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Abstract

Memories of experiences are stored in the cerebral cortex. Sleep is critical for consolidating 

hippocampal memory of wake experiences into the neocortex. Understanding representations of 

neural codes of hippocampal-neocortical networks during sleep would reveal important circuit 

mechanisms on memory consolidation, and provide novel insights into memory and dreams. 

Although sleep-associated ensemble spike activity has been investigated, identifying the content of 

memory in sleep remains challenging. Here, we revisit important experimental findings on sleep-

associated memory (i.e., neural activity patterns in sleep that reflect memory processing) and 

review computational approaches for analyzing sleep-associated neural codes (SANC). We focus 

on two analysis paradigms for sleep-associated memory, and propose a new unsupervised learning 

framework (“memory first, meaning later”) for unbiased assessment of SANC.
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Memory, Sleep and Neural Codes

Memory is referred to the capacity of an organism to encode, store, retain and retrieve 

information. It can be viewed as a lasting trace of past experiences that influences current or 

future behavior. Memory uniquely defines a sense of self-identity and includes all 

information of ‘who’, ‘what’, ‘when’, and ‘where’ of our life experiences in the past and 

present, remote or recent. The time span over which information in memory remains 

available varies from seconds (short-term memory) to years (long-term memory). Long-term 

memory is often divided into two types: explicit or declarative memory (“knowing what”) 

and implicit or procedural memory (“knowing how”). Declarative memory also includes 
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episodic memory (see Glossary), semantic memory (knowledge) and autobiographical 

memory.

Episodic memory stores details of specific events in space and time, each associated with 

unique multimodal, multi-dimensional information content. The hippocampus plays a 

pivotal role in spatial and episodic memory [1]. Sleep is important for learning and memory 

[2–6]. On average, the human being spends about one third of their lifetime during sleep, 

whereas rodents sleep 12–14 hours a day. Memory consolidation occurs in sleep, during 

which a short-term memory can be transformed into a long-term memory. Sleep deprivation 

deteriorates performance in memory tests and negatively affects attention, learning, and 

many other cognitive functions [6,7]. A fundamental task in the study of memory is to 

understand the representation of sleep-associated neural codes (SANC) that support memory 

processing. Simply put, how can we read out memory during sleep? Since sleep-associated 

memory is influenced by WAKE experiences, how do we identify and interpret memory-
related neural representations during sleep in an unbiased way?

To address these questions, neuroscientists record neuronal ensemble activity from the 

hippocampus and neocortex in sleep sessions before and after a behavioral session. In 

animal studies, “neural codes” are acquired by implanting multieletrode arrays to record in 
vivo extracellular neuronal ensemble spike activity [8–12]. In human studies, measurements 

of brain signals are acquired through non-invasive EEG or fMRI recordings [13–16]. For the 

purpose of this article, we will review important work in both research areas, with more 

focus on rodent studies.

At the neuronal ensemble level, the computational task of identifying memory-related neural 

representations of population codes (i.e., neural activity patterns that reflect memory 

processing) in sleep remains challenging for several important reasons: First, although local 
field potentials (LFPs) reveal important information of circuits at a macroscopic scale, they 

lack the cellular resolution to reveal sleep memory content. Second, sleep-associated 

ensemble spike activities are sparse (low occurrence) and fragmental in time. Third, the 

magnitude of neural population synchrony, measured as the spiking fraction of all recorded 

neurons during each network burst, follows a lognormal distribution: strongly synchronized 

events are interspersed irregularly among many medium and small-sized events [17]. Finally, 

the lack of ground truth makes the interpretation and assessment of memory-related neural 

representations difficult. In the past two decades, although a number of systematic studies 

have examined memory content in SLEEP compared to WAKE, many memory-related 

research questions remained elusive. In the next section, we review some experimental and 

computational strategies to answer these questions.

Hippocampal-Neocortical Circuits in Sleep

During sleep, the brain is switched into an “off-line” state that is distinct from wakefulness 

at both microscopic (spike timing) and macroscopic (e.g., neocortical EEG oscillations) 

levels. In different stages of sleep, such as slow wave sleep (SWS) and rapid eye 
movement (REM) sleep, brain activity varies and the cerebral cortex exhibits a wide range 

of oscillatory activities (Box 1) [18]. During SWS, the neocortex is known to oscillate 
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between UP and DOWN states [19]. During neocortical UP states, increased population 

synchrony of pyramidal cells in hippocampal-neocortical networks is accompanied by 

hippocampal sharp wave-ripples (SWRs, Box 1, Figure 1b) [20,21]. Most animal studies on 

memory and sleep use the rodent model. A widely adopted spatial memory paradigm is to 

let rodents freely forage in a closed environment. During active exploration, many 

hippocampal pyramidal neurons show localized spatial tuning, or place receptive fields 
(RFs) [22]. Notably, many hippocampal pyramidal neurons are also responsible for non-

spatial sequence coding [23,24], as well as conjunctive coding of both spatial and non-

spatial memories [25]. During sleep, in the absence of external sensory input or cues, the 

hippocampal network is switched to a state that is mainly driven by internal computations.

In a seminal study, Pavildes and Winson [8] first reported that the activity of rat hippocampal 

place cells in the awake state influenced the firing characteristic (e.g., firing rate and burst 

rate) in subsequent sleep episodes. Wilson and McNaughton [9] extended the first-order to 

second-order statistical analysis and demonstrated that rat hippocampal place cells that were 

co-active during spatial navigation exhibited an increased tendency to fire together during 

subsequent sleep, whereas neurons that were active but had non-overlapping place RFs did 

not show such increase. This effect declined gradually during each post-RUN sleep session. 

Kudrimoti et al. [11] and Nádasdy et al. [12] further studied spike patterns involving multi-

neuron patterns (e.g., triplet) during sleep. These studies revealed the temporal relationship 

between hippocampal replays and SWRs [12], as well as the memory trace decay time [11]. 

Additional studies also revealed that rodent hippocampal spatiotemporal patterns in SWS 

reflected the activation patterns or temporal order in which the neurons fired during spatial 

navigation [10,12,26,27]. Specifically, subsets of hippocampal neurons fire in an orderly 

manner at a faster timescale within SWRs, with either the same or reverse order as in active 

navigation. In a linear track environment, such population burst events, depending on their 

contents, can be categorized as “forward” or “reverse” replay—referred to as reactivated 

hippocampal sequences of the run trajectory (Figure 1c). Such hippocampal replay events 

are prevalent in SWS [26], quiet wakefulness [28,29], and “local sleep” (also known as 

“microsleep” —a phenomenon that neurons go offline in one cortical area but not others in 

an awake yet sleep-like state) [30], although the functional roles in each of those states are 

most likely to be different. The engagement of the replay process, the frequency of 

activation, and the time during which replay occurs can affect subsequent performance on 

behavioral tasks or learned skills. In a series of studies [26,31,32], researchers have found 

that following RUN experiences, hippocampal place cells reactivated in a temporally precise 

order repeatedly in SWS and REM sleep. Unlike SWS, the firing-rate correlation in REM 

sleep was not related to the preceding familiar RUN experience (possibly due to the trace 

decay during the interleaving SWS) [11], and the memory replays occurred more frequently 

for remote yet repeated RUN experiences [31]. These findings suggest that reactivated 

hippocampal sequences in post-RUN sleep consolidate memory of RUN experiences, and 

that SWR-associated hippocampal activity may contribute to this process.

