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Quantifying the impact of urban road networks on the e�ciency of
local trips

Daniel Merchana,⇤, André Snoecka, Matthias Winkenbacha

aMassachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

City-level circuity factors have been introduced to quantify and compare the directness of vehicular
travel across di↵erent cities. While these city-level factors help to improve the quality of distance
approximation functions for city-wide vehicle movements, more granular factors are needed to ob-
tain accurate shortest path distance approximations for last-mile transportation systems that are
typically characterized by local trips. More importantly, local circuity factors encode valuable in-
formation about the e�ciency and complexity of the urban road network, which can be leveraged
to inform policy and practice. In this paper, we quantify and analyze local network circuity lever-
aging contemporary tra�c datasets. Using the city of São Paulo as our primary case study and
a combination of supervised and un-supervised machine learning methods, we observe significant
heterogeneities in local network circuity, explained by dimensional and topological properties of the
road network. Locally, real trip distances are about twice as long as distances predicted by the L1

norm. Results from São Paulo are compared to seven additional urban areas in Latin America and
the United States. At a coarse-grained level of analysis, we observe similar correlations between
road network properties and local circuity across these cities.

Keywords: Circuity, distance approximation, street network analysis, last-mile logistics, urban
freight.

1. Introduction

Analytical approximation methods are widely used to quantify travel distances of vehicles within
a transportation system. They can be applied to large-scale networks very e�ciently, as their data
requirements are typically limited to only a few parameters, such as basic geospatial information
(i.e., latitude and longitude coordinates) of points of demand (PODs). Analytical distance approx-
imations are particularly useful to inform decisions related to the strategic design and planning of
transportation and logistics systems. In such decisions, the focus of the analysis lies less on an exact
result for a specific realization of customers to be served, but more on the expected performance of
the system.

In the design of urban transportation systems, the so-called L1 or rectilinear norm is a common
distance metric assumed when analytically approximating vehicular travel distances within the un-
derlying road network. This norm assumes that the road network resembles a perfectly rectangular
lattice. However, real-world urban road networks rarely exhibit consistent and perfectly rectangular
designs. Several authors have thus shown that using the Euclidean or L2 norm, conditioned on the
proper estimation of a detour or circuity factor, as the distance metric in analytical approximations
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yields superior results, as it more appropriately accounts for properties of the underlying road net-
work that a↵ect travel directness and, consequently, route e�ciency (Love and Morris, 1979). Love
and Morris (1979), Love and Morris (1972) and more recently Ballou et al. (2002) and Giacomin and
Levinson (2015) introduce circuity factor estimates for approximating country-level and city-level
travel distances. In addition to improving the calibration of analytical distance approximations, cir-
cuity factors can be leveraged to assess the overall travel e�ciency of the urban road network, and
thus better inform design and planning choices about transportation and logistics systems operating
on those networks.

Existing city-level circuity estimates are typically quantified based on commuter travel patterns,
covering a wide range of possible inter-stop distances. For instance, Giacomin and Levinson (2015)
study trips of up to 60 kilometer (km). Nevertheless, the design and planning of urban transportation
systems characterized by relatively short, localized trips demand more granular measurements of
network circuity. Examples of such systems include large-scale (i.e., real-world) last-mile delivery
systems, in which average inter-stop distances within a network can be as short as 0.2 to 0.3 km.
Shorter trips tend to be more circuitous (Levinson and El-Geneidy, 2009) as the e↵ect of road
network obstacles (e.g., highways, parks) and road network complications (e.g., one-way streets)
on travel e�ciency amplifies. Furthermore, cities generally exhibit significant di↵erences in road
infrastructure, in complications to travel directness and in urban form across zones. These di↵erences
are hardly characterized by a single city-level circuity factor. Thus, localized measures of road
network circuity are needed. To the best of our knowledge, these granular measurements are not
available in the existing literature yet. In addition, the correlation between circuity and road network
properties at the local level remains largely unexplored. Previous studies (see, e.g., Ballou et al.,
2002) have outlined features of the road network that a↵ect circuity. Nonetheless, the extent and,
consequently, relevance of these e↵ects has not yet been quantified.

The lack of literature on local road network circuity may be due to the relatively recent interest
in solving large-scale last-mile logistics problems, driven mostly by the continuous growth of cities
and also by the rapid expansion of online retailing and, consequently, of last-mile delivery and pick-
up services. In 2015 alone, parcel deliveries grew at 7-10% in mature markets and up to 300% in
developing markets such as India (Joerss et al., 2016). The fast and dynamic evolution of e-retailing
is driving structural changes in the way companies are reaching the urban consumer: as consumer
expectations in terms of delivery speed and service options continue to diversify, online retailers
are pressured to provide delivery service o↵erings that vary in several dimensions including product
exchange location (e.g., deliveries to homes or to pick-up points) and transportation agents (e.g.,
parcel operators or crowd-sourced, ride-sharing services) (Winkenbach and Janjevic, 2018).

Evidently, logistics flows in urban areas will continue to intensify, putting more pressure on an
already congested urban road network. Estimates from developed markets predict that logistics flows
already amount to approximately a quarter of vehicle miles traveled in a typical city and generate
16-50% of the pollutant emissions from transportation-related activities, depending on the type of
pollutant considered (Dablanc, 2007). There are reasons to believe that these figures are higher
in cities in emerging markets, given these regions’ lower transport and logistics productivity levels
and the fragmentation of retail channels. In particular, the prevalence of the nanostore channel,
characterized by small, non-organized and family-operated retail formats, intensifies freight activities
in already dense and congested urban areas as more frequent replenishments are needed due to store
space or financial constraints (Fransoo and Blanco, 2017; Blanco and Fransoo, 2017). Putting
di↵erences in urban freight operations between developed and emerging markets in perspective,
a large beverage manufacturer and distributor serves nearly 7, 000 � 8, 000 retailers on a weekly
basis in New York City, and between 60, 000 � 70, 000 retail establishments per week in São Paulo,
Brazil. Thus, research e↵orts geared towards better informing the design and planning of last-mile
distribution systems entail a significant societal impact.

The traditionally onerous e↵ort to obtain reliable road network and tra�c data has also limited
the possibility to derive an in depth and quantitative understanding of the local e�ciency of the
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urban road network. Nonetheless, large tra�c and geospatial datasets extracted from contemporary
mapping and navigation tools o↵er a window of opportunity to quantify and study the e�ciency
of urban road networks at the local level. This approach resonates with the vision of a science of
cities, as proposed by Batty (2013), observing them through a complex system lens and leveraging
new methods for data-driven studies of urban planning problems.

In this paper, we quantify and analyze the circuity of the urban road network for shortest path and
minimum distance local trips. Further, building on a data-driven, network-theoretical approach and
a combination of supervised and unsupervised machine learning methods, we analyze the topological
and dimensional properties of the road network that a↵ect local travel directness. Our analysis aims
at deriving general correlations between the e�ciency of the road network and its dimensional and
topological properties. In doing so, we make the following contributions:

(i) We derive empirical estimates of road network circuity at a geographical scale and resolution
that is relevant for last-mile logistics operations.

(ii) We propose a data-driven approach based on unsupervised machine learning models to classify
urban areas according to their topological and dimensional properties.

(iii) We introduce a quadratic regression model to derive general correlations between the local
circuity of the road network and its topological and dimensional properties.

The metropolitan area of São Paulo, Brazil, serves as the primary illustrative example for the
methods presented in this paper. Results from São Paulo are compared and contrasted with other
cities in Latin America and the United States (US).

We argue that an in-depth and quantitative understanding of the properties of the road network
that a↵ect circuity can inform logistics design and planning in several dimensions. Logistics practi-
tioners can use more accurate, local circuity estimates to better approximate distances traveled in
the road network and, consequently, better plan vehicle routes and fleet capacities. Furthermore,
a better understanding of the complexity and e�ciency of the road network should inform strate-
gic decisions such as the design of delivery territories, the vehicle type choice, and the location of
logistics facilities. The results of this study also render valuable insights for policy makers as it
explores the correlation between network e�ciency and urban design decisions (e.g., defining the
road network layout), or tra�c management interventions (e.g., implementing one-way streets).

The remainder of this paper is structured as follows. In Section 2, we summarize the extant
literature on analytical distance approximation methods, network circuity, and street network anal-
ysis. Section 3 introduces a transferable method to quantify network circuity at the local level using
contemporary tra�c datasets. In Section 4, we present a polynomial regression model to explore the
impact of dimensional and topological features of the road network on network circuity. Section 5
explores the transferability and generalizability of our findings by comparing them across additional
case studies. We conclude the paper with a discussion in Section 6.

2. Background

In this section, we review the extant literature on distance estimating functions and road network
circuity. We focus our discussion on existing circuity estimates for urban travel. We also review
recent studies on applications of network science to street network analysis.

