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ABSTRACT: The general enantioselective synthesis of
axially chiral disubstituted allenes from prochiral starting
materials remains a long-standing challenge in organic
synthesis. Here, we report an efficient enantio- and
chemoselective copper hydride catalyzed semireduction of
conjugated enynes to furnish 1,3-disubstituted allenes
using water as the proton source. This protocol is
sufficiently mild to accommodate an assortment of
functional groups including keto, ester, amino, halo, and
hydroxyl groups. Additionally, applications of this method
for the selective synthesis of monodeuterated allenes and
chiral 2,5-dihydropyrroles are described.

Allenes form a distinctive class of compounds capable of
exhibiting axial chirality. They are represented in over

2,900 natural metabolites and synthetic compounds, and have
been studied with regard to biological activity for over 40
years.1 The introduction of allenes into steroids, prostaglan-
dins, carbacyclins, and unnatural amino acids and nucleosides
has been shown to increase the metabolic stability,
bioavailability, and potency of these bioactive compounds.2

Additionally, these cumulated dienes have found use in
molecular materials and as synthetic intermediates in complex
chemical syntheses as substrates due to their substituent-
loading capability and enhanced reactivity under mild reaction
conditions. Their tranformation often takes advantage of axial-
to-central chirality transfer to generate one or more new
stereogenic centers.3 Finally, chiral allenes have also been
explored in asymmetric autocatalysis and as ligands for the
development of enantioselective transformations.4−6

While the utility of chiral allenes has been widely explored,
the selective synthesis of these valuable materials still remains a
challenge in organic synthesis.3a,7 Traditional approaches to
access enantioenriched allenes most commonly start from
chiral, enantioenriched precursors wherein the allene product
is generated through nucleophilic displacement, rearrange-
ment, or elimination with central-to-axial chirality transfer
(Figure 1) or through resolution of racemic allenes. More
recently, several methods have employed achiral or racemic
starting materials in catalytic asymmetric versions of these
reactions to access the desired product using catalysts bearing
chiral ligands. However, the majority of these reports target the
synthesis of tri- or tetrasubstituted allenes.8

The direct catalytic conversion of prochiral 1,3-enynes to
enantioenriched allenes has become a practical synthetic
strategy in recent years, owing to the accessibility of these

substrates.9 Early reports by Hayashi describe the direct
catalytic and enantioselective conversion of 1,3-enynes to
boryl, silyl, or aryl allenes via palladium or rhodium
catalysis.8a−d Since then, methods detailing the stereoselective
transformations of enynes, including reports by Loh, Feng,
Tang, Sun, and Malcolmson, have provided novel routes to
enantioenriched allenes containing esters, lactones, or
amines.8g,l,n,p,10

The LCuH-catalyzed hydrofunctionalization of 1,3-enynes
to access enantioenriched allenes was first reported by the
Hoveyda group wherein trisubstituted allenyl boronate
derivatives are generated in high yield and enantioselectivity
(Scheme 1a).11 Shortly thereafter, the Ge and Engle groups
independently disclosed their own reports of enyne hydro-
boration, followed by Ge’s report of the catalytic asymmetric
hydroarylation of enynes to provide access to quinoline-
substituted allenes.12−14

Despite these recent advances, fewer reports describe the
catalytic synthesis of enantioenriched 1,3-disubstituted allenes
from prochiral or racemic precursors.10,15−21 While these
methods have offered elegant and innovative routes to this
class of allenes, the vast majority of them provide access to a
limited scope of products including allenyl esters,16,18

alcohols,19 and amines.10,16,20 This modest scope is perhaps
due to difficulty in controlling the stereochemical outcome of a
three-carbon axis of chirality possessing two hydrogen
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Figure 1. Synthetic strategies for the construction of enantioenriched
allenes and representative examples of valuable 1,3-disubstituted
allenes.
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substituents without an additional functional group handle.
Consequently, there persists an unmet need for a general
strategy to access a broad range of 1,3-disubstituted axially
chiral allenes.

In the course of our ongoing studies on the hydroalkylation
of 1,3-enynes with imines, we serendipitously discovered an
alternative strategy for the synthesis of 1,3-disubstituted allenes
(Scheme 1b). Analogous to our previous report on the
hydroalkylation of conjugated enynes with ketones,22 enan-
tioenriched allenyl copper intermediates 2 are generated via
hydrocupration of an achiral 1,3-enyne starting material (1).
However, trapping of the allenyl copper species 2 directly with
a proton, instead of a ketone (which favors the alternative SE2′
reaction pathway to yield γ-adduct 3), would provide access to
axially chiral 1,3-disubstituted allenes (4). Potential challenges
in developing this reaction include avoiding the unproductive
silylation of the protonating reagent,23 controlling the
regioselectivity24 and enantioselectivity of the process, and
preventing further reduction of the allene product in the
presence of the copper hydride catalyst. To date, the
semireduction of 1,3-enynes to enantioenriched disubstituted
allenes has only been demonstrated with the stoichiometric use
of chiral metal reducing agents.25 Herein, we report the
asymmetric catalytic semireduction of 1,3-enynes to furnish
axially chiral allenes enabled by CuH-catalysis.
We began our studies utilizing 1,2-bis((2S,5S)-2,5-diphenyl-