A central hypothesis of memory consolidation is that the hippocampus and neocortex 

interact with each other through the temporal coordination of neuronal activity in the form of 

slow oscillations, SWRs, and sleep spindles [33–39]. While memory reactivation during 
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sleep has been mainly reported in rodents, including the rat primary visual cortex (V1) [36], 

the barrel cortex [40], the posterior parietal cortex [41], the medial prefrontal cortex (mPFC) 

[42,43], the primary motor cortex (M1) [44,45] and the medial entorhinal cortex (MEC) 

[46]; general phenomena of neocortical memory reactivation were also reported in the other 

species, such as in the song bird during sleep [47] and in the macaque monkey during rest 

[48]. The assumption of hippocampal-neocortical interactions during sleep would naturally 

suggest examining the interactions of simultaneously recorded hippocampal-neocortical 

ensembles [36,38,41,46]. Comparing the spatiotemporal neural patterns in each area during 

both WAKE and SLEEP would leverage our knowledge of hippocampal spatial coding and 

further our understanding of the role of hippocampal-neocortical memory processing during 

sleep. In one study of rodent hippocampal-visual circuits [36], researchers found that 

memory reactivation in the V1 was temporally coordinated with memory reactivation in the 

hippocampus during SWS (Figure 2a,b). In another study [37], researchers found that 

auditory cues associated with neural activity during learning enhanced replay of the same 

neural patterns if the same auditory cues were presented during sleep. Although the auditory 

stimuli did not affect the number of replay events, the replay content was biased by the 

respective sounds (Figure 2c), suggesting mechanisms of selective memory enhancement in 

sleep. In another recent report on a similar study [38], researchers simultaneously recorded 

ensemble spikes from the rat auditory cortex and hippocampus while presenting task-related 

sounds during sleep (Figure 2d), and found that the patterned activation in auditory cortex 

preceded and predicted the subsequent content of hippocampal activity during SWRs 

(Figure 2e), while hippocampal patterns during SWRs also predicted subsequent auditory 

cortical activity. Consistently, delivering sounds during sleep biased the auditory cortical 

activity patterns, and sound-based auditory cortical patterns predicted subsequent 

hippocampal activity. Among many neocortical structures, the MEC is an important 

neocortical circuit that sends input to the hippocampus, and plays an important role in spatial 

navigation and memory processing. Two recent rodent experimental findings have showed 

that there was coordinated replay between hippocampal (CA1) place cells and grid cells at 

deep MEC layers (L4/5) during rest [49]; however, the cell assemblies at superficial MEC 

layers replayed trajectories independently of the hippocampal reactivation rest or sleep, 

suggesting that the superficial MEC can trigger its own replay events and initiate recall and 

consolidation processes independent of hippocampal SWRs, whereas deep MEC layers are 

directly influenced by hippocampal replay [46].

Overall, these findings suggest that the neocortex communicates with the hippocampus 

about “when” and “what” to reactivate memory during sleep, and the activation of specific 

cortical representations during sleep influences the consolidated memory contents. Nearly 

all reported findings are correlation-based observations. The first direct causal evidence of 

hippocampal-cortical coupling in memory consolidation during sleep was demonstrated 

physiologically and behaviorally in [39]. Importantly, it was found that reinforcing the 

endogenous coordination between hippocampal SWRs, cortical delta waves and spindles by 

timed electrical stimulations resulted in a reorganization of the mPFC network, along with 

subsequent increased prefrontal task responsivity and high recall post-sleep performance 

[39].
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In addition to considering the specific ensembles that participate in reactivated memory 

patterns, the temporal structure of memory patterns can also vary by brain state [25]. The 

reactivated patterns during SWRs closely resembled the compressed structure of encoded 

memory observed within individual cycles of the theta rhythm during awake behavior in the 

hippocampus [12,50]. During SWS, the hippocampal-neocortical memory reactivation 

occurred at a faster time scale, with reported time compression factors of 9–10 in the rodent 

hippocampus [26], and compression factor of 6–7 in the rodent mPFC [42], although there 

was also inconsistent report on no evidence of time compression or expansion in other 

rodent brain regions [40]. In REM sleep, the speed of hippocampal replay is close to or 

slightly faster than the actual run speed [31]. Notably, spatial memory was impaired by 

selective suppression or disruption of SWRs by electrical or optogenetic stimulations [51–

53], suggesting the causal role of SWRs for hippocampal replays during the off-line state.

In contrast to animal research (most exclusively in rodents), human studies have provided 

more limited access to the content of sleep-associated memory at the neuronal ensemble 

level. Nevertheless, memory study of human subjects, such as H.M. [54], provides a unique 

and valuable perspective far beyond rodent studies. For healthy or diseased human subjects, 

semi-invasive ECoG recording or noninvasive EEG/MEG recordings and fMRI imaging 

have been widely used in sleep studies [13–16]. However, none of them directly measure 

single neuronal activity, which therefore poses great challenges in studying sleep’s memory 

content. When single units are available, different cortical areas display distinct yet localized 

spatiotemporal spike and LFP patterns [55]. In a remarkable study, researchers used fMRI 

and machine learning tools to decode (or more precisely, “classify”) visual imagery of brain 

patterns in the visual cortex (V1, V2 and V3 areas) during REM sleep, as compared to 

spatiotemporal brain patterns of fMRI imaging during wakeful state [56]. This provided the 

first clue about the content of human dreams (Figure 3). In a sleep study on epilepsy 

patients, it was reported that single-unit spike activity in the MTL was modulated around 

REM onsets, which was similar in REM sleep, wakefulness and controlled visual 

stimulations, suggesting that REM during sleep rearranged discrete epochs of visual-like 

processing as during awake vision [57].

Despite rapid progress in experimental investigations and growing knowledge of 

hippocampal-neocortical circuit mechanisms, answers to many research questions remain 

completely or partially unknown. Since most “content” questions are driven by statistical 

analyses of SANC, it is imperative to develop computational paradigms to investigate the 

representation of sleep-associated memory.

Computational and Statistical Methods: Strengths and Limitations

In WAKE, how do we interpret the representation (“meaning”) of neural codes? This is 

formally established by the neural encoding problem. Given the measured sensory input or 

motor behavior associated neural responses, we can identify the meaning of neural spike 

patterns in a supervised manner. In SLEEP, the essential computational question is: what and 
how much information can we read out from memory-related neural representations during 
sleep? Since the representation of an experience is sparse, the answer to this question is 

nontrivial. To date, several computational methods (Box 2) have been developed to analyze 
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SANC derived from hippocampal-neocortical circuits. However, most of methods cannot 

identify the “meaning” (content) of memory other than merely establishing significant 

“similarity” (by correlation or matching) of spike activities between WAKE and SLEEP. In 

other words, they can reveal the presence of memory replay, but not necessarily the content 

of replay. As a general principle of deciphering sleep-associated memory content, it is 

critical to develop statistical methods that allow studying memory without first having to 

establish how brain activity encodes behavioral variables such as spatial locations or 

movement kinematics. During sleep, the brain is normally disconnected from the external 

sensory world, although sensory stimulation may induce physiological changes in sleep-

associated memory [37,38,70]. The content of sleep memory lacks behavioral readout; 

therefore it is preferred to use computational methods that do not require behavioral 

measurements a priori.

Here we would like to discuss two quantitative approaches for the analysis of SANC. In the 

first approach, the principal component analysis (PCA) method [43,58] (Box 2, Figure Ia) 

does not explicitly define the neuronal RF. Instead, it computes the correlation matrix of cell 

assemblies in a TEMPLATE epoch and then further compares it with another spatiotemporal 

population spike matrix from the MATCH epoch—moving the population spike vector in 

time would allow us to assess the time-varying reactivation strength. The basic statistical 

assumption is that the spatiotemporal patterns of a specific behavior can be well 

characterized by the correlation matrix of ensemble spiking. Conceptually, the choice of 

TEMPLATE and MATCH is arbitrary and this analysis can be applied to both directions 

(WAKE➔ASLEEP or SLEEP➔WAKE). However, the limitation of linear subspace 

methods, including both PCA and independent component analysis (ICA) [59,53], is that 

they assume a stationary correlation statistic during the complete TEMPLATE or MATCH 

period, which is untrue in the presence of distinct or complex behaviors that drive the state-

dependent neuronal responses. Furthermore, the derived reactivation strength from these 

methods does not identify the “meaning” of memory; instead it is positively correlated with 

the quadratic power of temporal firing rate in the neuronal ensemble.