2.1. Distance estimating functions
The following general form function has been widely used to approximate the distance between

two points p, q in geographical space (Love and Morris, 1972):

d(p, q) = c

"
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with parameters c, r and s. Parameter c quantifies the circuity of the underlying network, that
is to say, the complications to travel directness. The circuity parameter c holds particular interest
to this study and we formally define it in Section 2.2. Assuming c = 1, the Euclidean (L2) and
rectilinear (L1) norms are special cases of this general form by setting r = s = 2 and r = s = 1,
respectively.

Based on empirical results for inter-city distances, Love and Morris (1972) observe that setting
r = s provides the practical benefit of having to fit one less parameter at limited accuracy expense.
Also, r = s yields a convex function, which is a desirable property for computational purposes in a
wide range of modeling applications, including facility location models. In a subsequent work, Love
and Morris (1979) provide empirical evidence on the accuracy of this distance estimating function
for intra-city travel. Their results suggest that, given a properly fitted value for c, the Euclidean
norm generally outperforms the rectilinear norm also for urban travel distance estimations, unless
the road network is consistently rectangular. A discussion on a weighted L2-L1 norm is provided in
Brimberg and Love (1992).

Distance approximations have also been introduced in the context of routing problems. There
is an extensive body of work on the use of continuum approximation (CA)-based models to ap-
proximate the expected distances of traveling salesman and vehicle routing problems for idealized
network topologies (Beardwood et al., 1959; Daganzo, 1984a,b; Newell and Daganzo, 1986a,b). Sev-
eral extensions to these models have been studied to account, for instance, for di↵erent area sizes
and shapes, the number of customer locations, and the e↵ect of time-windows (Chien, 1992; Kwon
et al., 1995; Figliozzi, 2009). Building on CA-based models to approximate routing costs, Smilowitz
and Daganzo (2007) present an optimization framework to design large-scale package distribution
systems. Winkenbach et al. (2016) further extent the use of routing cost approximations by introduc-
ing an augmented routing cost expression to account for maximum service time constraints within
a mixed-integer linear programming model. This model is used to solve the capacitated two-echelon
location-routing problem (2E-CLRP) for designing a large-scale urban logistics network. We refer
the reader to a recent paper by Ansari et al. (2018) for a comprehensive overview on the evolution
of CA-based methods applied to logistics and transportation systems modeling, including routing
problems, over the past two decades. Nevertheless, the focus of these studies continues to be on the
use of idealized road networks, mainly the L2 and L1 norms.

2.2. Network circuity

Circuity measures the relative detour incurred by vehicles traveling within a network compared
to the straight-line distance between the origin and the destination of their path. A circuity factor
c is thus defined as the ratio between the shortest-path network distance dN and the Euclidean
distance dL2 such that

c =
dN (p, q)

dL2(p, q)
, (2)

for any pair of path origin and destination locations (p, q). This factor is equivalent to the
inflation parameter introduced in Love and Morris (1972). A factor closer to 1.0 indicates higher
levels of network e�ciency (Barthélemy, 2011).

Theoretically, for intra-city distances, if travel is assumed to occur over an isotropic, rectilinear
grid (i.e., a rectangular lattice), then the extant literature suggests c̄ ⇡ 1.27 (Larson and Odoni,
1981). Love and Morris (1979) empirically find values for c between 1.16 and 1.28 for selected urban
areas in the US, and circa 1.35 for rural zones. Similarly, Newell (1980) estimate a factor of c̄ = 1.20
for general urban travel.

Levinson and El-Geneidy (2009) use c to analyze the selection of residential locations for com-
muters. In their study of 22 cities in the US, they find an average c̄ = 1.18. Using the Minneapolis -
Saint Paul region for an in depth study, they report a circuity factor of 1.58 for travel distances less
than or equal to 5 km. Through regression analysis, they explain city-level road network circuity
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Table 1: Survey of circuity factor estimates in the extant literature

c Geographical Scale Case study Source
1.27 Urban - Larson and Odoni (1981)

1.16 - 1.28 Urban US Love and Morris (1979)
1.35 Rural US Love and Morris (1979)
1.20 Urban US Newell (1980)

1.18 - 1.58 Urban US Levinson and El-Geneidy (2009)
1.34 Urban US Giacomin and Levinson (2015)
1.50 Sub-urban Germany Ehmke and Campbell (2014)

1.16-1.18 Country US Love and Morris (1972)
1.12 - 2.10 Country Worldwide Ballou et al. (2002)

based upon a set of network attributes, such as the number of street-to-street and freeway-to-freeway
nodes, street length, and freeway length for a 2 km bu↵er around the line representing the Euclidean
distance of a trip. Model results suggest that street and freeway length decrease circuity, i.e., the
larger the road length, the higher the likelihood of a direct trip between origin and destination. On
the contrary, they observe that the number of street-to-street and freeway-to-freeway nodes increase
circuity. This is expected as in highly dense zones (i.e., large number of nodes), trips are more
circuitous. However, the low R

2 = 0.11 of the model limits its explanatory power.
Giacomin and Levinson (2015) empirically estimate c̄ = 1.34 for the 51 most populous metropoli-

tan areas in the United States and find statistically significant evidence of road network e�ciency
decline between 1990 and 2010 for nearly 70% of the metropolitan areas. Circuity estimates are
weighted by distance traveled in home-to-work commutes considering trips of up to 60 km, based on
the US National Travel Household survey (United States Department of Transportation, 2009). As
expected, they also observe that circuity decreases inversely proportional to distance, which is also
concluded in Levinson and El-Geneidy (2009). Using the city of Stuttgart, Germany, as their case
study, Ehmke and Campbell (2014) suggest a factor of 1.5 to correct straight-line distance estimates
between downtown and suburban areas to inform order-acceptance mechanism for home-delivery
services but provide not further references on how this value is derived. Huang and Levinson (2015)
use circuity to investigate transportation mode choice for commuters and observe that transit net-
works, which prioritize spatial coverage at the expense of directness, usually exhibit higher levels of
circuity compared to road networks.

Network circuity has also been explored for inter-city travel. Love and Morris (1972) observe
values between 1.16 and 1.18 in the US. Ballou et al. (2002) analyze inter-city circuity in di↵erent
countries. They find that c ranges between 1.12 and 2.10, depending upon road density, connectivity
and geographic obstacles, but provide no further analysis on the relative importance of each of these
factors. We summarize existing relevant circuity estimates in Table 1, also noting that the majority
of studies have focused on cities in the continental US.

Merchán and Winkenbach (2019) propose a data-driven extension to calibrate the CA-based
models to better approximate route distances introduced by Daganzo (1984b) based on empirically
derived local circuity factors using real-world tra�c datasets. They conclude that the circuity of
the underlying road network has a significant impact on the predictive performance of CA-based
methods in real-world urban settings.

2.3. Street network analysis

Network (graph) theory is a widely used lens to approach the analysis of urban street networks. In
fact, its use dates back nearly three centuries with Euler’s classic seven-bridge problem at Königsberg
(now Kaliningrad) (Barabási, 2016). Fundamentally, a network is a finite set of nodes (or vertices),
connected by a finite set of links (or edges). The orientation of the links determines if the network
is directed, undirected, or mixed. In urban transportation networks, links commonly represent
streets and nodes represent street intersections and cul-de-sacs. This representation is usually know
as primal (Porta et al., 2006b). Alternatively, the dual approach models streets as nodes and
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intersections as links. Even though the primal provides a more intuitive representation of the street
network, the dual representation is at the core of the popular space syntax method first introduced
by Hillier and Hanson (1984) and has been used in subsequent works, such as in Jiang and Claramunt
(2004). A comparative analysis of both representations is available in Porta et al. (2006a) and Porta
et al. (2006b).

A spatial network is a network embedded in a (usually two or three) dimensional space and
characterized by a metric (usually the Euclidean distance). This distinction is relevant as the spatial
constraint on networks has relevant implications on its topological and dimensional properties. The
urban road network is usually modeled as a spatial and approximately planar network (Barthélemy,
2011).

Advances in geographic information systems and new sources of data are triggering new frontiers
of quantitative analysis of urban infrastructure (Batty, 2013). In particular, there has been an
increasing interest in the literature to approach the study of urban road networks as complex spatial
networks and analyze them from a large-scale quantitative standpoint (see, e.g., Barthélemy, 2011,
and references therein). For instance, in spite of the very di↵erent and varied processes shaping cities,
unexpected quantitative similarities have been found at least at the coarse-grained level (Jiang and
Claramunt, 2004; Crucitti et al., 2006; Lämmer et al., 2006; Barthélemy and Flammini, 2008; Louf
and Barthelemy, 2014).

