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Abstract

We developed a method to spatially control gene expression following nonviral delivery of DNA. 

This method includes surface-modifying DNA nanocarriers with heparin to inhibit passive gene 

transfer in both the target and the off-target tissues and using ultrasound-targeted microbubble 

destruction (UTMD) to selectively activate heparin-inhibited gene transfer at the target site. We 

observed that the engraftment of heparin onto the surface of cationic liposomes reduced off-target 

gene expression in the liver, a major site of nanoplex accumulation, by more than 700-fold 

compared to the nonheparinized PEGylated liposomes. We further observed that tumor-directed 

UTMD increased gene transfer with heparin-modified nanoplexes by more than 10-fold. This 

method augmented tumor-to-liver selectivity of gene expression by 4000-fold compared to 

controls. We conclude that heparinization of DNA nanocarriers in conjunction with localized 

activation of gene transfer by UTMD may enable greater spatial control over genetic therapy.
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Targeted systemic gene delivery has the potential to treat a range of intractable diseases 

including cancer.1,2 Localized transfer of genetic materials to target cells has been explored 

for altering cell signaling or used as a pharmacological approach to kill diseased cells. A 

next step in developing gene therapy is to spatially target specific cells in vivo with minimal 

alteration of gene expression to healthy cells.3 A wide variety of lipid- and polymer-based 

materials have been investigated as vehicles to condense plasmid DNA into nanoplexes that 

facilitate cellular gene transfer.4–6 However, the systemic delivery of these vectors to 

specific tissues in vivo, with the exception of the liver and the lungs, has remained 

challenging.3

Following intravascular administration, nanoplexes are primarily cleared from circulation by 

“first-pass” organs such as the lungs and the liver.7 For targets such as peripheral tumors that 

are situated outside the liver and the lungs, alterations of gene expression by uptake of 

engineered nanoplexes in first-pass organs is an undesirable side effect that poses significant 

toxicity concerns.3 Many promising protein therapeutics (e.g., IL12 cytokine) considered for 

cancer gene therapy failed in clinical trials because of hepatic and pulmonary toxicity.3,8,9 

Thus, blockage of unwanted gene expression in these organs has the potential to reduce 

toxicity and improve therapeutic benefit.

Approaches for improving target selectivity of peripheral gene expression include 

development of gene carriers that are responsive to external localized physical triggers.10 

One methodology is based on ultrasound and microbubbles.11 Microbubbles are gas-filled 

microparticles that collapse under target-directed ultrasound. The associated mechanical 

effects can increase local permeability of tissue and cell membranes to DNA nanoplexes and 

augment gene transfer at target sites.11–13 However, following systemic administration 

nanoplexes or nanoplex-carrying microbubbles are also subjected to passive distribution and 

clearance with a large fraction of the dose inevitably localizing in the liver. Despite localized 

activation, transfection-competent nanoplexes still pose a risk of off-target gene expression 

and toxicity.3

Although off-target gene expression has been recognized as an important barrier for gene 

carrier translation, only a handful of strategies have been developed to address this 
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challenge. PEGylation is the method of choice for reducing nonspecific gene transfer. 

However, the robustness of PEG protection varies markedly with nanoplex composition, 

PEGylation density, methods of PEG insertion and the administered dose.14–17 Despite a 

PEGylated surface, gene carriers can preserve in vivo transfection competency and facilitate 

gene transfer off-target.16,18 Therefore, alternative strategies are needed to improve target 

selectivity of in vivo gene expression.

Herein, we develop a spatially controlled method to target gene transfer following systemic 

administration. We reasoned that spatial definition of in vivo gene expression could be 

improved by first inhibiting passive gene transfer to reduce the background of nonselective 

expression and subsequently activating gene expression at the target. This approach was 

inspired by two phenomena. First, it is known that cationic liposomes and polyplexes 

mediate cellular transfection via electrostatic interactions with heparin-bearing anionic 

proteoglycans on a cell's surface.19 Heparin and other anionic polysaccharides can block 

transfection by disrupting these interactions.19 We hypothesized that engrafting heparin onto 

the surface of cationic liposomes could inhibit systemic gene transfer in both the target and 

the off-target organs. Second, it is also known that, in contrast to passive transfection, 

physical methods of gene transfer such as ultrasound-targeted microbubble destruction 

(UTMD) and electroporation act via direct transient permeabilization of cell membranes, 

which is independent of molecular interactions at a cell's surface. Gene transfer via active 

cell membrane permeabilization is insensitive to the presence of anionic polysaccharides.19 

Thus, we further hypothesized that UTMD could override heparin-based blockage of gene 

transfer and could selectively promote gene delivery at the target site.

Our results support feasibility of this approach. Surface masking of cationic liposomes with 

heparin reduced passive expression of the luciferase gene in the liver by more than 700 fold. 

In addition, selective application of UTMD at the target tumor site could locally override 

heparin-induced inhibition of liposomal gene transfer. Overall, heparinization of liposomes 

in conjunction with UTMD increased tumor-to-liver selectivity of gene transfer by 4000-fold 

compared to control nonheparinized liposomes with or without UTMD.