phospholano)ethane [(S,S)-Ph-BPE] in combination with
Cu(OAc)2 and dimethoxy(methyl)silane (DMMS) to generate
a chiral LCuH complex previously shown to engage 1,3-enyne
1a (Table 1).22 At room temperature with t-BuOH as the
proton source, the complete consumption of 1a occurred
yielding a complex mixture consisting primarily of products
from the unselective hydrogenation of the desired product,
allene 4a (entry 1). Decreasing the reaction temperature to
−10 °C slowed the over-reduction and provided 4a in 34%
yield and 60:40 enantiomeric ratio (er) (entry 2). A
subsequent screen of several ethereal solvents indicated that
both chemo- and enantioselectivity were enhanced by
replacing THF with 1,2-dimethoxyethane (DME) (entries
3−5).
The use of a sterically less hindered proton source, i-PrOH,

provided improved conversion and enantiomeric ratio of
product 4a. Moreover, we found that by decreasing the
quantity of i-PrOH to 1.1 equiv minimized the amount of

Scheme 1. Precedent for the Proposed Asymmetric LCuH-
Catalyzed Semi-reduction of 1,3-Enynes

Table 1. Reaction Optimizationa

entry T (°C) solvent proton source silane % conv % yieldb erc

1 23 THF t-BuOH (1.5 equiv) DMMS 100 0 −
2 −10 THF t-BuOH (1.5 equiv) DMMS 100 34 60:40
3 −10 MTBEd t-BuOH (1.5 equiv) DMMS 64 36 87:13
4 −10 1,4-Dioxane t-BuOH (1.5 equiv) DMMS 67 26 92:8
5 −10 DME t-BuOH (1.5 equiv) DMMS 50 36 96:4
6 −10 DME i-PrOH (1.5 equiv) DMMS 100 68 99:1
7 −10 DME i-PrOH (1.1 equiv) DMMS 100 90 99:1
8 −10 DME H2O (0.55 equiv) DMMS 100 90 >99:1
9e −10 DME H2O (0.52 equiv) TMCTS 100 90f >99:1

aConditions: Reactions were carried out under a N2 atmosphere. 0.2 mmol enyne (1 equiv), copper(II) acetate (3 mol %), (S,S)-Ph-BPE (3.3 mol
%), silane (4 equiv) in solvent (0.4 mL). bYield was determined by 1H NMR spectroscopy of the crude reaction mixture, using mesitylene as an
internal standard. cEnantiomeric ratio was determined by GC analysis, and the absolute configuration of 4a was determined by analogy to
desilylated 4f (see the Supporting Information for more details). dMTBE = methyl tert-butyl ether. eReaction was run with 1 mol % copper(II)
acetate and 1.1 mol % (S,S)-Ph-BPE over 16.5 h instead. fReported as an average of two isolated yields.
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overreduction that was observed (entries 6−7). As the use of a
less hindered proton source proved beneficial for both yield
and er, we next examined the use of H2O (0.55 equiv) which
resulted in the efficient delivery of both protons in the enyne
semireduction (entry 8). Further, we found that substituting
DMMS with 0.5 equiv of 2,4,6,8-tetramethylcyclotetrasiloxane
(TMCTS) and decreasing the catalyst loading to 1 mol %
provided improved reaction conditions for the enantioselective
semireduction of 1,3-enyne 1a affording the desired product
(R)-4a in 90% isolated yield and >99:1 er (entry 9).
Next, we surveyed the generality of the LCuH-catalyzed

asymmetric semireduction of an assortment of terminal 1,3-
enynes (Table 2).26 Unfunctionalized substrates are efficiently
converted to the corresponding allenes in good yield and
exceptional er (4a−c). Enynes bearing a variety of functional
groups are tolerated under the reaction conditions including

potentially reducible groups such as alkyl chlorides (4d) and
ketones (4e) as well as ethers (4f, 4i), amines (4j, 4l), and
various heterocycles (4i, 4k, 4n, 4o). Substrates containing
unprotected alcohols are not only tolerated, but the
unhindered primary alcohol of enyne 1g, itself, serves as a
proton source in the reduction, permitting the use of only 0.25
equiv of H2O additive to furnish allene 4g. The reactivity and
selectivity of the sterically more encumbered enyne 1h, bearing
an unprotected propargylic alcohol, were unaffected, providing
allenyl alcohol 4h with 88% yield and >99:1 er. While
substrates containing free N−H bonds react with a high yield,
the allene products are produced with a diminished er (4m, n).
In the case of 1n it was demonstrated that the use of the
protected variant, 1o, provided significantly improved results
(4o). Finally, this protocol exhibits excellent catalyst control in
the semireduction of chiral enyne 1p to furnish either
diastereomer of allene 4p depending on the enantiomer of
ligand used.
Our initial efforts to effect the asymmetric semireduction of