A complex network is described by a set of topological measures that characterize its structure,
i.e., its connectivity, centrality, and resilience. Two commonly used connectivity measures include
node degree and node connectivity. Node degree measures the number of edges (i.e., streets) incident
to a node. Due to planar constraints, urban street networks exhibit low variability in node degree
measurements, ranging between 2 and 4 (Lämmer et al., 2006). The node connectivity of a network
measures the minimum number of nodes that must be removed to disconnect the graph. In street
network analysis this measure is frequently equal to 1 due to the presence of cul-de-sacs. Thus, a
more useful alternative is to use the average node connectivity, which measures the expected number
of nodes that must be removed to disconnect a random pair of non-adjacent nodes (Boeing, 2017).

Centrality measures inform the importance of nodes, and consequently, the resilience of a net-
work. For instance, betweenness centrality for a node j is measured as the ratio of the number
shortest paths going from node s to node t passing through nodes j, over the total number of short-
est paths going from s to node t. The spatial distribution of the betweenness centrality encodes
relevant structural information and can be used to quantify the suceptibility of the network to traf-
fic congestion (Barthélemy, 2011). Other centrality measures include closeness and degree centrality.
By using centrality measures, Porta et al. (2009) observe the relationship between zones with better
centrality and the location of commercial establishments in Bologna.

Connectivity and centrality measures characterize the topology of the urban street network.
Nevertheless, given the highly heterogeneous geometries of street networks, a purely topological per-
spective is insu�cient to fully characterize a street network (Louf and Barthelemy, 2014). As noted
by Ratti (2004), a richer understanding of the urban texture arises when the still-valid simplifica-
tions of the space syntax framework from a topological perspective are combined with dimensional
analysis (see Figure 1). Dimensional measures inform the spatial distribution of nodes and include
intersections density, edge density, street length, diameter and circuity. We refer the reader to the
work by Barthélemy (2011) for a comprehensive overview of spatial networks and their applica-
tion to transportation and infrastructure systems, and to the manuscript by Boeing (2017) for a
comprehensive overview of topological and dimensional measures.

2.4. Literature gap

Previous studies in road network circuity have focused either on inter-city trips or intra-city
commuter trips (see Table 1). Nevertheless, the nature of large-scale last-mile logistics, characterized
by short-distance trips, demands more granular circuity measurements. Local trips tend to be more
circuitous as the e↵ect on travel e�ciency of road network obstacles (e.g., highways, rivers) and road
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Figure 1: Dimensional and topological representations of a segment of the road network. While dimensional measures
characterize the spatial distribution of the network, topological measures define its connectivity and structure.

network complications (e.g., one-way streets) is more profound. Furthermore, cities generally exhibit
significant di↵erences in topology, infrastructure, obstacles and complications to travel directness
across their various neighborhoods or zones, which can hardly be characterized by a unique, city-
level circuity estimate. Giacomin and Levinson (2015) also suggest that future studies should address
the causal relations of network circuity. This study targets both of these gaps in the extant literature.

3. Quantifying Local Road Network Circuity

In this section, we first outline a data-driven approach to delimit the urban area of interest based
on population density measurements, and define the unit of geo-spatial analysis used to segment the
urban area. Second, we describe the sampling method to quantify road network circuity for local
trips using real road network datasets. We conclude this section with a discussion of the results of
the sampling methods applied to our case study.

3.1. Unit of geo-spatial analysis

Urban areas of interest usually extend beyond o�cial city boundaries, requiring a certain de-
gree of arbitrariness to define them. Consider, for instance, the case of São Paulo. On the one
hand, if we limit our attention to the municipal boundaries, many relevant and densely populated
surrounding zones will be excluded. Urban population polycentricity is a common characteristic of
large metropolitan areas. On the other hand, if we consider the entire Metropolitan Region of São
Paulo, it covers an area of nearly 7,000 km2s, including numerous low-density zones, which are of
scant interest to our analysis. To find a middle ground, we use a population density threshold to
discriminate areas of interest. Even though this approach is arbitrary to some extent, it also easily
scalable and transferable, given a reliable and consistent source of population data. LandScan, a
global population database developed by the Oak Ridge National Laboratory (Bright et al., 2015)
based on high-resolution satellite imagery, is our source of universally available population data.
It provides up-to-date ambient population counts at a spatial resolution of approximately 1 square
kilometer. We build our analysis on data from the 2015 LandScan database.

The urban area of study is divided into an grid of square segments to discretize our geo-spatial
data and analysis. This simple segmentation and data aggregation approach, also known as raster
data model (Singleton et al., 2018), is appealing as it facilitates intra-city and inter-city comparisons,
independently of any local administrative divisions (e.g., zip-codes or cadastral zoning). The choice
of segment size needs to balance data resolution with data processing e�ciency, which varies across
applications.
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3.2. Trip distance calculation

We consider minimum distance paths obtained form the Google Distance Matrix (GDM) web
service (Google, 2017). Temporal dependencies such as congestion or customer time-windows, and
alternative objective functions (see, e.g., Figliozzi, 2008) which may impact local circuity, fall out-
side the scope of our analysis. To the best of our knowledge, the specific shortest-path algorithm
supporting the GDM web service has not been o�cially disclosed by Google. Bast et al. (2016)
report Transfer Patterns (Bast et al., 2010) as one of the algorithm used for public transportation
routing in Google’s products. This e�cient technique particularely for multi-modal trips breaks
down the problem into transfer patterns (i.e., sequences of stops where transportation mode changes
occur) and then uses Dijkstra’s algorithm (Dijkstra, 1959) or other e�cient methods to find the
shortest-path for single-mode direct connections. We refer the reader to the manuscript by Bast
et al. (2016) for a comprehensive survey of shortest-path algorithms in road-networks, incuding but
not limited to goal-directed methods, hirearchical techniques and labeling algorithms.

3.3. Sampling and circuity factor estimation

Within each square segment i, we generate Ti random and uniformly distributed origin-destination
points, snap them to the nearest street segment, and obtain the point-to-point shortest-path trip
distances form the GDM. We define Ti based on the sampling method described in Law and Kelton
(2000) to estimate average values given a specified absolute error ✏. Specifically, Ti is the minimum
sample size for which the t-test confidence interval half-length with a confidence level ↵ is less or
equal than ✏. Next, we obtain cit for each t trip using Equation (2). Finally, we quantify the circuity
factor for each segment ci using the following expression:

ci =
TX

t=1

cit/T. (3)

We emphasize the value of the GDM service for transportation and urban planning research.
While the use of geographic information system (GIS) tools to estimate travel distances by researches
and practitioners is not novel, the use of classic GIS tools has been constrained by the usually limited
availability of reliable cartographic information, particularely in emerging markets. Contemporary
distance and tra�c data sources such as GDM, and geo-spatial data sources such as OpenStreetMaps
(OSM) (The OpenStreetMap Foundation, 2017), discussed in detail in Section 4, o↵er under-explored
opportunities to e�ciently collect and process worldwide and up-to-date urban road infrastructure
and tra�c information, enabling scalability and transferability of methods.

Finally, we note that our sampling approach to estimate circuity di↵ers from the method de-
scribed in Boeing (2017), which ‘relocates’ sampled origins and destinations points to the nearest
node (i.e., road intersections) in the network. As expected, this method biases circuity estimates as
road intersections tend to be more accessible than any other random points within a road segment.
We argue that our sampling approach therefore better represents the real-word circuity properties
of short, local trips.

3.4. Application

The core of São Paulo’s metropolitan area, including the municipality of São Paulo and its
surroundings, serves as our primary illustrative example. As noted in Section 3.1, to focus our
analysis on the most relevant zones within a metropolitan area, we select urban segments with
ambient population density of at least 1, 000 inhabitants/km2. We derive this population density
threshold based on preliminary data exploration. The resulting urban area covers approximately
1, 630 square kilometer (km2) and encompasses approximately 85% of the 20 million inhabitants
within the metropolitan area. Furthermore, we choose city segments to have a size of 1 km2 each,
to ensure su�ciently detailed spatial resolution and consistency with the population data source.
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Figure 2: Negative, non-linear and asymptotic relationship between trip-level circuity, cit, and trip Euclidean distance
dL2 .

We simulate and process T ⇡ 190 (✏  0.15) local trips per segment according to the above
mentioned sampling method and obtain cit for each trip t and each segment i per Equation (2) and
(B.5), respectively. In total, we process approximately 312,000 trips. The average real network trip
distance is 1.16 km, the median distance is 0.99 km and the upper bound is approximately 5 km. As
a result of the area size of 1 km2 defined for each segment, the Euclidean distance of each trip, dL2 , is
bounded at

p
2 km. At the trip-level, we observe a negative, non-linear and asymptotic relationship

between cit and dL2 (see Figure 2). The corresponding variability reduces in dL2 , suggesting a more
profound and less predictable e↵ect of road network complications on shorter trips.

