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Abstract 

Hippocampal place cells represent non-spatial information in addition to their more 

frequently studied spatial response properties. This encoding of non-spatial information by a 

process called rate remapping involves the increase or decrease in the firing rate of a place 

cell without changes in its spatial specificity. However, many hippocampal phenomena occur 

on very short time scales over which long-term average firing rates are not an appropriate 

description of activity. To understand how rate remapping relates to fine-scale temporal 

firing phenomena in the hippocampus, we studied place cell responses during two tasks that 

induce rate remapping. For those two tasks, we looked at how rate remapping affected burst 

firing, spike count distributions, and trial-to-trial variability. In addition, we looked at how 

rate remapping is expressed with respect to the theta-frequency oscillations of the 

hippocampus, which are thought to temporally organize firing on time scales faster than 100 

ms. We found that, while rate remapping could increase the number of spikes in each theta 

cycle, it did not increase their temporal dispersion, thus preserving theta phase coding. 

Interestingly, rate remapping in CA1 in response to task demands preferentially occurred 

during the first half of theta oscillations. The other half of the theta cycle contained 

preferential expression of phase precession, a phenomenon associated with place cell 

sequences, in agreement with previous results. This difference of place cell coding during 

different halves of the theta cycle supports recent theoretical suggestions that different 

processes occur during the two halves of the theta cycle. The differentiation between the 

halves of the theta cycle was not clear in the recordings from CA3 during rate remapping 

induced by task-irrelevant sensory changes. These findings provide new insight into the way 

that temporal coding is utilized in the hippocampus and how rate remapping is expressed 

through that temporal code. 

  

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



  

Introduction 

The hippocampus is well known for the location-specific firing of its principal cells, termed 

“place cells” (O’Keefe, 1976). Place cell firing involves more than a simple representation of the 

current location of the animal. For example, sequences of place cells corresponding to actual 

paths through the environment occur during the theta-frequency (6-12 Hz) oscillations that 

occur during engaged behavior (Buzs´aki, 2002). During each ~100ms theta cycle, the place 

cell population represents the sequence of upcoming locations in order (Skaggs et al., 1996; 

Foster and Wilson, 2007). Thus, the function of the hippocampus can only be understood if 

one takes into consideration temporal coding properties. 

In addition to representing spatial sequences, place cells also represent non-spatial in- 

formation (e.g., sensory (Leutgeb et al., 2005) or task-related information (Allen et al., 

2012)). This phenomenon has been described in terms of the effects of non-spatial 

information on the long-term average firing rates of place cells and thus has been termed 

“rate remapping”. While the preferred response location (“place field”) of a given cell does 

not change with the content of the non-spatial information, the rate at which the place cell 

fires within the place field can change by an order of magnitude. This phenomenon has 

generated interest (Schiller et al., 2015) because it bridges the gap between the hippocampal 

spatial map and the function of the hippocampus in the formation of episodic memory, an 

essential component of which is non-spatial information (Scoville and Milner, 1957; 

Eichenbaum et al., 2007). However, studies of rate remapping thus far have generally 

examined the long-term average firing rate of place cells over the course of 10 (Leutgeb et 

al., 2005) or 30 minutes (Ji and Wilson, 2008), but see (Mankin et al., 2012; Mankin et al., 

2015) for within-session effects on firing rate. Given that an entire sequence of locations is 

played out during the ~100 ms theta cycle, rate remapping information associated with 

individual locations in that sequence must be available on even shorter time scales. To this 

end, we studied fine-scale temporal aspects of rate remapping, as described in the following 

paragraphs. 

One aspect of fine-scale response properties in the hippocampus is the tendency of cells 

to fire in high-frequency bursts (Ranck, 1973). These bursts have been experimentally 

associated with particular input pathways (Royer et al., 2012; Bittner et al., 2015). 

Theoretical work has suggested that, by modulating the number of spikes that occur within a 
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burst, graded information can be encoded on very fast time scales (Kepecs and Lisman, 

2003). Therefore, we looked at whether rate remapping is the result of a change in the 

number of spikes per burst. 

Another aspect of place cell firing that reveals itself on analysis of short time scales is the 

extreme variability of spike counts on different single passes through a particular location 

(Fenton and Muller, 1998). This unexplained variability, which is known as “overdispersion”, 

implies that there are hidden variables that affect place cell activity. We examined the 

possibility that the representation of non-spatial information via rate remapping is the source 

of this variability. 

Interestingly, one theory that has been proposed to explain this excess variability provides 

an alternative interpretation of rate remapping. It has been shown that, for a task in which an 

animal must switch between maze and room cues, there are actually separate hippocampal 

maps for the two reference frames and the hippocampus switches between them in a task- 

dependent way (Fenton et al., 2010; Kelemen and Fenton, 2016). It has been suggested that 

this process of map switching may actually be a more general phenomenon that occurs under 

all conditions and that the hippocampus switches between maps at a frequency of 1 to 10 Hz 

(Olypher et al., 2002; Jackson and Redish, 2007; Jezek et al., 2011). According to this 

suggestion, the excess variability observed in place cell firing is the result of map switches 

that the experimenter is unaware of and has not accounted for. When averaged over many 

map switches, changes in probability of firing look like changes in rate of firing. In this way, 

non-spatial variables could be understood as affecting the probability of inhabiting particular 

maps instead of as changing a consistent firing rate in a given map. Therefore, we looked at 

the probability and frequency of firing on time scales short enough to ensure the presence of 

only a single map. 

Another important issue is the expression of rate remapping on a sub-theta cycle time 

scale. The possibility that place cells independently code spatial and non-spatial information 

is an interesting one, but it runs into potential difficulties. As mentioned above, place cell 

activity shows organization within the ~100ms theta cycle.   An important aspect of that 

temporal organization is the phenomenon known as theta phase precession (O’Keefe and 

Recce, 1993), in which each place cell fires at earlier and earlier theta phase as the animal 

progresses through its place field (Lisman and Redish, 2009).  Theta phase precession is 
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closely related to the phenomenon of theta sequences, but is not exactly the same, as theta 

phase precession is a single-cell phenomenon whereas theta sequences are an ensemble 

phenomenon which require learning to stabilize (Feng et al., 2015).  Both of these 

phenomena may be disrupted by firing rate changes if extra spikes resulting from 

increased firing rate are distributed at theta phases not corresponding to the position of 

the animal. We therefore tested whether the rate code of rate remapping interfered with the 

temporal code of theta phase precession.  

In a final set of analyses, we asked the question of whether rate remapping occurs 

uniformly throughout the theta cycle. This question is of particular interest given 

theoretical work (Hasselmo et al., 2002; Sanders et al., 2015) and experimental work (Hyman 

et al., 2003; Schomburg et al., 2014; Siegle and Wilson, 2014; Zheng et al., 2016) suggesting 

that different phases of theta have different computational functions. In particular, it was 

suggested that the first half of theta concerns computations about current position, whereas 

the second half of theta deals with predictions associated with upcoming locations 

(Sanders et al., 2015). Our results provide support for this classification of function through 

analysis of the theta phase preference of rate remapping. 

We addressed the above questions by analyzing two rich datasets available to us. For one 

task, rats were trained to run back and forth on a black linear track to receive reward at both 

ends of the track. On the recording days, comparisons were made between place cell activity 

on the black track and activity on the same task when the black track surface had been 

switched out for a white surface. This task is similar to other sensory rate remapping 

paradigms, for which rate remapping occurs in the CA3 region as well as the downstream 

CA1 region (Leutgeb et al., 2005). We analyzed recordings from CA3 during this task and 

refer to this data as the “Sensory/CA3” dataset. 

