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ABSTRACT

L

A 24-Dimensional Spin Manifold

Carey Mann Jr.

Submitted to the Department of Mathematics on January
13, 1969, in partiel fulfillment of the requlirenents
for the degree of Doctor of Philesophy.

A brief review of the results of Anderson, Brown
and Peterson on the structure of the spin ccbordism
ring shows that there is a 2U-dimenslonal class for
which no representative manifold was previously lknown.
This thesls presents such a manifold,

The manlfold is the "Grassmanification" of a
certaln vector bundle (the tangent bundle with a trivial
line bundle split off and discarded) over an oriente
able 9-manifold ¥ characterized by the non-vanishing
of its Stiefel-Whitney number wawpwouwo(X). Grassmane
ification of a vector bundle E+X is a generalization
of projectification of a vector bundle, namely instead
of considering the set of lines within E one considers
the set ol, say, m-planes. [Jhe resulting set which we
deriote ED (if E has dimension m + n) 1s a compact
manifold, provided X 1s.

Writing t(M) for the tangent bundle of agny mani-
fold M, we compute H"(EM;N), a module over H (X), and a
basis of it over H'(X): the tangent bundle t(EMsM),
which equals the Whitney sum of 1(X) (pulled back to
EMsNY and the tensor product of the canonical m- and
n-plane bundles on EM¢N; and thus, the Stlelel-Whitney
class of Elgh, ‘

It is shown that in case the Stiefel-Whitney
number of the orientabic manifold X above does not
vanish, then for the B-bundle E indicated above, E3:5
is a spinor manifold such that w(4(E335) # 0, a cone-
dition which impliecs that B3¢0 i a representative of the 24

dimensional spin cobordism class.
Various resulis appear along the way, such as a

method of computing E. Thomas' function ¢m . n which

gives the Stiefel-Whitney class of the tensor product of buli=

dles, The matl involves o formula by which Milnor's

symmetric polynomials s, nmey be calculated, Obtalning

the Stiefol-Whi class of a specific tensor product
forward, though tedious, cal-
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A 2U-DIMENSIONAL SPIN MANIFOLD

1 Introductlon

Thom [10] invented the study of manifolds by cobordw
ism and determined the structure of the unoriented
cobordism ring. Milnor [6], Wall [12] and others
determined the oriented cobordism ring Qﬁs and Ander-
sony Brown and Peterson [2] described the additive
strugture of the spin cobordism ring Q§Pin9 as well
~as most of its multiplicative structure. Manifolds
represehting many generating classes in Qﬁpin remain v
kﬁowng however. Every spin manifold of dimension <24
is unoriented cobordant to %he squéfe of ain orlentable
manifold; this 1s also true in dimensions 25,26,27,
28,30, and 31 (sce [8])6 There is however a 2K-dimen-
slonal spin cobofdism class for which no represémtative
manifold was previously known. This thesis presents

such a manifold.

2 Spin Cobordism
2.1 KO Characterictic classes

To give an understanding‘of'tho place of the manie-
folad in'gﬁpin, we glve here part of the description in

- :
[2] of Q@UP*: let BO be the classifying space for the

orthogonal group. Lct piBOIH»BO be the fibre space such
that “i(BO<D>) = 0 for i<n and p; Ty (BOSy> )*i0, (BO) is an

isomorphism 1 i-n. Let © € W (30<n>) be the generator
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Let ﬁ cTOO(X) be‘of fllffation . i, e.,& is to be o
triv¢a1 on Lhe (n»» 1) - skeleton of X l Then thcre is a
map [ 'XVBO<Uf sgcév§hat_pf€ # & X~BO | We defjne [E] € Hn(X)
by |