internal 1,3-enyne substrates proved considerably more
challenging. This difficulty was presumably due, in part, to
an increased energetic barrier to hydrocupration, resulting in
low conversion (possibly owing to unproductive silylation of
the proton source) as well as, in some cases, competitive
overreduction of the initially formed allene products.27 To
ameliorate these issues, we found that the utilization of a
protocol with the slow addition of water was essential (Table
3). The reaction of ester-containing enyne 1q occurred in
moderate yield, largely due to competitive overreduction of the
desired product, 4q. The antifungal antibiotic Terbinafine (1r)
was cleanly transformed to 4r in 68% yield and 99:1 er,
although it necessitated an increase in H2O and TMCTS
loading.28 The direct conversion of fatty acid natural product
1s to laballenic acid (4s), a seed oil natural product isolated

Table 2. Substrate Scope of the LCuH-Catalyzed
Asymmetric Semi-reduction of 1,3-Enynes to Allenesa

aReactions were carried out under a N2 atmosphere at −10 °C.
Isolated yields and enantiomeric ratios are reported as an average of
two independent runs. bYield was determined by 1H NMR
spectroscopy using mesitylene as an internal standard due to the
volatility of the product. cWith 0.25 equiv of H2O instead. dYield and
diastereomeric ratio reported for a single run.

Table 3. Select Examples of the LCuH-Catalyzed
Asymmetric Semi-reduction of Internal Enynes to Allenesa

aReactions were carried out under a N2 atmosphere at −10 °C, and
H2O was added over a 16 h time period. Isolated yields and
enantiomeric ratios are reported as an average of two independent
runs. bReaction required a 1 h prestir at room temperature prior to
addition of water at −10 °C.
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from the Leonitis nepetaefolia plant, could also be accom-
plished.29−32 The in situ protection of carboxylic acid 1s with
DMMS (to furnish the corresponding silyl ester) at room
temperature was carried out, followed by slow addition of
water at −10 °C to deliver laballenic acid in 50% yield and
93:7 er.
Based on previous mechanistic studies and DFT calcu-

lations,11,22 we propose the following mechanism detailed in
Figure 2. After generation of the chiral LCuH complex I,

enantioselective hydrocupration of enyne II affords a chiral
propargylic copper species (III). This undergoes a stereo-
specific 1,3-isomerization to yield allenyl copper intermediate
V. Next intermediate V is protonated to furnish the final
product, allene VI. σ-Bond metathesis between VII and silane
(VIII) results in the formation of silanol IX and regeneration
of I. As less than a full equivalent of water is utilized in this
process, we propose that silanol IX can also facilitate proto-
demetalation, producing siloxane X.
Two examples demonstrating further applications of this

methodology are depicted in Scheme 2. The incorporation of

deuterium into molecular scaffolds is pervasive not only in the
pharmaceutical industry, due to the enhanced metabolic
stability and safety imparted by corresponding deutero-analogs,
but also in mechanistic studies and protein crystallography.33

Substitution of H2O for D2O selectively delivers enantioen-
riched monodeuterated products, as exhibited in the

conversion of enyne 1t to allene 5 with 98:2 D/H
incorporation (Scheme 2a). This protocol represents a new
strategy for the deuterium labeling of allenes, employing an
affordable, easy to handle, and abundant deuterium source.
Additionally, enantioenriched allenyl alcohols and amines

are known to serve as valuable synthetic intermediates toward
the production of chiral heterocycles including dihydrofurans
and dihydropyrroles.3h,34,35 Taking advantage of the highly
selective nature of gold-catalyzed cycloisomerization chemistry,
α-aminoallene 4l furnished 2,5-dihydropyrrole 6 with complete
axial-to-point chirality transfer (Scheme 2b).36,37

In summary, we have developed a LCuH-catalyzed
asymmetric semireduction of 1,3-enynes to supply highly
enantioenriched 1,3-disubstituted allenes in up to 98% yield
and >99:1 er. This chemistry benefits from the functional
group tolerance afforded by the mild reducing nature of LCuH
catalysts and employs only a 1−2 mol % catalyst loading.
Moreover, the utilization of substoichiometric quantities of
H2O as the proton source and TMCTS as the hydride source
provides an efficient protocol for the hydrogenation of terminal
1,3-enynes. The reduction of internal conjugated enynes is
enabled via slow addition of water and has been demonstrated
through the late-stage derivatization of antibiotic Terbinafine
and the synthesis of the seed oil natural product, laballenic
acid. Furthermore, this protocol provides an efficient synthetic
route for the construction of deutero-allenes as well as aza-
heterocycles.
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