For the other task, recordings of place cells in rats on a non-delay alternation task 

demonstrate rate remapping between the two trajectories (Wood et al., 2000; Ji and Wilson, 

2008; Robitsek et al., 2013). On each trial, the rat runs down the central arm of a figure-8 

shaped maze. At the end, it can turn either left or right. Reward is given for turning the 

opposite direction of the previous trial. Neurons with place fields on the central arm rate 

remap depending on which trial type (from left to right or from right to left) the rat is 

currently on (Frank et al., 2000; Wood et al., 2000; Ji and Wilson, 2008). This rate 
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remapping occurs in CA1 place cells, but not in the upstream CA3 place cells (Ito et al., 

2015). Rate remapping in CA1 is inherited from prefrontal cortex via the thalamus, and the 

task is not hippocampal dependent, so the rate remapping is a reflection of task information, 

not a driver of decision- making (Ito et al., 2015). We analyzed recordings from CA1 during 

this task and refer to this data as the “Internally Generated (IntGen)/CA1” dataset. This task 

is important to study because the variable being represented in the firing rate of the place 

cells is internally generated; there are no external cues to differentiate between the trial 

types. 

Because these forms of rate remapping differ in the type of information represented and 

in the relevant region, they provide an overview of how temporal coding is affected by rate 

remapping. However, one should be careful not to directly compare the results from the two 

datasets, because it is impossible to say whether differences are a result of differences 

between the brain areas or the result of differences between the tasks. 
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Materials and Methods 

All data analysis was performed by HS under the supervision of JEL. Unpublished CA3 data 

was provided by TS, and collected in the lab of JKL. Unpublished CA1 data was provided 

by DJ, and collected in the lab of MAW. 

 

Sensory/CA3 Task Data Collection 

Recording procedures have been described in detail previously (Mankin et al., 2015). All 

surgical and experimental procedures were approved by the University of California, San 

Diego IACUC. Three rats (Long-Evans males, 3-5 months old, preoperative weight of 375- 

485 g) were trained to perform the Sensory/CA3 task after prior training in a spatial working 

memory task in a radial 8-arm maze for 3 weeks. An electrode assembly that consisted of 14 

independently movable tetrodes was implanted above the right hippocampus (4.0 mm 

posterior and 2.9 mm lateral relative to Bregma). 

Two weeks after surgery, access to food was restricted and the rats were maintained at 

about 85% of the free-feeding body weight. Water was readily available. Animals were 

trained to run back and forth on a linear track with a black vinyl surface (148 x 7 cm with 

small sides rising 0.5 cm above the surface of the arm, 53 cm elevated from the floor) to 

obtain chocolate milk reward at the ends of the track. The training lasted for 2 days. 

Electrophysiological recording started when well-separated units were identified in the 

hippocampus. LFP recordings were filtered between 1 and 425 Hz. Unit activity was 

amplified and band-pass filtered at 600 Hz to 6 kHz. Spike waveforms above a trigger 

threshold (40 µV) were recorded at 32 kHz and sorted manually offline (A.D. Redish, 

http://redishlab.neuroscience.umn.edu/MClust/MClust.html). Auto-correlation and cross- 

correlation functions were used as additional separation criteria. CA3 cells with an average 

firing rate of less than 3 Hz and waveforms longer than 200µs were considered to be 

putative excitatory cells and included in analysis. The animal’s positions were tracked 

with two infrared diodes mounted over the animal’s head and sampled at 30 Hz. 

Each recording day consisted of four 10 minute long sessions with an intertrial interval of 

5 min. During the first and fourth session, animals performed the task on the familiar black 

track. During the second and third sessions, the black surface of the track was switched out 

for a white vinyl surface. The animals were recorded on two days each. 

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e

http://redishlab.neuroscience.umn.edu/MClust/MClust.html)


  

 

Internal/CA1 Task Data Collection 

The experimental procedure has been described previously (Ji and Wilson, 2008). Briefly, 

rats (Long-Evans males, 5-8 months old) were trained on a figure-8 shaped maze for about 

2-3 weeks, for about 30 minutes each day. The animal was rewarded with chocolate sprinkles 

every time he alternated between two trajectories that shared the same central arm. After the 

animal achieved a performance criterion of at least 80% accuracy, a tetrode array containing 

18 tetrodes was surgically implanted targeting the right dorsal CA1 (coordinates: 4.1 mm 

posterior and 2.2 mm lateral relative to Bregma). Tetrodes were slowly moved to the CA1 

pyramidal layer during the 2 - 3 weeks after the surgery. One week after the surgery, rats 

were re-trained on the figure-8 alternation task. 

Recording started once clusters of spikes were stabilized and the animal’s performance 

reached the pre-surgery performance level. Spikes were identified by a threshold of ~70µV, 

sampled at 32 kHz, and manually sorted offline using the spike amplitudes across four tetrode 

channels (XClust, M. Wilson). Local field potentials (LFPs) were sampled at 2 kHz. The 

animal’s positions were tracked with two infrared diodes mounted over the animal’s head 

and sampled at 30 Hz. 

The data analyzed here were acquired from three rats while they were performing the 

figure-8 alternation task. The rats later performed a trajectory-switching task (Ji and Wil- 

son, 2008), but the data were not included in the analysis here. 

 

Data analysis: Technical definitions 

Place cells were defined as having overall firing rate >0.02 Hz and <4 Hz. 

Place fields were defined as areas where the firing rate of the cell was greater than 10% 

of the maximum firing rate of that cell. Place fields with gaps that were smaller than 10 cm 

and less than 1/5 of the total size of the place field were merged into a single place field. 

Place fields with fewer than 5 total spikes, lower than 0.5 Hz firing rate, or smaller than 3 

cm (a single spatial bin) were removed. 

For the CA1 dataset, place cells with place fields on the central arm were considered as 

potential remappers and included for subsequent analysis (74/198 cells). Of those, one cell 
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had two place fields on the central arm for a total of 75 place fields analyzed in Fig. 1C. Of 

those place fields, 44 had a firing rate >= 0.5 Hz and 5 or more spikes fired for the low firing 

rate condition and therefore had sufficient firing for the comparisons shown in all following 

figures (Figs. 2-6). 

For the CA3 dataset, we restricted our analysis to locations sufficiently far from the edge 

of the track so that data would not be confounded with reward site activity. We defined 

reward locations manually by excluding areas close to the edge of the track, where the animal 

had low velocity. These locations corresponded to a region of ~10-20 cm at each edge of the 

track. We calculated place fields separately for rightward passes and leftward passes, as we 

found independence of place cell activity for opposite directions of motion (data not shown, 

see also (Markus et al., 1995)). For the CA3 data, of 154 units recorded, 37 had place fields 

on leftward passes and 33 had place fields on rightward passes. Of those, 17 cells had 

multiple place fields for a total of 87 place fields analyzed in Fig. 1D. Of those, 32 place fields 

had a firing rate >= 0.5 Hz and 5 or more spikes fired for the low firing rate condition and 

therefore had sufficient firing for the comparisons shown in all following figures (Figs. 2-6). 