fﬁ] = {fg (o )}

for all ¢ quch thﬂt pl o E 7 _ o L

~Define Kutheory PonLrJagln classos [1] as follovs: let
T be the max1ma1 §OPPS in SO(2m) (ana SO(?m + 1)). Now
KO(BT™M) = 7[[y19e.e,xm]] where each xy has dime nsion 1.
Béth KOO(bSO(?n)) and. YOO(BSO(2m + 1)) are 1njecteo 1nto
KO (B1Mm) under‘the map. wahleh is the compo%mtxon of the:
homomorphism "compleyiJLca lon of a bundlc"s wi*h the V%
theory homomcrphism assoc1ated to BTm¢BSO(2n) Their
common image is the invariants of the Weyl grouﬁ of TN in
s0(2m) or SO(2m @ 1). Let X; = ~x3/(1 = x%3).  Then in
KO(BTm)[ﬁ], Hi i (1 + ﬁ(xi + X)) ié a ﬁoiyﬁomialﬂin t‘
and we denote the coefficiént of t* py w% & xo(BTM),
lies 1n the image of x3 pulling back, one also writes
7% & K0o(BSo(2m)) or KOO(BSpiﬁ).' If.J'ﬂ'(jl,..e,jk)is
a sequenbe of integers such that k>0 and each ji>l, let
7l = wd1gd2,, wdk ¢ xoo(BSpin), and let n(J) = Zj;.
2.2 Theorem |

The filtration of w° in KOC(RSpin) is Mn(J) if n(J)
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is even and is Un(J) = 2 if n(J) is oda (see [2]).

‘Let k be large and let MSpin(8k) be the Thom space
of the claésifying bundle OV@P“BSpinQS%), Let ¢;ﬁ%(BSpin(8K))
+ﬁ§(MSpin(8k)),andM¢:K09(BSpin(8k))%KQBK(MSpin£8k))fdenote
the Thom isomo”phisms;,.¢ ralses filtration.by,preqi§qu
8k, and ¢(Lg]) = [¢(E)] ¢ ﬁ‘(MSpln(8£)) [5]. Let MSpin
denote the;spectrum‘assoqiaﬁedjtozMSpln(Bk/. We state the
results of [3]‘in theilang&age of spedtra where the Thoﬁ
isomorphism has degree 0. Let §Q<n?lbe,ﬁhe Q?§péctrmn‘
whose 0th term is BO<n>. . ‘T . | ;:” ,

If n(J) is even (respectively, odd), let iJ:§Spiﬁ% L
§O<Mn(J)> (respectively BO<Hn(J) - 2$)abe a map corres.
ponding ﬁo WJ.. If z e ﬁg(MSpin), let T, "‘Spian(a29 dim z)
denote the corresponding map , whereﬁg(zzyn) denotes the
spectrum whose 0D term is K{Zym) e
2.3 Theorem

There 38 a collection of‘elemeﬁ@s zq € H%(@Spin) such
that the map

F:MSpins . \ BO<in(J)> x n O<Mn(J) - 2>
-~ n(J) even ~ n(J) odd ~ -

_X"gg(zei-dim zi)

J
with Z2 coefficlents. Hence F induces a szisomorphism on

glven by ¥ = IIf x Hf?i induces an isomorphism on cochomology

homotopy groups, where Co is the class of finite groups of

odd order.




Since wy (M pin) # QSpin ‘has’ no?v‘_qfa;on for odd

primes“ﬁ7[6J@ché:above theorem allows one to compute
the1additiVéJStrudturefof-Q%Pi%.ﬂ;(In»EZJ is ‘given a
complicated counting procedure for the number of z;'s in
éaah:diMéﬁSiGHI)ffﬁ%(BO(ﬂ?}’iS&QggiodiC*ofjpePigdgsnin>
dimenéions<iﬁ;ﬁtheeséQuencepcst&fﬁiﬁgVinidiﬁ3ﬂ§10n55§ 0
(mOd:S)gcbeing A,'uqs Z“@gOD,Z,uO,;QiﬁOE

2.4 Generators of 981‘)‘11’1 rmianant Loy pererabor

“The -above shows that the ¢lasses [n 1= {fJ (cﬂn(J))}
br?{fjiéagﬁzjy/gﬁéﬁ}in'H?(MSpin), QSp;n ave of interes?t
as”géﬂera§6rs bf“@@pin;x Manifolds Mj repres@nting [ng37are
known' in caseé allﬁﬁi’aré even (the produét of quatern-.
ionic projective spaces) or in case only one is odd [43.

