performed in the gaps between wheels while
the tracks probe the field inside the steel plates.

To verify the consistency of the method, the scaling factors were recomputed using the cor-
rected map, for events passing the pre-selection criteria only. The resulting factors, shown in
Fig. 8, are compatible with unity within statistical uncertainties. In order to search for possible
biases they were averaged, grouping sectors in different ways. The results are listed in Ta-
ble 5. No bias is found to significantly exceed the statistical uncertainties. In particular, upper
and lower sectors agree well within statistical uncertainties indicating that potential system-
atic biases due to the material budget description are under control at the sub-percent level. A
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Figure 8: Solid squares: average values of 〈Btrue
z 〉/〈Bmap

z 〉, after the correction factors of Ta-
ble 4 are applied. Open circles: Scaling factors obtained using a 12-fold φ-symmetric map, with
no correction and no special treatment of the φ-asymmetric features described in Section 4.
The sectors affected by these features have been highlighted with open boxes. Data points are
not reported in sectors where the available event samples are too small (in particular, sectors
around y = 0, where the chambers are installed vertically). Error bars only include the statisti-
cal uncertainty.
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Table 5: Consistency check: average values of 〈Btrue
z 〉/〈Bmap

z 〉, after the correction factors of
Table 4 are applied. Errors represent the statistical uncertainty of the method only.

All sectors 0.998 ± 0.001
All top sectors 0.997 ± 0.002
All bottom sectors 0.999 ± 0.002
All x > 0 sectors 1.002 ± 0.003
All x < 0 sectors 0.995 ± 0.003
All sectors (only L1) 0.997 ± 0.002
All sectors (only L2) 1.000 ± 0.002
All sectors (only L3) 0.997 ± 0.002
All sectors in wheel 0 1.000 ± 0.002
All sectors in wheels ±1 0.998 ± 0.001
All sectors in wheels ±2 0.984 ± 0.007

discrepancy in the energy loss estimation should be visible as an opposite bias in the top and
bottom scaling factors, given the propagation direction of the cosmic muons. The 2.3 σ differ-
ence in the average for all sectors in wheels ±2 is due to the fact that the correction factors of
Table 4 were computed with a significantly smaller sample because of the tighter selection, an
effect particularly important in these wheels.

To highlight the effect of the handling of the specific φ-asymmetric yoke features described in
Section 4, the analysis was repeated on a φ-symmetric map with no special sector handling and
no correction factors. The results, for all events passing the pre-selection criteria, are shown in
Fig. 8, separately for each sector and yoke layer. On top of the already observed overall scale
bias in the different layers, the effect of the chimneys is visible in sector 3 in wheel −1, sector
3–4 in wheel 0, and sector 4 in wheel +1. Also the effect of the feet is visible in sectors 9, 10
and 11 of layer 3, where scaling factors are higher than in the neighboring sectors. In these
locations, the true field integral is expected to be higher because of the extra steel due to the
feet supporting the yoke (see Fig. 1). The handling of these features in the default map reduces
their effect.

The analysis was cross-checked against a simulated cosmic muon sample. Cosmic muons were
simulated with a Monte Carlo generator (CMSCGEN [18]), interfaced to the full GEANT sim-
ulation of the detector. Only cosmic muons with a momentum of at least 10 GeV/c at the
entrance point in CMS were simulated. A realistic misalignment of the silicon tracker and of
the muon chambers corresponding to the CRAFT data was applied to the reconstructed tracks
and muon segments, and the same pre-selection as used for the data was applied. Since in the
simulation Btrue

z is identical to Bmap
z in every point in CMS by definition, this study provides

a powerful check of the calibration of the method. The measured scaling factors have been
verified to be compatible with unity in all sectors. The overall result shows that in the simula-
tion, without further calibration, the method provides a scaling factor accurate to better than a
percent (−0.7± 0.4%). No evidence is seen of any dependence versus radius (L1 – L3), versus
z (wheel 0 – wheel 2), or propagation direction (bottom versus top).

6.3 Systematic Uncertainties

As shown in the previous section, the available data sample of cosmic muons can be used to
constrain the scale of the magnetic field with a statistical accuracy better than a percent in most
of the barrel return yoke. Possible systematic uncertainties in the method are discussed in this
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section. While the magnetic field map only provides a value of the B vector in every point,
without an associated uncertainty, this information can be used in physics measurements to
derive systematic uncertainties due to the mismodeling of the magnetic field, by studying the
effect of an appropriately distorted field map.

A first systematic effect can arise from the assumption that a good representation of the true
magnetic field can be obtained by applying the ratio 〈Btrue

z 〉/〈Bmap
z 〉measured from Eq. (4) as a

corrective scaling factor to the ~B vector in the field map, in each point within the corresponding
steel yoke plate. A single scaling factor per steel block can correct for the average magnetic field
discrepancy, but not for its local variations within the block.

To quantify the possible magnitude of these variations, it is useful to have a model of (realistic)
distortions, somewhat larger than the observed ones. The TOSCA model computed using the
smallest enclosing model boundaries of those described in Fig. 6 (R < 13 m and z < 20 m) is
used for this purpose. Reducing the volume boundaries forces more magnetic flux to return
through the yoke, and therefore provides a “physical” distortion of the magnetic field map,
still satisfying Maxwell’s equations while providing natural variations in all B components
(unlike a single scaling factor for all field components in a given region). The magnitude of
the distortion in this model is arbitrary. Given that discrepancies with respect to the default
model in the barrel yoke layers are at least twice as large as the actual measured discrepancies
reported in Table 4, all systematic effects that are estimated from the comparison of this model
with the default one are scaled down by a factor 2.