The second approach is a population-decoding method. Unlike the traditional supervised or 

RF-based decoding methods [64,65], an unsupervised population-decoding method [66–69] 

has been developed for recovering hippocampal spatial memory with the assumption of 

place RFs (Box 2, Figure Ib). This is achieved by associating spatiotemporal spiking 

patterns with unique latent states without defining meanings of those states a priori. Such an 

approach is conceptually appealing since it requires no assumption of explicit behavioral 

measures. In the case of rodent navigation example, the latent states may represent animal’s 

spatial locations. Statistically, the latent states are assumed to follow a Markovian or semi-

Markovian transition dynamics. Trajectories across spatial locations (“states”) are associated 

with consistent hippocampal ensemble spike patterns. In other non-spatial tasks, the latent 

states may also accommodate non-spatial features of experiences or distinct behavioral 

patterns that cannot be measured directly. The connection between latent states and 

spatiotemporal spiking patterns can be established from statistical inference, hypothesis 

testing, and Monte Carlo shuffled statistics [66–68]. Furthermore, additional features (such 

as spiking synchrony or LFP features in terms of power or instantaneous phase) can be 

incorporated into the statistical model for further disassociating distinct latent states. Since 
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this model-based approach is built upon a generative model, model fitting is therefore 

strongly dependent on the probability distributions that describe the data generation process. 

If there is a model mismatch, this approach may yield poor performance.

The standard paradigm for memory is to first figure out how the brain encodes information 

during WAKE, and then determine if those coded patterns appear later, during either SLEEP 

or subsequent behavioral memory testing — thereby “meaning first, memory later”. In 

contrast, the new framework allows us to shift the paradigm and look at memory first (by 

decoding intrinsic structure in neural codes), and then determine the meaning later (i.e., how 

that structure might correlate with subsequent behavior), thereby “memory first, meaning 
later” [69]. The main differences between these two paradigms are their assumptions and 

analysis order (independent of the chronological order). The unsupervised approach is 

unbiased in that it avoids predefining neural activity patterns in WAKE associated with a 

specific task or behavior, and also enables us to seek structures that are either not explicitly 

defined or simply indefinable. Therefore, this unbiased approach may potentially provide us 

opportunities to discover hidden structures in brain activity, which may represent well-

defined WAKE experiences or may reflect some undefined processes (e.g., creative thoughts 

and imagination). More importantly, this approach may suggest outstanding research 

questions for experimental investigations. For instance, how can we distinguish the memory 

in sleep related to previous navigating experiences in two or more distinct spatial 

environments? How can we decipher non-spatial hippocampal episodic memory [23,71–74] 

in sleep?

From a data analysis perspective, several technical challenges are worth consideration. First, 

the sleep episodes have short epochs, sparse and sporadic firing (reduced firing rate 

compared to wake), and compressed timescale. Dealing with these issues often involves 

unsubstantiated assumptions (e.g., temporal independence, homogeneity) in data analysis. 

Second, our empirical studies using synthetic sleep spike data [69] have demonstrated that 

the number of active hippocampal pyramidal cells is critical for reliable representation of the 

space as well as detection of spatiotemporal reactivated patterns in SWS. Since only a small 

fraction (~10–15%) of hippocampal neurons that are active during WAKE is reactivated at 

any given time during SWS, a reliable investigation of sleep-associated population codes 

would require simultaneous recording of hundreds of neurons in WAKE. Third, there is 

large diversity among hippocampal pyramidal neurons for their contributions to the 

sequence replay [75]. Furthermore, a small percentage of hippocampal pyramidal neurons 

have no significant spatial tuning but may still fire during sleep. It is unclear whether their 

firing activities represent other non-spatial episodic memory components in the memory 

space, and how we can identify their statistical significance. Similar challenges would also 

apply to the neocortex [76,77].

Future Directions

Neural population recording

Recent advances in neural recordings have greatly expanded our capability to investigate 

neuronal population codes [78–80]. According to the newest technology in multi-electrode 

recording (personal communication, Professor M. Roukes at Caltech), it is predicted that by 
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year 2020 neuroscientists would be able to simultaneously record 10,000–100,000 

hippocampal neurons from rats (based on new development of stacked nanoprobes [81]). As 

a result, the statistical power of SANC analysis would increase significantly by ~100 fold. In 

addition, calcium imaging is another emerging technique for measuring large-scale activity 

of neuronal populations, which has been successfully used for chronic recordings from the 

rodent hippocampus [82–85] and cortex [86]. Since calcium signals are merely indirect 

measurements of neuronal spiking, the precise relationship between calcium signals and 

spiking is not fully identifiable and is also susceptible to biophysical variations. Therefore, 

improving the temporal resolution (>500 Hz) and light sensitivity for fluorescence images 

would potentially enable us to examine large-scale population codes at faster timescales. 

Combining electrophysiology and cell-type-specific imaging techniques would be an 

important future direction due to their complementary strengths. In human/non-human 

primate studies, a new tool that integrates electrophysiological and fMRI (known as neural-

event-triggered fMRI) recordings [87] has proven valuable for examining the spatial 

mapping of a priori defined local brain patterns. Developing wireless multi-electrode 

recording techniques [88] is also crucial for chronic neural recording from non-human 

primates in a naturalistic sleep environment.

REM sleep

While NREM sleep has been strongly implicated in the reactivation and consolidation of 

memory traces, the exact function of REM sleep remains elusive [89,90]. Unlike NREM 

sleep, in REM sleep there is no UP state or population synchrony associated with 

hippocampal SWRs, resulting in a decrease in neuronal firing and an increase in synchrony, 

both of which are correlated with the power of theta oscillations [91]. This implies that the 

ensemble spike activity is even more sparse and unstructured. Moreover, there is some 

experimental evidence that in REM sleep rat hippocampal neurons exhibit gradual phase 

shift from the novel (theta peak) to the familiar (theta trough) firing-phase pattern [92]. Such 

experience-dependent phase reversal suggests that hippocampal circuits may be selectively 

restructured during REM sleep by selectively strengthening recently acquired memories and 

weakening remote ones—an idea consistent with the original Crick-Mitchison’s hypothesis 

of “reversal learning” in REM sleep [93]. Experimentally, the total REM sleep duration is 

much shorter than the NREM sleep duration for rodents and human adults. Most animal 

experiments have primarily targeted on waking behaviors, thereby limiting the recording 

period of REM sleep. To increase the length of REM sleep or the probability of transition 

into REM from NREM sleep, optogenetic manipulations of specific neural circuits have 

been considered in rodents [94–96]. Alternatively, one can investigate rodent infants or other 

specifies that have longer REM sleep episodes. Recent single-unit recordings in human MTL 

suggested that eye movements during REM sleep might reflect a change of the visual 

imagery in dreams [57]. With ever-accumulating “BIG neural data”, an ultimate goal is to 

decipher the animal’s dreams during REM sleep in reference to WAKE experiences— a 

demanding task still requiring extensive experimental and computational investigations.