Results/Discussion

Formation and Characterization of Heparin-Functionalized DNA-Encapsulating Liposomes

To prepare heparinengrafted DNA liposomes (DNAlipHep), we synthesized lipid–PEG–

heparin conjugate (HepPL, Figure 1A) and incorporated this conjugate into DNA liposomes 

(DNAlip, Figure 1B). Previous attempts to modify the surface of cationic lipoplexes with 

heparin have encountered challenges.20 Free heparin disrupts lipoplexes because it 

electrostatically competes with anionic plasmid DNA (pDNA) for binding to cationic 

lipoplex components.20 To circumvent charge-based competition and liposome disruption by 

heparin, we synthesized an amphiphilic lipid–PEG–heparin conjugate (Figure 1A). Lipid–

PEG conjugates have been previously demonstrated to self-insert into a liposome's shell via 
hydrophobic interactions.14,21 We reasoned that because the liposomal insertion of the lipid-

PEG-heparin conjugate would rely on hydrophobic rather than electrostatic interactions, the 

conjugate, in contrast to free heparin, would allow for display of heparin on the surface 

without liposomal disruption.
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The lipid–PEG–heparin conjugate (HepPL) was synthesized via a three-step procedure 

(Figure 2A) including: (1) chemical fragmentation of heparin to produce low molecular 

weight heparin (LMWH, 5–10 kDa) fragments with a terminal aldehyde-containing 2,5-

anhydromannose, (2) end-chain thiolation of heparin fragments, and (3) thiol-Michael 

addition of thiolated heparin fragments to maleimide (MAL)-functionalized lipid–PEG 

(DSPE-PEG(2 kDa)-MAL). HepPL conjugate formation was evaluated by agarose gel 

electrophoresis (Figure 2B). Migration distance of the purified HepPL (lane d, 4.37 ± 0.15 

cm) was significantly shorter (p < 0.001) than that of the fragmented LMWH 5–10 kDa 

(lane a, 6.25 ± 0.21 cm), and significantly longer (p < 0.001) than that of DSPE-PEG(2 

kDa)-MAL (lanes b, 1.87 ± 0.17 cm), confirming successful conjugation. 

Spectrophotometric quantification demonstrated a 1:1 molar ratio of PEG and Heparin 

moieties in the purified HepPL, further corroborating formation of a linear end-to-end 

conjugate.

To incorporate the conjugate into the liposomal shell, we modified a previously reported 

postinsertion procedure.21 We carried out postinsertion in the presence of ethanol to mildly 

destabilize lipid bilayers and allow transfer of HepPL conjugate into preformed liposomes 

from a micelle phase (Supporting Information). We optimized the method parameters (i.e., 
ethanol concentration and liposomes/HepPL incubation ratios) to maximize HepPL insertion 

while minimizing liposomal disruption (Figure 3). Under optimized postinsertion conditions 

(37 °C, 20% ethanol, DNA/insert ratio = 0.7), we were able to achieve conjugate insertion 

(1.4 nmol heparin/μg liposomal DNA) as well as high recovery of liposomal DNA (∼80%). 

DNAlipHep liposomes formulated under these conditions were used in all subsequent 

studies.

To confirm heparin surface engraftment in the DNAlipHep liposomes, we performed 

analyses using dynamic and electrophoretic light scattering, cryoTEM and anion exchange 

chromatography. Liposomes (DNAlipPEG) engrafted with lipid–PEG conjugates (DSPE-

methoxy PEG (2 kDa)) were used as a control (Figure 4A.a). DNAlipHep (Figure 4A.b) 

displayed a statistically significant positive shift in hydrodynamic diameter and a statistically 

significant negative shift in ζ-potential compared to the DNAlipPEG controls (Figure 4B 

and C; diameter, 140 ± 8 nm vs 109 ± 11 nm; p < 0.001; ζ-potential, −31 ± 4 mV vs −2 ± 3 

mV; p < 0.001). The higher hydrodynamic diameter and the lower ζ-potential for DNAli-

pHep indicated liposomal insertion of HepPL and surface display of heparin, respectively.

CryoTEM micrographs revealed that both HepPL- and lipid–PEG-modified liposomal 

formulations comprised predominantly (>90%) mixtures of unilamellar and bilamellar 

vesicles (Figure 4D). Similar morphologies of DNA liposomes were reported in previous 

studies.23,24 On CryoTEM, DNAlipHep liposomes had a significantly higher diameter than 

the DNAlipPEG liposomes (unilamellar, 110 ± 16 nm vs 95 ± 15 nm, p < 0.001; bilamellar, 

112 ± 19 nm vs 93 ± 13 nm, p < 0.001) (Figure 4E), consistent with the dynamic light 

scattering results. Notably, the bilamellar subpopulations of the DNAlipPEG and the 

DNAlipHep liposomes displayed interesting morphological differences. Although there was 

no significant size difference between the inner compartments of DNAlipPEG and 

DNAlipHep bilamellar liposomes (67 ± 11 nm vs 70 ± 13 nm, p = 0.07), the outer shell 

diameter was significantly larger for the DNAlipHep than for the DNAlipPEG liposomes (41 

Chertok et al. Page 4

ACS Nano. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



± 17 nm vs 26 ± 7 nm, p < 0.001). This difference in morphology indicated the HepPL 

incorporation into the outer liposomal shell.

To further validate surface accessibility of the engrafted heparin chains, we also compared 

DNAlipPEG and DNAlipHep using anion exchange chromatography (Figure 4F). 