The segment-level circuity factor ci ranges from approximately 1.38 to 5.32 with an average of
2.51, a median of 2.34 and an inter-quartile range of 0.90 (see Table 2), which indicate a positively
skewed distribution of c (see Figure 3). Based on a Kolmogorov-Smirnov (KS) goodness of fit test
(p-value = 0.28), the distribution of c fits a lognormal distribution with parameters 0.51, 1.15 and
1.20 for shape, location and scale, respectively. This result suggests that the average local circuity
factor based on real trips, c̄, is nearly twice as large as the analytically derived factor of 1.273
assuming travel according to the L1 metric (Larson and Odoni, 1981), and significantly larger than
those reported for city-level trips (see Table 1).

We observe particularly high circuity levels towards the inner parts of the city, in zones crossed by
major road obstacles, such as highways, and in peripheral segments (see Figure 4). Higher levels of
circuity in peripheral segments are to be expected as these areas usually exhibit network topologies
that resemble tree-like structures instead of well-connected road grids. In inner city zones, in spite
of having higher levels of network connectivity, also exhibit higher levels of circuity due to one-way
streets and other complications to travel. The relationships between circuity and other road network
properties are explored in detail in Section 4. Interestingly, in these same inner city segments with
less e�cient road networks, the intensity of local trips is usually larger as a result of higher levels
of ambient population density. That is to say, a large portion of local trips (e.g., local deliveries in
logistics operations) take place in city areas with highly circuitous road network infrastructure.

Table 2: Summary statistics for c across São Paulo

Mean (c̄) Coe↵. Var. Median Quartile 1 Quartile 3 Inter-quartile range
2.51 0.28 2.34 2.00 2.90 0.90
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Figure 3: Positively-skewed distributions of c for the São Paulo dataset, based on 1, 630 segment-level measurements.

4. Explaining Local Road Network Circuity

In this section, we explore properties of the urban road network that impact network circuity.
Using the primal representation of street networks, we define a set of dimensional and topological
variables to characterize the road network of any city segment and analyze them as explanatory
variables of the circuity factor c. A cluster analysis based on a Gaussian mixture model (GMM)
serves as a starting point to generate a classification of segments. We then introduce a quadratic
regression model to explore the relationship between the explanatory variables and c. Considering
again the São Paulo example, we use the estimates of ci for each city segment i derived in Section
3.4 as values for the dependent variable. Measurements for the potential explanatory variables are
obtained from OSM according to the data processing method described in Section 4.2 below.

4.1. Potential explanatory variables

As discussed in Section 2, dimensional (i.e., metric) variables describe physical properties of
the road network, whereas topological variables characterize network connectivity, centrality and
complexity. We argue that these physical and topological properties are correlated with the level of
circuity of a given segment. Thus, building on choices of variables available in the extant literature
(see Section 2.3), we define a set of dimensional (see Table 3) and topological variables (see Table 4)

Figure 4: Significant heterogeneities in network circuity observed across São Paulo, c ranges from 1.35 to 5.60
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Table 3: Segment-level metric variables

Variables Description
Intersection density (/km2) Number of road intersections
Highway length (km) Total length of highway roads
Primary road length (km) Total length of primary roads
Street length (km) Total length of non-highway and non-primary roads
One-way fraction (%) Fraction of total street length with directional constraint (i.e., one-way streets)
Avg. road-link length (km) Mean road-link length, including streets, primary roads and highways
Definitions adapted from Boeing (2017)

as potential explanatory variables of road network circuity. Formulae for topological variables are
provided in Appendix B.

OpenStreetMaps (The OpenStreetMap Foundation, 2017) is the primary source of road network
data. To process OSM data, we leverage the Python OSMnx module (Boeing, 2017). Three road
types are defined in this study based upon their accessibility and tra�c carrying capacity: highways,
primary roads, and streets (see Table 3). Highways (highlighted in red and brick-red in Figure 5)
constitute the road type with the largest tra�c carrying capacity, having at least 2 lanes in each
direction, with some degree of separation and limited access. Primary roads (highlighted in orange
in Figure 5) represent the next most important road type, having usually 2-3 lanes in each direction
and minimal or no separation. Major urban avenues are usually classified as primary roads in OSM.
The third type, streets, groups the remaining road types for vehicle circulation in a city (highlighted
in yellow and white in Figure 5). These roads are characterized by no more than two lanes and are
easily accessible, which facilitates travel directness.

4.2. Classification of urban segments by means of cluster analysis

Given the large diversity of types of city zones in terms of dimensional and topological properties,
we first conduct a cluster analysis, which is helpful to gain insights about the underlying structure
of the data and to detect salient features (Jain, 2010). In this particular case, we leverage the cluster
analysis to: 1) generate classes of city segments sharing similar road network characteristics, and
2) identify potential outliers, i.e., city segments with atypical road network properties, which could
introduce significant bias to the analysis. Atypical segments include, for instance, zones with a scant
road network coverage.

To generate clusters, i.e., archetypes of segments based on road network properties, we use
a Gaussian mixture model with K-mixture components fitted using an expectation-maximization
(EM) algorithm (Hastie et al., 2009). We select GMM as our clustering framework over its deter-
ministic counterpart, K-means, since the non-deterministic assignment of observations to clusters in
GMM using posterior probabilities o↵ers additional information on the likelihood of each observation
to belong to any of the K classes (Hastie et al., 2009). The GMM-based cluster analysis we conduct
includes all metric and topological explanatory variables (see Tables 3 and 4), but does not include
c. We expect this classification to inform preliminary correlations between road network properties
driving the configuration of clusters and the circuity of the segments within those clusters.

Table 4: Segment-level topological variables

Variables Description
Node connectivity Average number of nodes to remove to disconnect a non-adjacent pair of random nodes
Node degree Number of edges (streets) emanating from each node, averaged over all nodes
Neighborhood degree Average node degree of a node’s neighbors, averaged over all nodes
Betweenness centrality Number of shortest paths that pass through a node, averaged over all nodes
Closeness centrality Reciprocal of the sum of the distance from the node to all other nodes, averaged over all

nodes
Degree centrality Fractions of nodes that each node is connected to, averaged over all nodes
Definitions adapted from Boeing (2017)
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(a) City-level (b) Zone-level

Figure 5: City-level and zone-level road network extracts to illustrate the classification of roads: highways (red and
brick red), primary roads (orange) and streets (yellow and white). Notice the significant presence of highways and
primary roads within the city core of São Paulo.

In a pre-processing stage, we conduct a principal component analysis (PCA) on the explanatory
variables to reduce the dimensionality of the dataset and address multi-collinearity issues among the
explanatory variables. Further, the PCA provides useful information on the explanatory variables
that account for the largest portion of the variance in the data, signaling which of these explanatory
variables are most relevant. The number of principal components (PCs) to use for clustering is
defined based on an explained variance threshold of � = 0.9 to balance model parsimony and
explanatory power. We implement the PCA and the GMM in Python using the Scikit-learn module
(Pedregosa et al., 2012).

The PCA yields preliminary insights about the underlying structure of the data. Out of the 12
initial explanatory variables, the first six PCs explain 93% of the variance in the data (� = 0.9).
In analyzing the contribution of each explanatory variable onto the PCs (see Figure 6), we make
the following additional observations. Betweenness centrality, degree centrality, and connectivity-
related variables (intersection density and street length) are the largest contributors to the first
PC, explaining 41% of the variance. While connectivity and centrality related measures dominate
the first PC, dimensional variables (i.e., complications to travel) are the largest contributor to the
second PC and explain 25% of the variance.

Based on the results of the PCA, we fit the GMM with K = 3 clusters (mixtures). We determine
the value of K based on a cluster separation analysis using the silhouette score (Figure 7). The
largest cluster separation (i.e., highest score) is obtained by setting K = 3.

The spatial distribution of the resulting clusters is depicted in Figure 8. We observe a first cluster,
CL1 (red), composed mostly of inner city segments and segments crossed by major highways and
primary roads. A second cluster, CL2 (blue), is formed around outer city segments. The third
cluster, CL3 (brown), corresponds primarily to peripheral zones and areas with limited or atypical
road network infrastructure.

The spatial distribution of each cluster is compared against a projection onto the first two PCs
(Figure 9). Cluster CL1 corresponds to segments concentrated within the positive values of PC 2
and negative values for PC 1, which, as observed in Figure 6, correspond to segments exhibiting
fine-grained road networks (higher node degree) with complications to travel (higher fraction of one-
way streets and length of highway and primary roads). Thus, we refer to segments in this cluster as
constrained road network segments. City segments corresponding to cluster CL2 are concentrated
in the portion of the plot only driven by high network connectivity (PC 1 < 0). Therefore, we
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Figure 6: The first two principal components account for 66% of the variance in the data. Variance in the first PC is
mostly driven by the centrality and connectivity variables, while variance in the second PC is mostly influenced by
dimensional variables, i.e., one-way fraction and length of highway and primary roads.

refer to segments corresponding to CL2 as fine-grained road network segments. Finally, segments
corresponding to CL3 are concentrated within values PC 1 > 0, driven by higher network centrality,
which typically resembles peripheral, less-developed areas. We refer to these segments as coarse-
grained road network segments. Overall, the spatial distribution of the clusters (see Figure 8) and
the corresponding projections onto the main PCs (see Figure 6) are consistent.