Contextual memory

All memories are context-specific, whether being spatial, temporal or emotional, leading to 

the concept of sequence coding or trajectory coding. As the hippocampal network is 
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connected with the amygdala— a specific brain area responsible for emotions and memory 

modulation, episodic memories are often associated with emotions, such as happiness, fear, 

and anxiety. This may occur in memory recall and dream experiences. Notably, sleep 

consolidates or reshapes emotional memories [97]. One hypothesis is that emotional or 

contextual memory can be strengthened or weakened in the hippocampus during REM sleep 

theta activity [98,99]. Recent causal evidence showed that temporally precise attenuation of 

the theta rhythm impaired fear-conditioned contextual memory [99]. However, how to read 

out contextual episodic memories embedded with distinct emotions is still a big puzzle. 

Development of new computational approaches for deciphering hippocampal-amygdala 

population codes will be an extended research direction.

Creativity and insight

Creativity involves the forming of associative elements into novel associations that are 

useful for future task behaviors (e.g., planning, problem solving). Such new association 

patterns might not occur frequently, and shall not be confused with the “preplay” events 

[100]. Insight is defined as a neural restructuring process that leads to a sudden gain of 

explicit knowledge leading to qualitatively changed behavior [101]. Human sleep studies 

suggested that REM sleep promotes creativity and insight because of the changes in 

cholinergic and noradrenergic neuromodulation [102], which allow neocortical structures to 

reorganize associative hierarchies and reinterpret the hippocampal information. 

Computationally, how to detect such new associations of spatiotemporal patterns across a 

large hippocampal-neocortical network remains unknown. Future simultaneous recordings 

from multiple targeted brain areas would enable us to examine high-dimensional 

spatiotemporal spike patterns and evaluate their probabilities of coincident reactivations at 

different brain states.

Manipulation of memory

To date, neuroscientists have relied on many powerful engineering or genetic tools, such as 

the virtual environment [103,104] and optogenetics [53,105–108], to manipulate 

hippocampal memory during wakeful experiences. In virtual environments, rodent 

hippocampal neurons exhibited different spike firing patterns from real environments. 

However, it remains unclear how such firing patterns would be affected in sleep. False 
memories play a significant role in human mental health and legal practice [109]. In a series 

of groundbreaking experiments [105,106], researchers stimulated or suppressed memories 

with optogenetics to manipulate engram-bearing neurons in the mouse hippocampus. Their 

findings suggested that optogenetic reactivation of memory engram-bearing cells was not 

only sufficient for the behavioral recall of that memory, but also served as a conditioned 

stimulus for the formation of an associative memory. Techniques of selective enhancement 

of desired memories and indirect suppression of unwanted memories might find potential 

translational applications in treating traumatic memories in post-traumatic stress disorder 

(PTSD) patients. Similarly, it remains unknown how these manipulations affect memory 

during sleep. Among all experimental manipulations, one key research goal is to study their 

sleep-associated memory contents and use them to further predict future behavior.

Chen and Wilson Page 9

Trends Neurosci. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Closed-loop neural interface

Brain-machine interfaces provide not only potential therapies for animals and humans, but 

also new tools for studying memory processing during sleep [44,53,110,111]. Combining 

various invasive (e.g., electrical) or non-invasive (e.g., optical, acoustic) closed-loop 

stimulation techniques [39,112–115], we can test the causal functions of neural circuits or 

sleep for memory processing in a real-time manner. For instance, coupling spontaneous 

reactivation of a place cell during sleep to a reinforcing stimulation of the medial forebrain 

bundle (MFB) induced a place preference during subsequent wake, providing another 

evidence that place cells encode the same spatial information during sleep and wakefulness 

[116].

Concluding Remarks

In summary, accumulative experimental evidence has pinpointed the critical role of sleep in 

consolidating hippocampal-neocortical memories. With advances in large-scale neural 

population recordings and imaging techniques, it is imperative to develop computationally 

relevant methods to provide unbiased assessment of memory-related SANC. Despite rapid 

progress in the last two decades, many outstanding questions still remain. Furthermore, 

contributions of many other subcortical circuits to various sleep-associated memories remain 

to be investigated, such as the ventral striatum [117,118] and the anterior thalamus 

[119,120]. Combinations of experimental and computational investigations will be a crucial 

step forward for improving our understanding of this exciting and important research field. 

Future dissection of memory during sleep will shed light on neural mechanisms of 

dreaming, creativity, contextual or emotional memories, and will provide further insights 

into memory-related neurological and psychiatric disorders.
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Glossary

Episodic Memory
is made of associations of several elements, such as objects, space and times. The 

associations are encoded by chemical and physical changes in neurons, as well as by 

modifications to synapses between neurons

Hippocampus
a brain structure within the medial temporal lobe (MTL) that is important for episodic 

memory, spatial learning and associative recollection. It consists of CA1, CA2, CA3 and 

dental gyrus, and is connected to various brain structures, including the prefrontal cortex 

(PFC), entorhinal cortex and amygdala

Memory Consolidation
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a process that converts and stabilizes information from short-term memory into long-term 

storage. The hippocampal-neocortical memory consolidation involves transferring 

hippocampal episodic memory into the neocortex during the off-line (such as sleep) process 

after waking experiences in memory acquisition

Population Codes
are referred to neuronal ensemble spike activity that represents and transmits information. 

Spikes are the basic neuronal language for information and communication. Depending on 

specific neural circuits, different statistical assumptions are made about the computational 

principle or information carrier, such as spike count, spike timing, independent or correlation 

codes

UP and DOWN States
are defined as periods (~a few hundred milliseconds) of synchronized population firing and 

widespread depolarization, and periods of relative silence and hyperpolarization, 

respectively. The DOWN states alternate between the UP states during slow wave sleep

Local Field Potential (LFP)
is considered to represent the aggregate subthreshold activity of a local population of 

neurons in a spatially localized area near the recording electrode and can be viewed as the 

input information in that area. Spectral analysis of the broadband LFP signal can reveal 

significant oscillatory activity at specific frequency bands

Rapid Eye Movement (REM) Sleep
a sleep stage characterized by quick, random movements of the eyes and low muscle tone. 

REM sleep occurs in cycles of about 90–120 minutes in night and accounts for 20–30% 

sleep time in adult humans. Most human dream activity occurs in REM sleep. In rodents, 

REM sleep is accompanied by theta oscillations

Slow Wave Sleep (SWS)
a sleep stage also known as non-REM (NREM) sleep or deep sleep, accounting for ~75% of 

total sleep time, is characterized by synchronized EEG activity of slow waves with 

frequency below 1 Hz and relatively high amplitude. Sleep spindles (9–15 Hz) occur during 

SWS

Place Receptive Field (RF)
a property of localized spatial tuning exhibited prominently in hippocampal pyramidal 

neurons of rodents and bats. The RF defines the firing property of hippocampal place cells 

with respect to specific spatial location. On a linear track, the rodent hippocampal place RF 

is often directionally dependent

False Memory
refers to recall of an event or observation that did not actually occur. Internally generated 

stimuli can get associated with concurrent external stimuli, which can lead to the formation 

of false memories

Chen and Wilson Page 11

Trends Neurosci. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Andersen, P., et al. The Hippocampus Book. Oxford University Press; 2006. 

2. Stickgold R. Sleep-dependent memory consolidation. Nature. 2005; 437:1272–1278. [PubMed: 
16251952] 

3. Marshall L, Born J. Contribution of sleep to hippocampus-dependent memory consolidation. Trends 
Cog Sci. 2007; 11:442–450.

