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Abstract

Fewer than 20 transiting Kepler planets have periods longer than one year. Our early search of the Kepler light
curves revealed one such system, Kepler-1654b (originally KIC 8410697b), which shows exactly two transit
events and whose second transit occurred only five days before the failure of the second of two reaction wheels
brought the primary Kepler mission to an end. A number of authors have also examined light curves from the
Kepler mission searching for long-period planets and identified this candidate. Starting in 2014 September, we
began an observational program of imaging, reconnaissance spectroscopy, and precision radial velocity (RV)
measurements that confirm with a high degree of confidence that Kepler-1654b is a bona fide transiting planet
orbiting a mature G5V star (Teff= 5580 K, [Fe/H]=−0.08) with a semimajor axis of 2.03 au, a period of 1047.84
days, and a radius of 0.82±0.02 RJup. RV measurements using Keck’s HIRES spectrometer obtained over
2.5 years set a limit to the planet’s mass of <0.5 (3σ) MJup. The bulk density of the planet is similar to that of
Saturn or possibly lower. We assess the suitability of temperate gas giants like Kepler-1654b for transit
spectroscopy with the James Webb Space Telescope, as their relatively cold equilibrium temperatures
(Tpl∼ 200 K) make them interesting from the standpoint of exoplanet atmospheric physics. Unfortunately, these
low temperatures also make the atmospheric scale heights small and thus transmission spectroscopy challenging.
Finally, the long time between transits can make scheduling JWST observations difficult—as is the case with
Kepler-1654b.

Key words: planetary systems – planets and satellites: detection

1. Introduction

The Kepler mission (Borucki et al. 2010) has revolutionized
our understanding of exoplanets, finding over 2300 confirmed
planets and almost 4500 candidates10 (Batalha et al. 2013).
These data have improved our knowledge of the constituents of
the inner solar system with an inventory that includes planets
ranging from less than an Earth radius (Kepler 37b) up to 1.5
Jupiter radii (Kepler12b), and periods ranging from less than a
day (Kepler 78b) up to 1100 days, including Kepler167
(Kipping et al. 2016) and Kepler1647 (Kostov et al. 2016). A
number of non-transiting Kepler planets with longer periods
were identified by their radial velocity (RV) signature, e.g.,
Kepler407c with a period of order 3000 days (Marcy
et al. 2014). The completeness of the Kepler catalog is poor
for long-period planets. These objects are hard to find a priori,
as the transit probability decreases with increasing semimajor
axis and because fewer transits are observable in a given
observing period. A smaller number of events reduces the total
signal-to-noise-ratio (S/N) achievable by averaging multiple
transits. Most importantly, the Kepler pipeline required three or
more potential transits before promoting a star to become a

Kepler Object of Interest, or KOI, worthy of further
investigation. (Jenkins et al. 2010).
To avoid the Kepler pipeline’s prohibition against planets

with one or two transits, we analyzed Kepler light curves not
identified with confirmed planets, Kepler candidates, or KOI’s.
As described below, this search was rewarded with the
detection of a Jupiter-sized planet in a 2.87 year (1047.836
day) period orbiting a mid-G star, KIC8410697, which we
now refer to as Kepler-1654. A more complete search for long-
period systems was carried out by the Planet Hunters group
(Wang et al. 2015) who identified a number of systems with
one and two transits. In the case of Kepler-1654, they found
only the first of its two transits. Foreman-Mackey et al. (2016)
identified seven new transiting systems, showing one or at most
two transits, and eight long-period planets identified with
known Kepler systems having at least one shorter period
planet.
This paper describes follow-up observations of Kepler-1654

using the W. M. Keck Observatory that have allowed us to
reject a variety of alternative (“false-positive”) interpretations,
fully characterize the host star, and set an upper limit to its
mass to be less than 0.48MJup (3σ). Section 2 describes the
search through the Kepler light curves. Section 3 presents
the follow-up observations of the star, and Section 4 presents
the characterization of the planet. Section 5 investigates the
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10 As of December 2107 for Kepler with an additional 170 confirmed planets
for K2,http://exoplanetarchive.ipac.caltech.edu/.
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prospects of studying the planet’s atmosphere with JWST
transit spectroscopy.