Theta was defined by filtering the raw LFP trace, as measured at the local pyramidal cell 

layer, between 6 and 10 Hz. Local maxima (peaks) were defined as 0 phase, and other 

phases were linear interpolation between consecutive peaks. 

Bursts were defined as spikes with interspike intervals <10 ms (Royer et al., 2012). 

Overdispersion was calculated as described in (Fenton and Muller, 1998). In short, the 

observed number of spikes S on a given pass through the place field is compared to the 

expected number of spikes N = ΣRi∆t calculated by multiplying the average firing rate 

at each location with the amount of time spent at that location. If there are more than 

four spikes expected, the Poisson distribution can be approximated by a normal distribution 

giving the z-score      

√ 
, which is subject to a correction of decreasing the absolute 

value of Z by 1/2 for transforming the discrete spike counts into a continuous z-score. 

Passes for which fewer than four spikes were expected because of too little time spent in the 

place field were excluded, as in (Fenton and Muller, 1998). 

All analyses were implemented in Matlab. 
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Phase precession analyses 

All quantifications of phase precession used the cl_corr function in the measure_phaseprec 

toolbox, which was provided by Richard Kempter (Kempter et al., 2012). This toolbox itself 

relies on the circStat toolbox by Philipp Berens (Berens, 2009), available at 

http://www.mathworks.com/matlabcentral/fileexchange/10676. 

Resultant length vectors in Fig. 6 were calculated using the circ_mean and circ_r 

functions in the circStat toolbox. The circular-linear correlations in Fig. 6A-D were 

calculated with the circ_corrcl function in the circStat toolbox. It is important to note that the 

circStat circ_corrcl calculates the correlation between a circular independent variable and a 

linear dependent variable, whereas the cl_corr function from the measure phaseprec toolbox 

calculates the correlation between a linear independent variable and a circular dependent 

variable. 
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Results 

To better understand how the rate changes in response to non-spatial variables of rate 

remapping are expressed on short time scales, we analyzed two datasets collected from the 

hippocampus as rats ran on 1D tracks. Single-unit responses were recorded using standard 

tetrode methods. See Materials and Methods and (Ji and Wilson, 2008; Mankin et al., 2015) 

for more detail. 

For the Sensory/CA3 task, recordings were obtained from CA3 with the goal of under- 

standing the encoding of sensory information. Rats were trained to run back and forth on a 

1.48 m long track to receive reward at each end of the track. Three animals were recorded 

on two days each. Each recording day consisted of four 10 minute long sessions. During the 

first and last session, animals performed the task on the familiar black track. During the 

middle two sessions, the surface of the track was switched out for a novel white surface. We 

compared single-unit responses between trials with the black track and the trials with the 

white track. 

For the Internal/CA1 task, recordings were obtained from CA1 with the goal of under- 

standing the encoding of non-sensory internal state information. Rats were trained to run on 

a figure-8 track such that each time they ran down the central arm, they were rewarded for 

turning the opposite direction of the previous trial. The behavior thus requires internal 

generation of a marker of task condition. Recordings occurred after animals reached a 

performance criterion of 80% correct trials. 

 

Representation of non-spatial information in firing rate without affecting spatial 

response properties 

Rate remapping is defined as changes in firing rate of place cells without changes in their 

spatial response. We asked whether the data collected in our tasks contains bona-fide 

representation of non-spatial information by modulation of place cell firing rates as opposed 

to statistical noise or misdiagnosis of changes in spatial response properties, as might be 

observed in global remapping (Muller et al., 1987; Colgin et al., 2008). In this and all 

following analyses, we separated each pass through the place field into one of two 

conditions: black track or white track for the Sensory/CA3 data, and going from left to right 
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or going from right to left for the Internal/CA1 data. For the Sensory/CA3 data, we treated 

the activity of each cell occurring on rightward passes and leftward passes independently, as 

we found independence of place cell activity for opposite directions of motion, (data not 

shown, see also (Markus et al., 1995)). 

First, we calculated place field locations for each condition independently according to 

criteria described in Materials and Methods. We calculated the center of the place field with 

maximal firing rate for each cell under each condition, and found no significant difference 

between place field locations for each cell under the two conditions (Fig. 1A-B; p > 0.05, 

paired tCA1 = -1.0, dfCA1 = 46, 95% confidence interval of difference mean [-4.5 1.5]; paired 

tCA3 = -1.3, dfCA3 = 45, 95% confidence interval of difference mean [-31 6.5]; mean and 

median movement < mean place field size, see Fig. 1A-B for values). For all following 

analyses, we calculated place field locations using activity during both conditions, and 

compared activity in those place fields across conditions. 

After verifying that the locations of place fields were largely consistent across the 

conditions, we compared the firing rates within each place field across the conditions. 

Average firing rates in each place field were significantly different between the two conditions 

(Fig. 1C- D; paired-t test p < 0.05; tCA1 = 2.1, dfCA1 = 74, tCA3 = 2.1, dfCA3 = 86). In 

particular, 66% of Internal/CA1 place fields and 34% of Sensory/CA3 place fields had 

significantly different (p < 0.01, 2 sample Kolmogorov-Smirnov test) trial-by-trial spike 

counts between the two conditions. 

Both of these analyses (Fig. 1A-D) demonstrate a heterogeneity within the population. 

One group of place cells completely change their place fields in response to the condition 

change, reminiscent of global remapping. However, these results also demonstrate a sub- 

population of place cells that retain their spatial response properties while simultaneously 

changing their firing rates in response to the condition change, conforming to the definition 

of rate remapping. Such a heterogeneous response to a manipulation has observed previously 

(Muller and Kubie, 1987) and is referred to as partial remapping (Colgin et al., 2008). We 

will focus in this paper on the population of rate remappers. 

For the CA1 data, of 198 units recorded, 74 had place fields on the central track. One cell had 

two place fields on the central track for a total of 75 place fields (all dots in Fig. 1C). Of those, 

44 place fields had firing for both conditions (green dots in Fig. 1C), and were included for 
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subsequent analyses. For the CA3 data, of 154 units recorded, 37 had place fields on leftward 

passes and 33 had place fields on rightward passes. Of those, 17 cells had multiple place fields 

for a total of 87 place fields (all dots in Fig. 1D). Of those, 32 place fields had firing for both 

conditions (green dots in Fig. 1D), and were included for subsequent analyses. For additional 

information on criteria for inclusion and relevant definitions, see the Materials and Methods. 

Subsequent analyses will compare between the “high-rate condition” and the “low-rate 

condition”. The identities of these conditions are defined on a place field-by-place field basis: the 

“high-rate condition” is the condition for which that particular cell has a higher firing rate in that 

place field. Thus, the same condition (e.g., black track for the Sensory/CA3 data) may be the 

high-rate condition for one place field and the low-rate condition for another. 