4. Buzsaki G. Memory consolidation during sleep: a neurophysiology perspective. J Sleep Res. 1998; 
7:17–23. [PubMed: 9682189] 

5. Breton J, Robertson EM. Memory processing: The critical role of neuronal replay during sleep. Curr 
Biol. 2013; 23:R836–R838. [PubMed: 24070442] 

6. Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013; 93:681–766. [PubMed: 
23589831] 

7. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010; 11:114–126. 
[PubMed: 20046194] 

8. Pavlides C, Winson J. Influences of hippocampal place cell firing in the awake state on the activity 
of these cells during subsequent sleep episodes. J Neurosci. 1989; 9:2907–2918. [PubMed: 
2769370] 

9. Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. 
Science. 1994; 265:676–679. [PubMed: 8036517] 

10. Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during 
sleep following spatial experience. Science. 1996; 271:1870–1873. [PubMed: 8596957] 

11. Kudrimoti HS, et al. Reactivation of hippocampal cell assemblies: effects of behavioral state, 
experience, and EEG dynamics. J Neurosci. 1999; 19:4090–4101. [PubMed: 10234037] 

12. Nadasdy Z, et al. Replay and time compression of recurring spike sequences in the hippocampus. J 
Neurosci. 1999; 19:9497–9507. [PubMed: 10531452] 

13. Dang-Vu TT, et al. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci 
USA. 2008; 105:15160–15165. [PubMed: 18815373] 

14. Rudoy JD, et al. Strengthening individual memories by reactivating them during sleep. Science. 
2009; 1079

15. Fuentemilla L, et al. Hippocampal-dependent strengthening of targeted memories via reactivation 
during sleep in humans. Curr Biol. 2013; 23:1769–1775. [PubMed: 24012316] 

16. Staresina BP, et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human 
hippocampus during sleep. Nat Neurosci. 2015; 18:1679–1686. [PubMed: 26389842] 

17. Buzsaki G, Mizuseki K. The log-dynamic brain: how skewed distributions affect network 
operations. Nat Rev Neurosci. 2014; 26:88–95.

18. Colgin LL. Rhythms of the hippocampal network. Nat Rev Neurosci. 2016; 17:239–249. [PubMed: 
26961163] 

19. Steriade M, et al. Natural waking and sleep states: a view from inside neocortical neurons. J 
Neurophysiol. 2001; 85:1969–1985. [PubMed: 11353014] 

20. Battaglia FP, et al. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. 
Learn Mem. 2004; 22:697–704.

21. Haggerty DC, Ji D. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-
sleep transition. J Neurophysiol. 2014; 112:1763–1774. [PubMed: 25008411] 

22. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: preliminary evidence from unit 
activity in the freely-moving rat. Brain Res. 1971; 34:171–175. [PubMed: 5124915] 

23. Eichenbaum H, et al. The hippocampus, memory, and place cells: is it spatial memory or a memory 
space? Neuron. 1999; 23:209–226. [PubMed: 10399928] 

24. Allen TA, et al. Nonspatial sequence coding in CA1 neuron. J Neurosci. 2016; 36:1547–1563. 
[PubMed: 26843637] 

25. Shan KQ, et al. Spatial tuning and brain state account for dorsal hippocampal CA1 activity in a 
non-spatial learning task. eLife. 2016; 5:e14321. [PubMed: 27487561] 

Chen and Wilson Page 12

Trends Neurosci. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave 
sleep. Neuron. 2002; 36:1183–1194. [PubMed: 12495631] 

27. Roumis DK, Frank LM. Hippocampal sharp-wave ripples in waking and sleep states. Curr Opin 
Neurobiol. 2015; 35:6–12. [PubMed: 26011627] 

28. Foster DJ, Wilson MA. Reverse replay of behavioural sequences in place cells during the awake 
state. Nature. 2006; 440:680–683. [PubMed: 16474382] 

29. Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequence during ripples. Nat 
Neurosci. 2007; 10:1241–1242. [PubMed: 17828259] 

30. Vyazovskiy VV, et al. Local sleep in awake rats. Nature. 2011; 472:443–447. [PubMed: 21525926] 

31. Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity 
during rapid eye movement sleep. Neuron. 2001; 29:145–156. [PubMed: 11182087] 

32. Lee AK, Wilson MA. A combinatorial method for analyzing sequential firing patterns involving an 
arbitrary number of neurons based on relative time order. J Neurophysiol. 2004; 92:2555–2573. 
[PubMed: 15212425] 

33. Siapas AG, Wilson MA. Coordinated interactions between hippocampal ripples and cortical 
spindles during slow-wave sleep. Neuron. 1998; 21:1123–1128. [PubMed: 9856467] 

34. Sirota A, et al. Commmunication between neocortex and hippocampus during sleep in rodents. 
Proc Nat Acad Sci USA. 2003; 100:2065–2069. [PubMed: 12576550] 

35. Wang SH, Morris RG. Hippocampal-neocortical interactions in memory formation, consolidation, 
and reconsolidation. Ann Rev Psychol. 2010; 61:49–79. [PubMed: 19575620] 

36. Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. 
Nat Neurosci. 2007; 10:100–107. [PubMed: 17173043] 

37. Bendor D, Wilson MA. Biasing the content of hippocampal replay during sleep. Nat Neurosci. 
2012; 15:1439–1444. [PubMed: 22941111] 

38. Rothschild G, et al. A cortical-hippocampal-cortical loop of information processing during 
memory consolidation. Nat Neurosci. 2017; 20:251–259. [PubMed: 27941790] 

39. Maingret N, et al. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat 
Neurosci. 2016; 19:959–964. [PubMed: 27182818] 

40. Ribeiro S, et al. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in 
multiple forebrain areas. PLoS Biol. 2004; 2:126–137.

41. Qin YL, et al. Memory reprocessing in corticocortical and hippocampocortical neuronal 
ensembles. Phil Trans R Sco Lond Ser B. 1997; 352:1525–1533.

42. Euston DR, et al. Fast-forward playback of recent memory sequences in prefrontal cortex during 
sleep. Science. 2007; 318:1147–1150. [PubMed: 18006749] 

43. Peyrache A, et al. Replay of rule-learning related neural patterns in the prefrontal cortex during 
sleep. Nat Neurosci. 2009; 12:919–926. [PubMed: 19483687] 

44. Gulati T, et al. Reactivation of emergent task-related ensembles during slow-wave sleep after 
neuroprosthetic learning. Nat Neurosci. 2014; 17:1107–1113. [PubMed: 24997761] 

45. Ramanthan DS, et al. Sleep-dependent reactivation of ensembles in motor cortex promotes skill 
consolidation. PLoS Biol. 2015; 13:e1002263. [PubMed: 26382320] 

46. O’Neill J, et al. Superficial layers of the medial entorhinal cortex replay independently of the 
hippocampus. Science. 2017; 355:184–188. [PubMed: 28082591] 

47. Dave AS, Margoliash D. Song replay during sleep and computational rules for sensorimotor vocal 
learning. Science. 2000; 290:812–816. [PubMed: 11052946] 

48. Hoffman KL, McNaughton BL. Coordinated reactivation of distributed memory traces in primate 
neocortex. Science. 2002; 297:2070–2073. [PubMed: 12242447] 

49. Olafsdottir HF, et al. Coordinated grid and place cell replay during rest. Nat Neursci. 2016; 
19:792–794.

50. Davidson TJ, et al. Hippocampal replay of extended experience. Neuron. 2009; 63:497–507. 
[PubMed: 19709631] 

51. Giradeau G, et al. Selective suppression of hippocampal ripples impairs spatial memory. Nat 
Neurosci. 2009; 12:1222–1223. [PubMed: 19749750] 

Chen and Wilson Page 13

Trends Neurosci. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



52. Ego-Stengel V, Wilson MA. Disruption of ripple-associated hippocampal activity during rest 
impairs spatial learning in the rat. Hippocampus. 2010; 20:1–10. [PubMed: 19816984] 

53. va den Ven GM, et al. Hippocampal offline reactivation consolidates recently formed cell assembly 
patterns during sharp wave-ripples. Neuron. 2016; 92:968–974. [PubMed: 27840002] 

54. Corkin S. What’s new with the amnesic patient H.M.? Nat Rev Neurosci. 2002; 3:153–160. 
[PubMed: 11836523] 

55. Nir Y, et al. Regional slow waves and spindles in human sleep. Neuron. 2011; 70:153–169. 
[PubMed: 21482364] 

56. Horikawa T, et al. Neural decoding of visual imagery during sleep. Science. 2013; 340:639–642. 
[PubMed: 23558170] 

57. Andrillon T, et al. Single-neuron activity and eye movements during human REM sleep and wake 
vision. Nat Commu. 2015; 6:7884.