DNAlipPEG liposomes could be eluted from the quaternary-ammonium column matrix with 

the flow through. In contrast, DNAlipHep were retained by the cationic matrix and required 

a 2 M concentration of sodium chloride for elution. This finding was consistent with a 

negative zeta-potential shift for the DNAlipHep and provided additional evidence for display 

of anionic heparin on the liposomal surface. Taken together, the results from DLS, 

electrophoretic light scattering, cryoTEM, and anion exchange chromatography firmly 

corroborated surface engraftment of heparin in DNAlipHep formulations.

We next tested the effect of heparin surface modification on stability of liposomal DNA in 

the presence of serum. DNAlipPEG (control) and DNAlipHep (test) formulations were 

incubated with serum (fetal bovine serum, FBS, 50%) and phosphate-buffered saline (PBS) 

for 30 min. Serum stability was defined as percent of PBS-stable DNA liposomes that 

remained intact following incubation with serum. Treatment with the liposome-disrupting 

detergent Triton X-100 revealed that both DNAlipPEG and DNAlipHep formulations 

maintained serum stability for at least 30 min, with only a fraction of free DNA detectable 

prior to detergent treatment (Figure 5A). The serum stability of the test DNAlipHep 

formulation did not differ significantly from that of the DNAlipPEG control (Figure 5B, 95 

± 8% vs 86 ± 7%, p = 0.26), revealing that heparin surface engraftment had no destabilizing 

effect on the liposomal formulation. Because PEGylated DNA liposomes have been 

previously demonstrated to maintain circulation stability,24 these results suggested that 

DNAlipHep could also be stable in circulation and suitable for systemic administration.

Engraftment of Heparin onto the Surface of DNA-Encapsulating Liposomes Inhibits 
Systemic Gene Transfer

To test whether heparin engraftment could inhibit in vivo liposomal gene transfer, we 

assessed the profiles of biodistribution and gene expression of the heparinized and the 

nonheparinized liposomes in tumor bearing mice. Liposomal formulations were 

administered by intravenous injection. At 24 h postinjection, the control nonheparinized 

liposomes DNAlip-PEG were found to accumulate predominantly in the liver (Figure 6, A1–

2). Notwithstanding the display of PEG on liposomal surface, liver accumulation was 

associated with liver gene expression (4300 ± 400 R.L.U./mg tissue). Although PEG is 

widely utilized for preventing nonspecific gene transfer, it was previously reported that, 

despite PEGylated surface, cationic gene carriers remain susceptible to opsonization with 

complement components and subsequent cell uptake17,25 and can preserve transfection 

competency.14,16−18,26 Our results showing liver gene expression with DNAlipPEG are 

consistent with these reports.

In contrast to nonheparinized DNAlipPEG, heparinized DNAlipHep liposomes showed 

negligible gene expression in all organs including the liver. Specifically, in the liver, the 

major site of gene expression facilitated by nonheparinized DNAlip-PEG, heparinized 

DNAlipHep resulted in a 700-fold reduction of gene expression compared to the 

Chertok et al. Page 5

ACS Nano. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNAlipPEG controls (Figure 6, B1–2; 6 ± 4 R.L.U./mg tissue vs 4300 ± 400 R.L.U./mg 

tissue, p < 0.001). This reduction in gene transfer could not be attributed to heparin-related 

biodistribution effects, as the extents of liver accumulation for the DNAlipHep and the 

DNAlipPEG liposomes did not differ significantly (DNAlipHep vs DNAlipPEG: 87 ± 4% 

dose/organ and 80 ± 9% dose/organ, respectively, p = 0.15). Notably, the luminescence 

signal in the liver of DNAlipPEG-administered animals was found to significantly increase 

from 24 to 48 h postinjection, suggesting continued increase in liver gene expression over 

time (Figure 6, C1–2; 3 × 106 ± 1 × 106 p/sec vs 7 × 106 ± 2 × 106 p/sec, p = 0.002). In 

contrast, liver gene expression in DNAlipHep-injected animals remained negligible 48 h 

postinjection, and no significant difference was observed for the 24 h and the 48 h time 

points (2 × 105 ± 9 × 104 p/sec vs 3 × 105 ± 7 × 104 p/sec, p = 0.99). These results indicate 

that modification of liposomal surface with heparin could indeed inhibit the in vivo 
nonspecific gene transfer.

UTMD Can Override Heparin-Based Blockage of Gene Transfer and Selectively Activate 
Gene Expression at the Tumor Site

We next examined whether UTMD could override heparin-based blockage of gene transfer 

and activate gene transfer selectively at the tumor site.

We began by looking at the effect of UTMD in vitro (Figure 7). No transfection was 

observed following incubation of HeLa cells with the DNAlipHep liposomes with or without 

ultrasound or following incubation of HeLa cells with the combination of the DNAlipHep 

liposomes and microbubbles. In contrast, exposure of cells to the DNAlipHep liposomes and 

microbubbles under ultrasound (our UTMD protocol) significantly enhanced the extent of 

gene expression (p < 0.001, Figure 7). In addition, under UTMD stimulation, transfection 

efficiency and cell viability for the heparinized DNAlipHep liposomes did not differ 

significantly from the transfection efficiency and cell viability for the nonheparinized 

DNAlipPEG controls. (Transfection efficiency: 15200 ± 900 au vs 14000 ± 2000 au, p = 

0.53; and cell viability: 77 ± 6% vs 74 ± 8%, p = 0.7). These results suggest that application 

of UTMD could activate gene transfer with the heparinized DNAlipHEP liposomes in vitro 
and that the activation of gene transfer via UTMD was as efficient for the heparinized 

DNAlipHep as it was for the nonheparinized DNAlipPEG liposomes.

