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ABSTRACT

With Moore’s law slowing down and Dennard scaling ended, energy-
efficient domain-specific accelerators, such as deep neural network
(DNN) processors for machine learning and programmable network
switches for cloud applications, have become a promising way for
hardware designers to continue bringing energy efficiency improve-
ments to data and computation-intensive applications. To ensure
the fast exploration of the accelerator design space, architecture-
level energy estimators, which perform energy estimations without
requiring complete hardware description of the designs, are critical
to designers. However, it is difficult to use existing architecture-
level energy estimators to obtain accurate estimates for accelerator
designs, as accelerator designs are diverse and sensitive to data
patterns. This paper presents Accelergy, a generally applicable en-
ergy estimation methodology for accelerators that allows design
specifications comprised of user-defined high-level compound com-
ponents and user-defined low-level primitive components, which
can be characterized by third-party energy estimation plug-ins. An
example with primitive and compound components for DNN accel-
erator designs is also provided as an application of the proposed
methodology. Overall, Accelergy achieves 95% accuracy on Eyeriss,
a well-known DNN accelerator design, and can correctly capture
the energy breakdown of components at different granularities. The
Accelergy code is available at http://accelergy.mit.edu.

1 INTRODUCTION

Since Moore’s law has been slowing down and Dennard Scaling
has ended, energy consumption has become a critical concern for
hardware designs. Domain-specific accelerators have become an
essential alternative to general-purpose processors, which often
result in the high energy consumption and slow processing when
running data and computation intensive applications [7]; accord-
ingly, in recent years, many hardware designers achieve energy
efficiency improvements by using accelerator designs (e.g., DNN
processors for machine learning [1, 4, 5, 17] and programmable
network switches for cloud applications [8, 20]). These accelerators
are designed to exploit the characteristics of specific application
domains, and thus improve energy efficiency.

Often, accurate energy consumption is predicted only after com-
pleting the physical design layout. Although post-layout energy
estimation gives high accuracy, it hinders design space exploration
for two reasons: (1) significant design effort overhead, as designers
have to complete almost the entire design to obtain the post-layout
information, and (2) slow simulation time, as the estimation is done
on gate-level components. To achieve faster design space explo-
ration, the energy estimation needs to be performed at an earlier
design stage where the complete hardware description is not a
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prerequisite (e.g., at the architectural stage). Architecture-level en-
ergy estimators take in an architecture description and runtime
action counts for a specific workload, and directly estimate the
energy consumption. The architecture description describes the
components in the design (e.g., there is a cache and an ALU in the
processor design), and their respective hardware attribute values
(e.g., the cache is 32kB and the ALU has a data-width of 64 bits). The
runtime action counts describe how the components in the design
are used (e.g., the cache is read 200 times). In this work, we propose
Accelergy, an architecture-level energy estimation methodology
that addresses the potential challenges associated with early-stage
energy estimations of accelerator designs.

1.1 Related Work

Existing architecture-level energy estimation tools can be classified
into three categories: component estimators, processor estimators
for designs that are composed of a fixed set of components, and
design-specific energy tables for accelerator designs.

Component estimators focus on generating energy models for
a specific type of components rather than the entire design [9,
15, 21]. CACTI [15] focuses on the energy estimation of memory
components, such as caches and SRAMs. Orion [9, 21] provides
analytical models for the energy estimation of networks-on-chip
(NoCs). Although these component estimators provide an in-depth
understanding of the specific component’s energy consumption,
they cannot generate a holistic view of the entire design.