58. Peyrache A, et al. Principal component analysis of ensemble recordings reveal cell assemblies at 
high temporal resolution. J Comput Neurosci. 2010; 29:309–325. [PubMed: 19529888] 

59. Lopes-dos-Santos V, et al. Detecting cell assemblies in large neuronal populations. J Neurosci 
Meth. 2013; 220:149–166.

60. Dabaghian Y, et al. Reconceiving the hippocampal map as a topological template. eLife. 2014; 
3:e03476. [PubMed: 25141375] 

61. Giusti C, et al. Clique topology reveals intrinsic geometric structure in neural correlations. Proc 
Nat Acad Sci USA. 2015; 112:13455–13460. [PubMed: 26487684] 

62. Curto C. What can topology tell us about the neural code? Bull Amer Math Soc. 2017; 54:63–78.

63. Quiroga RQ, Panzeri S. Extracting information from neuronal populations: information theory and 
decoding approaches. Nat Rev Neurosci. 2009; 10:173–185. [PubMed: 19229240] 

64. Brown EN, et al. A statistical paradigm for neural spike train decoding applied to position 
prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci. 1998; 
18:7411–7425. [PubMed: 9736661] 

65. Zhang K, et al. Interpreting neuronal population activity by reconstruction: unified framework with 
application to hippocampal place cells. J Neurophysiol. 1998; 79:1017–1044. [PubMed: 9463459] 

66. Chen Z, et al. Uncovering spatial topology represented by hippocampal population codes. J 
Comput Neurosci. 2012; 33:1–29. [PubMed: 22089473] 

67. Chen Z, et al. Neural representation of spatial topology in the rodent hippocampus. Neural 
Comput. 2014; 26:1–39. [PubMed: 24102128] 

68. Linderman SW, et al. A Bayesian nonparametric approach to uncovering rat hippocampal 
population codes during spatial navigation. J Neurosci Methods. 2016; 263:36–47. [PubMed: 
26854398] 

69. Chen Z, et al. Uncovering representations of sleep-associated hippocampal ensemble spike activity. 
Sci Rep. 2016; 6:32193. [PubMed: 27573200] 

70. Velluti RA. Interactions between sleep and sensory physiology. J Sleep Res. 1997; 6:61–77. 
[PubMed: 9377536] 

71. Wood ER, et al. The global record of memory in hippocampal neuronal activity. Nature. 1999; 
397:613–616. [PubMed: 10050854] 

72. Hampson RE, et al. Distribution of spatial and nonspatial information in dorsal hippocampus. 
Nature. 1999; 402:610–614. [PubMed: 10604466] 

73. Cohen SJ, et al. The rodent hippocampus is essential for nonspatial object memory. Curr Biol. 
2013; 23:1685–1690. [PubMed: 23954431] 

74. Takahashi S. Hierarchical organization of context in the hippocampal episodic code. eLife. 2013; 
2:e00321. [PubMed: 23390588] 

75. Grosmark AD, Buzsáki G. Diversity in neural firing dynamics supports both rigid and learned 
hippocampal sequences. Science. 2016; 351:1440–1443. [PubMed: 27013730] 

76. Vyazovskiy VV, et al. Cortical firing and sleep homeostasis. Neuron. 2009; 63:865–878. [PubMed: 
19778514] 

77. Watson BO, et al. Network homeostasis and state dynamics of neocortical sleep. Neuron. 2016; 
90:839–852. [PubMed: 27133462] 

Chen and Wilson Page 14

Trends Neurosci. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



78. Stevenson IH, Kording KP. How advances in neural recording affect data analysis. Nat Neurosci. 
2011; 14:139–142. [PubMed: 21270781] 

79. Berenyi A, et al. Large-scale, high-density (up to 512 channels) recording of local circuits in 
behaving animals. J Neurophysiol. 2014; 111:1132–1149. [PubMed: 24353300] 

80. Micho F, et al. Integration of silicon-based neural probes and micro-drive arrays for chronic 
recording of large populations of neurons in behaving animals. J Neural Eng. 2016; 13:046018. 
[PubMed: 27351591] 

81. Rios G, et al. Nanofabricated neural probes for dense 3-D recordings of brain activity. NANO Lett. 
2016; 16:6857–6862. [PubMed: 27766885] 

82. Ziv Y, et al. Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci. 2013; 16:264–
266. [PubMed: 23396101] 

83. Rubin A, et al. Hippocampal ensemble dynamics timestamp events in long-term memory. eLife. 
2015; 4:e12247. [PubMed: 26682652] 

84. Villette V, et al. Internally recurring hippocampal sequences as a population template of 
spatiotemporal information. Neuron. 2015; 88:357–366. [PubMed: 26494280] 

85. Malvache A, et al. Awake hippocampal reactivation project onto orthogonal neuronal assemblies. 
Science. 2016; 353:1280–1283. [PubMed: 27634534] 

86. Niethard N, et al. Sleep-stage-specific regulation of cortical excitation and inhibition. Curr Biol. 
2016; 26:2739–2749. [PubMed: 27693142] 

87. Logothetis NK, et al. Hippocampal-cortical interaction during periods of subcortical silence. 
Nature. 2012; 491:547–553. [PubMed: 23172213] 

88. Yin M, et al. Wireless neurosensory for full-spectrum electrophysiology recordings during free 
behavior. Neuron. 2014; 84:1170–1182. [PubMed: 25482026] 

89. Siegel JM. The REM sleep-memory consolidation hypothesis. Science. 2001; 294:1058–1064. 
[PubMed: 11691984] 

90. Vertes RP. Memory consolidation in sleep: dream or reality. Neuron. 2004; 44:135–148. [PubMed: 
15450166] 

91. Grosmark AD, et al. REM sleep reorganizes hippocampal excitability. Neuron. 2012; 75:1001–
1007. [PubMed: 22998869] 

92. Poe GR, et al. Experience-dependent phase-reversal of hippocampal neuron firing during REM 
sleep. Brain Research. 2000; 855:176–180. [PubMed: 10650147] 

93. Crick F, Mitchison G. The function of dream sleep. Nature. 1983; 304:111–114. [PubMed: 
6866101] 

94. Jego S, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the 
hypothalamus. Nat Neurosci. 2013; 16:1637–1643. [PubMed: 24056699] 

95. Van Dort CJ, et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM 
sleep. Proc Natl Acad Sci USA. 2015; 112:584–589. [PubMed: 25548191] 

96. Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature. 2016; 538:51–59. [PubMed: 
27708309] 

97. Payne JD, Kensinger EA. Sleep’s role in the consolidation of emotional episodic memories. Curr 
Directions Psych Sci. 2010; 19:290–295.

98. Hutchison IC, Rathore S. The role of REM sleep theta activity in emotional memory. Front 
Psychol. 2015; 6:1439. [PubMed: 26483709] 

99. Boyce R, et al. Causal evidence for the role of REM sleep theta rhythm in contextual memory 
consolidation. Science. 2016; 352:812–816. [PubMed: 27174984] 

100. Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cellular 
assemblies. Nature. 2011; 469:391–401.