2. Searching Non-KOI Light Curves

The data used for this investigation were drawn from Quarters
1–17 and encompassed the entire duration of the Kepler prime
mission. A total of 11232 stars were selected on the basis of their
properties in the Kepler Stellar Database (Brown et al. 2011):
Kepler magnitude, Kpmag <14mag, effective temperatures
between 5500 and 6000K, and log g> 3.75. These stellar values
are of course only rough estimates (Huber et al. 2014) and were
used only for an initial selection of likely F5-G5 dwarf stars. Data
within each Quarter, I(t), were normalized to near-unity using a
trimmed mean signal for the entire Quarter and then searched for
individual flux dips using a zero-sum Box Car filter of length 3L
where L was allowed to range in duration from 4 to 24 hr. A local
trimmed average and standard deviation were evaluated within
each segment with the filter output, S(t), at a given time, t, having
a value,
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Negative going dips with S/N>20 were output for
subsequent analysis. The noise per sample, σ used in this
calculation was derived on a Quarter-by-Quarter basis using a
robust estimate of standard deviation of all points within the
Quarter,11 σQ, rejecting values deviating by more than ±3σ
from the initial mean and standard deviation. The S/N of a
potential transit event was evaluated by dividing the depth of
the event by the noise per sample, σ, and multiplying by NL
where NL is the number of samples in a segment of length L.

A list of 24 systems was examined more closely. For most of
the single transit cases, the transit duration combined with the
approximate properties of the star yielded predicted orbital periods
(Seager & Mallén-Ornelas 2003) much greater than duration of
the Kepler mission. These systems would be impossible to
confirm. In a few cases, the predicted orbital periods were short
compared to the mission duration, implying that the Kepler
pipeline should have found and considered the object if real.

One object we identified is Kepler-1654, a mid-G dwarf star
with a Kepler magnitude of 13.42 mag, a transit depth of
0.51%, and a period of 1047.8356 days (2.87 year, Table 1).
Wang et al. (2015) identified this object as having only a single
transit on Day 542+2454833 (BJD). By going to the very end
of Q17, we were able to identify the second transit at Day 1590
+2454833 (BJD). Foreman-Mackey et al. (2016) also found
two transits for this system.

Figure 1 shows light curves from Quarters 6 and 17, which
were normalized and detrended using either a linear (Q6) or 2nd
order (Q17) baseline to remove small trends. We also examined
the entire light curve looking for other transit signatures using the
LombScargle tool available at the Exoplanet Archive.12 No
significant periodicities indicative of shorter period planets could
be identified in the periodogram. A search through the Kepler
light curve using the TERRA software (Petigura 2015) revealed
no other planets in this system. This limit is approximated by a
limiting depth of 80 ppm×(Period/1 day)0.6. Thus, >80 ppm

transits with one-day orbital periods (∼1 R⊕) are ruled out and
100-day planets with depths >1300 ppm (∼0.35 RJup) are also
ruled out. We also did not find any evidence of a transit at half of
the nominal 1047.8-day period, thereby ruling out the presence of
an eclipsing binary in an edge-on, circular orbit (Santerne
et al. 2013).
Superimposed on the light curves in Figure 1 is a model

transit curve fitted to the data as described in Section 4.1. But
before describing the result of the light curve analysis, we first
discuss the observations used to reject false-positive interpreta-
tions and to characterize more fully the star and the transiting
planet.

3. Follow-up Observations of Kepler-1654 and Kepler-
1654b

3.1. Keck AO Imaging

We obtained near-infrared adaptive optics images of Kepler-
1654 at Keck Observatory on the night of 2015 August 21 UT
(Figure 2). Observations were obtained with the 1024×1024
NIRC2 array and the natural guide star system; the target star
was bright enough to be used as the guide star. The data were
acquired using the narrow-band Br-γ filter using the narrow
camera field of view with a pixel scale of 9.942 mas pixel−1.
The Br-γ filter has a narrower bandwidth (2.13–2.18 μm), but a
similar central wavelength (2.15 μm) compared the Ks filter
(1.95–2.34 μm; 2.15 μm) and allows for longer integration
times before saturation. A three-point dither pattern was
utilized to avoid the noisier lower left quadrant of the NIRC2
array. The three-point dither pattern was observed three times
with two coadds and a 30-second integration time per coadd for
a total on-source exposure time of 3×3×2×30 s=540 s.
The target star was measured with a resolution of 0 059

(FWHM). No other stars were detected within the 10″ field of
view of the camera. In the Br-γ filter, the data are sensitive to
stars that have K-band contrast of ΔK=4.3 mag at a
separation of 0 1 and ΔK=7.49 at 0 5 from the central
star. We estimate the sensitivities by injecting fake sources with
an S/N of five into the final combined images at distances of
N×FWHM from the central source, where N is an integer.

Table 1
Observed Properties of Kepler-1654

Property Value Comment

Kepler# 1654 L
KIC # 8410697 L
2MASS designation J18484459+4426041 L
α 18h48m44 6 J2000
δ 44d26m04 1 J2000
Kepler Mag 13.42 mag
J 12.28±0.021 mag
H 11.93±0.019 mag
K 11.92±0.015 mag
WISE W1 11.88±0.023 mag
WISE W2 11.92±0.022 mag
Teff 5580±70 K Keck HIRES
log g 4.19±0.06 Keck HIRES
[Fe/H] −0.08±0.06 Keck HIRES
Vsini <2.0 km s−1 Keck HIRES
Stellar Age >5 Gyr Keck HIRES

11 We used the “resistant_mean” algorithm in the GSFC IDL library, http://
idlastro.gsfc.nasa.gov/contents.html. Routines in this library were used for a
number of other calculations in this work.
12 http://exoplanetarchive.ipac.caltech.edu/
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The 5σ sensitivities, as a function of radius from the star, are
also shown in Figure 2.