Processor estimators focus on processor energy estimations for de-
signs with architectures that are composed of a fixed and limited set
of compound components. A compound component is a high-level
function unit that contains several low-level primitive components
or other high-level function units as its sub-components (e.g., a
cache is a compound component with comparators and SRAM
modules as its sub-components). Among such tools, Wattch [2],
MCcPAT [14] and PowerTrain [12] focus on CPU energy estimations,
and GPUWattch [13] focuses on GPU energy estimations. Describ-
ing designs using compound components allows the runtime action
counts to be generated in terms of high-level compound actions,
which are defined as composites of the low-level actions of the
sub-components. Therefore, when the low-level details of the com-
pound action change, the runtime action counts do not need to be
regenerated, speeding up the energy evaluation process. However,
these existing processor estimators use a fixed and limited set of
compound components, and therefore do not provide the flexibility
for designers to define arbitrary accelerator designs, as shown in
Fig. 1. Since accelerator designs vary significantly from one to an-
other (e.g., DNN accelerators vs. database accelerators), providing a
flexible way to model the diverse design space becomes essential.
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Figure 1: The CPU components cannot describe accelerators.

Design-specific energy tables for processor energy efficiency anal-
ysis provide high accuracy for specific target design cases [1, 10, 16,
19, 22]. However, these tools only generate design-specific tables
for those components that are specific to the design associated with
the tool. For example, SnaPEA’s [1] energy modeling table uses
primitive components with predefined attributes, such as a 16-bit
fixed point PE. Such tables are too design-specific to be used by
other designs. Furthermore, many of these generated tables only
have entries for the primitive components instead of the compound
components. Such exceedingly fine-grained tables make the en-
ergy evaluation tedious and describing designs using hundreds of
low-level primitive components might result in overlooking com-
ponents.

1.2 Additional Challenges

Since different types of actions on a component (e.g., read and write
are two different actions on a memory block) result in distinct
energy consumption, to achieve accurate energy estimations of
accelerator designs, designers are required to create a large enough
repertoire of action types for each component to accurately reflect
the energy consumption of the component. Furthermore, since
accelerators are highly specialized for specific applications, they
tend to exploit the domain-specific data patterns by efficiently or-
chestrating data (e.g., performing repeated accesses to the same
address of a memory block for data reuse). Thus, for accelerators,
these types of actions on components appear more frequently than
they do in general-purpose processors. Fig. 2 shows an example of
the post-layout energy consumption of actions on a flipflop-based
register file with write enable. Among the listed actions, *_rand
means access to the memory with random address (and data), *_re-
peat means the address and data of the action are always the same,
and write_cst_data means the same data is written across multiple
cycles. As shown in the figure, for different actions the energy-per-
action can vary by 2X even if they are both reads. Therefore, if a
certain action of a component is popular (e.g., write_cst_data action
becomes prevalent due to high sparsity), classifying actions more
precisely is necessary to avoid significant estimation error.

Lastly, being able to derive primitive component energy estima-
tions from a variety of primitive component estimators, including
those from a third party, is important for achieving high flexibility.
The primitive component estimators can range from technology-
dependent energy tables [1, 4, 16] to general-purpose estimation
tools [2, 13, 14]. As new technologies emerge, the energy consump-
tion of a specific operation in the architecture may vary significantly
depending on its underlying technology. For example, in-memory
computation (e.g., with RRAM) helps to greatly reduce the amount
of energy spent on performing a multiply and accumulate (MAC).
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Figure 2: Post-layout energy consumption of different ac-
tions on a flipflop-based register file with write enable. En-
ergy normalized to the idle register’s energy per action.

However, the users of conventional processor estimators are nei-
ther able to express that the design contains a special component
nor can they characterize the special component using their own
third-party primitive component estimators.

1.3 Contributions

To address the above mentioned challenges, we present Accelergy!,
a generally applicable methodology for performing architecture-
level energy estimation on accelerator designs. This paper:

e presents a framework that allows users to

— describe their design with their own set of design-specific
compound components with attributes and actions.

— describe compound components composed of primitive
components whose attributes and actions are character-
ized by energy estimation plug-ins.

— generate energy estimations for the design with workload
generated runtime action counts.

e provides an example application of Accelergy for DNN ac-
celerators.

2 HIGH-LEVEL FRAMEWORK

Fig. 3 shows a high-level block diagram of the Accelergy estima-
tion framework. Similar to the existing architecture-level energy
estimators, Accelergy takes in an architecture description and run-
time action counts, which are based on a specific workload that is
generated by performance models (e.g., cycle-accurate simulators
or analytical models). In addition to the architecture description
and runtime action counts, Accelergy also takes in compound com-
ponent descriptions to describe the properties of the compound
components in a specific design (see Section 3.3) and generates an
energy estimate for the design. All the input and output files are in
YAML format.