We then explored whether similar reactivation of gene transfer by the UTMD could be 

carried out in tumors in vivo (Figure 8A). Control groups of mice that received the 

DNAlipHep liposomes only (control 1), the combination of the DNAlipHep liposomes and 

microbubbles without ultrasound (control 2), or the DNAlipHep liposomes under tumor-

directed ultrasound but without microbubbles (control 3) showed essentially no gene 

expression in the tumor (Figure 8B and C). In contrast, mice administered with the 

combination of the DNAlipHep liposomes and microbubbles under tumor-directed 

ultrasound (the UTMD protocol) displayed more than 10-fold enhancement of gene 

expression in the tumor compared to controls (p < 0.001). This result corroborated that 

UTMD could override heparin-based inhibition of gene transfer in vivo.

Although enhancement in tumor gene expression by UTMD was also observed in mice 

administered with the nonheparinized DNAlipPEG liposomes (Figures 8D and E, p = 

Chertok et al. Page 6

ACS Nano. Author manuscript; available in PMC 2017 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.042), UTMD did not enhance tumor-to-liver selectivity of gene expression in these 

animals (Figure 9, p = 0.48). Background nonselective liver gene expression masked the 

small local enhancement in gene expression at the target site. In contrast, for the cohort of 

mice receiving DNAlipHep, the tumor-to-liver selectivity of gene expression was 

significantly improved by the UTMD (Figure 9, p < 0.001), owing to the significant 

reduction of the background nonspecific gene expression in the liver by DNAlipHep. 

Because the UTMD was selectively directed to the tumor, the DNAlipHep-induced 

inhibition of liver gene expression was not significantly affected by the UTMD (Figure 8B 

and C, p = 0.81). Overall, the animals treated with the combination of heparinized 

DNAlipHep and UTMD exhibited a 4000-fold enhancement in tumor-to-liver selectivity of 

gene expression compared to mice treated with the combination of nonheparinized 

DNAlipPEG and UTMD (Figure 9, 6 ± 2 vs 0.0012 ± 0.0008, p < 0.001). This result 

suggests that elimination of the “background” nonspecific gene expression by heparinization 

of liposomal surface augments the ability to spatially control gene transfer with the UTMD.

Conclusions

Taken together, we demonstrate the ability of our approach to improve spatial control of 

gene delivery following systemic administration. Engraftment of heparin on the surface of 

DNA liposomes resulted in efficient inhibition of hepatic off-target gene transfer, possibly 

due to disruption of the electrostatic interactions between cationic nanocarriers and anionic 

proteoglycans on a cell's surface. Furthermore, tumor-directed UTMD overrode the heparin-

induced transfection blockage and activated localized gene transfer at the tumor site, likely 

through direct permeabilization of cell membranes in the target tissue. This approach 

afforded a marked improvement in target selectivity of gene expression compared to 

traditional approaches. Thus, heparinization of DNA nanocarriers in conjunction with 

localized activation of gene transfer by UTMD may provide a strategy to spatially control 

gene expression following nonviral delivery of DNA.

Methods/Experimental

1. Materials

Lipids including 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-mPEG(2 

kDa)), 1,2-distearoyl-sn-glycero-3-phosphoethanol-amine-N-[maleimide(polyethylene 

glycol)-2000] (ammonium salt) (DSPE-PEG(2 kDa)-MAL) and 1,2-dioleoyl-3-trimethy-

lammonium-propane (DOTAP) were obtained from Avanti Polar Lipids and used without 

further purification. Heterobifunctional cross-linker 3-(2-pyridyldithio)propionyl hydrazide) 

(PDPH) was obtained from Pierce. Heparin, sodium nitrite, 3,5-dinitrosalicylic acid, 

tris(bipyridine)ruthenium(II) chloride), 5,5′-dithiobis(2-nitrobenzoic acid) (Ellman's 

reagent), tris(2-carboxyethyl)phosphine hydrochloride (TCEP-HCl), and Triton X-100 were 

obtained from Sigma-Aldrich and used without further purification. Plasmid DNA encoding 

for reporter proteins firefly luciferase (gWiz-Luc) and GFP (gWiz-GFP) were obtained from 

Aldevron.
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2. Synthesis of DSPE-PEG-LMWH Conjugate (HepPL)

HepPL conjugate was synthesized via a 3-step process. First, low molecular weight (5–10 

kDa) heparin fragments with aldehyde-containing terminal 2,5-anhydromannose residues 

(LMWH-Ald) were produced by our previously reported protocol.27

In the second step, LMWH-Ald was modified to generate a terminal free sulfhydryl (–SH) 

group. A solution containing LMWH-Ald (1.4 mM of aldehyde equivalent in 100 mM 

phosphate buffer, pH 7.4) and 3-[2-pyridyldithio]propionyl hydrazide (PDPH, 10-fold molar 

excess in dimethyl sulfoxide (DMSO)) was stirred at room temperature overnight. Excess 

PDPH was removed by anion-exchange chromatography (HiTrap Q HP column, GE 

Healthcare), followed by desalting and concentration of the LMWH-PDP product using 

ultra-filtration. LMWH-PDP was then reduced with the tris(2-carboxyethyl) phosphine 

hydrochloride (TCEP-HCL, 50 mM) and purified as described above. The sulfhydryl content 

of the activated LMWH-SH was quantified by Ellman assay, using a well-established 

procedure.28 A typical reaction yielded about 95% conversion of the terminal aldehyde 

group to sulfhydryl.