There is a star 7″ northwest of Kepler-1654 that was outside
of the field of view of the NIRC2 observations. However, this
star is clearly resolved in 2MASS and is a separate star in the
Kepler Input Catalog (KIC 8410692). The KIC photometry of
KIC 8410692 (KepMag=17.64 mag) indicates that the star
has an effective temperature and a surface gravity of
Teff=6111 K and log g=4.35, making the star a main
sequence F dwarf at a distance of about 4 kpc, and, thus, not a
bound companion to Kepler-1654. The Kepler photometric
aperture is oriented such that the background star is not
included in the aperture in quarters 6 and 17 when the transits
were observed, and the photocentric position remains centered
on the Kepler-1654 during the transit, indicating that the transit
occurs around the Kepler-1654 and not the background star.
Further, at 50× fainter than Kepler-1654 the photometric
blending of the background star (if the entire stellar profile
were inside the photometric aperture) would only dilute the
observed transit, and, hence, the derived planetary radius, by
<1% (Ciardi et al. 2015).

3.2. Keck HIRES Spectroscopy

We obtained spectra of Kepler-1654 using the HIRES
instrument (Vogt et al. 1994) at the W. M. Keck Observatory.
Observations and data reduction followed the usual methods of
the California Planet Search (CPS; Howard et al. 2010). A
spectrum obtained with a 15-minute exposure on 2014
September 14 without the iodine cell was used for spectral
typing (Figure 3). The spectral synthesis modeling program
“SpecMatch” (Petigura 2015) has been calibrated with
asteroseismology stars and yielded values of Teff, log g, and
[Fe/H] with formal uncertainties of 70 K, 0.06 dex, and
0.06 dex, respectively (Table 1). These parameters show the
star is a slowly rotating, G5 main sequence star, perhaps
beginning to evolve off the main sequence. The Ca H&K lines
show no emission reversal implying a stellar age greater than
∼5 Gyr. An analysis looking for secondary spectra in the
HIRES spectrum of Kepler-1654 found no companions
brighter than 1% of the primary (Kolbl et al. 2015). These
stellar values are similar to those cited in (Foreman-Mackey
et al. 2016): our spectroscopically derived values of (Teff,
R*)=(5580± 70 K, 1.18± 0.03 Re) versus (5918± 160 K,

-
+

R1.0 0.16
0.35 ) for Foreman-Mackey’s values. We adopt our

stellar values in this analysis (Tables 1 and 2).
We collected 18 RV measurements between 2014 September

07 and 2017 March 30. An iodine cell was used for each
observation as a wavelength calibrator and point-spread
function reference. Each spectrum spanned wavelengths from
3600 to 8000Å with a spectral resolution of R=60000 and
typical S/N per pixel of 100–200. The “C2” decker
(0 87×14″ slit) provided spectral resolution R∼55000
and allowed for the sky background to be measured and
subtracted. An exposure meter was used to automatically
terminate exposures after reaching a target S/N per pixel at
550 nm. The standard CPS Doppler pipeline was used to
measure RVs (Marcy & Butler 1992; Howard et al. 2009). RV
measurements are listed in Table 3. These values are consistent
with the transit interpretation, showing variations of
<10 m s−1, ruling out definitively the false alarm possibility
of an eclipsing binary which would show RV variations of a
few km s−1 on this timescale.

4. Analysis of the Transit and RV Observations

4.1. Properties of the Transiting Planet Kepler-1654b

First, it is important to confirm that this system truly
represents a giant transiting planet. We used the VESPA tool to
estimate (Morton 2012, 2015) the probability that this signal
represents an astrophysical false positive. As inputs, we used
the light curve shown in Figure 1, the stellar parameters listed
in Table 1 along with gri photometry from APASS, the NIRC2
contrast curve described in Section 3.2, the Keck/HIRES limit
on secondary spectra of Δmag<5, and an upper limit on any
secondary eclipse of 2×10−4. The most likely false-positive
configuration is that of a blended eclipsing binary, but this
scenario is roughly 20000 times less likely than the planetary
scenario. The resulting false-positive probability is 6.2×10−5,
more than sufficient to validate Kepler-1654b as a transiting
planet. Foreman-Mackey et al. (2016) cited a false alarm rate
due to eclipsing binaries of 0.05 based on statistical estimates
of the contamination by background objects. Our much higher
confidence level is due the follow-up observations, which gave
direct and sensitive limits on stellar companions as well as

Figure 2. An image of Kepler-1654 obtained with the Keck II telescope in the
narrow-band Br-γ filter shows no evidence for a companion within 4″ of the
central star. The derived 5σ detection limits for the infrared imaging are also
shown: differential magnitude as a function of angular separation from the
primary star.