7if”Mfis*aﬁ,ﬁﬁﬁiménsicﬁal spin manifold, denote by
wJ(M)'é=KO“n(pta) %hé‘éhar&%terisﬁic*nUmbenwdefineélby

w [lT' By 2.2, a reéepresentative MJ of [w7] 1s a spin
maanold of dimension In(J) (or Wn(J) = 2 if n(J) is odd)
such that ﬂJ(MJ) # 0, In [2] 1t is showﬁ that ﬂJ(M) = PJ(M)
where~PJ!w*p3i94fpjk,aﬁd py e HMJ(BSpin) is theTPdntrJagin
class. Since the reduction mod 2 of the Pontrjagin class

pilﬁf any bundle equals,wgi?

of that bundle, where W,y is
the Stiefel-Whitney class, :

(l) : ; : w> ')'eeow 2(1\‘1 )
: 231 Qak

will gu"“qntoo Lhn, dwﬁ PJ(M) s ﬁj(M).




3 Grassmanification of a vegkoxjpundlg

Real prqjgéfiv@:spaqehis Q;ﬁoméact,keqiﬁgnsioﬁal
manitold which can be described as the set of Iimes (1.c.
l-planes) through 0 in a real (k + 1)@dimen§iénal vector'
space. The Grassman man;ﬂqlgiGm’n, a comﬁaqt mn=dimen-
sionalfmanifqld,,is the set of m-planes (or nyplanes,
taking orthogonal compl@m&nts)Nthrqﬁghfgwinian‘Km:+~n)«
fdimensional space,;fMagiﬁqlds qepr¢sQnt1ngfgeneratorsri;
for the unorien@ed¥an§;§rignﬁed;cobordiém,ringsEhave
been described;whigh involve projectification of a
vector bunq1e [4], which is a speclal Q@ﬁé_pfg¥ﬁras$manw

ification" of & bundle.

If E+X is an (m + n)@dimensional vector bundle
let E™s™ be the set of m-planes in E, each within a
fibre and through the O~section. There is a fibration

G, n+Embn+X, and 1f X is a compact manifold of dimension
p

k, E™s" is a compact manifold of dimension mn 4k,
naturally.

Note that“orthogonality is established in fibres of E
by choosing a Riemannian metrici an meplane in E then
determines the orthogonsl nmpiane and conversely, so
Emsnnmay also be.regarded as the set of n-=planes in E.

3.1 H'(EMN)

o0

Let all cohomology in the sequel have Zz coefficients.

Theorem

H¥(E™?) « 1 (%) [u,v]/(uv = w(E))




where u .= 1 +_ul +,u2 + s +,umg ui's wi(ym)sf

I

VoE Lo vy vyt e kv, vy o= ws (v )5

Vi = the canonical m=-plane bundle over E"" whose
fibre over an m-plane in E (i.e. point of EWQQ) consists
of the points in that m=plane -

Yn = the analogous canonical n=plane bundle,
and by abuse of language ﬁé write H*(X)[u,v] fof the polyw~
~nomial algebra H%(X)[ql,.o‘,u55v1§,o‘gvn] (in the sequel
we often abbreviate.this list of arguresnts by UyV) o
2522@ First suppose X is a pqiné‘ Then EMs? = Gm;n‘énd
w(E) = 1; the result in this case 1s well-known, . For =
general X, map H*(X)'['u,,v_]/(u wENFE® () by sendw
ing uy to wi(ym) and vj tofwj(fn), | o

f is well-defined since wlvp)wlyy,) = wly, 6 v,), and an

easy argument shows y_ 0 y, = 7= l(E), w:EMsMeX the pro-

Jection.

