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Abstract

Different aspects of learning, memory, and cognition are regulated by epigenetic mechanisms such 

as covalent DNA modifications and histone post-translational modifications. More recently, the 

modulation of chromatin architecture and nuclear organization is emerging as a key factor in 

dynamic transcriptional regulation of the post-mitotic neuron. For instance, neuronal activity 

induces relocalization of gene loci to “transcription factories”, and specific enhancer-promoter 

looping contacts allow for precise transcriptional regulation. Moreover, neuronal activity-

dependent DNA double-strand break formation in the promoter of immediate early genes appears 

to overcome topological constraints on transcription. Together, these findings point to a critical 

role for genome topology in integrating dynamic environmental signals to define precise 

spatiotemporal gene expression programs supporting cognitive processes.

Introduction

Sensory, cognitive, and emotional experiences induce long-lasting changes in neuronal 

circuits by stimulating intracellular signaling cascades to induce synaptic remodeling and 

nuclear changes that promote important transcriptional programs. Neuronal activity-

dependent signaling responses are critical for adaptation to novel environments, learning 

behaviors and memory formation [1,2], and are correlated with cellular morphological 

changes such as increased dendritic growth and branching, synaptogenesis, and hippocampal 

neurogenesis [3,4].

DNA, RNA, histones and their post-translational modifications act together to define 

chromatin states that dictate genomic functions. Emerging evidence suggests that epigenetic 

modification of chromatin constitutes a powerful mechanism of memory regulation [5,6]. 

Here, we review recent studies that indicate an important role for nuclear architecture in 

cCorrespondance: Li-Huei Tsai, lhtsai@mit.edu, (O): 617-324-1660, (F): 617-324-1657. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Neurobiol. Author manuscript; available in PMC 2018 April 01.

Published in final edited form as:
Curr Opin Neurobiol. 2017 April ; 43: 48–55. doi:10.1016/j.conb.2016.12.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regulating critical aspects of neuronal functions pertinent to learning and memory encoding. 

First, we will review physiological mechanisms of learning and memory, with a focus on 

activity-dependent gene expression as an upstream regulator of the transcriptional programs 

associated with cognition. We will then describe our current understanding of chromatin 

folding and compartmentalization in cells of the central nervous system. Finally, we will 

discuss some very recent findings that suggest an important role for chromatin topology and 

DNA break formation in the regulation of activity-dependent transcription.

Sensory experience induces transcriptional programs important for 

synaptic plasticity

Experience modulates neurotransmitter release at specific synapses, which can induce long-

lasting forms of synaptic plasticity such as long-term potentiation (LTP). Glutamate, the 

most common excitatory neurotransmitter, binds to both AMPA (α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid) and NMDA (N-methyl-D-aspartate) receptors to induce 

membrane depolarization. Importantly, activated NMDA receptors flux calcium, a critical 

neuronal second messenger that influences stabilization of LTP through activation of 

intracellular signaling cascades to locally alter synapses and stimulate transcription in the 

nucleus [7,8].

The formation and maintenance of past experiences requires the transition between labile 

short-term memory traces to stable long-term memories, a process known as consolidation 

[9]. De novo protein synthesis is a distinctive hallmark of memory consolidation across 

many species [10–13], and decades of research utilizing methods to modulate transcription 

and translation implicate transcription as a key component of long-term memory [14]. At 

least two waves of transcription are required for the process of memory consolidation 

[15,16]. First, a group of stimulus-responsive genes encoding transcription factors 

(immediate early genes; IEGs) are activated immediately after a learning event [17]. Second, 

the protein products of IEGs control the expression of a broader set of neuroplasticity genes, 

ultimately resulting in stable changes in synaptic connections that modulate 

neurotransmission [18].