 

Burst coding 

What is the fine-scale temporal structure of these rate changes? It has been suggested 

(Kepecs and Lisman, 2003) that information could be coded in the duration (number of 

spikes) of the high-frequency bursts that are known to be emitted by hippocampal place cells 

(Ranck, 1973); bursts including a variable number of spikes would allow for graded changes 

in firing rate. To explore this possibility, we produced histograms of the number of spikes 

occurring in each burst in the place field under each condition. We defined a burst as spikes 

with inter-spike intervals of less than 10 ms (Royer et al., 2012). The histograms for the 

example place fields are shown in Fig. 2A-B. Population data is shown in Fig. 2C-D. Most 

place fields do not have significantly more spikes per burst for their high rate condition than 

for their low rate condition. Number of spikes per burst and fraction of spikes that occur in 

bursts only weakly increase as a function of firing rate (Fig. 2E-F). These findings are 

consistent for both datasets. We calculated the contribution of changes in burst duration to 

changes in firing rate across conditions by plotting the fold change in firing rate against fold 

change in burst duration for each place field. The slope of the best fit line was calculated 

subject to the constraint that it pass through (1,1), corresponding to a hypothetical place 

field with no change in firing rate and no change in burst duration. That slope represents the 

fraction of the observed rate change across conditions attributable to the observed changes 

in burst duration. In the Sensory/CA3 data, changes in burst duration contributed 0.54% of 

the rate changes across condition. In the Internal/CA1 data, changes in burst duration 
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contributed 0.25% of the rate changes across condition. These data lead to the conclusion 

that rate remapping is not the result of modulation of number of spikes per burst. 

 

Excess variability in place cell spiking: overdispersion 

We next turned to analysis of trial-to-trial variability in spatial response properties of place 

cells, termed “overdispersion” (Fenton and Muller, 1998). The observation is that the number 

of spikes that occur on a given pass is more variable than would be expected from a Poisson 

process with a constant rate. Single-pass spike count z-scores are calculated by comparing 

the number of spikes actually observed to the number of spikes expected on that pass given 

the length of time the animal spent at each location multiplied by the long-term average 

firing rate at each location. Histograms of these z-scores are considered to be overdispersed 

if they are broader than the normal distribution, which reasonably approximates the Poisson 

distribution under certain assumptions described in Materials and Methods. A perfect 

Poisson process would produce z-scores with a standard deviation of 1. Biologically relevant 

processes such theta phase and refractory history introduce enough violation of Poisson 

process assumptions to cause the lowest biologically feasible values of overdispersion to be 

larger than 1 (Barbieri et al., 2001). In general, larger overdispersion values imply that there 

are other variables affecting spike counts beyond the variables already taken into account. In 

our data, we found that spike counts were strongly overdispersed. This overdispersion can 

be seen by the deviation of the spike count histograms from the normal distribution of z-

scores (black curve) that would be expected if firing were Poisson (Fig. 3A-B). The extent 

of overdispersion, as quantified by the z-score of single trial spike counts, was decreased by 

separating out the high rate condition from the low rate condition in both datasets (Fig. 3C-

F). The Internal/CA1 data had two peaks of spike count z-scores (Fig. 3A, one peak at +3SD 

and one peak at -3D) that were cleanly separated by condition (Fig. 3C,E). This separation 

of single trial spike counts by condition decreased overdispersion from 2.33 over all trials to 

1.64-1.90 for a single trial type. Overdispersion was not decreased for the Sensory/CA3 data 

by splitting trial types: overdispersion was 2.97 over all trials and 2.88-2.94 for a single trial 

type. It is possible that the decrease in overdispersion specific to the CA1 data was a result 

of the greater proportion of place fields with significant rate remapping observed in the 

Internal/CA1 data. 
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Is this variability in firing a single-cell phenomenon, or is it reflective of coordinated 

trial-to-trial changes across the population? We looked at correlation of single-trial spike 

counts occurring in pairs of simultaneously recorded place fields (filled bars in Fig. 3G-H) 

comparing spike counts in place field A with spike counts in place field B on the same trial. 

In order to test whether the observed spike counts were more correlated on the whole than 

expected by chance, we generated two null distributions. One (blue line in Fig. 3G-H; 

“shuffled”) was generated by calculating spike count correlations between place field A 

from some trial and place field B on another random trial. The second distribution (orange 

line in Fig. 3G-H; “condition-matched shuffled”) was generated by calculating spike count 

correlations between place field A from some trial and place field B on a random trial from the 

same condition. For both datasets, the empirical distribution has more extreme values than 

the condition-matched shuffled distribution, which in turn had more extreme values than the 

shuffled distribution. The extent of extremity differed between the datasets however. The 

Kolmogorov-Smirnov distance statistic D roughly corresponds to the fraction of place field 

pairs with more extreme values. For the Internal/CA1 dataset, distance was D37000,37000 = 

0.15 between the shuffled and condition-matched shuffled distributions, and distance was 

D37000,185 = 0.33 between the condition-matched shuffled and observed distributions. For the 

Sensory/CA3 dataset, distance was D13600,13600 = 0.02 between the shuffled and condition- 

matched shuffled distributions, and distance was D13600,68 = 0.38 between the condition- 

matched shuffled and observed distributions. For both datasets, spike count correlations were 

higher on a trial-by-trial basis than would be expected by simply controlling for condition. 

Thus, there is at least some population-level coordination of variability. 

 

Rate modulation as changes in probability of discrete states? 

As noted in the introduction, there are two ways to achieve a change in firing rate. One is 

that the non-spatial variable modulates the firing rate of a place cell in its place field, and 

spike counts at any particular time are drawn from a Poisson distribution with that 

characteristic rate. Another option (“discrete state probability” hypothesis) is that the non-

spatial information can affect the probability of the expression of an all-or-none firing 

phenomenon. For example, imagine that the network has two states, one in which the place 

field exists, and one in which it does not. Changes in probability of that place field existing 
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would show up as continuous changes in long-term average firing rate even if there are 

discrete underlying states (place field existing or not existing). State transitions have been 

hypothesized to occur in the hippocampus with the theta cycle being the smallest unit of 

time over which states are considered stable (Jackson and Redish, 2007; Jezek et al., 2011). 

We looked at all theta cycles (the smallest unit of time hypothesized to contain a single 

state) that the animal was in a particular place field, and divided the data between theta 

cycles in which the cell fired and theta cycles in which it did not. One can calculate the 

fraction of theta cycles that the animal was in the place field for which the cell was active 

(text insets of Fig. 4A-B and top panels of Fig. 4E-F). The probability of being active in a 

given theta cycle does increase with increasing firing rate, a result consistent with both 

hypotheses. The discrete state probability hypothesis makes the additional prediction that if 

analysis is restricted to times when the network is in a given state, firing behavior should be 

consistent. Therefore, if we only look at theta cycles for which the cell is active in its place 

field (i.e., theta cycles when the network is in the state for which the place field exists), the 

spike count distribution (Fig. 4A-B) should be the same no matter the rate remapping 

condition. However, the number of spikes per theta cycle increases in the high firing rate 

condition, even when restricting analysis to active theta cycles (when the network state 

presumably corresponds to the one in which the place field exists; Fig. 4A-D, bottom panels 

of Fig. 4E-F). Therefore, we do not find evidence of discrete states in which the place field 

either does or does not exist. 

 

Coexistence of rate remapping and phase precession 

The question of how rate changes involved in rate remapping interact with fine-scale temporal 

patterning of place cell firing remains unanswered. Place cells express a phenomenon known 

as “phase precession” (O’Keefe and Recce, 1993; Skaggs et al., 1996; Jensen and Lisman, 

1996), which is the observation of a negative correlation between position of the animal and 

theta phase of a cell’s spikes. It seems possible that increased spiking under the high rate 

condition may degrade the theta phase code. The question then arises, is the quality of phase 

precession affected by rate remapping? We compared the quality of phase precession 

between the high and low rate conditions for each place field. We used the absolute value of 

the circular-linear correlation coefficient developed by (Kempter et al., 2012), as the sign of 
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the circular-linear correlation coefficient does not always match up with the sign of the best 

fit slope (Kempter et al., 2012) (Fig. 5). We did not find a significant difference in phase 

precession quality between the conditions in either data set (p>0.05, paired tCA1 = 1.3, 

dfCA1 = 43, paired tCA3 = 0.3, dfCA3 = 31). 