In the third step, the conjugate was formed by the thiol-Michael addition reaction. LMWH-

SH (1.5 mM SH-equivalent, prepared in 100 mM phosphate buffer, pH 7.4) was incubated 

with DSPE-PEG(2 kDa)-MAL at a 1.5:1 molar ratio, at room temperature overnight. The 

resulting conjugate DSPE-PEG(2 kDa)-LMWH (HepPL) was purified by ultrafiltration and 

analyzed for content of LMWH and PEG with Azur A and barium iodine 

spectrophotometric assays, respectively.27,29,30 Conjugate formation was further confirmed 

with agarose gel electrophoresis (1% agarose, 75 V for 1 h). Gels were visualized with 

Rubipy staining (1 mg/mL aqueous solution of Tris-(bipyridine)ruthenium(II) chloride), 

imaged with Gel Doc XR imager (Bio-Rad) and quantified by densitometry.

3. Preparation of Heparin-Functionalized DNA Liposomes

Liposomes encapsulating plasmid DNA were formed using a previously reported 

procedure.23 Liposomes were prepared with a lipid composition of 

cholesterol:DSPC:DOTAP:DSPE-mPEG(2 kDa) at a mol % ratio of 55:20:15:10 and a 

lipid/DNA ratio of 11 μmol total lipid/mg DNA. DNA liposomes were purified from the 

residual free pDNA by an anion exchange chromatography (HiTrap Q HP cartridges, GE 

Healthcare).

To functionalize the surface of DNA liposomes with heparin, HepPL conjugate was 

incorporated into preformed liposomes via a modified postinsertion procedure. DNA 

liposomes were coincubated with the HepPL conjugate at 37 °C for 15 min in ethanol-

containing phosphate buffered saline (PBS). Ethanol-induced liposomal destabilization was 

then quenched by incubation at 4 °C for 15 min. Derivatized liposomes were purified from 

EtOH and residual free conjugate using a tangential flow cartridge with a 500 kDa cutoff. 

Samples with identical composition but incubated at 4 °C for 30 min were used as controls. 

To optimize the postinsertion procedure, liposome-to-conjugate ratios were varied in the 

range of 0.1–0.7 μgDNA/nmol HepPL. In addition, the concentration of ethanol in the 

incubation mixtures was varied in the range of 0–30% (v/v).
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Liposomal samples were analyzed for conjugate insertion and loss of encapsulated DNA. 

For conjugate insertion analysis, incubation mixtures (test and control) were subjected to gel 

electrophoresis (1% agarose, 75 V for 1 h). Gels were visualized with Rubipy staining (1 

mg/mL aqueous solution of tris-(bipyridine)ruthenium(II) chloride), imaged with Gel Doc 

XR imager (Bio-Rad) and quantified by densitometry. Band density of the free conjugate (at 

migration distance of 4.4 ± 0.2 cm) was quantified for test and control samples. Liposomal 

insertion in test samples was calculated as % reduction in band density of the free conjugate 

as compared to the corresponding controls.

For analysis of the DNA loss, samples with and without 0.1% Triton X-100 were subjected 

to gel electrophoresis (E-gel precast agarose gels, 0.8%, 15 min). Gels were visualized with 

ethidium bromide, imaged with Gel Doc XR imager (Bio-Rad) and quantified by 

densitometry. Amount of encapsulated DNA in each sample was calculated as a difference 

between the total DNA released after liposomal disruption with Triton and the free 

nonencapsulated DNA detected without Triton. Loss of encapsulated DNA due to conjugate 

insertion was calculated as % reduction in encapsulated DNA in the test sample as compared 

to the corresponding control.

4. Characterization of Heparin-Functionalized DNA Liposomes

Size distribution and zeta potential of the liposomes were analyzed by dynamic and phase 

analysis light scattering, respectively, using ZetaPALS (Brookhaven). Liposomes were 

dispersed in phosphate-buffered saline (PBS), pH7.4.

Structural characterization was conducted with cryoTEM (Jeol 2100 FEG TEM, equipped 

with the Single Tilt Liquid Nitrogen Cryo-Transfer Holder, Gatan). For cryoTEM, samples 

of aqueous liposomal suspension were spotted onto a holey carbon-film coated grid 

(Quantifoil R5/20) and immersion-frozen with the semiautomatic cryo-plunger 

(CryoPlunge3, Gatan). Measurements of liposomal substructures were carried out using 

ImageJ.