As shown in Fig. 3, Accelergy can interact with multiple energy
estimation plug-ins. Each estimation plug-in is composed of one
or more component energy estimators that estimate the energy
consumption for primitive components in Accelergy’s primitive
component library. This feature allows Accelergy to provide esti-
mations for many technologies. Estimation plug-ins must adhere
to the estimation plug-in interface defined by Accelergy. To show
the flexibility of the interface, we provide two example estimation
plug-ins: (1) Aladdin’s [19] 40nm component-wise energy table,

! Accelergy is available from http://accelergy.mit.edu
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Figure 3: High-level block diagram of Accelergy framework.

which is a design-specific energy table, and (2) CACTI [15], which is
an open-source tool for general memory components (e.g., SRAMs).

Accelergy has two main parts: (1) the energy reference table (ERT)
generator and (2) the energy calculator. The ERT generator is re-
sponsible for parsing the architecture and compound component
descriptions and querying the appropriate estimation plug-ins to
generate energy estimates of the components in the design. The
generated energy estimates are saved in the form of ERTs, which
record the energy-per-action for different action types associated
with the primitive and compound components in the design (e.g.,
the action types and energy-per-action specified in Fig. 2 are ERT
entries for the specific register file). For each action, the related
ERT entry must have sufficient information to calculate the en-
ergy for any value of the arguments associated with the action (see
Section 3.3).

Automatic design exploration tools, such as Timeloop [16], re-
quire fast energy consumption evaluations. To enable the integra-
tion of Accelergy with such tools, the generated ERTs for a hardware
design are saved, so that they can be reused for action counts from
different workloads. This avoids re-parsing the design descriptions
and re-querying the component estimators.

The energy calculator is responsible for parsing the action counts
and the saved ERTs. The energy estimations of the components in
the design are generated by combining the related entries in the
action counts and the saved ERTs.

3 CONFIGURATION LANGUAGE

This section presents the detailed semantics of the configuration
language used by Accelergy.

3.1 Object-Oriented (O0) Approach

Designs often contain or share multiple components of the same
type and each component has different values for its attributes.
For example, SRAMs are present in most of the designs, but each
SRAM has different technology, depth, width, number of banks,
etc. To avoid enumerating every component’s attributes and asso-
ciated actions in the design, Accelergy uses an OO approach by
introducing the concept of a component class, which is similar to
a class in an OO language. A component class’ data members are
its hardware attributes, and its member functions are its actions.
The components that share the same set of hardware attributes and
actions are instances of their component class (e.g., an SRAM block

of depth 128 and an SRAM block of depth 512 both belong to the
same SRAM class). All the component instances derived from the
same class can (1) inherit or override the default hardware attribute
values specified by the class to distinguish between each other, and
(2) perform the same set of actions defined by the class. In this
way, with the description of the component classes, the component
instances can be succinctly described in terms of its component class
name and a set of hardware attribute values used to override the
defaults (if there are any).

3.2 Primitive Component

A primitive component is a component at the finest granularity. It
is an instance of a primitive component class. Example 1 shows
a description of a counter class. To describe primitive component
classes, the set of essential hardware attributes and actions are
needed. Primitive classes are listed in Accelergy’s primitive compo-
nent library as a YAML list. Since many accelerator designs share
the same set of primitive components (e.g., SRAM and adder), the
primitive component library can be shared across different designs
to avoid regeneration of such lists. The estimation plug-ins generate
ERTs for primitive components.