Figure 1. Kepler data from Quarters 6 and 17 have been normalized, detrended
with a linear (Q6, red) or second order (Q17, blue) baseline, and phased around
the period of the transit. The solid line shows a fit to these data using a model
based on the EXOFAST routines (Eastman et al. 2013). The inset in the upper
right shows residuals with respect to the fit.
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taking advantage of improved stellar parameters. It is on this
basis that we suggest Kepler-1654b (née KIC 8410697b)
should be regarded as a fully confirmed Kepler object.

To determine the properties of the transiting companion, we
used the EXOFAST transit analysis routine (Eastman
et al. 2013) using stellar properties derived from the Keck
data as priors plus the transit light curves as input.13 We ran
EXOFAST in its full MCMC mode with the eccentricity set to
zero with the presented in Table 2 and shown in Figure 1. With
715 data points in the two observed transits, the χ2 of the fit
was 692.5 and the rms of the residuals was 0.00024 as shown
in the figure. The various fitted parameters are astrophysically
reasonable. For example, the derived limb-darkening coeffi-
cients of 0.40±0.02 and 0.20±0.03 are consistent with
values appropriate to the stellar properties (Claret & Bloemen
2011). The EXOFAST fit shows the planet to be a Jupiter-sized
object, 0.82 RJup, in a 2.03 au orbit. At this location, the
equilibrium temperature of the planet is 206 K assuming an
albedo of zero.

Finally, we conducted a separate fit to the transit light curve
using the BATMAN software package (Kreidberg 2015). All
light curve parameters from this analysis agree with those in

Table 2 to within 1σ. Using our posterior distributions, we
computed the posterior of the stellar density under the
assumption of a circular orbit (Seager & Mallén-Ornelas 2003).
With the stellar density derived from our spectroscopic
analysis, we then used the density posterior to investigate the
photoeccentric effect (Dawson et al. 2012). The photoeccentric
effect allows a direct and independent constraint on a transiting
planet’s orbital eccentricity through the observable impact of
any non-zero orbital eccentricity on the transit light curve. Our
analysis shows a preference for non-zero orbital eccentricity:
we find = -

+e 0.3 0.1
0.3, consistent with the weakly non-zero

estimate from EXOFAST when run with eccentricity as a free
parameter, -

+0.26 0.11
0.21 (Table 2). The BATMAN analysis sets a

lower limit on the eccentricity of e>0.06 at 99.7%
confidence. Thus, like most other giant, long-period exoplanets
known from RV surveys, Kepler-1654b may also have an
orbital eccentricity greater than that of Jupiter and Saturn.
Finally, we note our derived planet values are consistent with
those derived by Foreman-Mackey et al. (2016), e.g.,
Rp=0.82±0.06 versus 0.70±0.1 for (Foreman-Mackey
et al. 2016).

4.2. Precision RV: Constraining Kepler-1654b

Although our RV measurements have helped to confirm the
planetary nature of Kepler-1654b, our goal of determining the

Figure 3. Spectra from the HIRES instrument on the Keck telescope. The top left panel shows a portion of the spectrum near the Ca H&K lines and the lack of an
emission reversal implies a stellar age greater than ∼5 Gyr. The middle left and bottom right panels show lines near the Mg b triplet and H-α which look normal for a
mid-G star with narrow lines.

13 We used the implementation of EXOFAST available at the NASA Exoplanet
Science Institute: https://exoplanetarchive.ipac.caltech.edu/cgi-bin/ExoFAST/
nph-exofast.
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mass of the transiting planet has not yet been achieved. We
analyzed the 18 HIRES RV measurements (Table 3), which span
2.5 years, using the open source Python package RadVel (Fulton
et al. 2018). We adopt an RV model consisting of a single
Keplerian, with orbital period and phase fixed at the known values
and assuming an eccentricity of zero. The model includes a
constant RV offset, γ, and a “jitter” term σ representing
astrophysical and instrumental noise. The MCMC analysis
(Tables 4 and 5) yields an estimate of the semi-amplitude