Surface-functionalization of the liposomes was evaluated using ion exchange 

chromatography. DNA liposomes were formulated to contain fluorescently labeled lipid–

PEG: DSPE-PEG(2 kDa)-Cy5 (0.1 mol % of lipid composition). HepPL (test) or DSPE-

PEG(2 kDa) (control) were incorporated into preformed liposomes by a postinsertion 

procedure as described in Section 3. Test and control liposomes were loaded onto an anion 

exchange column (HiTrap Q HP cartridges, GE Healthcare) and eluted with a sodium 

chloride gradient (0–2 M). Collected fractions were analyzed for fluorescence intensity 

(excitation/emission at 640 nm/670 nm) using a microplate reader (Infinite 200 Pro, Tecan).

For serum stability analysis, liposomes engrafted with HepPL or DSPE-PEG(2 kDa) were 

incubated with fetal bovine serum (FBS, 50%) at 37 °C for 30 min. Samples incubated with 

PBS were used as controls. Analysis of encapsulated DNA was conducted as described in 

Section 3. Serum stability was calculated as percent encapsulated DNA obtained in the 

presence of FBS as compared to controls (incubated with PBS).
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5. Cell Culture Experiments

For in vitro evaluation of liposome performance, the liposomes were formulated to contain 

GFP (green fluorescent protein)-encoding plasmid DNA (gWiz-GFP, Aldevron). 

Microbubbles (MB), comprising an octafluoropropane (C3F8, Synquest lab, FL) gas core 

and a DSPC/DSPE-PEG(2 kDa) shell (82:18 molar ratio), were prepared by a high-shear 

emulsification method.31 Transfection experiments with and without microbubbles and 

acoustic stimulation were conducted in HeLa cells. HeLa cells were seeded (DMEM, 10% 

FBS) in acoustically transparent sealed chambers (Opticell) and allowed to grow to 70% 

confluence. On the day of the experiment, media was replaced with Opti-mem. Liposomal 

DNA (10 μg) with or without microbubbles (microbubble count: 5 × 107) was injected into 

the chamber and distributed evenly throughout the chamber volume. The chamber was 

submerged in a tank, filled with degassed water, and mounted at the focal plane of a 1 MHz 

piezoelectric ultrasound transducer. The transducer was driven by 1 MHz sinusoidal tone-

bursts generated by an arbitrary waveform generator (Tektronix) and amplified with a 50 dB 

RF amplifier (E&I). Ultrasonic insonation was applied for 20 s with the following acoustic 

parameters: pulse duration: 33 μs, pulse repetition frequency: 3 kHz, peak negative pressure: 

250 kPa. Then, 48 h post-transfection, the cells were imaged by fluorescence microscopy 

(excitation/emission at 470 nm (bandwidth of 22 nm)/510 nm (bandwidth of 42 nm)) and 

thereafter harvested and analyzed for fluorescence intensity and cell viability with 

fluorescence spectroscopy (excitation/emission at 485 nm/525 nm) and Trypan blue assay, 

respectively.

6. In Vivo Studies

All animal procedures were approved by the MIT Committee on Animal Care (CAC).

6a. Establishment of Subcutaneous Tumors in Mice—Murine LL/2 Lewis lung 

carcinoma cells (ATCC: CRL-1642) were grown as monolayers in DMEM media 

supplemented with 10% fetal bovine serum. For implantation, the cells were harvested by 

trypsinization (0.25% trypsin-EDTA, Gibco) and resuspended in sterile PBS at 2 × 107 

cell/mL. Tumors were established in the rear flank of 6- to 8-week-old SCID mice (SHO, 

Charles River) by subcutaneous injection of cell suspension (50 μL, 1 × 106 cells). Tumors 

were allowed to grow for 7–14 days to a volume of 300–500 μL.

6b. In Vivo Biodistribution and Gene Transfer—Liposomes were formulated with the 

gWiz-Luc plasmid (Aldevron) encoding for reporter protein luciferase. For biodistribution 

analysis, the liposomes were labeled with the near-infrared dye Cy5.5 through incorporation 

of DSPE-PEG(2 kDa)-Cy5.5 (0.1% of lipid composition). Mice were administered 

liposomal suspensions (65 μg DNA) or combinations of liposomes (65 μg DNA) and 

microbubbles (microbubble count: 1 × 109). Suspensions were administered intravenously, 

via the lateral tail vein catheterized with a 26-gauge angiocatheter (Angiocath, Becton 

Dickinson, UT). For ultrasound stimulation experiments, the animals were exposed to 

tumor-directed acoustic insonation. The acoustic setup and insonation parameters are 

described under Cell Culture Experiments. Ultrasound was applied for a total of 5 min using 

destruction–replenishment cycles (ultrasound on for 20 s/ultrasound off for 10 s) to allow 
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intermittent microbubble destruction and replenishment of residual circulating microbubbles 

into the tumor vasculature.32

Biodistribution and gene expression were assessed qualitatively with the whole-body 

fluorescence/bioluminescence imaging and quantitatively via an ex vivo organ analysis. 

Fluorescence (excitation/emission at 640 nm/720 nm, epiillumination mode, exposure time = 

0.5 s) and bioluminescence imaging (excitation/emission at block/open, exposure time = 300 

s) was conducted using IVIS Spectrum imaging system (Xenogen). For bioluminescence 

imaging, mice were injected intraperitoneally with the D-luciferin substrate at 150 mg/kg. 

Animal organs were harvested, flash-frozen in liquid nitrogen, and stored at −80 °C until 

analysis.