° . 10-
f 1S lm;l'_ since G _)_Empl’l

L : = =N g ana
LAs 2 m,n’ gives 1w (v ) = wy(yy) # 0 and

similarly for Yn (writing now Vﬁ and ?h for the canone
ical bundles on G, e and U, V for their Stiefel-~Whitney
classes). In fact the only polynomials in Wi(Ym) and
WJ<Yn) uartied to 0 by i* are those glven by i§(uv) =

#
usv = 1 = 1 w(E).

f is onto because in the Serre speétral sequence for the

BT A AR £ TR

1 ~ 3 . o ]‘m ll; z % 'Y ) 8 *®
fibration G n>L s X, Ey H(X) # B (G

- ‘msn)ﬁlanu it can

be shown that the rank of L, and that of HW(X)[uSV]/

(uv = w(E)) are equal in each dimension. Since f is




injective, By, E_ and H (EMs™) must be additively iso-
morphilc, and f must be onto.

3.2 A basis of H (Em ny over H' (X)

We wish to find an- udditJve baSlS for H (Em n) over H' (Y)

among the monomials in the 'uy and ngwierteuw5(E),m 1
and_similarly for other bundles.: Since uv = w(E),
(l) ’ 7 s ’ uk +huk"‘lv1. + e 00 + VI{ = Ek .

Cfor k = 0,1,...,ns We can write VyoE Uy + Eqy and dnduct-
ively express éiga.e,vn in terms of the u; (and HY (X)),

Defining u; = 0 fOr”iSmiand,v3 = 0 for j>n, one has (1)
also for n<k<m + n., Then substitution for ViseeesVy glves
relations among polynomials 1n the ui;&#To’ekﬁfess‘thesé?g

relations we define polynomials Py and%Pkf by =

@ e e ey

where J stands fo* a uequenoe of po jiivo 1ntegero (d]goco,jP;
for some r and we use the notation for any soquoncc, IJI

)Iji; and

§ Kl

(3) S Ppt(u) = 1#0,?1<B)(ukéi fkami)o
It is easy to show that

) : . kul R

( ‘) k(l.l) i,—:() Pi(U)ukﬁi
and ‘

(%) vy ® k'(u), 1,,oagn$
using (1). Substituting in (1) we then fxnd
n%j -1 , n J

6 , P, B 3 = % 11)).4 '\ 11 P (I"
(6) ( ) = 120 i(u) n+j=1i 150 ( e nEke1t gk




where E stands for,thé E,L ahé“Pk(E) ;§}def;n§d;§y€a

formula simllar to (2)

: R ) - N"j », - )
Further if j>m + n then 0 = '(u) Z, Us Vs is,
alr'cady jmp] 1 9@ by O‘:-' Vn+1 =’-‘= ) ., " =‘ n_‘ m ac cording £0o

(3), hence, Pj'(u) = O yiclds no new relatlono>among ,

polynomials in the uy for j>m + n°
3.3 The tangcnt bundle of Fm n o
Write T (M) for the tangent bvndlé of a manllola V
Theoren u U U,  _
vl(Em sy w“lr(x) 0 (ym B yn) where Em NE x 1s, the
projection. ‘
This can be deduced from the results of [9], The fdea is
that the tanggnc bundTG of the Lota1 %pace OP a flbration
of mani {olds is the sum’ of the vcciors along the fihPBS
with an orthogonal subbgndle, The 1atte? iswlsomorphlc
to ﬁ“lT(X) and the former in our case can be identified
with v, 8 Yg. |
3.4 wlv, © vp)
To compute {the StieleJmWh1tney ¢lasses of Lm n
we need a re@ult of E. Thomas [11] which we state without
proof.
Theorem
If £is an meplane bundle and v is an n=plabie bundle

over X,
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Wl Boyg) = b (g (E)seeayu (6D
| l(n),"o ove".?l-‘\’v (n)‘)g

wherc if Ul is thc wth elementery ymmetvic functlon in

the Sk and TJ

the Lk in the rnnﬂ 7[ol,¢.u,s

iu Lhe jth elemonfary symmcprlc funct;on in

rn‘}tlgubbs n]p

(7) o (bm n(clgooosoqul;;.;.sT ) " H (l + S +tJ)
: i P SoLoETh 1<j. < T'ﬂ ¢
' 1<j<n