Example 1: a counter primitive component class

1 name: counter #class name

2 attributes: #default attributes
3 technology: 65nm

4 datawidth: 16

5 actions: #list of actions

6 - name: count

7 - name: idle

3.3 Compound Component

A compound component is defined as a high-level function unit
that consists of several primitive components or other high-level
function units, which we refer to as its sub-components. Describing
designs in terms of compound components simplifies runtime statis-
tics generation, produces succinct design description, and reduces
energy estimation errors caused by overlooking some primitive
components. However, since the accelerator design space is very di-
verse, it is hard to provide a fixed set of compound components that
can be used for all possible designs. To address the problem of diver-
sity in the design space, Accelergy allows user-defined compound
components.

Compound components are instances of compound component
classes, which are defined by the user in the compound component
description file as an input to Accelergy. As compound components
inherently involve lower-level components, to define a class of
compound components, the following needs to be specified: (1)
a set of attributes, (2) a set of sub-components, and (3) a set of
compound action names and definitions.

3.3.1 Smart buffer unit. In order to illustrate the semantics
clearly, we use the idea of a smart buffer unit as a compound com-
ponent example. The smart buffer unit has a storage structure that
is a simplified version of a proposed accelerator idiom, the buffet
collection [18], and address generators that supply addresses to the
storage structure.
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Figure 4: Simplified block diagram of smart buffering unit
with 2 buffets mapped to a SRAM in the buffet structure.

Fig. 4 shows the block diagram for a smart buffer unit, which
contains a buffet collection and multiple address generators. A
buffet collection is a storage structure that uses a decoupled access-
execute approach for memory fills (writes) and drains (reads). At
a high level, a buffet collection contains one or more buffets and
a physical memory. Each buffet is mapped to a certain portion of
the physical storage (e.g., several banks of the SRAM) and contains
the logic to arbitrate read and write requests specific to its portion
of the physical memory. For example, if a read is requested for
an address that is not written yet, the buffet arbitration logic will
block the read request until valid data is available in the buffet.
The requests to each buffet are generated using a set of address
generators that can be configured to generate different sequences
of addresses. These address generators are essentially counters that
count in specific patterns. Since the smart buffer unit has multiple
underlying lower-level components, by Accelergy’s definition, it
can be represented as a compound component. We are going to
use a smart buffer as an example compound component class. For
simplicity, we assume that the address generators in the smart buffer
are an array of counters that have identical hardware attributes.

3.3.2 Compound Attributes and Sub-component Classes. To de-
scribe a compound component class, a list of relevant hardware
attributes to the class’s hardware properties should be specified.
For example, memory width, height and port information can be
used to describe a smart buffer. Example 2 shows the description of
the smart buffer class.

Since the smartbuffer class contains lower-level components,
Accelergy uses the subcomponents field to illustrate this hierarchi-
cal relationship between the compound class and its underlying
lower-level components. Therefore, for the smartbuffer class, the
following sub-components need to be reflected in the component
class description: (1) buffet_collection: another compound compo-
nent derived from the buffet_collection class, which contains buffets
and SRAM (already defined as an existing compound component
class). (2) addr_generators[0:nBuffets-1]: an array of identical ad-
dress generators, which are primitive components derived from
the counter class. Note that [0:N-1] is the Accelergy grammar for
specifying an array of N identical elements.

In this example, we assume that the buffet_collection class is al-
ready defined as an existing compound component class. As shown
in Example 2, each sub-component is fully defined by a set of neces-
sary hardware attributes. The sub-component’s attributes could be

directly assigned as numerical values, or inherit the attribute value
from the higher-level component class, or mathematical operations
on the compound attributes.