 

Specialization of two halves of theta 

Previous work has suggested different functions of the two halves of the theta cycle (Hasselmo 

et al., 2002; Sanders et al., 2015), where the first half of theta is for current experience 

(encoding) and the second half for upcoming predictions (retrieval). We use the convention 

that the peak of theta at the local pyramidal cell layer is 0 degrees. For each place field, 

we constructed a polar histogram of spikes occurring in the place field binned by theta 

phase under each condition. We then took the difference of spike counts in each theta 

phase bin between the two conditions divided by the sum of the spike counts in that phase 

bin to get a normalized difference in firing between the conditions at each theta phase 

(Fig. 6A-B; theta phase bins with more firing on the low firing rate condition have a negative 

normalized difference, therefore their values are reflected across the origin in the polar plot). 

At each phase bin, we averaged the normalized firing difference across all place fields, giving 

an average firing difference between the high and low rate conditions by theta phase for 

the entire population (Fig. 6C-D). For the Internal/CA1 data, the firing difference is large 

during the first half of theta and smaller during the second half of theta. Circular statistics 

give the mean resultant vector, whose direction signifies the theta phase preference of rate 

remapping and whose magnitude signifies the strength of that preference. Rate remapping 

in the Internal/CA1 data had a preferred phase of 90 degrees and a resultant length of 0.24 

(Fig. 6C; circular-linear correlation ρ = 0.87, p < 0.01, df = 34). We plotted a theta phase 

histogram of all spikes occurring on the low and high rate conditions (Fig. 6I). The theta 

phase preference clearly shifts from the second half of theta for the low rate condition to 

the first half of theta for the high rate condition, demonstrating that firing is increased for 

the high rate condition during the first half of theta and is actually suppressed for the low 

rate condition during the first half of theta. The Sensory/CA3 data did not show significant 

theta phase dependence of rate remapping (Fig. 6D; resultant length 0.06, circular-linear 

correlation ρ = 0.24, p > 0.05, df = 34). 
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The strong expression of rate remapping during the first half of theta observed in our 

Internal/CA1 data complements previous work that has shown a preferential expression of 

phase precession during the second half of theta (Yamaguchi et al., 2002; Mehta et al., 2002). 

We verified this with a novel analysis parallel to the rate remapping analysis above. The 

magnitude of the circular-linear correlation of phase precession (Kempter et al., 2012) was 

calculated for a sliding 90 degree window every 10 degrees, generating a polar plot analogous 

to those shown in Fig. 6A-B, where the radial value is phase precession quality instead of rate 

remapping magnitude. The mean resultant vector was calculated for the phase precession 

quality polar plot of each place field (not shown). For each place field, we plotted the 

direction of that mean resultant vector for phase precession on the y-axis and the direction of 

the mean resultant vector of rate remapping on the x-axis (Fig. 6G-H). Place fields in the 

Internal/CA1 dataset clustered in the top left corner corresponding to a preference of rate 

remapping for the first half of theta and a preference of phase precession for the second half 

of theta. This analysis demonstrates a separation of rate remapping and phase precession 

into separate halves of the theta cycle. See below for discussion of difficulties in interpreting 

the Sensory/CA3 data (end of “Two halves of theta dedicated to rate remapping and phase 

precession respectively” in the Discussion). 
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Discussion 

For place cells of the hippocampus, spatial relation can be expressed through the fine-scale 

temporal ordering of firing that occurs during the theta sequences associated with phase 

precession (O’Keefe and Recce, 1993; Skaggs et al., 1996; Jensen and Lisman, 1996; Foster 

and Wilson, 2007; Lisman and Redish, 2009). Place cells can also represent non-spatial 

information in their firing rates (Wood et al., 2000; Leutgeb et al., 2005; Aronov et al., 

2017). In this study, we looked at the fine-scale temporal behavior of firing rate changes of 

place cells in response to non-spatial changes. 

 

Co-existence of independent rate and temporal codes 

Whether neurons use rate codes or temporal codes to represent information has been a 

source of controversy (Softky, 1995; Shadlen and Newsome, 1994; Gautrais and Thorpe, 1998; 

Brette, 2015). Here, we demonstrate that two independent information streams can be 

simultaneously represented in a single spike train. Several-fold firing rate changes in response 

to non-spatial information can occur in place cells without degrading the quality of the theta 

phase coding of location within the place field. Previous work had suggested that place cells 

had such an ability to represent independent information content in theta phase and firing 

rate, specifically in the case of the rate changes due to changes in running speed (Huxter et 

al., 2003; O’Keefe and Burgess, 2005). However, the firing rate changes associated with 

running speed are hard to disentangle from the natural relationship between velocity and 

position (Terrazas et al., 2005), so it was not clear whether rate changes due to running speed 

would apply to other types of rate changes. We now extend more recent reports of the 

independence of rate remapping and phase precession (Allen et al., 2012) in showing the 

general applicability of this independence of rate and temporal coding. 

 

Phase precession: models and analysis 

The question of the origin of phase precession has alternatively been suggested to be 

generated as a network process or as a single-cell phenomenon, reviewed in (Maurer and 

Mc-Naughton, 2007). In particular, it had been suggested that the excitation received by a 

place cell slowly ramped up over the length of the place field. When combined with 

oscillatory inhibition, spiking would occur progressively earlier in the theta cycle as 
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excitation ramped up, leading to the observation of phase precession (Kamondi et al., 1998; 

Mehta et al., 2002; Lengyel et al., 2003; Harvey et al., 2009). However, the results of the 

current study contradict such a model. We see that phase precession and the extent of ex- 

citation are independent phenomena, as the quality of phase precession is maintained over 

several-fold changes in firing rate. This is in addition to other recent evidence of 

dissociation of place fields from phase precession (Schlesiger et al., 2015; Aghajan et al., 

2014; Feng et al., 2015). Current thought assigns generation of phase precession to the grid 

cells of the entorhinal cortex (Sanders et al., 2015; Jaramillo et al., 2014; Barry et al., 2012; 

Erdem and Hasselmo, 2012; Kubie and Fenton, 2012), although experience-driven learning 

(likely occurring in the hippocampus itself) transforms phase precession to full-blown theta 

sequences (Feng et al., 2015). 

Single-cell models of phase precession were supported by the observation that phase pre- 

cession plots where position was replaced on the x-axis with instantaneous firing rate still 

generate the negative correlation representative of phase precession (Harris et al., 2002), but 

see (Huxter et al., 2003). However, our work demonstrates that a strong confound in such an 

analysis is that changes from low rate condition to high rate condition during rate remapping 

change the theta phase preference of firing due to suppression of firing during the first half 

of theta under the low rate condition. This effect leads to an artificially strong correlation 

between instantaneous firing rate and theta phase of firing. While this analysis technique has 

the benefit of being a “quick and dirty” method for quantifying phase precession, analysts 

should be aware of the confound of non-spatial information in the relationship between firing 

rate and theta phase of firing. 