To further illustrate the distinction between clusters, Table 5 includes the average values per
segment for a subset of explanatory variables. We obtain these average values considering all seg-
ments corresponding to a given cluster. Notice that we have also included in this summary c and
three additional variables which were not used for clustering but provide additional information to
compare clusters: fraction of urban area, fraction of population and mean population density.

The values reported in Table 5 yield preliminary insights on the correlation between explanatory
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Figure 7: Cluster separation analysis using silhouette score.
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Figure 8: GMM-based clustering results with K = 3 for the São Paulo data. A cluster (CL3) forms in the peripheries
of the city grouping zones with atypical road network properties

Table 5: Average values of segment-level variables for all three clusters

CL1 CL2 CL3
Circuity factor c̄ 3.02 2.12 2.77

Explanatory variables

One-way fraction (%) 0.43 0.10 0.05
Highway length (km) 964 90 80
Primary road length (km) 1,518 362 228
Node degree 3.10 3.03 2.82
Node connectivity 0.97 1.57 1.32
Betweenness centrality 0.07 0.06 0.11

Additional descriptors
Fraction of urban area 0.20 0.47 0.33
Fraction of population 0.30 0.52 0.18
Ambient population (inh/km2) 15,005 11,550 6,146

variables and c. c is highest for CL1 and lowest for CL2. Segments corresponding to CL1 and CL2
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Figure 9: Projection onto the main PCs of the segments classified by cluster type
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(a) CL1 (b) CL2 (c) CL3

Figure 10: Sample of road network segments in São Paulo for clusters CL1 (constrained), CL2 - (fine-grained) and
CL3 (coarse-grained) with c = 2.80, 1.82, 4.49 respectively.

have fine-grained road networks as indicated by the average node degree (3.10 and 3.03) respectively.
Nonetheless, the mean node connectivity of CL2 is nearly 60% higher due to lower complications
to travel compared to CL1, including but not limited to highway roads, primary roads and one-way
streets. For instance, the average node connectivity of a segment with a bridge or an overpass
will be low (even if the road network is fine-grained) as this feature will increase the probability of
disconnecting the graph. Segments in CL3 are characterized by coarse-grained (lower node degree)
and significantly more centralized networks compared to segments in the other clusters.

Finally, we select samples of typical road network configurations in city segments corresponding
to each cluster to illustrate spatial di↵erences in road network properties (see Figure 10). The road
network from CL1 (see Figure 10a) and CL2 (see Figure 10b) exhibit similar network connectedness.
Nevertheless, circuity for CL1 (2.80) is nearly 50% higher due to directional constraints (red links)
and the presence of highways and primary roads. The rightmost sample corresponds to CL3 (see
Figure 10c): its particularly high circuity factor (4.49) is driven mostly by its coarse-grained road
network. Due to these atypical properties, segments corresponding to CL3 are excluded from the
regression analysis presented in Section 4.3, which further explores the correlation between road
network properties and circuity.

4.3. Regression Analysis

Variable selection. The set of metric and topological variables (see Tables 3 and 4) exhibit strong
correlations, which do not a↵ect the clustering due to the use of PCA to de-correlate variables. In
regression analysis, however, multicollinearity is undesired, as it inflates variances and, consequently,
reduces the precision of coe�cient estimates (Belsley et al., 1980). Several statistical test are com-
bined to address multicollinearity among explanatory variables. First, we identify strongly correlated
pairs of variables using the Pearson correlation coe�cient (PCC) and select the key-covariates for
the regression model. Further, we verify for multicollinearity in the regression analysis by means of
two statistical tests: Variance Inflation Factor (VIF) and conditional indexes.

The variable selection step reduces the number of explanatory variables from 12 to 6 (see Table
6). For instance, average node connectivity is highly correlated with closeness centrality and street
length (PCC of 0.76 and 0.60, respectively). The selection of key co-variates also prioritizes variables
that are frequently used in the extant literature.

Overall, we observe non-linear correlations between the segment-level circuity factor, c, and each
explanatory variable (see Figure 11). As expected, circuity decreases as network connectivity in
the corresponding segment increases. Circuity exhibits a positive correlation with the presence of
obstacles and other complications to travel such as the fraction of one-way streets or the total length
of primary roads and highways.
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Table 6: Selected metric and topological most relevant co-variates for regression analysis

Metric variables Topological variables
X1 Highway length (km) X4 Betweenness centrality
X2 Primary road length (km) X5 Node connectivity
X3 One-way fraction (%) X6 Node degree

Regression model. To balance model complexity and interpretability of results, we introduce a poly-
nomial regression model of second degree with interaction terms:

c = �0 +
6X

j=1

�jXj +
6X

j=1

�6+jX
2
j + �13X1X2 + ... + �27X5X6 + ✏. (4)

Standardized values are used given the significantly di↵erent measure scales that apply to each
explanatory variable. We fit the regression model presented in Equation (4) using the Python
modules StatsModels (Perktold et al., 2017) and Scikit-learn (Pedregosa et al., 2012)

The results from our regression analysis (see Table 7) suggest that the presence of highways and
primary roads exhibits the strongest positive correlation with the average circuity in a segment.
This is expected, as at the local level, large-capacity roads usually complicate rather than facilitate
travel directness. The magnitude of the standardized coe�cient for highways is nearly twice as large
the coe�cient for primary roads as highways typically entails greater accessibility restrictions.

Our findings about the positive correlation between highway length and primary road length
with circuity contrast with those reported by Levinson and El-Geneidy (2009), who find negative
correlations. This di↵erence evidences the necessary distinction between city-level and local circuity.
For city-level trips, e.g., commuter travel and the ‘line-haul’ portion of a delivery route, large capacity
roads facilitate travel directness (i.e., negative correlation with circuity). However, the opposite is
true for local trips, e.g., the inter-stop portion of a delivery route.

The fraction of one-way streets further exhibits a positive correlation with local network circuity,
which is also expected. Nevertheless, its magnitude is smaller compared to the e↵ect of highways
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Figure 11: Correlation between c and key explanatory variables for São Paulo, Brazil
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Figure 12: Sample of road network segments in São Paulo with similar fraction of one-way streets, 40% (red links),
and significantly di↵erent circuity: 1.79 (left segment) and 3.82 (right segment). This di↵erence in circuity is explained
by the fact that betweenness centrality for the right segment is twice as high as it is for the left segment.

and primary roads. The interaction between one-way fraction and betweenness centrality is also
significant: the e↵ect on circuity of one-way streets amplifies for more centralized road networks
(cf. Figure 12). The monomial term of betweenness centrality further exhibits a positive correlation
with circuity, confirming our intuition that centralized road network designs will lead to less e�cient
local travel.

On the other hand, node connectivity and circuity are negatively correlated with circuity: the
more connected the network, the higher the accessibility to roads, which eventually reduces the need
for detours. Nevertheless, for segments with medium levels of node connectivity, the interaction
between this variable and betweenness centrality will tend to increase circuity.

The average node degree also exhibits a decreasing correlation with network circuity. Higher
node degree measurements usually indicate closeness to a regular lattice form, and are consequently
more e�cient compared to tree-like road networks characterized by lower node degree.

The quadratic terms of highway length and node connectivity are statistically significant as well
for a significance level of 0.01. The corresponding coe�cient signs indicate the concave and convex
nature, respectively, of the non-linear relationship with circuity. The significance of the polynomial
terms of these variables also emphasizes the importance of both variables in explaining local network
circuity. In Appendix A, we validate the results of the polynomial regression by comparing them
with the results of a random forest (RF) regression model.

Finally, we verify for multicollinearity in our regression model using two statistical tests: VIF

Table 7: Results form the regression model with standardized values. Statistically significant coe�cients for p < 0.01.

Coe↵. (�) Std. Err. p-value
Intercept 2.352 0.025 0.000
X1 Highway length 0.225 0.031 0.000
X2 Primary road length 0.112 0.023 0.000
X3 One-way fraction 0.081 0.030 0.007
X4 Betweenness centrality 0.211 0.019 0.000
X5 Node connectivity -0.274 0.026 0.000
X6 Node degree -0.067 0.019 0.000
X

2
1 Highway length ⇥ Highway length -0.049 0.012 0.000

X
2
5 Node connectivity ⇥ Node connectivity 0.144 0.024 0.000

X3X4 One-way fraction ⇥ Betweenness centrality 0.040 0.018 0.005
R2: 0.66 F-statistic: 74.15
Adj. R2: 0.65 Observations:

1077
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and conditional numbers (see Table 8). None of the VIF for each of the explanatory variables is
larger than 10. We also note that none of the conditional numbers is greater than 30, which would
have indicated moderate to strong dependencies (Belsley et al., 1980).