= -
+K 2.7b 3.3

3.2 m s−1 which corresponds to 43±52M⊕ (0.13±
0.16MJup), or a 3σ upper limit of <156M⊕(<0.49MJup).
Figure 4 shows the RV data plotted along with the best-fit model,
while Figures 5 and 6 show the posterior distributions of the
model parameters. A zero-planet model is favored on the basis of
the Bayesian Information Criterion (Table 4), consistent with a
non-detection.
What level of signal might we expect to find on the basis of a

planet of radius 0.82 RJup? The radius–mass data shown in
Figure 3 of Howard (2013) suggest that with a radius of 9.2 R⊕,
Kepler-1654b should have a mass in the range of 50–100M⊕.
Wolfgang et al. (2016) give a number of radius–mass
relationships for planets with R<4 R⊕(somewhat smaller
than Kepler-1654b) and their Method-1 yields a mass estimate
of 58M⊕, which falls within the Howard (2013) range. These
masses correspond to RV semi-amplitudes of 3–6 m s−1 which
our RV data only begin to constrain.
The corresponding upper limit to the bulk density is

<1.2 g cm−3. As shown in Figure 7, the limit to Kepler-1654b’s
density sits close to Saturn’s in the Mass–Radius–Density
parameter space. Our RV observations rule out the most massive
planets but are consistent with the distribution of planetary

Table 2
Median Values and 68% Confidence Interval for EXOFASTa

Parameter Units Value

Stellar Parameters:
M* Mass (M☉) -

+1.011 0.052
0.056

R* Radius (R☉) -
+1.179 0.023

0.026

L* Luminosity (L☉) -
+1.23 0.11

0.12

ρ* Density (cgs) -
+0.876 0.033

0.015

log(g*) Surface gravity (cgs) -
+4.3001 0.012

0.0099

Teff Effective temperature (K) -
+5597 93

95

[Fe/H] Metallicity - -
+0.088 0.095

0.097

Planetary Parameters:
P Period (days) -

+1047.8356 0.0019
0.0018

a Semimajor axis (au) -
+2.026 0.035

0.037

RP Radius (RJ) -
+0.819 0.017

0.019

Teq Equilibrium Temperature (K) -
+206.0 3.5

3.7

á ñF Incident flux (109 erg s−1 cm−2) -
+0.000408 0.000027

0.000030

Primary Transit Parameters:
TC Time of transit (BJDTDB) -

+2455375.1341 0.0015
0.0014

RP/R* Radius of planet in stellar radii -
+0.07138 0.00032

0.00033

a/R* Semimajor axis in stellar radii -
+370.3 4.7

2.2

u1 linear limb-darkening coeff -
+0.401 0.025

0.024

u2 quadratic limb-darkening coeff 0.205±0.034
i Inclination (degrees) -

+89.982 0.017
0.012

b Impact Parameter -
+0.114 0.079

0.11

δ Transit depth -
+0.005096 0.000045

0.000047

TFWHM FWHM duration (days) -
+0.8933 0.0053

0.0038

τ Ingress/egress duration (days) -
+0.06463 0.00072

0.0023

T14 Total duration (days) -
+0.9580 0.0039

0.0035

PT A priori non-grazing transit prob -
+0.002508 0.000015

0.000032

PT,G A priori transit prob -
+0.002893 0.000017

0.000038

F0 Baseline flux -
+1.0000036 0.0000087

0.0000089

Secondary Eclipse Parameters:
TS Time of eclipse (BJDTDB) 2455899.05191±0.00091
From EXOFAST run with non-zero eccentricity
e Eccentricity -

+0.26 0.11
0.21

ω* Argument of periastron (degrees) -
+81 71

73

Note.
a Parameters derived with eccentricity forced to zero except as noted.

Table 3
Keck HIRES Data for Kepler-1654

JD Date Velocity (m s−1) σVel (m s−1)

2456907.899441 4.61 3.42
2457061.166912 13.98 5.52
2457062.168017 −1.34 5.19
2457151.051283 −7.03 3.13
2457180.021422 −0.33 3.78
2457201.026295 −16.67 3.90
2457203.095994 11.25 4.68
2457211.936684 9.66 3.31
2457229.053345 −2.74 3.63
2457326.714999 −3.32 3.21
2457353.692574 8.66 3.21
2457354.729928 7.67 4.20
2457478.135425 −2.43 3.72
2457521.001943 −8.54 3.06
2457601.046180 −7.80 5.64
2457620.898209 7.04 3.33
2457672.824144 2.84 3.76
2457830.140368 −19.56 3.38

Table 4
Model Comparison

Statistic 0 planets 1 planet

Ndata (number of measurements) 18 18
Nfree (number of free parameters) 2 3
rms (rms of residuals in m s−1) 9.12 8.88
χ2 (assuming no jitter) 69.91 67.22
cn

2 (assuming no jitter) 4.37 4.48

ln (natural log of the likelihood) −65.29 −64.87
BIC (Bayesian information criterion) 135.48 135.62

Table 5
MCMC Posteriors

Parameter Value Units

Modified MCMC Step Parameters
we cos b ≡ 0.0
we sin b ≡ 0.0

Orbital Parameters
Pb ≡ 1047.8363 days
Tconjb ≡ 2455375.133 JD
eb ≡ 0.0
ωb ≡ 0.0 degrees
Kb -

+2.7 3.3
3.2 m s−1

Other Parameters
γ (RV offset) −1.1±2.6 m s−1

σ (jitter) -
+9.1 1.7

2.3 m s−1
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densities in this radius range. Continuing RV observations will
eventually yield a mass for the transiting system.