7. Ex Vivo Analysis

For quantitative analysis of liposomebiodistribution and luciferase activity, whole mouse 

organs werecryogenically ground with the Geno/Grinder (Spex). Subsequently, samples of 

homogeneous frozen organ powder were weighed and extracted with the Glo lysis buffer 

(Promega), as described.33

Supernatants were analyzed for fluorescence intensity and luciferase activity using 

fluorescence spectroscopy (excitation/emission at 640 nm/710 nm) and the Bright-Glo 

luciferase assay system (Promega), respectively. Fluorescence/luminescence values were 

normalized by tissue weight and background-corrected by subtracting the fluorescence/

luminescence of the corresponding tissues from nontreated control animals. Extraction 

procedure for quantitative biodistribution and gene expression analyses was validated 

through identical analyses of control tissues spiked with fluorescently labeled liposomes and 

a recombinant luciferase protein (QuantiLum, Promega), respectively.

8. Statistical Analysis

Data are expressed as mean ± S.D., unless otherwise specified. Comparisons between the 

two groups were made using the unpaired t test. Means of multiple groups were compared 

with the 1-way ANOVA, followed by post hoc Tukey's pairwise comparisons. 

Homoscedasticity was analyzed with the Levene's test. All probability values are two-sided, 

and values of p < 0.05 were considered statistically significant. Statistical analyses were 

carried out using OriginPro9 (Origin-Lab) and SPSS (IBM) software packages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Structure of the lipid–PEG–heparin (HepPL) conjugate comprising (1) lipid membrane 

anchor, (2) poly(ethylene glycol) 2 kDa spacer, and (3) heparin fragment. (B) Formation of 

heparin-engrafted DNA liposomes (DNAlipHep) by postinsertion of HepPL conjugate into 

DNA liposomes (DNAlip).
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Figure 2. 
Synthesis of lipid–PEG–heparin (HepPL) conjugate. (A) Three-step reaction scheme for 

HepPL synthesis; step I, chemical fragmentation of heparin; step II, functionalization of 

heparin fragments with end-chain sulfhydryl group; step III, conjugation of sulhydryl-

modified heparin and maleimide-functionalized lipid–PEG (DSPE-PEG(2 kDa)-MAL) via 
thiol-Michael addition. Compounds: (1) heparin, the structure represents major (1′) and 

minor (2′) repeating disaccharide subunits of heparin (from ref 22), (2) low molecular 

weight heparin (LMWH-Ald, 5–10 kDa) fragments with aldehyde-containing terminal 2,5-

anhydromannose residue, (3) sulfhydryl-modified LMWH, (4) DSPE-PEG(2 kDa)-MAL, 

(5) HepPL conjugate. (B) Representative gel electrogram (agarose, 1%) confirming 

formation of HepPL conjugate; lane a, pyridyldithiopropionate (PDP)-modified LMWH 

(LMWH-PDP); lane b, DPSE-PEG(2 kDa)-MAL; lane c, physical mixture of DPSE-PEG(2 

kDa)-MAL and LMWH-PDP; lane d, HepPL conjugate.
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Figure 3. 
Optimization of postinsertion procedure for incorporation of HepPL into preformed DNA 

liposomes. (A) Dependence of postinsertion efficiency (A1) and liposomal DNA loss (A2) 

on ethanol concentration (liposome-to-HepPL incubation ratio = 0.7, T = 37 °C). 

Postinsertion efficiency data were fitted to a four-parameter nonlinear logistic model; R2 = 

0.99, p = 0.03. DNA loss data were fitted to a linear model, R2 = 0.93, p = 0.001. (B) 

Dependence of postinsertion efficiency (B1) and liposomal DNA loss (B1) on liposome-to-

HepPL incubation ratios (ethanol concentration =20%, T = 37 °C); postinsertion efficiency 

data were fitted to a four-parameter nonlinear logistic model; R2 = 0.92, p = 0.007. DNA 

loss data were fitted to a linear model, R2 = 0.01; p = 0.36. Data (black) are presented as 

mean ± S.D., n = 3. Fitted curves (red) are described in Supporting Information.
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Figure 4. 
Characterization of heparinized DNA liposomes (DNAlipHep) and PEGylated control DNA 

liposomes (DNAlipPEG). (A) Schematic depiction of DNAlipPEG and DNAlipHep that 

contain the lipid–PEG and the lipid–PEG–heparin inserts (red), respectively. (B) 

Representative dynamic light scattering (DLS) size distribution of DNAlipHep and 

DNAlipPEG liposomes dispersed in phosphate-buffered saline (PBS), pH 7.4. (C) Zeta-

potential of DNAlipHep and DNAlipPEG liposomes dispersed in PBS, pH 7.4. Data 

represent mean ± S.D, n = 4. D. Representative cryoTEM micrographs of DNAlipPEG (a) 

and DNAlipHep (b) liposomes. (E) Quantitative size analysis of DNAlipPEG and 

DNAlipHep liposomes (unilamellar and bilamellar subpopulations) based on cryoTEM 

micrographs; Data represent mean ± S.D., n = 70 for each bar. (F) Anion exchange 

chromatographs for DNAlipHep and DNAlipPEG using columns with a quaternary-

ammonium matrix. Statistical comparisons are based on unpaired t test. Asterisks denote 

statistically significant difference: *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 5. 
Liposomal stability in the presence of serum. (A) Representative gel electrograms (agarose, 