Example 2: a smart buffer compound component class

1 name: smartbuffer #class name

2 attributes: #default attributes
3 width: 16

4 depth: 25

5 nBanks: 1

6 nRdPorts: 1
7 nWrPorts: 1
8
9

nBuffets: 1

subcomponents: #lower—level components
10 - name: addr_generators[0:nBuffets-1]
11 class: counter
12 attributes:
13 count_max: depth
14 - name: buffet_collection
15 class: buffet_collection
16 attributes:
17 width: width
18 depth: depth #map to top-level
19 nBanks: nBanks
20 nRdPorts: nRdPorts
21 nWrPorts: nWrPorts
22 nBuffets: nBuffets
23 actions:
24 - name: idle #action without args
25 subcomponents:
26 - name: addr_generators[0]
27 actions:
28 - name: idle
29 repeat: nBuffets
30 - name: buffet_collection
31 actions:
32 - name: idle
33 repeat: 1
34 - name: buffer_access #action with args
35 arguments:
36 nDrain: @..nRdPorts-1
37 nFill: @..nWrPorts-1
38 subcomponents:
39 - name: addr_generators[0]
40 actions:
41 - name: generate
42 repeat: nDrain + nFill
43 - name: buffet_collection
44 actions:
45 - name: access
46 arguments:
47 nDrain: nDrain
48 nFill: nFill

3.3.3 Compound Action Configuration. Besides the attributes
assignment and sub-component descriptions, another essential part
of a compound class description involves describing high-level



compound action types. Compound action types allow designers
to easily redesign low-level details of the compound components
without regenerating action counts, and to reduce the amount of
action counts needed.

A compound action is defined as an aggregate of the lower level
sub-components’ action types. Example 2 illustrates the simplest
example of a compound action definition - the idle action of smart-
buffer (line 24). For a smart buffer, the idle action consists of an idle
action of buffet_collection and the idle actions of address generators
in the addr_generators array. Since all of the address generators
in the array are identical, their idle actions consume the same
amount of energy. Therefore, instead of enumerating the idle sub-
component actions of all the address generators, Example 2 (line
26-29) simplifies the description by only specifying the first address
generator, namely addr_generators[0], and using repeat (default is
1) to specify the number of idle sub-component actions needed to
describe the compound action.

However, some action types can have multiple energy-per-action
values. For example, the energy-per-action of a smart buffer’s
buffer_access action depends on the number of fills and drains in-
volved, which is related to the number of active buffets in the buffet
collection. Another example is the multicast action of NoC designs,
where the energy-per-action value depends on the number of desti-
nations. To avoid enumerating each possibility as a separate action
type, Accelergy defines such actions as actions with arguments, with
the arguments provided as part of the action counts. Example 2
shows an example description of compound action with arguments
(line 34), where a compound action buffer_access needs two runtime
arguments: (1) nDrain: number of drains, and (2) nFill: number of
fills. The two additional arguments are used to characterize how
many address_generators are active, and to specify how many fills
and drains happen in the buffet_collection.

3.4 Architecture Description & Action Counts

In addition to the compound component description, the architec-
ture description is another important part of the input into Accel-
ergy. The architecture description expresses the correspondence
between component classes and component names. It allows Accel-
ergy to link the component names and the generated ERTs, such
that the action counts for the component can be correctly inter-
preted. The hierarchical architecture design can be represented as a
tree structure in YAML; each node of the tree is a YAML dictionary.
Each internal node of the tree contains the attributes (if any) that
can be shared among its child nodes. Each leaf node of the tree
specifies the name of a component in the design and its component
class name, as well as the component’s attribute values.

The final input to Accelergy are the action counts, which refer
to the runtime information generated by the performance model.
Similarly, action counts can be described as a tree, whose nodes are
YAML dictionaries. The leaf nodes of the tree contain component
names and the corresponding counts for each action type.

4 EXAMPLE DNN APPLICATION

To demonstrate Accelergy’s methodology for architecture-level ac-
celerator design energy estimations, we constructed an example

application of Accelergy for DNN accelerator designs. A set of prim-
itive components are used to describe the compound components
in DNN accelerators. To accurately reflect the energy consumption
of each primitive component, we associate it with a series of action
types, each with a different energy-per-action. Table 1 summarizes
some example primitive components. The hardware attributes col-
umn lists the major attributes that need to be provided for the
full characterization of the component. The action type column
specifies the important action types on the component.