(see the Append:x for dofinmtiow of o )° To compute ¢m ,n

we expre s 1T 1n terms of Mllnor'" polynom¢alb s. (see

J
Appendix). Let S ‘denote the set of 211 sequences J =

(Jl,oengjm) of m lnbcgers bucween O andwﬁijwﬁrite J4 Af

i

Ji % S oeee S Jmo

Lemma. o o N  f-ﬂz o
OFgeocy’ Y =y CR IR '
R LC
) T Yeee *Then f(jf)fmf(j})
Aes n=ay o E Ji

ay 2 91
where (?) is the binomial coefficient.
The proof follows from (7) by expanding the product
1 oy
and collecting monomigls in the:siﬂinto groups Zslcl..osmlm
==‘SJ(0],9°°6’;0'”1)° .
~ An aild to computation results from noticing that
if (al,ﬁﬁ.,a ). is a permutation of (bl,,.f,bm), then

T We ‘can collect identical

n-ay e e Tnm. am 7 ’Tnmbl.,' 6..5.an.4‘[511{‘

monomials in t and add their coefficients together,
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e v
4 The mwnifola h(3 3)

4, L When is Em h épinor°q
Reca]l Lhcx'c g F-'rX is an (m + n)»bundle, %% (1)'l n) is

geﬁerated as é rinﬂ over H ®(x) bv ul:"'ﬁ“m9vl"°°svn@ sub=
ject only to uv = w(E) i Accordlng to Tﬁomaq [11], the
terms 1in ¢ n(u V) o? degree O l; and 2 are

1+ (mv1 + nul) T (( )v (g)ul2 + mv, + nu,

+ (mn - l)uivl) o ‘

By 3, if M = Em “; us1nijv';JW(E) we' get

W(M) = w(X)w(ym @ Yn)'; w(k)@m n(u v)

e 1w (g 4 mnl)'* (m + n\ul) ((x2 e

t(m)E 2 %,mklE f l(Xl(m + n) i mEl n

(mn - l)h Y o+ u “((m) + ( ) e + . é 1) e
e m) s migher tems
where we write for a manifold X, wi(X) Xy

Thus if M is orientableS My = 0y or

(1) 4 m+nzo (mod 2)

(2) | Xy + mEy

For M to be spinor9€M2v% 0 as well,

(3? \ | X2,+ (]2')}31’2 + mE124f mE2 v m?El‘ = 0
( : 3 2 . )R

(h) | mE; + (m : vl?E; »19

(5) (3 + )+ m2 #m o+ 1= 0 (mod 2),

since u-q, ulg; and u, are independent in i (M) over 1’ (1)
If myn > L. ’

By (h), By o= mQn + 1)Eq = 0, hence (2) shows Xy = 0.




1y

!

Then by (3) Xp = miy. By (5), (3) * () =1 (wod 2).
This implies (m,n) = (0,2),(1‘93)9 (239), or (3,1) (mod U),

Collecting the above conditions, we sce that M will be

spinor if and only if
mzn+ 2 (mod 4)

(6)

4,2 morn=1or 2 does not work

I calculated M6u for some manifolds M involving
successive projectifications of vector bundles in up to
three stages, and found that no M(3$3) was among them.

For more than 3 stages the calculations seem lengthy and
rather than continue them I bégan 1doking among manifolds )
EMs? ror 1 < m < n., By (6) the simplest case is m = 2,

n = k43 but compuﬁation shows that no spin manifold E2s¥ can
satisfy wéa(Egﬂa) ¥ 0,

4,3 Relations in H'(R3+5)

The next case lsm= 3, n= 5. Write uiuj°'°uk =
uij,nok and uij = uiJ for brevity, and similarly for E.
Using the results of §3 one can write the relations
Ppt(u) = 0, k = 6,7,8, as

u33 o u222 o+ ugll{ <+ U.16 + P6(U)

1.