0.8%) of DNAlipHep and DNAlipPEG following incubation of liposomes (50 μg/mL) with 

serum (50% fetal bovine serum, FBS) or phosphate-buffered saline (PBS) at 37 °C for 30 

min. Each sample was analyzed with and without 0.1% Triton X-100 (Tr) to determine 

liposome-encapsulated and free DNA, respectively. (B) Quantification of DNAlipHep and 

DNAlipPEG stability in the presence of serum as compared to PBS controls. Data represent 

mean ± S.D., n = 3. Statistical comparison is based on unpaired t test; p = 0.26.
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Figure 6. 
In vivo biodistribution and gene expression profiles following intravenous administration of 

DNAlipHep and DNAlipPEG in tumor-bearing mice. (A1) Organ biodistribution of 

DNAlipHep and DNAlipPEG quantified ex vivo by fluorescence spectrophotometry 24 h 

post administration. Data represent mean ± S.D., n = 4. Statistical comparisons for each 

organ are based on unpaired t test. (A2) Representative qualitative biodistribution profiles 

analyzed with in vivo whole-body fluorescence imaging 24 h post administration. (B1) In 
vivo gene expression profiles following intravenous administration of DNAlipHep and 

DNAlipPEG, quantified ex vivo using luciferase activity assay 24 h post administration. 

Data represent mean ± S.D., n = 4. Statistical comparisons for each organ are based on 

unpaired t test. (B2) and (C2) Representative qualitative profiles of luciferase gene 

expression analyzed with in vivo whole-body bioluminescence imaging 24 h (B2) and 48 h 

(C2) postadministration. (C1) Total luminescence flux (measured in photons per second (p/

sec)) for the liver ROI at 24 and 48 h postadministration of DNAlipHep and DNAlipPEG. 

Data represent mean ± S.D., n = 3. Statistical comparisons were made using the one-way 

ANOVA, followed by post hoc Tukey's pairwise tests. Asterisks denote statistical 

significance,*p < 0.05, **p < 0.01, ***p < 0.001; R.L.U., relative light units; ANOVA, 

analysis of variance; SD, standard deviation.
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Figure 7. 
In vitro UTMD-mediated GFP gene transfer with DNAlipHep and DNAlipPEG liposomes 

carrying GFP-encoding plasmid DNA in HeLa cells. UTMD treatment is compared to 

controls with and without microbubbles (MB) and ultrasound (US). (A) Representative 

fluorescence micrographs of HeLa cells following exposure to (1) liposomes only without 

microbubbles or ultrasound (MB−/US−), (2) liposomes and microbubbles without 

ultrasound (MB+/US−), (3) liposomes and ultrasound without microbubbles (MB−/US+), 

and (4) liposomes with microbubbles and ultrasound (the UTMD protocol; MB+/US+). Left 

and right panels depict micrographs for DNAlipPEG and DNAlipHep liposomes, 

respectively. (B) Quantitative analysis of GFP transfection (top), and cell viability (bottom) 

using fluorescence spectroscopy and Trypan Blue assay, respectively, under conditions 

described in (A). Data represent mean ± S.D., n = 4. Statistical analysis is based on one-way 

ANOVA, followed by post hoc Tukey's pairwise comparisons. Asterisks denote statistically 

significant difference versus MB−/US− group, *p < 0.05, **p < 0.01, ***p < 0.001. 

ANOVA, analysis of variance; SD, standard deviation.
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Figure 8. 
Effect of tumor-directed UTMD on gene expression profiles following intravenous 

administration of DNAlipHep and DNAlipPEG liposomes. (A) Schematic depiction of 

tumor-directed ultrasound-targeted microbubble destruction (UTMD); microbubble-

collapsing ultrasound (US) beam is applied to the tumor (T) following intravenous 

coadministration of liposomes and microbubbles (MB). (B) and (D) Representative 

qualitative profiles of luciferase gene expression following i.v. administration of DNAlipHep 

(B) or DNAlipPEG (D) with and without microbubbles/ultrasound. Gene expression was 

analyzed using in vivo whole-body bioluminescence imaging. Color bar represents radiance 

expressed as photon flux per second per square centimeter per steradian (p/sec/cm2/sr). (C) 

and (E) Ex vivo quantification of tumor and liver gene expression following i.v. 

administration of DNAlipHep (C) and DNAlipPEG (E) with and without microbubbles/

ultrasound. Gene expression was analyzed using luciferase activity assay. Data represent 

mean ± S.D., n = 4. Statistical comparison of gene expression under different experimental 

conditions (MB−/US−, MB+/US−, MB−/US+, MB+/US+) were made for each organ (liver 

or tumor) using the one-way ANOVA, followed by post hoc Tukey's pairwise tests. Asterisks 

denote statistical significance versus MB−/US− group, *p < 0.05, **p < 0.01, ***p < 0.001. 

R.L.U., relative light units; ANOVA, analysis of variance; SD, standard deviation.
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Figure 9. 
Tumor-to-liver selectivity of gene expression for DNAlipHep and DNAlipPEG liposomes 

with and without UTMD. Data represent mean ± S.D., n = 4. Statistical comparisons were 

made using the one-way ANOVA, followed by post hoc Tukey's pairwise tests; Asterisks 

denote statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001. ANOVA, analysis of 

variance; SD, standard deviation.
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