We can use our RV data to explore the upper limit to the
mass of the any interior planet. With a 1σ rms residual of
9.1 m s−1 (Table 4) and 18 observations, we can set a 3σ upper
limit to the RV semi-amplitude any interior planet (transiting or
not) of = ´ =K 3 9.1 18 6.4 m s−1 for a low inclination
planet where K is given by:

*=
-

-
- -( ) ( )K

e
M i M P

28.4 m s

1
sin 2

1

2
pl

2 3 1 3

with the planet mass with the planet mass in Jupiter units, the
stellar mass in solar units and the period in years (Lovis &
Fischer 2010). Assuming sin(i)=1 for a system with at least
one transiting planet, a stellar mass of 1Me, and e=0, the
HIRES observations set a mass limit for any additional planet
of <M P0.23pl yr

1 3 MJup.
Of primary importance will be to follow the Kepler-1654

system with additional RV monitoring to determine the planet’s
mass. New imaging and RV observations are planned to
investigate the new long-period systems found by Foreman-
Mackey et al. (2016).

5. Characterizing the Atmosphere of Temperate Gas Giants

Kepler-1654b is representative of the few temperate,
transiting gas giants available for atmospheric characterization.

We investigated whether this system might be promising for
spectroscopy with the Hubble (HST) and James Webb Space
Telescopes (JWST; Beichman et al. 2014). Kepler-1654b and
others like it as described in Wang et al. (2015) and Kipping
et al. (2016) (Table 7) will be the coolest gas planets (∼200 K)
for which we will be able to probe atmospheric composition
and physical characteristics. Comparisons to planets in our own
solar system will be particularly valuable.
Kepler-1654b is cold for a transiting planet. The strength of

absorption features in transmission spectra are proportional to a
planet’s atmospheric scale height, and that scale height is
proportional to atmospheric temperature. Therefore, the low
temperature of the planet produces a small amplitude
transmission spectrum. This plus the relative faintness of
Kepler-16547 itself limits the signal-to-noise of its transmission
spectrum. On the plus side, the long duration of these events
enhances the sensitivity for measurements of trace atomic and
molecular species in the 1–5 μm band. Sample spectra in the
visible and near-IR for Kepler-1654b are shown in Figure 8.
We have simulated JWST NIRSpec prism spectra for a single

transit of this system and show the results in Figure 8. These
spectra were computed using the method described in Greene
et al. (2016) and use Nextgen (Hauschildt et al. 1999) stellar
models with the Teff and log g of Kepler-1654 (Table 1) and our
atmospheric transmission models of Kepler-1654b. We model
the atmosphere by solving radiative and chemical equilibrium
and also include condensation of water when supersaturation is
reached. Three atmospheric models with g=10 m s−2 with

Figure 4. Best-fit one-planet Keplerian orbital model for Kepler-1654b. The maximum likelihood model is plotted while the orbital parameters listed in Table 5 are the
median values of the posterior distributions. The thin blue line is the best-fit one-planet model. We add in quadrature the RV jitter term(s) listed in Table 5 with the
measurement uncertainties for all RVs. (b) Residuals to the best-fit one-planet model. (c) RVs phase-folded to the ephemeris of planet b. The small point colors and
symbols are the same as in panel (a). The phase-folded model for planet b is shown as the blue line.
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and without clouds and g=25 m s−2 without clouds are
shown in the top panel of Figure 8(a). We computed signals in
photo-electrons using the apparent stellar magnitude of Kepler-
1654 in the relevant bands, 18 hr integration time on transit, an
additional 18 hr on the star, the 25 m2 collecting area of JWST,
and NIRSPEC prism resolving power and system transmission
values kindly provided by the NIRSpec team (S. Birkmann
2018, private communication). The resultant 1σ noise values
are on the order of 15 ppm when binned to R=10, lower than
the best values achieved with HST WFC3 G141 observations
(e.g., Kreidberg et al. 2014a). It is uncertain whether JWST
NIRSpec or other JWST instruments will achieve such low
noise levels, so Figure 8 represents the best performance that
JWST is likely to achieve on a single transit observation of this
system.