Table 1: Selected components, hardware attributes, and ac-
tion types in DNN primitive component library

Primitive Hardware Attributes | Action Types
Components
width random_read
depth random_write
SRAM # of read ports repeated_read
# of write ports repeated_data_write
# of banks bypassed_read
bitwidth random_MAC
MAC # of pipeline stages constant_MAC
gated_MAC
zero_gated_MAC
counter count limit count
FIFO width random_transfer
router crossbar input ports repeated_transfer
crossbar output ports | gated_transfer
. data width random_transfer
wire .
wire length repeated_ transfer

To generate action types that cause significantly different energy-
per-action values, we consider Power = aCVé pf > where C is the
total switching capacitance, Vpp is the supply voltage, « is the
switching activity which indicates how often the capacitance is
charged, and f is the clock frequency. We classify the main causes of
the differences in energy-per-action values into four categories: (1)
action property (2) data property (3) clock gating (4) design-specific
optimizations.

Action property refers to the most basic definitions of the actions
(e.g., read and write actions in SRAM have different action properties
since they affect the bit-lines and sense amplifiers in different ways).
Therefore, the action property affects the a value in the power
equation. Many existing energy estimators [2, 14, 15, 21] distinguish
action types according to their action properties. As shown in Table
1, Accelergy also uses action properties to help classify action types
(e.g., for SRAM, *_read all belong to the class read actions, and
*_write all belong to the class of write actions).

Data property refers to the values of the data being processed.
Frequent changes in data values increase the switching activity,
i.e., the a value in the power equation, and therefore increase the
energy consumption. For example, reading random data from a
random address of a SRAM-based buffer consumes much more
energy than reading the same data from the same address, as the
data and address do not change in the latter case. Since the data
pattern is mostly random for general-purpose processing units, data
values are traditionally assumed to be random in the conventional
energy estimators [2, 13-15]. However, since accelerators tend
to target applications with special data patterns (e.g., many DNN



applications are very sparse), considering data property is critical
for an accurate estimation. Therefore, Accelergy further classifies
the action types according to the data being processed. For example,
in Table 1, random_MAC is a MAC operation on two operands with
random data values, and constant_MAC is also a MAC operation, i.e.,
same action property, but operates on two operands with constant
data values, i.e., different data property.

Clock gating refers to the difference in energy consumption re-
sulting from the clock gating cells inserted by the CAD tools. Since
clock gating turns off the clock, it reduces the « value to zero in
the power equation. Therefore, when a component is completely
clock gated, no matter what the input data values are, it consumes
minimal energy. Accelergy adds action types related to clock gating
for each component to address the difference in energy consump-
tion. For example, in Table 1, Accelergy distinguishes between
constant_MAC and gated_MAC action types; although both of the
actions perform the same operation, i.e., same action property, and
involve no data value change, i.e., same data property, a constant
MAC consumes dynamic clock network energy, while a gated MAC
only consumes static energy.

Design-specific optimization refers to the hardware optimizations
on throughput or energy implemented in specific accelerator de-
signs. Accelergy allows users to add design-specific action types on
top of the default action types. For example, due to the high sparsity
in DNN applications, many DNN accelerators perform zero-gating
on their MAC, i.e., detect zero operands and skip zero MACs. This
manual optimization has a significant impact on the MAC’s energy
consumption. Accelergy specifies this design-specific action types
as a zero_gated_MAC for the MAC component. This action involves
the energy consumption of the zero-detection logic, which is spe-
cific to the design, and the MAC component. Another common
design-specific optimization in accelerator designs is to directly
bypass the data from a write request as the response to a read re-
quest to the same address. This motivates Accelergy to specify the
bypassed read action type for the SRAM bulffer.

5 EXPERIMENTAL RESULTS

In this section, we first validate Accelergy’s estimation methodology
by comparing the estimated energy with post-layout results (which
we use as the ground truth) and then demonstrate the accuracy of
Accelergy’s energy estimation at different granularities to show
the importance of having a rich collection of action types and
components.

5.1 Experimental Setup

Our energy estimation validation and evaluation are performed on a
well-known DNN accelerator design, Eyeriss [4], whose high-level
block diagram is shown in Fig. 5. The accelerator design is written
in RTL, synthesized, and placed-and-routed in a 65nm technology.