101. Wagner U, et al. Sleep inspires insight. Nature. 2004; 427:352–355. [PubMed: 14737168] 

102. Cai DJ, et al. REM, not incubation, improves creativity by priming associative network. Proc Nat 
Acad Sci USA. 2009; 106:10130–10134. [PubMed: 19506253] 

103. Ravassar P, et al. Multisensory control of hippocampal spatiotemporal selectivity. Science. 2013; 
340:1342–1346. [PubMed: 23641063] 

Chen and Wilson Page 15

Trends Neurosci. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



104. Chen G, et al. How vision and movement combine in the hippocampal place code. Proc Natl Acad 
Sci USA. 2013; 110:378–383. [PubMed: 23256159] 

105. Liu X, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. 
Nature. 2012; 484:381–385. [PubMed: 22441246] 

106. Ramirez S, et al. Creating a false memory in the hippocampus. Science. 2013; 341:387–391. 
[PubMed: 23888038] 

107. Redondo RL, et al. Bidirectional switch of the valence associated with a hippocampal contextual 
memory engram. Nature. 2014; 513:426–430. [PubMed: 25162525] 

108. Tonegawa S, et al. Memory engram cells have come of age. Neuron. 2015; 87:918–931. 
[PubMed: 26335640] 

109. Loftus E. Planting misinformation in the human mind: A 30-year investigation of the malleability 
of memory. Learning & Memory. 2005; 12:361–366. [PubMed: 16027179] 

110. Marshall L, et al. Boosting slow oscillations during sleep potentiates memory. Nature. 2006; 
444:610–613. [PubMed: 17086200] 

111. Harris KD. Sleep replay meets brain-machine interface. Nat Neurosci. 2014; 17:1019–1021. 
[PubMed: 25065437] 

112. Ngo HVV, et al. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. 
Neuron. 2013; 78:545–553. [PubMed: 23583623] 

113. Jadhav SP, et al. Awake hippocampal sharp-wave ripples support spatial memory. Science. 2013; 
336:1454–1458.

114. Siegle JH, Wilson MA. Enhancement of encoding and retrieval functions through theta phase-
specific manipulation of hippocampus. eLife. 2014; 3:e03061. [PubMed: 25073927] 

115. Talakoub O, et al. Closed-loop interruption of hippocampal ripples through fornix stimulation in 
the non-human primate. Brain Stimulation. 2013; 9:911–918.

116. de Lvilleon G, et al. Explicit memory creation during sleep demonstrates a causal role of place 
cells in navigation. Nat Neurosci. 2015; 18:493–495. [PubMed: 25751533] 

117. Pennartz CM, et al. The ventral striatum inn off-line processing: ensemble reactivation during 
sleep and modulation by hippocampal ripples. J Neurosci. 2004; 24:6446–6456. [PubMed: 
15269254] 

118. Lansink CS, et al. Preferential reactivation of motivationally relevant information in the ventral 
striatum. J Neurosci. 2008; 28:6372–6382. [PubMed: 18562607] 

119. Woff M, et al. Beyond spatial memory: the anterior thalamus and memory for the temporal order 
of a sequence of odor cues. J Neurosci. 2006; 26:2907–2913. [PubMed: 16540567] 

120. Magnin M, et al. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in 
humans. Proc Nat Acad Sci USA. 2009; 107:3829–3833.

Chen and Wilson Page 16

Trends Neurosci. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1

Brain rhythms in sleep

Slow oscillation (0.5–1 Hz)

During SWS, neocortical activity displays synchronized slow waves between 0.5 and 1 

Hz, which are associated with alternation between widespread hyperpolarization and 

reduced neuronal firing during the DOWN state, and UP states which are associated with 

widespread depolarization and increased neuronal firing. The cortical slow oscillations 

also reach and impact hippocampal and thalamic circuits.

Delta wave (1–4 Hz)

High amplitude brain wave with frequency of oscillation between 1 and 4 Hz. It is 

prominent during SWS.

Theta oscillation (4–9 Hz)

During REM sleep, the rodent hippocampus exhibits theta oscillations similar to those 

seen during wakeful exploration.

Spindle oscillation (9–15 Hz)

During SWS, the thalamus and neocortex exhibit brief bursts of EEG oscillations 

between 9 and 15 Hz, typically lasting 0.5–2 seconds. Sleep spindles often occur in the 

neocortical UP state and are temporally aligned with hippocampal ripples.

Gamma oscillation (35–120 Hz)

During SWS, human and rodent EEG recordings show gamma oscillations in low (35–50 

Hz) and high (60–120 Hz) frequency bands.

Hippocampal sharp wave-ripples (SWRs, 150–300 Hz)

The SWR complex consists of large amplitude sharp waves in the hippocampal LFP and 

associated fast LFP oscillatory activity filtered between 150 and 300 Hz, typically lasting 

50–100 milliseconds. Bursts of SWRs may last up to 400 milliseconds.
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Box 2

Methods for analyzing sleep-associated spike activity

Correlation Analysis

Correlation analysis computes the strength of Pearson correlation between two neurons 

based on their firing activities in WAKE and SLEEP; the strength of zero-lag, co-

activation of pairwise cell firing determines the similarity between neural firing patterns 

in WAKE and SLEEP [9]. The “explained variance” method assesses how much 

additional variance in post-SLEEP correlation can be explained by values in WAKE, 

while taking into consideration of pre-SLEEP structure [11].

Template Matching

Template matching compares two spike count matrices (arranged in cell-by-time) that are 

temporally binned and smoothed [12,31,42], and assesses whether the reactivation in 

pairwise activity is coherent across neuronal ensembles. The outcome of template 

matching is sensitive to temporal bin size, and its correlation strength varies between 

different compressed timescales.

Sequence Matching

Sequence matching is a combinatorial method for examining sequential firing patterns of 

population spike activity. It computes the match probability by converting neuronal firing 

orders into a word, and compares the match probability between two words (one in 

WAKE and the other in SLEEP), and determines the statistical significance of match 

[26,32]. The sequence matching method is sensitive to spike timing (and consequently to 

spike detection and sorting) and the number of activated cells in SLEEP.

Principal Component Analysis and Independent Component Analysis

Principal component analysis (PCA) extends the correlation method and assesses the 

similarity between two correlation matrices between WAKE and SLEEP [43,58]. It 

computes the reactivation strength between two templates and provides an instant-by-

instant resemblance measure between WAKE and SLEEP. A large value of reactivation 

strength indicates a good similarity (Fig. 4a). However, the reactivation strength is 

positively correlated with the neuronal firing rate and does not directly reveal the memory 

content of ensemble firing patterns. The PCA method assumes that the correlation 

statistic is stationary within both WAKE and SLEEP, which is the strongest limitation in 

the presence of nonstationary neuronal spiking data. Independent component analysis 

(ICA) extends the PCA method and finds a linear projection space that separates 

statistically independent sources. The ICA method is conceptually similar to the PCA 

method except that there is an additional ICA step followed by PCA [59]. Both PCA and 

ICA belong to the linear subspace method, therefore they cannot capture any nonlinear 

transformation, and their reactivation strengths are positively correlated with the 

quadratic power of temporal firing rate per se.

Topology Analysis
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Algebraic topology is a mathematical tool that was borrowed to study hippocampal 

neuronal coding for spatial topology [60–62]. It is aimed to compute abstract topological 

properties from the derived topological object and use those to derive a group relationship 

within neurons.