(7) U3pp = Ugyh t U pppy FoUpys t upPgu) + Py(u)
vy g = uZPG(u) + P8(u)




| where Pgs P7, anthg,arebtoibe,expandqd:uaipg“332g6)0 In
aimension 10 because Uzgss =;(u322)u2_:5(u33)u22 can be decon

posed in two ways, there results a relation which can be

written
(8) =yt (ugy v Pk (ug ¥ upIPy * (v 4 Uy )Py

(This can be further reduced using (7)). Choosing an
additive basls of H (E>s?) over H (X) whose elements, monomlals

in Uy have no ?actor U3gs Uspos glgéaor uéémléads to

u as a basis in dimension 15. 4Let,M:$4E3g5,h

)
bob o (1)
Calculating w(y3 B Yé)’yiélds
14 (vg o+ oug) & (vy b oup + V) 4 o vyqq * uyVa

ujviy ¥ Upvy ¥ u3)v+ Vol + vop t VQH+ uylvp ullll)

s,

& (V5 + V311 + Vol foujvep + VIVo 1l + ulvu

{3 ]

ujjvy + usvy uj11ve + uzvp + ullllgi +{u15)

+ (vgg + Vypy + Voop fuilvelld upvi + upvpp

¥ UgyVpy FugVpy FoUpyV3 b ougvy tou v T YanaVy

u N) + higher terms,
21 A
and applying relations 3.2(5) one has, assuming M is spinor.
(X5 = E, implies X3 = E3 by the Wu relations),
w6(M) = w(X) w(y3 B y5)

P

= Xg + XyEp + Fyo + ugEgs tiugy Eoys uyEy
+ UEEM + u3E3 tougEs b upplp UpyiBs Uope * u16

o011 +7“2]u°
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H (Y) ls 0 above dwmcnuJon 9. if X js a 9=manifold, so

(La ) = Lag 4 which holas iu
l 9

! ny 7?nmodule, Sshows tha

any term in WG(M) in‘iIVLng H (X) in, d1m9n51on 2h2 can

be neglected in Calculﬂ“Kn& ”6 (M) Further; since

El = Xl = 0, Hl(X) wil] nevcr entcr the” ca]oulat:onf

thus any torm contalning a factor in H8(X) must be 0

as well. Thls ledVC° 3

(1) | w6 (M) 212 %12“ +Mu§813”f??éuil%f:5

To see if wg (M) = 0 we then use 4, 3(() and expfcss (1) in

terms of ouryadoﬁtlve bdqls for H (M) over H (X) Fully

expamded;"aﬁ3(75 épdr(S)'bégpm@£

L

+ E (u”l + u3) + EQ(U{8»+ Usyy * Uop)

“3z2 T U31h *apey T Vst Fste ¥ Faligy *venn ¥

u = Ex(uqqq + Usq + uz) + Ej(u + Eg(ugy-
(8 = Bs(uiny + upy uz) + Eylu ) 3(upy1

P U Upgy Fougyy) + Eplupih +ouppyg touppe)

4 Unn 4
32" 15
u =y + X
25 ZRB]

X = LSHul + EJ2“]13 + Eup"22 + E33(u1N tUugqyq
\122) 4 13,5;(1172;31 + 1,133_]_) o+ ]32(\12 ! + Uppyy 4

Wons) + Eyu b u L) 4 Balu L+ u .
222, A 21“ l6 SN ¢ 31“




It is convenient to express U iﬁfcr'k > 5 by using 4.3(8)
2 '
repeatedly: u =y _
rep J 2%1{ 2"4121{-»8 o
Yoot U |
,: Lt 21(