We specified the Eyeriss design with the DNN primitive com-
ponents outlined in Section 4, which has 11 primitive components
in total. The energy-per-action values in the library are generated
using post-layout simulations of small modules (e.g., the MAC com-
ponent). The overhead of generating RTL descriptions of such small
modules is considered trivial compared to the effort for generating
the entire design’s hardware description.
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Figure 5: High-level architecture of Eyeriss [4] design.

5.2 Simulation Framework

To emulate a practical use case of the methodology, where we
assume the RTL for the design is not available, we built a parame-
terizable cycle-level DNN simulator in Python as the performance
model. The simulator has 168 PEs in the PE array, 108kB global
buffer, and NoC structures that use a Y bus and 12 X buses. The zero-
gating optimization inside the PEs, i.e., gate MAC and weights_spad
when input feature map data is zero, is also modeled.

We assume that every design evaluation involves a software
simulation at the architecture-level, so the effort associated with
constructing the simulator is not considered as extra overhead.
Since Eyeriss cannot be easily simulated using existing standard
simulators (e.g., Aladdin [19]), we used a custom cycle-level DNN
simulator in the experiment. However, users can use any simulator
to generate the action counts, as long as the generated statistics ad-
here to Accelergy’s action counts format. To accelerate the process
of producing the design description and action counts, a statistics
collector is built into the cycle-level simulator to automatically col-
lect such statistics. Since Accelergy interprets designs in terms of
their compound components, the statistics collector only collects ac-
tion counts for the compound components (e.g., cache action counts
instead of SRAM action counts). Overall, the Eyeriss architecture
uses 9 primitive components from the DNN primitive component
library, and 6 user-defined compound components for describing
high-level functional blocks.

5.3 Energy Estimation Validation

Absolute energy consumption refers to the total energy consumed
by the design. It determines the design’s minimum energy resource
requirement, so we first compare the absolute energy consumption
estimation obtained using Accelergy. The validation workload uses
input data from the Imagenet dataset [6] and weights data from
Alexnet [11], both quantized to 16 bits. The validation result is
shown in Fig. 6. The total estimated energy is within 5% of the
post-layout results.

Relative energy breakdown refers to the percentage of energy
each component consumes relative to the total energy consumed
by the design. It shows the energy impact of the components in the
design, so we then validate the estimated relative energy breakdown
across the important modules in the design. Fig. 6 labels the relative
energy breakdown of the GLBs, the NoCs, and PE array for ground
truth and the Accelergy estimation. The relative difference between
the corresponding breakdown values are within 8%.
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Figure 6: Relative energy breakdown of Eyeriss [4].

5.4 PE Energy Breakdown Evaluation

As shown in Fig. 6, the PE array consumes the majority of the
total energy. In this section, we look into finer granularity esti-
mations of the PE array. Evaluations of three different types of
estimation methodologies are performed to show the importance
of Accelergy’s rich collection of action types and components.

5.4.1 Different Estimation Methodologies. We will compare Ac-
celergy with two other methodologies used in evaluating specific
accelerator designs and evaluate the benefits Accelergy can bring.
We first consider the energy estimation method proposed in Al-
addin [19]. Aladdin focuses on the components in the datapath, and
classifies the action types in terms of different action properties,
but does not consider other contributing factors described in Sec-
tion 4. Specific to Eyeriss, this method does not consider control
logic and is not able to recognize the design-specific action types
(e.g., zero_gated_MAC). We then look at the fixed-cost method pro-
posed for DNN energy estimation [22] that extends Eyeriss’ energy
estimation framework [3]. The fixed-cost method tends to sim-
plify the types of components into coarse categories, e.g., memory
components that belong to the same level of memory hierarchy
are treated as the same component, and therefore share the same
energy-per-action. When classifying action types, the fixed-cost
method takes into consideration the design-specific optimizations
but ignores other contributing factors (e.g., action property, data
property, etc.). Specific to Eyeriss design, this method does not
consider control logic and does not distinguish memory compo-
nents inside the PEs. Table 2 summarizes the differences across
three types of methodologies in terms of action type collection and
component collection.
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Figure 7: Total energy estimations for PE array using three
different methodologies.
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Figure 9: Energy breakdown within a single PE instance.