Population Decoding

Population decoding is a computational approach that uses statistics or information 

theory to extract quantitative information from neural ensemble spike activity [63]. The 

population-decoding approach makes certain statistical assumptions about the population 

spike activity (e.g., independent Poisson assumption) and employs likelihood or Bayesian 

inference to decode the content of population codes. One class of decoding approach is 

supervised, which requires the receptive field information about individual neurons 

[64,65]; another class of decoding approach is unsupervised, which requires no receptive 

field or behavior measure [66–68] (Fig. 4b). Systematic comparisons of these two types 

of population-decoding methods in a sleep-associated hippocampal memory study are 

reported in [69].
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Box 2 FIGURE I. Unbiased Assessment of Sleep-Associated Neuronal Population Codes
(a) Principal component analysis (PCA) for computing the similarity of two templates of 

correlation matrices from population spike counts (WAKE and SLEEP) and assessing the 

reactivation strength during sleep (reproduced with permission, [43]). In WAKE, 

{λ,1,p1} are associated with the dominant principal component (PC) extracted from 

PCA. In SLEEP, time-varying reactivation strength is computed. (b) Unsupervised 

population decoding using a finite-state hidden Markov model (HMM). Specifically, the 

spatial environment is represented by a finite discrete state space. Trajectories across 

spatial locations (“states”) are associated with consistent hippocampal ensemble spike 

patterns, which are characterized by a state transition matrix. From the state transition 

matrix, a topology graph that defines the connectivity in the state space is inferred [69]. 

In these two methods, no assumption is made about neuronal RF, and the bin size in Post-

SLEEP is independent on the bin size used in WAKE. Since the order of WAKE and 

SLEEP can be switched, and one can apply these methods to SLEEP data first and then 
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examine their meanings in the WAKE behavior; therefore they both fall into the new 

paradigm (“memory first, meaning later”).
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Trends Box

The thalamus (a subcortical structure) plays an important role in sensory gating, 

arousal regulation, and generating thalamo-cortical sleep spindles. To fully dissect 

sleep-associated memory, it is critical to understand three-way communications 

among hippocampal-neocortical, thalamo-cortical, cortico-thalamic circuits in 

sleep.

Combining electrophysiology, imaging, virtual reality, and optogenetics in 

experimental investigations can significantly expand our understanding of neural 

codes underlying memory and sleep.

Optogenetics has proven powerful to test the causal role of neural circuits in 

memory consolidation and valuable to create false memories. Finding effective 

means for consolidating false memories may have a significant impact on future 

behavior.

Bridging the research gaps between rodents and non-human/human primates in 

sleep studies is the key to dissect circuit mechanisms in consolidating various 

forms of memories, and to provide further insights into treatment of neurological 

and psychiatric diseases.
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Outstanding Questions

WHAT: representation—the content of sleep-associated memory in hippocampal-

neocortical network. Does sleep-associated spike activity have any significant 

representation and how to assess their significance? Does the content of sleep-

associated memory in one brain region help decipher the content of sleep-

associated memory in another region?

WHEN: temporal coordination—the timing of memory reactivation (e.g., 

coincident or non-coincident ripple and spindle events) and their distinct 

functional roles. How does the hippocampal-neocortical coordination evolve in 

different sleep stages?

WHERE: Episodic memories consist of spatiotemporal sequences in behavioral 

experiences, including spatial trajectory coding and non-spatial sequence coding. 

How can we distinguish the content of spatial vs. non-spatial memories in sleep? 

Can we read out contextual or emotional memories in sleep?

To what extent can we identify the content of hippocampal-neocortical population 

codes during REM sleep?

What’s the principled way to systematically investigate creativity and insights in 

sleep?

Do the NREM and REM sleep play different roles in consolidating declarative 

memory versus procedure memory?

What are the circuit mechanisms that allow external factors (e.g., reward, sensory 

cue) to bias the content of sleep-associated memory? Are they top-down or 

bottom-up?

How can we effectively manipulate sleep-associated memory to improve the 

performance of post-sleep cognitive functions?

Are false memories consolidated in the same way as true memories during sleep? 

What are the effective ways to enhance or suppress them?

Can investigations of sleep-associated memory reveal new discovery between 

normal and aging/diseased brains, or even between ordinary and genius brains?
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FIGURE 1. Study of Rodent Hippocampal Memory and Sleep
(a) A standard study paradigm for rodent hippocampal memory consists of pre-RUN sleep, 

RUN/behavior, and post-RUN sleep. (b) Classification of sleep stages from EMG, cortical 

LFP (Delta power), hippocampal ripple power, and cortical theta/delta power ratio [21]. (c) 
Rodent hippocampal population spike activity during RUN on a linear track. (d) Rodent 

hippocampal LFP and SWRs during post-RUN SWS, and the associated spatiotemporal 

spike pattern that shows a similar temporal order (“replay”) (reproduced with permission 

[18]).
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FIGURE 2. Dissection of Hippocampal-Neocortical Memories during Sleep
(a,b) Neuronal firing sequences in rat V1 (a) and hippocampus (b) during RUN and POST-

RUN SWS episodes. Lap: population neuronal firing pattern during a single running lap on 

the left-to-right trajectory. Each row represents a cell and each tick represents a spike. Avg: 
template firing sequence obtained by averaging over all laps on the trajectory. Each curve 

represents the average firing rate of a cell. Cells were assigned to numbers 0, 1, etc. and then 

arranged (01234567) from bottom to top according to the order of their firing peaks (vertical 

lines). Frame: the same population firing patterns in a POST-RUN SWS episode. Triangles 
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and circles denote the onset of UP and DOWN states, respectively. Seq: firing sequence in 

the frame. Spike trains were convolved with a Gaussian window and cells were ordered 

(0132567) according to the peaks (vertical lines) of the resulted curves [36]. (c) Auditory 

sound (L, in red, indicating a left turn) biased the hippocampal reactivation during SWS 

[37]. In the raster plot, spikes from place cells with place fields on the right side of the track 

are blue, and left-sided place fields in red. Place fields are ordered from top to bottom by 

their location on the track (right → left side). Prior to sleep onset, the rat was resting in the 

sleep chamber. The reactivation event in the green dashed box is shown to the right. (d) 
Sound-biased auditory cortical neuronal ensembles (green) predict reactivations of 

hippocampal neurons (orange) during SWRs. Pink bars indicate sounds; cyan bars indicate 

detected SWRs. Top black trace is ripple-filtered LFP in hippocampal CA1 [38]. (e) 
Quantification of prediction gain of using sound-based pre-SWR auditory cortical (AC) 

ensemble spike patterns to predict hippocampal CA1 firing. Data is significantly different 

from the shuffled statistics (n=96) [38]. All figures are reproduced with permission.
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FIGURE 3. Decoding the Content of Visual Imagery during Human REM Sleep
(a) fMRI data were acquired from sleeping participants simultaneously with 

polysomnography. Participants were awakened during sleep stage 1 or 2 (red dashed line) 

and verbally reported their visual experience during sleep. The fMRI data immediately 

before awakening (9 s) were used as the input for main decoding analyses (sliding time 

windows were used for time course analyses). Words describing visual objects or scenes (red 

letters) were extracted. The visual contents were predicted using machine-learning decoders 

trained on fMRI responses to natural images. (b) During the training phase, words 

describing visual objects or scenes were first mapped onto synsets of the WordNet tree [a 

dictionary of nouns, verbs, adverbs, adjectives, and their lexical relations]. Synsets were 

grouped into “base synsets” located higher in the tree. Visual reports (participant 2) are 

represented by visual content vectors, in which the presence or absence of the base synsets 

in the report at each awakening is indicated by white or black, respectively. Examples of 

images used for decoder training are shown for some of the base synsets. During the testing 
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phase, a pairwise or multi-label decoder is applied to awakening event for predicting the 

visual object label (reproduced with permission [56]).
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