IEGs, such as c-fos, egr-1, Arc, and Npas4, are rapidly and transiently transcribed in 

response to synaptic activation [19–22]. Since IEGs are an apical feature of the 

transcriptional changes associated with learning and memory processes, their activation has 

been extensively investigated. Several interconnected mechanisms of transcriptional control 

regulate the activation of IEGs. The first layer of control involves the specific chromatin 

state of a given gene, which functions to define the local structural conformation of DNA 

and provide docking sites for transcriptional activators and repressors [23]. Stimulus-

responsive genes like IEGs appear to be “poised” for activation [24]. These classes of genes 

are characterized by stalled RNAPII [25] and enrichment of active histone modifications at 

their promoter and enhancer elements, but are only fully transcribed in response to specific 

stimuli [26]. The “poising” of genes is proposed to enable synchronous processivity and 

rapid responses to external transcriptional cues [27]. Another key feature in the regulation of 

stimulus-responsive genes is the requirement for DNA break formation [28], which will be 
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discussed in more detail in the section titled “Physiological neuronal activity induces DNA 

double-strand breaks”. The final level of transcriptional regulation involves the three-

dimensional (3D) spatial context of a given gene, which enables functional 

compartmentalization of the nucleus into active and repressive chromatin domains [29], as 

well as local enhancer-promoter looping interactions for precise transcriptional control 

[30,31]. In the next sections, we will discuss the relationship between nuclear 

compartmentalization, chromatin looping, and transcription in neurons and how these 

genomic features may be altered in response to environmental stimuli relevant to learning 

and memory processes.

Chromatin folding and compartmentalization in the nucleus enables 

efficient genome packaging and dynamic regulation of DNA metabolism

Nuclear architecture, which refers to chromatin topology, nuclear compartments, and spatial 

genome organization [32], is dynamically regulated by internal and external cues to dictate 

genome function. The fundamental unit of chromatin is the nucleosome, which is comprised 

of ~147 base pairs of DNA wrapped around a (H3-H4)2-(H2A-H2B)2 histone octamer. The 

nucleosome is organized into the chromatin fiber, which is further condensed to generate 

chromosomes. Within the nucleus, chromosomes occupy distinct territories, and chromatin 

folds in cis to mediate interactions between regulatory elements as well as bring genomic 

regions from long distances or in trans to bring different chromosomes into close spatial 

proximity for co-regulation [33]. This type of genome organization is confirmed by 

chromosome conformation capture (3C)-based experiments, demonstrating that nuclear 

compartments differ with regards to chromatin and genic features: DNAse I hypersensitive, 

active, and gene-rich loci cluster together and are separate from gene-poor, transcriptionally 

silent chromatin regions [29,34]. Furthermore, different chromosomes occupy specific 

territories within the nucleus [33]. The arrangement of chromosome territories, and their 

interaction with one another and with the nuclear lamina, has a profound effect on gene 

expression [35]. The nuclear lamina, comprised of a meshwork of A- and B-type lamins 

attached to the inner surface of the nuclear envelope [36], exhibits a strong inhibitory effect 

on gene expression and is hypothesized to provide mechanical stability and a structural 

framework for chromatin organization in the nucleus [37] (Figure 1A). Spatial proximity to 

the inner nuclear membrane does not always correspond to gene silencing, however, as 

nuclear pore complexes embedded within the nuclear membrane are important for rapid 

export of transcribed messenger RNA (mRNA) species into the cytosol for translation [38] 

(Figure 1A).

Chromosome compartments are further organized into domains of 0.1–1 Mb that are 

topologically separated from one another (forming topologically associating domains; 

TADs) [39–41] (Figure 1A). TADs are largely conserved across cell types, while intra-TAD 

chromatin interactions exhibit some cell type-specificity [41,42]. TADs are defined by an 

increased frequency of chromatin interactions within a domain compared to the rest of the 

genome, and interactions within TADs represent the majority of enhancer-promoter 

interactions [39–41]. Several genomic features correlate with TADs, such as chromatin 

marks [39,41], lamina associating domains [41], and chromocenters [43]. For instance, 
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comparison between TADs and chromatin modifications has revealed several different types 

of domains that correspond to TADs. Those domains exhibit broad enrichment for histone 

marks and/or protein binding such as those enriched for H3K27me3 and binding of 

polycomb proteins, heterochromatin domains enriched for repressive modifications and HP1 

binding, as well as active domains that are gene rich and marked by H3K4me3, H3K36me3, 

and histone acetylation [39]. Deletion of TAD boundary regions causes partial fusion of the 

flanking TADs [42], suggesting that TAD boundaries are genetically defined. Indeed, TAD 

boundaries are enriched for housekeeping genes, tRNAs, short interspersed element (SINE) 

retrotransposons, and binding sites for the architectural proteins CCCTC-binding factor 

(CTCF) and cohesin [39,41,44,45]. However, CTCF/cohesin binding is not specific to TAD 

boundaries and the proteins also function together to define intra-TAD loop formation 

[46,47]. Interestingly, the majority (>90%) of loop contacts contain CTCF motifs in 

convergent orientation [40] and inversion of CTCF binding site orientation can alter 

enhancer-promoter interactions and reshape TAD domains [48], suggesting CTCF/cohesin 

binding is critically important for multiple types of higher chromatin organization.