5.4.2  Energy Evaluations. We evaluate the energy estimation ac-
curacy of the PE array from three aspects: (1) total PE array energy,
which consists of 168 PEs, shown in Fig. 7, (2) energy breakdown
across selected PEs within the PE array, shown in Fig. 8, and (3)
energy breakdown within a PE instance, shown in Fig. 9.

According to Fig. 7, Accelergy achieves the highest accuracy
in terms of total energy consumption. Fixed-cost achieves much
less accurate total energy estimation. Since fixed-cost has a much
smaller collection of components, i.e., it ignores the control logic,
minor datapath, and idle cycles, it overlooks a significant amount
of energy. Aladdin also ignores those components, but it produces
a higher accuracy than fixed cost on total energy estimation. The
higher accuracy in Aladdin, however, is a result of underestimat-
ing the control logic and overestimating the PE datapath logic, as
Aladdin’s action type collection does not include design-specific
action types, i.e., the ones related to zero-gating optimization.

Fig. 8 shows the energy breakdown of selected PEs within the
PE array. Since different PEs process data with different amounts
of sparsity, e.g., PE 1 processes 66% sparse data and PE 2 processes
72% sparse data, they consume different amounts of energy due
to Eyeriss’ zero-gating optimization. As both Accelergy and fixed-
cost consider design-specific action types, they can capture the
relative energy differences across the PEs with reasonable accuracy.
Aladdin, without considering design-specific action types, fails to
reflect the energy difference between PEs. Instead, it predicts that
all the PEs have the same energy consumption.



Table 2: Comparisons between different estimation methodologies in terms of component collection and action type collection.

Component Collection Action Type Collection
Methodology - - - -
datapath control | action property | data property | clock gating | design-specific opt.
Accelergy (this work) fine grained some yes yes yes yes
Aladdin [19] fine grained none yes no no no
fixed-cost [3] coarse grained | none no no no yes

Fig. 9 shows the energy breakdown of components within a sin-
gle PE instance, PE 0 is used as an example. Accelergy is able to
capture the energy breakdown inside the PE instance. The other
two methods, however, both fail to reflect the ground truth energy
breakdown. Due to sparsity, gated read, which is modeled as idle
action, on weights_spad and zero_gated MAC on MAC should hap-
pen frequently. Aladdin fails to capture these action types related
to design-specific optimization and overestimates the energy for
weights_spad and MAC. In addition to zero-gating, the high sparsity
on input feature maps also cause the partial sum values to change
infrequently. The almost-constant partial sum data values lead to a
significant amount of repeated data write, which involves minimal
switching activities on the data wires, to psum_spad. Since Aladdin
does not recognize action types related to data properties, it over-
estimates psum_spad’s energy consumption. Fixed-cost treats all
the scratchpads in the PE as the same component, as they belong
to the same level of memory hierarchy. Furthermore, fixed-cost
also does not distinguish action types according to action proper-
ties. Therefore, under fixed-cost, all of the actions on scratchpads
share the same energy-per-action value. In reality, however, the
scratchpads are very different in sizes, e.g., weights_spad is more
than 10X larger than ifmap_spad, and even use different underlying
memory design, e.g., SRAM versus register file. Therefore, without
a rich enough component collection and action type collection,
fixed-cost is not able to correctly capture the energy consumption
of the components within the PE.

6 CONCLUSION

In this paper, we present Accelergy, a methodology for creating
broadly applicable and accurate architecture-level energy estima-
tion frameworks for accelerator designs. We propose a configura-
tion language that helps the designers to describe their own high-
level function units as compound components, as well as define
their own compound actions associated with those components.
We also provide a set of primitive components for DNN accelerator
designs to demonstrate the impact of fine granularity action classi-
fication. With its rich collections of action types and components,
we demonstrate that Accelergy can achieve an energy estimate that
is within 5% of post-layout simulation for a well-known DNN ac-
celerator and provide accurate energy breakdowns for components
at different levels of granularity.
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