* Qes® (k > 5), vhere Qg = 1,

> 4 k> nh‘ f =
U T Mok T a2, P B2 ThuS Bk

12ké2'2&) (k32 ol 2Kt

Feoot 4 Ryx, where

¥ k410 2

o e e
R2K = Ql{ and ‘Rék%‘lﬂ = uZRZK’
Expanding the last 2 terms of (1) we find

it = 4 A4 U R :
w6 () mulQli ' u2“116 +_u18(u2518 (u16

+u 4 u +u )x)+ (v ;’ ‘ +Hx(ﬁb‘

B S ISP LR 5 © L B

+ u 4w 4 Fow o R ‘U.
2112 | p2120 0 Tpppn® 0 Tola6 o TpMab Tyl

+u )x)).
22
Now use 4.3(7):. ‘ . .
+u (u P2+ P2+ (u y T )2

= u . .
128 Tl on 6 8 14 o2
= + P‘z(u ¢ x(u, +twu)) +u uP 2
' 2 27 8

u
124 6 olh 11

+ (u | +u )XQ.
1H 22

It helps to calculate P 2, P 2, P 2, u and x2 separate-
6 -

S
ly, and finally combine them. This céﬁ take about 11 pages.

the result l1s w u(M) =y . Recall that we assumed

E
6 2417 3222
that M is a spin manifold, 4,1(6).
4,5 The base manifold X

We must find a 9-manifold X and bundle E+X satisfying




sy s

(1)
(2)
(3)

For any such bundle, M ”131 be a suntabtc ‘manifold M

(3 3)

manifold X splits off a Lr¢v1 1 1- cvbundlc.

' mainlnb 8-bundle o will then uatlsfy (l)'dnd

need only make sure that X - #QO. Thws wc'

3222

ing the-construction of orientable man;foldein

X will be a product of complex pvojectlve spa

(2), so we

46 follows=
E "-! j‘
Tolah CP ?

of dimension 4; and a manifold Y (Y5 or - M(3 2)in [4])s

let F+RPZ be the bundle H © 5T wheve H is the éan0ﬁ1¢al

line bundle on RP2.and T dis & trivial lire bundie.- Then

we put Y =Fls2, It is easy to show that Y3555 '= 4, 06P2 )5

# 0 using §3, so X satisfies (1), (2), and (3).
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- APPENDIX: SYMMETRIC POLYNOMIALS

It is~weilvkn9yn;£12] that in the graded polynomlial

ring Rm in m-variables~%l,n.ogxmﬁ,eaphuof_dimengion,;,

the symmetric polynomlials (those invariant under per-:
mutations of the x;) form a subring Sy Which is a poly-

nomlal ring on generaltors Oyyece. 0y of dimension o4 = i,

where .
(1) . . 14 O3 Fee ot O = iEJ (1 + xi) .

Also well-known is their usefulness in the study

of characteristicﬁclaSseS,Hthre the Stiefel-Whitney
classes of an mmbﬁnale whibh gplits(ihto“m iiné bundies
afe the eleméntary symmetric functidﬁs of'thé_firétr ”
Stiefel-Whitney classes of the line bundles, by thg
Whitney product theorem and (1). Thomas' result in 3.4
uses them, too.

Milnor [7] defines the following additive basis for

Sp call two monomials eguivalent if some permutation

of the x; carries one into the other. If J = (Jqsocesdm)

define 8y by the equation in Ry,
’ k3 k;
‘ " - . . m
SJ(Glsaom’Orn) - Z }\.1 onnxl’n 9
dm

summing over all monomials equivalent to xl‘l.aoxm .
s. is a polynomial (homogencous of dimenslon |J! = J‘1 +

et J ) since Sm is the polynomial ring on the Oy e Ir

[
n
@
s
e
0
=y
r.l
o
©
(e}
A

Jq Seeel 3y, write J4. It is obvious

)
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forms an sdditive bésis”f0r2§mi Another addit;ve bas:s

consists of mbhomiaié'GJ é'cidloega Im for all J such

that J; > 0, 1 = 1;;;.,m, The lemma of 3,4’§hOWS kn oy
ledge of thc polynomlolq SJ is useful in compu 1ng ¢
It seems to be easier to calculate cK in terms of

mn

various s;(0) and then invert the transformation, than
to attack the problem directly. This can be done induct-
ively: 09 = 8 _ '(c)“ and once an expression for