The nucleus also contains dense assemblies of functionally related factors known as nuclear 

bodies, which help partition the genome into specialized domains [49] (Figure 1A). 

Examples of nuclear bodies include transcription factories, the nucleolus, and 

chromocenters. Transcription factories are subnuclear domains enriched for RNAPII that 

appear to congregate co-regulated genes and thus act as transcriptional hubs [50]. The 

nucleolus is the central region for rRNA transcription and ribosome biogenesis [51], and 

thus constitutes a major transcription factory with links to global protein synthesis. On the 

other hand, chromocenters are repressive domains of constitutive pericentromeric 

heterochromatin that are easily visualized by DNA stains since they tend to cluster together 

within the nucleus [52].

Decades of research has thus indicated that the nucleus is precisely organized into 

specialized compartments, and that chromatin folding occurs in a hierarchical nature to 

partition the genome into functional domains.

Neurodevelopment and neuronal activity are associated with nuclear 

architecture reorganization

To date, characterization of large-scale chromatin topology has primarily been accomplished 

in non-neuronal cells, however emerging evidence implicates the importance of 3D 

chromatin organization in neural development and in regulating key neuronal transcriptional 

programs. High-resolution chromosome conformation capture (Hi-C) mapping of global 

chromatin contacts in the transition between embryonic stem (ES), neural progenitor cells 

(NPCs), and neurons described large-scale reorganization of TADs during differentiation 

[53,54]. Additionally, neural differentiation is associated with dramatic remodeling of the 

genomic sites that contact the nuclear lamina [55–57]. Many of the genes that move away 

from the lamina become transcriptionally activated, while others appear to become “primed” 

for activation in the next differentiation step [57]. These studies imply a relationship 

between transcriptional activity and chromatin topology, but it remains somewhat 
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ambiguous whether chromatin interactions are a cause or consequence of transcriptional 

activity. An elegant study of nuclear organization in ES cells indicated that chromatin 

remodeling, rather than transcription, drives repositioning of gene loci [58], suggesting that 

the former may be more likely.

The first study to describe non-random chromatin organization in neurons identified distinct 

chromocenter localization patterns in Purkinje and granule neurons of the cerebellum that 

were conserved across species [52]. Time-lapse imaging studies of slice cultures from the 

brain enabled visualization of nucleoli motion relative to DNA that occurred independently 

of cytoplasmic structures [59] and correlated with changes in intracellular calcium 

concentration [60]. Likewise, induction of LTP in rat hippocampal slices caused spatial 

reorganization of centromeres [61], and differences in X chromosome positioning were 

observed in neurons from cortical epileptic foci compared to healthy neurons bordering such 

lesions [62]. The number of nucleoli in neurons is also altered in response to neuronal 

activity, potentially to meet the increased protein demands of stimulated neurons [63]. These 

initial observations indicate substantial fluctuations in nuclear domain organization in 

response to external signals that accompany neuronal activity.

Evidence also suggests that, in addition to the global reorganization of subnuclear structures, 

the nuclear lamina of hippocampal neurons experiences dramatic remodeling in response to 

action potential bursts that could be visualized as infoldings of the nuclear membrane [64] 

(Figure 1B). The infoldings were stimulated by synaptic NMDA receptor-dependent calcium 

entry, and correlated with increased abundance of nuclear pore complexes and 

phosphorylation of serine 10 on histone H3 (H3S10ph), a chromatin mark that is induced in 

response to neuronal activity [64,65]. Since actively transcribed genes are often located 

proximal to nuclear pore complexes [38], the authors proposed that membrane infolding 

might function to generate microdomains of enhanced calcium signaling by increasing 

surface area of the nuclear envelope, enabling efficient signal-induced transcriptional 

responses (Figure 1B). Given that repeated stimulation increased the stability of nuclear 

membrane alterations [64], infolding may represent a long-lasting form of structural 

plasticity.