A second scenario for the planet’s atmosphere includes
enhanced transmission spectral features from a heated strato-
sphere (Figure 8(b)). Our models predict that the transmission

spectra are sensitive to the scale height above a cloud deck at
0.1–1.0 bar. If the temperature above the cloud deck is
substantially higher than the equilibrium temperature
(∼200 K) of the planet, the strength of the absorption features
will be proportionally larger (Figure 8). Such a stratosphere
commonly exists in all giant planets in the solar system, and
has recently been detected in one hot exoplanet (Evans
et al. 2017), although the degree of heating with respect to
their equilibrium temperatures differs from planet to planet.
Figure 8(b) shows models with and without a heated strato-
sphere (HS) and two levels of metallicity, solar and 10× solar.
The effect of stratospheric heating is much stronger than
enhanced metallicity.
Figure 8 shows that JWST could detect the strong CH4

features at 2.3 and 3.4 μm at low-to-moderate confidence in
several models. We expect that spectral retrieval algorithms
(e.g., Line et al. 2013a) will likely provide a higher confidence
detection of CH4, as such methods combine information on all

Figure 5. Posterior distributions for all free parameters in the RV fit.
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features in the observed spectrum. We do not expect HST
observations to yield detections of CH4 or other features in the
model spectra. The smaller aperture of HST will produce lower
S/N in the 1.1–1.7 μm passband of its WFC3 G141 instrument
mode than for JWST NIRSpec. The transmission models show
no spectral absorption features and only modest Raleigh slopes
at wavelengths shorter than λ=600 nm (JWST/NIRSpec’s
lower cutoff), so shorter wavelength HST observations will also
not be able to constrain the planet’s atmospheric properties.

The JWST NIRSpec prism spectra could certainly detect the
spectral features in the heated stratosphere models.
Finally, we put Kepler-1654b into the context of other long-

period transiting systems suitable for observation by JWST.

Figure 6. Posterior distributions for all derived parameters.

Figure 7. The distribution of bulk density in g cm−3 for planets with radii in
the range of 0.5–2 RJup based on data for over 250 transiting planets with well
determined mass and radius measurements (cyan points). The color scale
shows bulk densities from 0.1 to >1 g cm−3 and shows the fall-off in bulk
density for more massive planets (Howard et al. 2013). The positions of Saturn,
Jupiter, and the upper limit to Kepler-1654b (red star) are indicated. The point
size is proportional to the planet’s density.

Table 6
Predicted Epochs of Future Transits for Kepler-1654b (UT)

Orbit Transit Midpoint (BJD) Transit Midpoint (UT)

0 2,455,375.1341±0.0014 2010 Jun 27 15:13:06±120 (s)
1 2,456,422.9697±0.0024 2013 May 10 11:16:22±200 (s)
2 2,457,470.8053±0.0040 2016 Mar 23 07:19:38±350 (s)
3 2,458,518.6409±0.0059 2019 Feb 4 03:22:54±510 (s)
4 2,459,566.4765±0.0077 2021 Dec 17 23:26:10±670 (s)
5 2,460,614.3121±0.0096 2024 Oct 30 19:29:25±830 (s)
6 2,461,662.1477±0.0115 2027 Sep 13 15:32:41.3±990 (s)
7 2,462,709.9833±0.0134 2030 Jul 27 11:35:57.1±1,160 (s)
8 2,463,757.8189±0.0153 2033 Jun 9 07:39:13.0±1,320 (s)

Note. These predicted transit midpoints assume no offsets due to interactions
with other bodies in the system (Transit Timing Variations, TTVs). The bold
entry for 2024 October 30 is nominally the first one observable by JWST and
occurs at the edge of the JWST observability window.
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Table 7
Properties of Long-period Transiting Planets

Planet Period Rpl Depth Duration Ks WISE2 S/Na S/Na Tpl First
Name (days) (RJup) (ppm) (days) (mag) (mag) (Ks) (W2) (K) JWST

Kepler-167e (1) 1070 0.91 16,224 0.67 11.83 11.84 407 213 140 2024 Oct 25
PH2b/Kepler86b (9) 280 0.90 8,589 0.44 11.12 11.14 242 126 284 2020 Oct 28
Kepler-553c (6) 330 1.00 14,549 0.51 13.06 12.88 180 103 234 2019 Jun 08
Kepler-1654bb (2) 1410 0.82 5095 0.89 11.92 11.93 141 74 177 2024 Oct 30 (11)
Kepler-421b (4) 700 0.37 2510 0.66 11.54 11.49 71 38 177 2025 Oct 10
Kepler-1647b (3) 1110 1.06 3687 0.41 12.00 11.90 67 37 255 2021 Aug 02
Kepler-1625b (6) 290 0.54 3489 0.79 13.92 13.92 (12) 36 19 275 2019 May 26
KIC 9663113b (5) 570 0.41 1669 0.83 12.50 12.46 34 18 244 2020 Oct 23
Kepler-1536b (6) 360 0.28 1840 0.54 12.55 12.54 30 16 176 2019 May 12
KIC 10525077b (5) 850 0.49 2489 0.83 13.75 13.80 29 15 211 2019 Apr 11
Kepler-1630b (6) 510 0.20 1009 0.35 11.80 11.71 18 10 165 2019 Jul 15
Kepler-22b (10) 290 0.21 493 0.31 10.15 10.15 18 10 272 2019 Sep 08
Kepler-1634b (6) 370 0.29 1080 0.47 12.72 12.68 15 8 238 2019 Aug 02
Kepler-150f (7) 640 0.33 1259 0.56 13.37 13.37 14 7 207 2024 May 09
Kepler-1635b (6) 470 0.33 1540 0.56 13.90 13.90 14 7 212 2020 Jun 12
Kepler-1600b (6) 390 0.28 1219 0.41 13.90 13.88 9 5 218 2019 Oct 06
Kepler-1632b (6) 450 0.22 360 0.53 11.66 11.64 9 5 281 2020 May 15
Kepler-1636b (6) 430 0.29 840 0.74 14.23 14.23 (12) 7 4 255 2023 May 23