5. Generalizing Local Road Network Circuity

In this section, we generalize the intricate correlations between the circuity factor c and topologi-
cal and dimensional properties of the road network observed in São Paulo to other case studies. At a
coarse-grained level of analysis, we aim to explore: i) if the di↵erence in circuity between constrained
road network segments (i.e., CL1) and fine-grained road network segments (i.e., CL2) holds in other
cities, and ii) if the correlation patterns we observe between circuity and road network properties in
São Paulo can be generalized to other cities. For this purpose, we collect data for seven additional
cities following the same data collection protocols previously described.

We are mindful of the small-N nature of our study and, consequently, of the classic criticism
on the limitations of case study-based research to derive broad generalizations (see Tsang (2014)
and references therein). However, as Tsang (2014) notes, case studies are well suited to explore
mechanismic explanations. Our approach resonates with his argument.

We focus our analysis on a selected (convenience) sample of cities of di↵erent population sizes
to generalize the patterns and correlations observed for the São Paulo case. The set of case studies
includes urban areas of similar (very large) size, namely Mexico City; three large1 metropolitan
areas: Rio de Janeiro, Lima and Bogotá; and a set of medium-sized cities2 in Latin America and
the US: Quito, Boston and Denver. This selection aims at incorporating di↵erent city sizes and
geographic contexts in our analysis.

5.1. Generalization based on regression analysis

To analyze if the correlations and significance of variables observed for the São Paulo case are also
observed for the other cities, we fit the polynomial regression model of second degree introduced in
Section 4.3 with the data corresponding to the other case studies. We exclude Quito in this analysis
due to data limitations. Numerical results are presented in Appendix C. Overall, we observe that
when the corresponding explanatory variable is significant, the direction of the relationship observed
between circuity and the explanatory variable observed for São Paulo also holds true for the other
cases. For instance, highway length is significant for p < 0.05 in all cases except for Bogotá and
is positively correlated with circuity, as previously noted in Section 4.3 for São Paulo. A similar
observation is made for betweenness centrality and node connectivity, which are positively and
negatively correlated in all cases, respectively, and are also significant in all cases. The correlation
direction for node degree, one-way fraction, and for the interaction terms is also consistent with the
results observed for São Paulo, yet these terms are significant only for a reduced number of cases.

1 cities with at least 9 million inhabitants
2 cities with 2-5 million inhabitants

Table 8: Multicollinearity tests

Variance Inflation Factor Conditional Index
Highway length 1.27 Linear model 3.50
Primary road length 1.30 Polynomial model 23.3
One-way fraction 2.54
Betweenness centrality 1.08
Node connectivity 2.83
Node degree 1.95
Average VIF 1.83
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Results based on the regression analysis applied to the additional case studies confirm the direc-
tion of the relationship between the dimensional and topological variables and local road network
circuity observed for São Paulo. Nonetheless, as noted above, not all explanatory variables were al-
ways significant for that particular regression model choice, which prevents us from deriving broader
generalizations. In the section below, we propose a methodology based on a classification of urban
segments to further explore these correlations at a coarse-grained level of analysis.

5.2. Methodology

We introduce a quantitative method to i) classify urban segments based on road network proper-
ties, and ii) conduct comparative analyses. The classification step builds on the generative method
for clustering based on GMM introduced in Section 4.2. The comparative analysis step leverages
classic statistical methods, namely hypothesis tests on probability distributions and means, to ana-
lyze road network circuity (dis)similarities and correlations across case studies.

Classification analysis. We build on the generative GMM introduced in Section 4.2 to classify seg-
ments in other urban areas. Specifically, we leverage clusters generated for São Paulo using GMM
with K = 3 to generate a classifier. We preserve the same unit of geo-spatial analysis, i.e., 1 km2

segments, and the same set of explanatory variables (see Table 3 and Table 4) used to fit the GMM
for São Paulo. The primary goal of this semi-supervised classification method is to generate compa-
rable clusters of urban segments across di↵erent cities based upon topological and dimensional road
network properties. We refer to this methods as semi-supervised as we first use an unsupervised
learning model (i.e., GMM) to generate a classifier, and, second, we use this fitted model to predict
the corresponding class for each segment in the other cities. For validation purposes, we compare
these results against those obtained by generating a classifier fitted for each individual city.

Comparative analysis. Once each segment has been classified in one of the K = 3 clusters, we use
classical statistical methods to conduct intra-city and inter-city comparisons. As in Section 4, we
exclude from these analyses segments corresponding to CL3.

First, we explore intra-city di↵erences in circuity by analyzing the conditional probability distri-
bution of c per cluster,

f(c) =
X

✓

f(c|✓)p(✓), (5)

where ✓ = {✓1, ✓2} for CL1 and CL2, respectively.
For each city j, we conduct a Kolmogorov-Smirnov test (Law and Kelton, 2000) to assess the

equality of fj(c|✓1) and fj(c|✓2). The goal is to identify intra-city di↵erences in c between clusters.
We define the following null (H0) and alternative (H1) hypotheses:

(i) H
I
0: fj(c|✓1) and fj(c|✓2) share the same empirical distribution

(ii) H
I
1: fj(c|✓1) and fj(c|✓2) do not share the same empirical distribution

Furthermore, for inter-city comparisons, we use the mean c̄ and variance �
2
c to conduct a pair-

wise hypothesis test to statistically analyze (dis)similarities in c. Specifically, we conduct a two-sided
Welch’s t-test for the equality of c̄ assuming unequal variances and di↵erent population/sample sizes
(Law and Kelton, 2000). More formally, for every pair of cities (j, l) and cluster type ✓, let c̄j✓ be
the average local circuity factor for city j in cluster ✓. Then, we define the null (H0) and alternative
(H1) hypotheses:

(i) H
II
0 : the c̄j✓ = c̄l✓, mean circuity factors in cities i, j for cluster ✓, are equal

(ii) H
II
1 : the c̄j✓ 6= c̄l✓, mean circuity factors in cities i, j for cluster ✓, are not equal
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Table 9: Classification consistency scores

City
São Paulo Mexico City Rio de Janeiro Lima Bogotá Quito Boston Denver

Score 1 0.94 0.94 0.95 0.81 0.85 0.78 0.79

The assumption of unequal variances is verified by means of a Levene test (Law and Kelton, 2000)
for equality of variances, using the following null (H0) and alternative (H1) hypotheses:

(i) H
III
0 : the �

2
j✓ = �

2
l✓, variances of c in cities i, j for cluster ✓, are equal

(ii) H
III
1 : the �

2
j✓ 6= �

2
l✓, variances of c in cities i, j for cluster ✓, are not equal

We use a significance level of ↵ = 0.10 for all tests.

5.3. Application

Classification analysis. We apply the classification method described above to all case studies. Fig-
ure 13 shows the spatial distribution of the resulting clusters for each city. In general, spatial
distributions of clusters evidence consistency with the results observed for São Paulo: segments
corresponding to CL1 (red) cluster inner parts of the city. CL1 also includes segments having a
significant fraction of large capacity roads. Segments classified within CL2 correspond to outer city
segments where the road network is well connected and less constrained. However, we must be cau-
tious about generalizations for CL2: since this cluster covers 44 � 53% of the built-up area in these
cities, we should expect certain levels of road network heterogeneity among segments even within the
same cluster. Finally, as observed in São Paulo, CL3 includes zones in urban edges and other zones
with coarse-grained road networks. We elaborate on the quantitative di↵erences between clusters in
Section 5.3 below.

To validate the performance of the classification method, we quantify a classification consistency
score by comparing the results of the proposed classifier against classification results obtained by
fitting the GMM-based clustering method to each case study individually (see Table 9). While a
detailed analysis on the classification accuracy of the method falls outside the scope of this study, we
argue that our classification method is robust as it yields classification consistency scores between
78 � 95%. We observe higher classification consistency for Mexico City, Rio de Janeiro and Lima,
possibly explained by the similarities in city size, geographic location, and socio-economic contexts
among these cities. Classifications scores above 0.80 are observed for Bogotá and Quito. While city
size might explain lower classification consistency in Quito, di↵erences in build-up area size, and,
consequently, population density might explain the score for Bogotá. These di↵erences in build-up
area size amplify for Boston and Denver, hence the lower classification consistency scores.