External stimuli induce transcriptional responses via topological chromatin 

reorganization

While nuclear changes associated with neuronal activity have been documented for several 

decades, only very recently have studies connected these architectural changes to alterations 

in transcription and spatial relocalization to transcription factories.

Enhancer-promoter looping interactions are an important event in transcriptional initiation, 

but looping is not always sufficient to drive expression per se. This is exemplified by the 

finding that many looping contacts are established prior to gene activation [66]. A small 

percentage of loci, however, exhibit transcription-dependent looping specificity and IEGs 

appear to belong to this category [67]. Looping interactions between IEG enhancer elements 

and their target gene promoters are associated with RNAPII-dependent bidirectional 

transcription of enhancer domains, generating enhancer RNAs (eRNAs; Figure 1B) 
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[54,68,69]. Transcription from eRNAs is correlated with target gene induction; at least five 

enhancers have been described for the IEG c-fos, and differential eRNA transcription 

elicited by external stimuli is correlated with specific and combinatorial enhancer-promoter 

interactions [67]. The function of eRNAs remains unclear, but emerging evidence points to a 

functional role for eRNAs in sequestering the negative elongation factor (NELF) complex to 

promote productive elongation by RNAPII [70]. Additionally, other studies demonstrate that 

eRNAs facilitate enhancer-promoter interactions by recruiting architectural proteins such as 

cohesin and the mediator complex [71–73].

Chromatin loops promoted by distal regulatory elements are also capable of triggering the 

relocation of stimulus-responsive gene loci to active chromatin hubs [30,74–77]. For 

instance, activity-dependent induction of brain-derived neurotrophic factor (Bdnf) correlates 

with spatial relocalization of the Bdnf gene from the nuclear lamina to interior [78]. 3C-

based analyses have also identified that neuronal activity can modulate the colocalization of 

cytochrome oxidase family gene loci with some glutamatergic neurotransmitter receptor 

genes within transcription factories [79,80], potentially providing an efficient mechanism for 

the coordination of energy metabolism and neurotransmission [80]. Furthermore, in response 

to neuronal activity, the relocation of IEGs c-fos and Gadd45b to transcription factories is a 

necessary event that mediates activity-dependent transcription [81].

Collectively, large-scale changes in neuronal nuclear architecture occur in an activity-

dependent manner and appear to provide an additional layer of regulation for precise 

temporal transcriptional control. In the future, it will be important to explore the factors that 

mediate these topological changes, and how they function to define specific chromatin 

interactions and coordinate neuronal transcriptional responses.

Physiological neuronal activity induces DNA double-strand breaks

Recently, several groups have described a perplexing phenomenon that occurs in response to 

neuronal activity: the formation of DNA double-strand breaks (DSBs; Figure 1B). 

Physiologically relevant neuronal activity, such as that elicited by exploration of a novel 

environment, induced DSB formation in neurons of memory-relevant brain regions such as 

the hippocampus [82]. Madabhushi et al. [28] recently provided a mechanism for these 

activity-induced DSBs by demonstrating a role for the type II topoisomerase Topo IIβ in 

break formation. Moreover, through genome-wide profiling of the DSB-associated 

phosphorylated histone variant γH2AX, they identified just twenty-one genomic loci that 

accrue DSBs in response to NMDA-mediated neuronal activity. Remarkably, a majority of 

the sites exhibiting γH2AX enrichment encompassed the bodies of IEGs, were flanked by 

CTCF binding sites, and break induction was shown to be necessary and sufficient for 

transcriptional activation of c-fos and Npas4. Furthermore, inhibition of the non-

homologous end joining (NHEJ) DNA repair pathway resulted in prolonged IEG expression, 

indicating that effective and timely repair of activity-dependent DSBs is important for 

dynamic regulation of IEGs. Together, these findings suggest that DSBs are critical for IEG 

expression dynamics and that CTCF may define a specific chromatin topology that is 

modified upon neuronal activity to enable appropriate transcriptional activation of IEGs.
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While it is unknown exactly why neurons would choose break formation and repair as a 

strategy to regulate stimulus-dependent transcription, DSBs at gene promoters may enable 