Note. (1) Kipping et al. (2016), (2) This work; (3) Circumbinary planet with multiple transits Kostov et al. (2016), (4) Kipping et al. (2014), (5)Wang et al. (2015), (6)
Morton et al. (2016), (7) Schmitt et al. (2017). (8) Jenkins et al. (2015). (9) Wang et al. (2013). (10) Borucki et al. (2012). (11) This transit is just at the edge of the
JWST observability window based on current knowledge. (12) Estimated from 2MASS.
a See the text for a description of the “Transit S/N” figure of merit in R=100 spectral element.
b The bold entry refers to the planet identified in this paper.

Figure 8. (Top) Simulated JWST NIRSpec prism spectrum of Kepler-1654b with uncertainties computed as described in Greene et al. (2016). Model spectra have been
binned to R=10 and are shown as solid colored curves. 1σ uncertainties were computed for a single 18.4 hr transit at R=10 and are shown as error bars. Three
atmospheric models with g=10 m s−2 with and without clouds and g=25 m s−2 without clouds appear in the top panel. The bottom panel shows R=10 models
and uncertainties for g=25 m s−2 atmospheres with and without a heated stratosphere (HS) and two levels of metallicity, solar and 10× solar.
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Table 7 gives data on 18 confirmed planets with radius �2 R⊕,
orbital periods greater than 250 days and an equilibrium
temperature14 Tpl<300 K. We developed a figure of merit
which takes into account the total number of stellar photons,
denoted S, observed in a spectral element, Δν, in a time τ; the
photon shot-noise, s = S ; and the transit depth, α. The
“Transit S/N” is defined as a s a=S S and is evaluated for
stellar flux densities, Fν, at Ks (2.2 μm) or WISE W2 (4.6 μm)
for a telescope with a collecting area A=25 m2, with an
instrument of resolution R=100 and efficiency η=0.25, and
in an integration time, τ, equal to the duration of a transit:
S=Fν AηΔν τ/(hν). This figure of merit glosses over many
details (Greene et al. 2016), but serves to rank these planets in
terms of their suitability for transit spectroscopy. For planets
with a temperature below 200 K, only Kepler-167e, which is a
larger planet orbiting a smaller star (Kipping et al. 2016), has a
“Transit S/N” larger than Kepler-1654b’s. Other systems rank
a factor of two or more lower, making Kepler-1654b a valuable
target for future study. Of course, the atmospheric scale height
which depends on the planet’s temperature and surface gravity
also affects the detectability of spectral signatures. But as only
a few of these planets have RV-determined masses, we do not
account for the effects of scale height here.

Table 6 and the last column of Table 7 highlight the
challenge of actually observing these long-period planets. The
long time between transits and JWST’s limited pointing
windows can make scheduling difficult. JWST’s Sun avoidance
restrictions determine when the 10°×10° Kepler field can be
observed, nominally from early/mid-April to late-October/
mid-November. Thus, for example, transits of Kepler-1654b
and Kepler167e will be observable only starting with the 2024
events based on extrapolations from the information in the
JWST APT tool.

6. Conclusion

We have searched Q1-Q17 Kepler light curves of F and G
stars not previously associated with confirmed or candidate
planets or even with Kepler “Objects of Interest” and we were
able to identify Kepler-1654b (originally KIC 8410697b),
which shows two transits with a 1047 day period—one of
the longest periods yet found in the Kepler survey. Subsequent
AO and RV observations were able to rule out false positives
and to characterize the planet and its host star. A fit to the
combined transit curve plus RV data shows that orbiting this
mature G5 star is a 0.82 RJ planet with a mass of <0.5 MJup.
Transit spectroscopy with JWST of Kepler-1654b and similar
objects will enable a careful study of planets whose physical
states, e.g., a low equilibrium temperature of ∼200 K, most
closely resemble those of the outer planets in our own solar
system.
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