 

Burst coding 

It has been suggested that burst duration might encode information (Kepecs and Lisman, 

2003), and indeed burst duration coding is present in other neural systems (Avila-Akerberg 

et al., 2010). However, in this hippocampal data, the number of spikes per burst does not 

seem to change as a function of rate remapping condition. It should be noted that spike shape 

changes as bursts progress, so it is possible that biases in spike clustering may have truncated 

bursts. The fraction of spikes occurring in bursts did change, but not enough to account for 

the observed rate changes. Thus, burst parameters do not explain the representation of non-
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spatial information in rate remapping. 

 

Multiple maps hypothesis and population coordination of activity 

The relationship between single cell rate remapping and population-level representation is 

not simply summarized. On the one hand, there is clearly correlated variability (sometimes 

referred to as “noise correlations” (Miura et al., 2012)) among the place cell population 

during rate remapping, even after taking into account the externally observable variables 

that the place cells are responding to (Fig. 3G-H). This result implies that there are intrinsic 

population dynamics that coordinate place cell activity. However, the activity of individual 

place cells does not seem to be constrained to discrete network states. There is rather large 

heterogeneity of place cell behaviors: some place cells “globally remap” (i.e., gain or lose 

place fields at given locations) while other place cells “rate remap” (i.e., maintain place field 

location but have consistently different firing rates under the different conditions). Moreover, 

rate remapping is not simply a long-term average of an all-or-none firing phenomenon with 

a rate that depends on condition (Fig. 4), as would be expected if there were multiple 

maps that were being switched between, one in which the cell has a place field at that 

location and others in which it does not (Olypher et al., 2002; Jackson and Redish, 2007; 

Kelemen and Fenton, 2016). Rather, we show that even when restricting analysis to theta 

cycles on which a cell is active and therefore in the appropriate map, there are still firing rate 

changes between the conditions. This result is more in line with the idea that place cells have 

very high-dimensional spatial/non-spatial receptive fields, for which many variables can have 

independent effects (Rangel, 2012; Wu, 2012). Indeed, the overdispersion of single-pass spike 

counts increases between CA3 and CA1 (Mankin et al., 2012), potentially corresponding to an 

increase in the dimensionality of the representation with progressive processing. Finally, we 

observe that splitting trials by condition reduces the overdispersion of spike counts thought 

to be a result of unaccounted for map switches. In the Internal/CA1 data, this reduction 

of overdispersion is so complete as to reduce overdispersion to levels expected by chance. 

Even so, the low-overdispersion “maps” particular to each condition involve characteristic 

firing rates in each condition, not characteristic place field locations. Taken together, these 

results indicate the need for further research into the relationship between single cell 

and population-level representation of non-spatial information, as that relationship is not 
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entirely straightforward. 

 

Two halves of theta dedicated to rate remapping and phase precession 

respectively 

We have shown here that, in our Internal/CA1 data, place cells represent different types of 

information during the two halves of theta. Rate changes due to rate remapping preferentially 

occur during the first half of the theta cycle. On the other hand, the negative correlation 

between position and theta phase of spiking characteristic of phase precession is stronger 

during the second half of the theta cycle. It seems that, during the first half of the theta 

cycle, place cells exhibit rate remapping, and during the second half of theta, place cells 

exhibit phase precession. 

The separation of the theta cycle into halves dedicated respectively to rate remapping and 

phase precession in CA1 parallels the distinct inputs that give rise to these phenomena. 

Anatomically, CA1 cells receive spatially segregated inputs onto their apical dendrites 

(reviewed in (Witter, 2010)). Proximally, in the stratum radiatum, CA1 cells receive input 

from the CA3 region of the hippocampus (Ramón y Cajal, 1911). Distally, in the stratum 

lacunosum-moleculare, CA1 cells receive direct input from layer III of the entorhinal cortex 

(EC3) as well as from the prefrontal cortex (PFC) via the nucleus reuniens of the thalamus 

(Steward and Scoville, 1976; Herkenham, 1978). 

These two inputs as defined by anatomy seem to correspond respectively to phase pre- 

cession (stratum radiatum or SR) and rate remapping (stratum lacunosum-moleculare or SL-

M; see Table 1). Phase precession does not originate in CA1, as medial entorhinal cortex 

(MEC) lesions eliminate hippocampal phase precession without degrading place fields 

(Schlesiger et al., 2015). CA1 receives MEC input through two pathways: the direct path 

from EC3 mentioned above and an indirect path from layer II of entorhinal cortex (EC2) via 

the trisynaptic pathway CA3. Grid cells in EC3 do not phase precess, whereas grid cells in 

EC2 do (Hafting et al., 2008; Mizuseki et al., 2009), so phase precession in CA1 may be 

inherited indirectly from EC2 via the CA3 input in stratum radiatum (Jaramillo et al., 2014). 

In contrast, rate remapping on this task has been shown to depend on the PFC input to CA1 

via nucleus reuniens of the thalamus and is not observed in CA3 (Ito et al., 2015); therefore, 

this information likely is received in stratum lacunosum-moleculare, where thalamic 
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synapses occur. It is important to note that not all rate remapping information in the 

hippocampus arrives through this pathway. For example, sensory related rate remapping in 

CA3 depends on lateral entorhinal cortex (LEC) input (Lu et al., 2013). 

Each layer is associated with a gamma rhythm of a particular frequency. CA1 spiking 

couples with gamma frequencies stereotypical of these inputs in a function-, place-, and 

theta phase-specific way (Colgin et al., 2009; Bieri et al., 2014; Zheng et al., 2016), so these 

gamma rhythms are thought to correspond with specific computations. The strength of the 

inputs into these two layers (as measured by theta/gamma cross-frequency coupling in each 

layer) have been shown to peak during opposite halves of the theta cycle (Schomburg et al., 

2014). It seems the SR-associated slow gamma is strongest near the trough of theta 

(Schomburg et al., 2014) and the SL-M-associated mid gamma seems to be strongest near 

the peak of theta (using a theta reference of the pyramidal cell layer theta) (Schomburg et 

al., 2014). These phase estimates require further verification as another paper using different 

recording and analysis methods found different preferred phases of these gamma bands 

(Colgin et al., 2009).  The ~90 degree phase difference between the (Schomburg et al., 

2014) theta phase preferences and our findings can potentially be explained in two ways. 

One is that phase precession in CA3 itself occurs following the phase of maximal firing of 

CA3 place cells (Mizuseki et al., 2009; Mizuseki et al., 2012), so we would expect phase 

precession in CA1 inherited from CA3 to occur following the phase of maximal CA3/SR 

input. The other is that it takes time for inputs to travel down the dendrite to the point of 

affecting somatic firing (London and Häusser, 2005), so distal SL-M inputs may be 

temporally shifted relative to their effect on firing. It is also important to note that the work 

on gamma frequency and theta phase of SL-M fits with theta phase and gamma frequency 

of the EC3 input that arrives in that layer (Schomburg et al., 2014). However, little is 

known about the theta phase or gamma frequency associated with the thalamic input to SL-

M carrying prefrontal information which gives rise to the rate remapping observed in our 

data. 

In summary, CA1 inputs corresponding to rate remapping on the alternation task and 

phase precession are spatially segregated on the dendrites of CA1 pyramidal cells, and their 

stereotypical zones alternate maximum activation during the course of the theta cycle. As 

CA1 rate remapping on this task occurs preferentially during the first half of theta, it is likely 
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that its essential input, thalamic relay neurons of the nucleus reuniens, are theta modulated. 

The temporal and spatial segregation of inputs to CA1 is summarized in Table 1. 