topological alterations and subsequent changes in chromatin organization that facilitate the 

transition between a “poised” genomic environment to one that promotes transcription and 

productive elongation [83,84]. Importantly, these observations raise the intriguing possibility 

that the deterioration of DNA damage response mechanisms during normal and pathological 

aging [85] may influence the repair of neuronal activity-induced DSBs and dysregulate 

important transcriptional programs. Recent genome-wide profiling of DSBs in neural 

progenitor cells indicate that recurrent breaks form in genes involved in cell adhesion and 

synapse formation, as well as in genes rearranged in some cancers [86,87]. Moreover, 

mutations in epigenetic regulators, such as CTCF [88], as well as factors involved in DNA 

repair and damage response signaling [89], often cause intellectual disability and 

neurological defects, indicating the importance of chromatin topology and genomic stability 

in cognitive function.

Together, neuronal activity-dependent DNA breaks represent a novel mechanism for 

transcriptional induction of IEGs, revealing an unexpected link between DSB formation and 

crucial neuronal functions. Moreover, in addition to IEG promoters in neurons, recurrent 

DSBs are localized to a set of long genes that are necessary for proper cognitive function in 

neural progenitor cells [86,87]. While the exact mechanism bridging these two observations 

is unknown, evidence to date suggests that there is a subset of genes whose transcriptional 

activation/elongation is regulated by DNA breaks, and that regulatory specificity may relate 

to the DNA topological environment in which those genes reside. Neural cells thus exhibit 

high rates of localized DSBs, and the location of these DSBs suggest that inefficient repair 

would negatively impact cognitive function. These exciting new findings raise numerous 

questions about how extracellular stimuli are perceived by neurons to induce long-lasting 

forms of plasticity. Moving forward, it will be important to characterize the specific changes 

in nuclear morphology, compartmentalization, chromatin looping, and DSB formation that 

occur in response to different environmental stimuli, and how defects in these processes 

during aging and disease may influence cognition.

Conclusions

Decades of research indicate that epigenetic regulation is a critical component of learning 

and memory processes. More recently, nuclear architecture is emerging as a dynamic 

physiological template that acts to integrate environmental inputs into cellular adaptation. 

Studies examining the relevance of chromatin topology to neuronal transcriptional programs 

are still in their infancy, though early findings suggest important roles for these processes in 

cognitive function. Emerging technologies to study large-scale chromatin interactions such 

as Hi-C and chromatin interaction analysis of paired-end tags (ChIA-PET) will indisputably 

uncover the functional significance of dynamic genome organization and reorganization in 

neurons and its relevance to cognitive function.
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Highlights

• Epigenetic regulation represents a key mechanism of learning, memory and 

cognition

• Chromatin topology is emerging as a major regulator of neuronal gene 

expression

• Dynamic chromatin topology changes correlate with activity-dependent 

transcription

• DNA double-strand breaks facilitate induction of immediate early gene 

transcription
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Figure 1. Neuronal activity is associated with alterations in nuclear geometry, subnuclear 
domains, and chromatin topology
(A) Under basal conditions, the nucleus is organized into specialized domains such as 

chromocenters (red), nucleolar regions (blue), and transcription factories (green). Moreover, 

the genome is highly organized into chromatin domains that interact with one another and 

with the nuclear architecture (inset). Topologically associating domains (TADs; orange) that 

segregate the genome into regulatory neighborhoods enriched for chromatin-chromatin 

interactions that facilitate sub-TAD formation. CTCF/cohesin are enriched at the boundaries 

of loop domains and TADs. Repressive chromatin is enriched at the nuclear lamina to form 

lamina associating domains (LADs; purple). Chromatin found in close proximity to nuclear 

pores is often enriched for active chromatin marks and highly expressed genes. (B) Neuronal 

activity is associated with infolding of the nuclear membrane, increased abundance nuclear 

pore complexes, and elevated calcium concentration (yellow), as well as changes in 

chromocenter and nucleolar organization. Neuronal activity also induces relocalization of 

IEG loci to transcription factories and transcription of eRNAs (inset). Moreover, activity 

causes Topo IIβ-mediated DNA double strand break (DSB) formation at the promoter of 

specific immediate early genes (IEGs), resulting in γH2AX enrichment across the gene 

body and target mRNA transcription (inset).
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