Comparative analysis. In examining the conditional probability distribution depicted in Figure 14,
we make the following observations. In each city, f(c|✓1) is shifted to the right compared to f(c|✓2),
suggesting higher values of circuity for CL1. These di↵erences are statistically verified by means of
the KS hypothesis test on the equality of empirical distributions for f(c|✓1) and f(c|✓2) per city.
Our test results reveal that H

I
0 is rejected for all cases (↵ = 0.10), confirming that in all eight cities,

segments in CL1 will exhibit significantly higher levels of road network circuity.
Next, for each cluster, we analyze inter-city di↵erences in circuity, based on the pair-wise hy-

pothesis two-sided Welch’s t-tests (see Figure 15). We complement this analysis by further exploring
correlations between c and key topological and dimensional covariates (average values reported in
Tables 10 and 11 for clusters CL1 and CL2, respectively).

In a pre-processing step, we conduct Levene tests to assess the unequal variances assumption.
For CL1, H

II
0 is only rejected (↵ = 0.10) for pair-wise comparisons that included the city of Denver.

For CL2, H
II
0 is rejected in most pair-wise comparisons. Thus, we argue that the assumption of
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(a) Sao Paulo (b) Mexico City

(c) Rio de Janeiro (d) Bogotá

(e) Lima (f) Quito

(g) Boston (h) Denver

Figure 13: Spatial distribution of clusters CL1 (red), CL2 (blue) and CL3 (brown) across case studies.

unequal variances accounts for the most general case and should be used for the Welch’s t-tests for
the equality of c̄ assuming unequal variances.

Based on our Welch’s t-test results for CL1 (see Figure 15), H
II
0 can not be rejected for the subset
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Figure 14: Conditional probability distributions of local circuity for cities
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Figure 15: p-value heat-map of inter-city Welch’s t-tests for cluster CL1. Colored cells indicate pair-wise test for
which we do not reject the Ho (↵ = 0.10)

including São Paulo-Mexico City-Bogotá, and for the subset Quito-Lima-Boston. We reject H
II
0 for

all pair-wise comparisons for the cities of Rio de Janeiro and Denver, which is not surprising, given
that these two cities exhibit the highest and lowest c̄, respectively (see Table 10).

Multiple factors explain the low average circuity for Denver: it exhibits the lowest values for
one-way fraction and primary-road length. Most importantly, Denver exhibits the highest node
connectivity of all case studies (possibly because it is the youngest of all cities analyzed). We argue
that the combination of these factors drives relatively lower circuity levels in CL1 in Denver. On
the contrary, Rio de Janeiro exhibits the largest average circuity. In Table 10, we observe that Rio’s
segments in CL1 exhibit the lowest levels of network connectedness both in terms of node degree
and node connectivity. These two contrasting examples evidence the impact of the connectivity of
the network on circuity. When comparing the subsets {São Paulo, Mexico City, Bogotá} against
{Lima, Quito, Boston}, di↵erences between these two groups are driven by highway length and
node connectivity. As expected, larger highway road length and lower average node connectivity
will increase the mean circuity for the {São Paulo, Mexico City, Bogotá} subset.

For cluster CL2, Welch’s t-test indicates four pairs of cities for which H
II
0 is not rejected: {Rio

de Janeiro, Bogotá}; {São Paulo, Lima}; {Quito, Mexico City}; and {Boston, Denver} (see Figure

Table 10: Average values of segment-level variables for cluster CL1

São Paulo Mexico City Rio Lima Bogotá Quito Boston Denver
Circuity factor c̄ 3.02 3.00 3.33 2.70 3.04 2.81 2.84 2.49
One-way fraction (%) 0.43 0.49 0.50 0.54 0.50 0.39 0.42 0.34
Highway length (km) 964 896 920 718 916 518 755 828
Primary road length (km) 1,518 1,375 1,009 1,457 2,082 2,372 1,586 733
Node degree 3.10 3.11 3.00 3.25 3.16 3.03 3.04 3.11
Node connectivity 0.97 0.94 0.83 1.10 0.98 1.05 0.98 1.14
Betweenness centrality 0.07 0.07 0.08 0.07 0.06 0.07 0.09 0.10
Fraction of urban area 0.20 0.21 0.23 0.19 0.24 0.21 0.17 0.17
Amb. population (inh/km2) 15,005 14,510 10,059 17,774 25,195 12,350 6,625 2,562
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Figure 16: p-value heat-map of inter-city Welch’s t-tests for cluster CL2. Colored cells indicate pair-wise test for
which we do not reject the Ho (↵ = 0.10)

16). The pair {Rio de Janeiro, Bogotá} exhibits the highest c̄ (see Table 11). While higher primary
road length plausibly explains higher circuity in Bogotá, lower node degree and node connectivity
values explain higher circuity in Rio de Janeiro. Similarly, for the pair {Boston, Denver}, which
exhibits the lowest c̄, lower highway length for Denver and lower primary road length for Boston
explain the circuity levels observed. These results confirm the general correlation patterns concluded
in Section 4 and also confirm the intricate correlation between road network properties and circuity.
Future research should explore the magnitude of individual and/or combined e↵ects of these di↵erent
variables on road network circuity across case studies.

6. Conclusion

At the local level, the e�ciency of the road network is explained by several dimensional and
topological properties, some of which vary considerably across a city. Local circuity factors capture
these complex interactions in a simple measure, which can be used to improve shortest path dis-
tance approximations, but also to better understand how the topological and physical properties of

Table 11: Average values of segment-level variables for cluster CL2

São Paulo Mexico City Rio Lima Bogotá Quito Boston Denver
Circuity factor c̄ 2.12 2.25 2.33 2.09 2.41 2.20 1.98 1.97
One-way fraction (%) 0.10 0.10 0.08 0.18 0.15 0.14 0.15 0.07
Highway length (km) 90 112 78 60 166 54 165 12
Primary road length (km) 361 309 274 472 599 566 114 205
Node degree 3.03 3.03 2.93 3.16 3.01 3.00 2.90 2.98
Node connectivity 1.56 1.58 1.47 1.71 1.51 1.54 1.41 1.57
Betweenness centrality 0.06 0.06 0.07 0.05 0.05 0.06 0.08 0.09
Fraction of urban area 0.48 0.45 0.47 0.48 0.46 0.44 0.46 0.53
Amb. population (inh/km2) 11,550 12,960 11,550 12,740 21,130 6,500 3,640 1,960
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the street network impact travel directness, and, consequently inform logistics practice and urban
transportation policy.

Leveraging the metropolitan area of São Paulo, Brazil, as the primary example, we observe a
significant heterogeneity of road network circuity across the city. Using 1-km2 segments as the unit
of geo-spatial analysis and a large sample of real shortest-path trips extracted from the Google
Distance Matrix service, we derive values for circuity (c) that range between 1.35 and 5.60, with
c̄ = 2.51. The magnitude and range of these results unveil two important insights. First, on average,
real trip distances are about twice as long as distances predicted by the L1 norm, suggesting that
the assumptions encoded in this norm (c̄ = 1.27) significantly oversimplify the underlying real road-
network. Second, a single city-wide measurement of circuity (cf. Table 1) fails to capture the
heterogeneity in travel e�ciency observed across the city. While a city-wide circuity measurements
might provide a good approximation for the ‘line-haul’ portion of a route (which resembles commuter
travel patterns), these same measurements would not yield robust distance estimates for the ‘local
delivery and pickup’ portion of the route.

The explanatory regression model introduced in Section 4 derives correlations between circuity
and dimensional and topological properties of the road network. Large-capacity roads (highways
and primary roads) exhibit a positive correlation with local circuity. In contrast to city-wide trips, in
which large capacity roads facilitate travel directness, locally these types of roads complicate travel
due to their reduced accessibility. However, the e�ciency of the road network for local trips is not
only driven by obstacles. Other complications to travel directness, such as one way streets, and
the topology itself of the road network also impact travel e�ciency. On the other hand, a better
connected street network, measured by its average node connectivity and node degree, increase street
accessibility and, therefore, leads to more e�cient travel. As discussed in Section 5, these correlations
between road-network topological and dimensional properties and local circuity are consistent, at
di↵erent levels of magnitude, across a selected set of additional cities in Latin America and the US
analyzed in this paper.

In Section 4 we introduce a classification of urban segments according to road network proper-
ties. Three categories are proposed: constrained, fine-grained and coarse-grained, corresponding to
approximately 20%, 50% and 30% of the urban area respectively. Constrained areas should be given
special attention in designing last mile distribution systems and in overall tra�c management: con-
strained zones generally exhibit higher levels of local circuity and higher levels of population density,
which implies that a disproportionate portion of urban logistics flows concentrates in a fraction of
urban areas with lower road network e�ciency.