This separation of representations fits very nicely with a recent theoretical suggestion 

about a functional dichotomy between the halves of theta (Sanders et al., 2015). That 

proposal describes a two-step interaction between place cells and grid cells during active 

navigation: during the first half of theta, place cells merge diverse information streams to 

accurately estimate current position. During the second half of theta, grid cells use their 

knowledge of spatial structure to generate sequential predictions of upcoming locations 

(“mind-travel”) and then pass this sequence on to place cells in order to recover associates 

of upcoming locations. This separation is potentially compatible with a separation of theta 

into “encoding” (current position) and “retrieval” (mind-travel) phases (Hasselmo et al., 

2002), a separation that has recently been supported with theta phase-specific optogenetic 

simulation (Siegle and Wilson, 2014). 

How does rate remapping correspond with representation of current position/encoding of 

experience in these theories? One might think that CA1 is encoding the future decision of 

which way the animal will turn at the end or the central track. However, it is important to 

note that the identification of the correct choice on this task is not generated in the 

hippocampus as part of spatial processing (Ainge et al., 2007). Rather, CA1 is representing 

the knowledge of current state provided by the prefrontal cortex via the thalamus (Ito et al., 

2015). Corresponding to the understanding of this rate remapping as representation of 

current state as opposed to future choice, the rates of CA1 neurons on the alternation task 

correspond to the last trajectory, not to the future trajectory (Ji and Wilson, 2008), 

although see others including (Ferbinteanu and Shapiro, 2003) for similar tasks with coding 

of future trajectory. 

In the Sensory/CA3 task, the phase dependence of rate remapping was not as clear. There 

was no significant phase preference of the firing rate difference across conditions (Fig. 6D), 

nor was there a shift in preferred theta phase of spiking across conditions (Fig. 6F). It is 

possible that we were unable to observe a difference in rate remapping in the CA3 data 

between the two halves of theta because of the relative weakness of rate remapping in the 

Sensory/CA3 task. Another possibility is that rate remapping and phase precession are 

simply not expressed as robustly until CA1, in line with previous work showing weaker phase 
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precession in CA3 than in CA1 (Mizuseki et al., 2012; Mankin et al., 2015). Alternatively, it 

may be that rate remapping in the Sensory/CA3 task occurs uniformly at all theta phases, 

implying that the sensory information is being represented during the mind-travel portion of 

the theta cycle as well as the representation of current experience. This possibility would 

allow for predictions of associations with upcoming locations to be recalled. An experiment 

to test this possibility would involve changes in the associations with upcoming locations. 

For example, if only half of the track was white, then one could compare rate remapping 

during the parts of the place field occurring under either sensory condition. 

 

Function of rate remapping? 

One interesting point to be emphasized is the diversity of types of information represented 

in rate remapping. One might expect that trajectory might be represented in hippocampal 

place cells as a highly task-relevant factor. The sensory change of track color from black to 

white, which was totally irrelevant to the task being performed might not seem worth 

representing, although the novelty of the white track is worth noting. Despite the irrelevance 

of track color to the task, 30% of CA3 cells had significantly different firing rates under the 

two conditions in the sensory task. What can be taken from this is that even task-irrelevant 

aspects of the environment are represented in the rates of place cells, emphasizing the non- 

trivial nature of hippocampal representation. 

What is the importance of representation of current state in all of its nuance during rate 

remapping? We believe the reason for this representation is that the hippocampus must 

represent current context so that any occurrences experienced can be bound to the correct 

context in its entirety, containing both sensorily-experienced and internally inferred 

information about the state of the world. Since the animal does not know beforehand which 

aspects of the experience will be relevant, many different aspects of the experience must be 

represented. Internally generated task information in the Internal/CA1 task should be 

thought of as representation of a “hidden state” of the world and not as representation of 

action plans: rate remapping represents what is known about the world, not what is 

predicted. Questions remain on how non-spatial information is encoded during the predictive 

firing during mind-travel (phase precession/theta sequences). 

The alternation of rate remapping and phase precession, or alternatively encoding and 
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recall, during the two halves of theta allows for the usage of past knowledge while nearly 

simultaneously doing what is necessary for learning to occur for future performance. 
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Sanders H, Rennó-Costa C, Idiart M, Lisman JE (2015) Grid cells and place cells: an 

integrated view of their navigational/memory function. Trends in Neurosciences 

38:763–775. 

Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ, Leutgeb S, Ranganath C 

(2015) Memory and Space: Towards an Understanding of the Cognitive Map. 

Journal of Neuroscience 35:13904–13911. 

Schlesiger MI, Cannova CC, Boublil BL, Hales JB, Mankin EA, Brandon MP, Leutgeb JK, 

Leibold C, Leutgeb S (2015) The medial entorhinal cortex is necessary for temporal 

organization of hippocampal neuronal activity. Nature Neuroscience 18:1123–1132. 

Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, 
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Figure 1: Rate remapping verification. A-B) Each dot represents a cell, where its x-

position is the center of the place field with maximal firing rate for condition 1, and its 

y-position is the center of the place field with maximal firing rate for condition 2. These 

dots fall near the dotted unity line, indicating that the locations of place fields are 

similar for both conditions. A) Cells from the CA1 dataset. Condition 1 was when the 

animal was on the central arm coming from the left arm and going to the right arm, 

whereas condition 2 was when the animal was on the central arm coming from the right 

arm and going to the left arm. B) Cells from the CA3 dataset. Condition 1 was the black 

track, and condition 2 was the white track. C-D) Each dot represents a place field, 

where its x-position is the firing rate for condition 1 and its y-position is the firing rate 

for condition 2. These dots do not fall near the dotted unity line, indicating that firing 

rates for the two conditions are different. Blue dots indicate place fields with sufficient 

firing for both conditions to be included for subsequent analyses, whereas red x’s 

indicate place fields that were not considered rate remappers. Panel C shows cells from 

the CA1 dataset, and panel D shows cells from the CA3 dataset; condition definitions as 

in panels A-B. 
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Figure 2: Burst duration. A-B) Histograms of number of spikes per burst for two 

example place fields. Top: high rate condition, bottom: low rate condition. Mean 

number of spikes per burst (green lines). No significant difference between the spikes per 

burst distributions across conditions for either place field. Panel A shows data from a 

place field from the CA1 dataset and panel B shows data from a place field from the 

CA3 dataset. C-D) For each place field, the distributions of spikes per burst are 

compared between the two conditions using the Kolmogorov-Smirnov test. The p-value 

of each test for each place field is plotted as a function of extent of rate remapping for 

that place field (purple dots). Very few place fields have significantly different burst 

length in the two conditions (dotted line at p=0.05). Panel C shows place fields from the 

CA1 dataset and panel D shows place fields from the CA3 dataset. E-F) For each place 

field, two dots are plotted: one (red) corresponding to the high firing rate condition and 

one (blue) corresponding to the low firing rate condition. On the x-axis is the firing rate 

of the place field on that condition and on the y-axis is the mean number of spikes per 

burst (top) or the fraction of spikes that occur in bursts (bottom). Neither of these is 

strongly affected by firing rate. Panel E shows place fields from the CA1 dataset, and 

panel F shows place fields from the CA3 dataset. 
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Figure 3: Overdispersion. A-B) Overdispersion of all trials for all place fields. For 

each trial, a z-score is calculated based on a comparison of the number of spikes 

expected on each trial based on the average firing rate over all trials with the number of 

spikes observed normalized by the expected variance. Stacked histograms are plotted 

where red represents trials that occurred for the high rate condition for each place field 

and blue represents trials that occurred for the low rate condition for each place field. 