T (1 09°°'90) T
each oY with {Jf< q is known, if |J| = g we can write

T . : N ‘ R
¢ = od ‘04 with |J7] < g for some 1, and use the ex-

oy ‘
pression for cq; to find that for GJ, by the lemma we

shall shortly state., The seguehces we speék‘éf below

will all be ordered sequences of m ﬁonwnegativé integers.

If N = (nigscepn ) denotes a sequence we write N(j) for

the number of j's appearing in N9 and N for xlnl.aoxmnmo
If J is a sequence and i > 0 an integer, we define

a sequence K té ve a (J,i)~sequence, if one can obtain

K by increasing each of 1 entries in J by unity. If K

1s a (J,i)-sequence, choose a suitable set S of 1 entries

of J to be thus increased., (S may contain several copiles

of any integer). Let h(J) be the number of j's in ST I
claim h(O); h(l)ssoc are all fixed by J and K. Pov from tho
definitions we find that

K(J) = 3(J) = n(3) + h(d=1), 3 >0
since increasing a J in J takes away one J from K and in«

creasing a (J~1) in J adds one. Transposing,
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\'2

(1) n(J-1) = K(3) = 3(J) + h(3), J

O,

i

Since S if finite, there 1s a largest j' for which

3o
h(J,) # 0. This using (1) for J = J5 + 1, Jgs ecey 2 A0
turn gilves a proof by decreasing induction that K and J
determine the h(j).
Lemmé

If J is a sequence and 1 > 0 an integer,
(2) sJ(c)°oi = Leysy(o)

gurmed over all (J.,i)«sequences K where ¢, is the integer
s 2 . K : &

K(i)! f J l
I .-, Lnmn A
C, = J(I Y

T .
Proof Recall SJ(U) = § % summed over monomials %7

equivalent to st and ¢4 ® Z xP summed over sequences D

.

containing 1 cnes and m-l zeroes, SO
(3) SJ(G)°61 =5 xT g xP =1 x1+D

(adding seguences entrywise). It turns out that cach T+D
is a (T,i)-sequence, and hence x*D 15 equivalent to

some XK where K is a (J,i)~sequence. Since (3) is a

symmetric polynomial, each monomial occurs together with all

equivalent monomials, and there exists & formula (2) in

which only (J,i)~sequences occur, If we know the number of

monomials x1¥D in the sum (3) which are equivalent to XK,

we can then find the coefficient cy of Sy by dividing by

the number of monomials in sy(a). The latter is mi/ EOJ(j)Z
N

¢ [ 2t 3

Lot XK be a fixed (J,1)esequence. How many monoml ials in

SR S
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(3) are equivalent to xK? There are m!/ 1T J(J)! different
- j>0
monomlals x T equivalent to st and for edch of Lhem XT‘U‘

contain the same number of monomlals equivalent to xK.

We might as well use x9 to compute this number.

()4) L ‘:=.i,3-‘0:;, - :'E_z’:/,XJ.;."D.

where D runs over sequences of 1 ones and (m-1) zeroes, and
9D 5 equivalent to K it and only if adding D te J ine
creases exactly h(j) of the j's in J, for each J. There

are (gggg) ways to choosé h(j) entries from J(J) candidates,
and eVefy possible selection of i unit increases occurs

for some D, hence (4) contains H (J(j)) monomials equlve

n(j) e ea

alent to XKc Combining the abOve ve have
kL (K(J Yo LU
3>0 h(J)/u ()
J>0
cy = .
—wl)lO
TR
i>0

which gives the formula of the lemma.,
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