New large tra�c and road network data sets such as the Google Distance Matrix service and
OpenStreetMaps are opening new frontiers for large-scale quantitative analysis of urban problems.
Still, data completeness and quality need to be verified, particularly if datasets have been collected
through collaborative, open-licensed initiatives as with OSM. In our primary case study São Paulo,
only minor inconsistencies in the road network dataset were found. However, the reliability of such
data might vary from one city to another.

Finally, while this paper has been inspired by the network design challenges faced by e-retailers
and manufacturers serving urban customers and consumers through last-mile delivery networks,
insights derived from this research are transferable to any route-based urban transportation systems
serving a large customer base. Examples of such services include school bus systems and, more
recently, ride-sharing systems. Thus, we argue that the relevance of studying the local e�ciency of
urban road networks spans multiple transportation applications and entails relevant implications for
urban transportation/logistics practice and policy. A better understanding of the e�ciency of local
trips can inform, for instance, logistics service strategies, tra�c management interventions, or road
network design choices.
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Appendix A. Random Forest Regression

We further validate our results from the regression model presented in Section 4.3 by comparing
it against a RF regression (Breiman, 2001). Even though random forests are better suited for pre-
dictive rather than explanatory models, they o↵er two benefits to our circuity analysis: 1) a ranking
of relative importance of the explanatory variables for prediction purposes, and 2) a benchmark
regression model that does not enforce any mathematical form. We fit the RF regression model
using the Scikit-learn Python module (Pedregosa et al., 2012). The RF model yields R

2 = 0.86 for
train and test sets (number of trees = 80, depth = 8).

Node connectivity is the single most relevant predictor in the RF model (Figure A.17). This result
is consistent with the quadratic regression model (cf. Table 7) in which node connectivity is the
variable with the largest coe�cient in magnitude, followed by betweenness centrality. Interestingly,
the dimensional variables have relatively lower importance in the RF model. This is explained by
the ’clumped-at-zero’ nature of dimensional variables (see Figure 11). That is to say, while their
correlation with circuity is significant, there is a large number of segments in which, for instance,
the value for highway length is zero.
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Figure A.17: Ranking of importance of the explanatory variables in the RF regression

Appendix B. Formulae

In this section we provide the formulae corresponding to the topological variables listed in Table
4. For all varaible definitions, let n 2 N be a node in the network corresponding to in city segment
i 2 I where |N | is the cardinality of set N .

Node connectivity. Let �st be the number of nodes to remove to disconnect two non-adjecent nodes
s and t. �st is obtained using a maximum flow algorithm on an auxiliary digraph build from the
original graph (Kammer and Täubig, 2005). The node connectivity �i for city segment i is then
obtained by averaging �st for all pairs of non-adjacent nodes in the graph.
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Node degree. Let n be degree of node n, i.e., the number of edges emanating from it. The average
node degree for city segment i is given by

i =

P
n n

|N | . (B.1)

Neighborhood Degree. Let S 2 N be the subset of nodes connected to node n. The neighborhood
degree ⌘n is defined as

⌘n =

P
s s

|S| , (B.2)

and the average neighborhood degree for city segment i is then given by

⌘i =

P
n ⌘n

|N | . (B.3)

Betweenness centrality. The betweenness centrality gn for node n is defined as

gn =
X

s 6=t

✓st(n)

✓st
, (B.4)

where ✓st is the number of shortest paths from s to t and ✓st(n) is the number of shortest paths
from s to t through node n. Then the average betweenness centrality gi for city segment i is given
by

gi =
X

n

gn

|N | . (B.5)

Closeness centrality. Let dns be the length of the shortest path between nodes n and s. Thus the
average closeness centrality mi for city segment i is defined as

mi =

P
n[
P

s dns]�1

|N | (B.6)

Degree centrality. Let ln be the fraction of nodes in N that node n is connected to. Then the average
degree centrality of the network corresponding to city segment i is defined as

li =

P
n ln

|N | . (B.7)

Appendix C. Regression Results
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Table C.12: Results form the regression model with standardized values for Mexico City

Coe↵. (�) Std. Err. p-value
Intercept 2.479 0.033 0.000
X1 Highway length 0.148 0.035 0.000
X2 Primary road length 0.043 0.034 0.204
X3 One-way fraction 0.203 0.042 0.000
X4 Betweenness centrality 0.147 0.023 0.000
X5 Node connectivity -0.326 0.040 0.000
X6 Node degree -0.122 0.031 0.000
X

2
1 Highway length ⇥ Highway length -0.007 0.009 0.433

X
2
5 Node connectivity ⇥ Node connectivity 0.147 0.043 0.001

X3X4 One-way fraction ⇥ Betweenness centrality 0.095 0.023 0.000
R2: 0.50 F-statistic: 41.66
Adj. R2: 0.48 Obs.: 1170

Table C.13: Results form the regression model with standardized values for Rio de Janeiro

Coe↵. (�) Std. Err. p-value
Intercept 2.567 0.054 0.000
X1 Highway length 0.361 0.055 0.000
X2 Primary road length 0.065 0.051 0.204
X3 One-way fraction 0.096 0.073 0.189
X4 Betweenness centrality 0.132 0.034 0.000
X5 Node connectivity -0.297 0.066 0.000
X6 Node degree -0.095 0.044 0.031
X

2
1 Highway length ⇥ Highway length -0.004 0.014 0.776

X
2
5 Node connectivity ⇥ Node connectivity 0.010 0.059 0.094

X3X4 One-way fraction ⇥ Betweenness centrality 0.031 0.052 0.544
R2: 0.57 F-statistic: 24.12
Adj. R2: 0.55 Obs.: 512

Table C.14: Results form the regression model with standardized values for Lima

Coe↵. (�) Std. Err. p-value
Intercept 2.268 0.041 0.000
X1 Highway length 0.201 0.051 0.000
X2 Primary road length 0.075 0.041 0.070
X3 One-way fraction 0.002 0.053 0.962
X4 Betweenness centrality 0.298 0.049 0.000
X5 Node connectivity - 0.217 0.049 0.000
X6 Node degree -0.047 0.043 0.281
X

2
1 Highway length ⇥ Highway length -0.004 0.014 0.751

X
2
5 Node connectivity ⇥ Node connectivity 0.068 0.053 0.198

X3X4 One-way fraction ⇥ Betweenness centrality 0.043 0.047 0.355
R2: 0.47 F-statistic: 15.95
Adj. R2: 0.44 Obs.: 519

Table C.15: Results form the regression model with standardized values for Bogotá

Coe↵. (�) Std. Err. p-value
Intercept 2.396 0.058 0.000
X1 Highway length 0.031 0.065 0.640
X2 Primary road length 0.023 0.053 0.658
X3 One-way fraction 0.111 0.071 0.119
X4 Betweenness centrality 0.273 0.037 0.000
X5 Node connectivity -0.426 0.09 0.000
X6 Node degree 0.044 0.051 0.389
X

2
1 Highway length ⇥ Highway length 0.007 0.032 0.825

X
2
5 Node connectivity ⇥ Node connectivity 0.262 0.061 0.000

X3X4 One-way fraction ⇥ Betweenness centrality 0.090 0.053 0.089
R2: 0.53 F-statistic: 12.03
Adj. R2: 0.49 Obs.: 317
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Table C.16: Results form the regression model with standardized values for Boston

Coe↵. (�) Std. Err. p-value
Intercept 2.068 0.032 0.000
X1 Highway length 0.211 0.045 0.000
X2 Primary road length -0.041 0.035 0.233
X3 One-way fraction 0.071 0.035 0.044
X4 Betweenness centrality 0.160 0.030 0.000
X5 Node connectivity -0.214 0.033 0.000
X6 Node degree -0.014 0.028 0.613
X

2
1 Highway length ⇥ Highway length -0.055 0.017 0.001

X
2
5 Node connectivity ⇥ Node connectivity 0.064 0.029 0.028

X3X4 One-way fraction ⇥ Betweenness centrality 0.04 0.028 0.161
R2: 0.70 F-statistic: 32.78
Adj. R2: 0.67 Obs.: 416

Table C.17: Results form the regression model with standardized values for Denver

Coe↵. (�) Std. Err. p-value
Intercept 2.040 0.020 0.000
X1 Highway length 0.150 0.031 0.000
X2 Primary road length 0.008 0.019 0.685
X3 One-way fraction 0.123 0.023 0.000
X4 Betweenness centrality 0.133 0.016 0.000
X5 Node connectivity -0.152 0.028 0.000
X6 Node degree -0.132 0.024 0.000
X

2
1 Highway length ⇥ Highway length -0.005 0.007 0.462

X
2
5 Node connectivity ⇥ Node connectivity 0.192 0.0037 0.000

X3X4 One-way fraction ⇥ Betweenness centrality 0.044 0.013 0.001
R2: 0.61 F-statistic: 52.25
Adj. R2: 0.60 Obs.: 941
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