The solid line shows the distribution expected if spike counts were simply Poisson 

(approximated by the normal distribution for sufficiently large expected spike counts; 

see Materials and Methods). The histograms are highly overdispersed and show some 

bimodality. Panel A shows place fields from the CA1 dataset, and panel B shows place 

fields from the CA3 dataset. C-D) Overdispersion for all place fields for their high rate 

condition. In this panel, the z-score is calculated with respect to the average firing rate 

only from the high rate condition. Spike counts are still overdispersed but now seem to be 

more unimodal. Panel C shows place fields from the CA1 dataset and panel D shows 

place fields from the CA3 dataset. E-F) Overdispersion for all place fields for their low 

rate condition. In this panel, the z-score is calculated with respect to the average firing 

rate only from the low rate condition. Spike counts are still overdispersed, but now seem 

to be more unimodal. Panel E shows place fields from the CA1 dataset, and panel F 

shows place fields from the CA3 dataset. G-H) Trial-by-trial correlations between spike 

counts occurring in pairs of simultaneously recorded place fields. The wide bars show 

the observed distribution of correlations. Place field pairs whose spike count 

correlations were significant are shown in purple. The null distribution achieved by 

shuffling trial indices independently for each place field is shown in blue. The null 

distribution achieved by shuffling trial indices independently for each place field, while 

requiring that the shuffling only be within trials with the same condition, is shown in 

orange. Panel G shows correlations from the CA1 dataset, and panel H shows 

correlations from the CA3 dataset. 
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Figure 4: Theta cycle spiking statistics. A-B) Histograms of number spikes per theta 

cycle for same example place fields as Fig. 2A-B.  Only theta cycles in which there was 

at least one spike (where the appropriate map is being used, so stereotyped activity is 

expected) are counted. Top: high rate condition; bottom: low rate condition. Mean 

number of spikes per active theta cycle (green lines) is different in the two conditions. 

Panel A shows data from a place field from the CA1 dataset and panel B shows data 

from a place field from the CA3 dataset. C-D) For each place field, the distributions of 

spikes per theta cycle are compared between the two conditions using the Kolmogorov-

Smirnov test. The p-value of each test for each place field is plotted as a function of 

extent of rate remapping for that place field (purple dots). Almost all place fields with 

greater than 2-fold rate remapping had highly significant increases (dotted line at 

p=0.01) in number of spikes per theta cycle, even when limited to theta cycles for which 

there was at least one spike in the place field. Panel C shows place fields from the CA1 

dataset, and panel D shows place fields from the CA3 dataset. E-F) For each place 

field, two dots are plotted: one (red) corresponding to the high firing rate condition and 

one (blue) corresponding to the low firing rate condition. On the x-axis is the firing rate 

in the place field for that condition, and on the y-axis is the probability of firing in any 

theta cycle for which the animal is in the place field (top) or the mean number of spikes 

that occur in a theta cycle, when restricted to theta cycles for which there was at least 

one spike (bottom). Panel E shows place fields from the CA1 dataset, and panel F 

shows place fields from the CA3 dataset. 
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Figure 5: Phase precession quality. A-B) Classic plot of phase precession for same 

example place fields as Figs.2,4 A-B.. Each dot represents a spike, where the x-position 

corresponds to the position of the animal at the time that spike was fired, and the y-position 

corresponds to the theta phase at the time of the spike. In this plot, phase precession is 

observed as a negative correlation between position and phase. Best fit lines are shown, 

calculated using only spikes fired for that condition (red line) or using spikes from both 

conditions (green dashed line). The magnitudes of the circular linear correlation (Kempter 

et al., 2012) values are very similar for both conditions, suggesting that the quality of phase 

precession is the same despite the several-fold change in firing rate. Panel A shows phase 

precession of a place field from the CA1 dataset, and panel B shows phase precession of a 

place field from the CA3 dataset. C-D) Each dot represents the phase precession quality of a 

place field, where its x-position is the absolute value of the circular-linear correlation 

coefficient for the high firing rate condition and its y-position is the absolute value of the 

circular-linear correlation coefficient for the low firing rate condition. 
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Figure 6: Two halves of theta contain different phenomena. A-B) Rate remapping extent 

by theta phase for same example place fields as Figs. 2,4,5 A-B. In red is shown the 

normalized spike count difference between the high and low firing rate (FR) conditions for 

each theta phase bin. Panel A shows a place field from the CA1 dataset, and panel B shows 

a place field from the CA3 dataset. C-D) The red line shows the population-wide average of 

the firing differences shown in panel A-B. The average normalized difference for the CA1 

dataset (C) ranges from ~0.2 at ~270 degrees to ~0.5 at ~90 degrees. The firing rate 

difference is heavily weighted towards the first half of theta, as quantified by the resultant 

vector, which is plotted on an r-axis with a range of [0,1]. The CA3 data (D) did not 

show a significant bias. E-F) Theta phase histogram of spikes in the low and high rate 

conditions. For the CA1 dataset (E), theta phase preference shifts from second half of 

theta to first half of theta between low and high rate conditions, demonstrating a 

suppression of first half firing during the low rate condition in addition to the increase 

in first half firing for the high rate condition. For the CA3 dataset (F), no significant 

effect exists. G-H) For each place field, the preferred phase of rate remapping is plotted 

on the x-axis, and the preferred phase of phase precession is plotted on the y-axis. G) 

Phase preferences of place fields from the CA1 dataset. Place fields cluster in the top 

left corner corresponding to a preference of rate remapping for the first half of theta and 

a preference of phase precession for the second half of theta. H) Phase preferences of 

place fields from the CA3 dataset. Place fields are over-represented in the top half, 

corresponding to a preference of phase precession for the second half of theta, but there 

does not seem to be a consistently preferred phase of rate remapping. 

 

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



 

 

Phenomenon 

Theta Phase 

preference of 

Phenomenon 

Input Necessary 

for that 

Phenomenon 

CA1 Layer 

receiving that 

Input 

Gamma 

Frequency of 

that CA1 Layer 

Theta Phase of 

that γ band & 

CA1 Layer 

Rate 

Remapping 

∼0-180
o [1] PFC 

via thalamus [2] 

L-M 

(distal) [3] 

∼60-100 Hz [4] ∼270-90
o [4] 

Phase 

Precession 

∼180-360
o [1] medial EC2 via 

CA3 [5] 

Radiatum 

(proximal) [6] 

∼30-60 Hz [4] ∼90-200
o [4] 

 

Table 1: Spatial and temporal segregation of CA1 phenomena. For each firing 

phenomenon expressed by CA1 place cells, this table shows the theta phase during 

which that phenomenon is dominant, the input giving rise to that phenomenon, and 

which layer of CA1 that input arrives in. PFC: pre-frontal cortex, L-M: lacunosum- 

moleculare, EC2: layer II of entorhinal cortex. [1]: Current paper, [2]: (Ito et al., 2015), 

[3]:(Ramón y Cajal, 1911), [4]: (Schomburg et al., 2014), [5]: (Schlesiger et al., 2015; 

Jaramillo et al., 2014), [6]: (Herkenham, 1978; Steward and Scoville, 1976). 
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Spikes per theta Histogram for PF 5:11:1, K-S p(Hi==Lo) = 0.25
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