The ratio between the value of B predicted by the standard and distorted models is computed
as a function of the position inside a plate. Its variation within the plate, that is found as ex-
pected to be much smaller than the variation of B itself, represents the variation that the scaling
factor would have in the different regions of the plate. Since the method described in Section 6.1
averages the scaling factor in the plate, and over a region that covers a limited z range due to
track selection criteria, a systematic uncertainty is estimated as half of the maximum observed
variation between any two points within the plate. This correspond to ±0.5% in all layers and
wheels, except for layer 1 of wheels ±1 and ±2, where the variations are ±2.5% and ±2%, re-
spectively. This is the region of the yoke where the field is the highest and closest to saturation,
giving rise to deviations from linear scaling. This systematic uncertainty could be reduced by
deriving scaling factors for smaller regions in z and φ, at the cost of larger statistical uncertain-
ties.

Other systematic effects can arise from the assumptions, discussed in Section 6.1, used to derive
the average scaling factors:

• Effect of Br. The radial component of the field is neglected in the analysis, although
it can affect the measured bending. This component is negligible in most of the
barrel yoke, except in the two inner steel layers of wheel ±2, where it reaches 0.4 T.
The presence of a Br component affects both the real muon bending and the track
extrapolation, so to first order its effect cancels in their comparison and in the ratio of
Eq. (4). A bias on the measured scaling factor is expected only if the ratio Btrue

r /Bmap
r

differs from the ratio Btrue
z /Bmap

z . The distorted field map described above was used
as a model of a physical distortion of both components. The resulting bias on the
measured scaling factor is estimated to be 0.5% in L1 and L2 of W±2, and negligible
elsewhere.

• Assumption of φ and z-symmetry in averaging scaling factors. As described in Sec-
tion 4, the current field map is implemented assuming 12-fold φ-symmetry of the
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yoke, with a specific handling of sectors affected by the presence of chimneys, feet
and carts. As a result of the specific description of these special sectors, the mea-
sured scaling factors for all sectors in each layer and wheel, as well as in opposite
wheels, are compatible and can be averaged. However, residual differences can be
present also among the sectors where symmetry is assumed to hold. Differences
of up to ±1% in the field integral for a path traversing radially these yoke layers
are predicted by the TOSCA model. A systematic uncertainty of ±1% due to the
assumption of symmetries in the averaging of the scaling factors is therefore esti-
mated.

Finally, the main input to the analysis is the muon segment angle measured in each DT station,
which can be affected by the imperfect knowledge of the internal geometry of the chambers.
Each chamber is composed of three groups of layers of drift cells, called superlayers, that are
superimposed [1]. The assembly procedure can give an uncertainty in the distances between
the superlayers of about 1 mm [5] for a typical distance of approximately 25 cm. The corrective
scaling factors, Btrue

z /Bmap
z , are evaluated from the difference between the angles measured in

consecutive stations and are, hence, particularly sensitive to a correct description of their dif-
ferent internal geometries. An uncertainty of 2% on the scaling factors has been computed
assuming an unaccounted difference of 1 mm in the internal distance between the two super-
layers composing the chambers of two consecutive stations. This effect is expected to vary from
sector to sector as it is the result of the interplay between the distribution of incident angles in
a given sector and the individual chamber geometry.

The statistical and systematic uncertainties on the measured scaling factors are summarized in
Table 6.

Table 6: Summary of statistical and systematic uncertainties on the measured scaling factors.
The columns report the statistical uncertainty of the measurement and the estimated systematic
uncertainties due to: the variation of the actual discrepancies within each plate; the neglected
radial component of the magnetic field; the assumption of φ and z-symmetry in averaging
scaling factors; and the internal geometry of the DT chambers. The last column gives the total
uncertainty (sum in quadrature of the partial terms).

Uncertainty (%) Statistical Local variation Br Symmetry Geometry Total
W0, L1 0.5 0.5 - 1.0 2.0 2.3
W0, L2 0.3 0.5 - 1.0 2.0 2.3
W0, L3 0.3 0.5 - 1.0 2.0 2.3

W±1, L1 0.4 2.5 - 1.0 2.0 3.8
W±1, L2 0.3 0.5 - 1.0 2.0 2.3
W±1, L3 0.3 0.5 - 1.0 2.0 2.3
W±2, L1 3.8 2.0 0.5 1.0 2.0 4.8
W±2, L2 2.4 0.5 0.5 1.0 2.0 3.4
W±2, L3 7.7 0.5 - 1.0 2.0 8.0

The scaling factors measured in the present study are insensitive to the radial distribution of
the field map discrepancy inside steel blocks; they simply correct the integral of B along the
path. For example, the two outermost barrel steel layers consist of a sandwich of three steel
plates with different magnetic properties; the actual discrepancy of the map may be different
in each one. While such radial variations of the discrepancy with respect to the average can
affect the predicted position of a muon after traversing the plate, they have no effect on the
bending angle.
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The measured average discrepancies do not exclude larger localized discrepancies. Local devi-
ations are, however, constrained by the continuity of the magnetic flux.

7 Conclusions
The magnetic flux density in the steel plates of the CMS barrel return yoke was measured pre-
cisely using cosmic ray muons, leading to a fundamental improvement in the understanding
of the CMS magnetic field. The results are consistent with the indication of measurements with
Hall probes installed in the gaps between wheels. Based on these measurements, an improved
map of the CMS magnetic field for the central magnetic flux density planned for the first years
of physics operation (B0 = 3.8 T) has been provided for simulation, High-Level Trigger, and
track reconstruction. In the CMS yoke, the new map is estimated to be accurate to better than
3% in the steel of the three central barrel wheels, and to about 8% in the steel of the two outer-
most barrel wheels, satisfying the accuracy required for physics analysis and muon triggering
in CMS.
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