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1 Introduction

Mixed-integer nonlinear programs (MINLPs) provide a powerful framework for mathemat-

ical modeling of problems that involve discrete and continuous decisions and nonlinearities.

Over the past several decades there has been a tremendous amount of work on the devel-

opment and solution of MINLP models in various engineering areas [1] [2], from product

and process design to process operation and control [3]. These problems have been tra-

ditionally solved with deterministic models, although the real systems are almost always

uncertain. Recently, more and more attention has been paid to including uncertainties into

the optimization models [4], especially when the uncertainties have a significant impact on

the decision made. Stochastic programming with recourse [5] is a natural way to address un-

certainties in various engineering problems, such as natural gas production network design

[6], oil or gas field infrastructure planning [7], water network synthesis [8], optimal storage

design [9], chemical process synthesis [10], capacity expansion [11], etc.

This paper is devoted to scenario-based, two-stage stochastic MINLPs with recourse,

whose deterministic equivalent programs exhibit the following structure:

min
x1,...,xs,y

s

∑
h=1

wh
(
cT

h y+ fh(xh)
)

s.t. gh(xh)+Bhy≤ 0, ∀h ∈ {1, ...,s},

xh ∈ Xh, ∀h ∈ {1, ...,s},

y ∈ Y,

(P)

where Xh = {xh ∈ Πh ⊂ Rnx : ph(xh) ≤ 0}, Y = {y ∈ {0,1}ny : Ay ≤ d}, Πh is convex,

functions fh : Πh→ R, gh : Πh→ Rm and ph : Πh→ Rmp are continuous, and it is assumed

at least one function in Problem (P) is nonconvex. The uncertainties are characterized by

s different uncertainty realizations, also called scenarios [5] [12], which are indexed by h.
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The binary variables y represent first-stage decisions which are made before realization of

the uncertainties, while the continuous variables xh include second-stage decisions made

after the outcome of scenario h and the corresponding dependent variables. cT
h y represents

the cost associated with the first-stage decisions for scenario h and fh(xh) represents the cost

associated with the second-stage decisions for scenario h. wh > 0 represents the probability

of the occurrence of scenario h. Notice that if there are any linear or nonlinear equality

constraints in the problem, they can be written as paired inequalities. Obviously, the size of

Problem (P) depends on the number of scenarios addressed, s. When s is large, Problem (P)

is a large-scale MINLP even if the model with one scenario is small.

Due to their special structures, two-stage stochastic programs with recourse [5] have

long been solved with duality-based decomposition methods. The advantage of the duality-

based decomposition methods is that the sizes of the subproblems to be solved are inde-

pendent of the number of scenarios addressed, and most of the subproblems can be solved

in parallel. One class of such methods is Benders decomposition (BD) [13], also called the

L-shaped method in the stochastic programming literature [14], and its extension to nonlin-

ear problems, generalized Benders decomposition (GBD) [15]. In BD or GBD, the original

problem is projected onto the space of first-stage variables and reformulated into a dual

problem that contains an infinite number of constraints, which is then relaxed into a lower

bounding problem with a finite subset of these constraints. After fixing the first-stage vari-

ables to the solution of the lower bounding problem, the original problem becomes an upper

bounding problem, which can naturally be decomposed into smaller subproblems for each

of the scenarios. The solutions of a sequence of upper bounding problems give a sequence

of nondecreasing upper bounds on the optimal objective function value while the solutions

of a sequence of lower bounding problems give a sequence of nonincreasing lower bounds.

An optimum of the original problem is obtained when the upper and lower bounds con-

verge. Such convergence relies on strong duality during the dual reformulation and it is not

guaranteed for many nonconvex problems.

Another class of duality-based decomposition methods is Lagrangian decomposition

[16] [17]. In Lagrangian decomposition, the first-stage variables are duplicated for each of
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the scenarios and the variables in different scenarios are linked with additional equality con-

straints. The dual of this problem, which is generated by dualizing the linking constraints

into the objective function, is convex but nonsmooth. This nonsmooth problem is usually

solved with a subgradient method (e.g., [18]), in which each subproblem can naturally be

decomposed into smaller subproblems for different scenarios. Since Lagrangian decompo-

sition is usually applied to nonconvex problems for which strong duality does not hold, this

method is usually performed within a branch-and-bound framework to guarantee conver-

gence to a global optimum. For example, Karuppiah and Grossmann [19] have developed a

branch-and-cut method for solving a class of stochastic MINLP problems, where Lagrangian

decomposition is used to generate cuts to strengthen the subproblems obtained through con-

vex relaxation. Khajavirad and Michalek [20] have developed a similar method for a class of

quasiseparable MINLP problems. However, convergence of the upper and lower bounds in

both methods can only be guaranteed by branching in the full variable space, whose dimen-

sion depends on the number of scenarios addressed. Therefore, these methods may not be

able to solve problems with large numbers of scenarios rigorously within reasonable time.

As a nonconvex MINLP, Problem (P) can be solved rigorously by general-purpose de-

terministic global optimization methods, such as branch-and-reduce [21], SMIN-αBB and

GMIN-αBB [22], and nonconvex outer approximation [23] (which is an extension of tradi-

tional outer approximation methods [24] [25] to programs with nonconvex functions partici-

pating). However, these methods cannot fully exploit the decomposable structure of Problem

(P), i.e., they cannot solve Problem (P) via solving subproblems whose sizes are all inde-

pendent of the number of scenarios, so they are usually not practical for problems with large

numbers of scenarios.

This paper presents an extension of GBD to handle nonconvexity in Problem (P) rig-

orously, which can obtain an ε-optimal solution for Problem (P) in finite time. The new

GBD method is termed nonconvex generalized Benders decomposition (NGBD). The re-

maining part of the paper is organized as follows: Section 2 introduces the general idea of

NGBD along with the reformulation of Problem (P) and the resulting subproblems. Sec-

tion 3 proves the important properties of the subproblems and Sections 4 gives the NGBD
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algorithm with a finite convergence result. Section 5 presents the case study results which

demonstrate the computational advantage of NGBD over state-of-the-art global optimizers

for stochastic MINLP. The paper ends with concluding remarks in Section 6.

2 Reformulation and the Subproblems

GBD can be viewed as a result of applying the framework of concepts presented by Ge-

offrion for the design of large-scale mathematical programming techniques [26] [27]. The

framework includes two groups of concepts: problem manipulations and solution strategies.

Problem manipulations, including projection, dualization, inner linearization and outer lin-

earization, are devices for restating a given problem in an alternative form more amenable

to solution. The result is often what is referred to as a master problem. Solution strategies,

including relaxation, restriction and piecewise linearization, reduce the master problem to

a related sequence of simpler subproblems. GBD employs the concepts of projection, du-

alization, restriction and relaxation; for nonconvex problems, the dualization manipulation

may affect the convergence property of the method because of duality gap. The NGBD pro-

posed in this paper extends GBD to solve problem with nonconvex functions participating,

by adding an additional convex lower bounding problem as a surrogate of the original prob-

lem. The traditional GBD iteration is applied to the convex lower bounding problem instead

of the original problem, which not only yields a sequence of valid lower bounds for the

original problem, but also gives hints to construct a sequence of primal subproblems that

provide valid upper bounds for the original problem.

Before the lower bounding problem and the other subproblems in nonconvex GBD are

detailed, the following assumptions are made:

Assumption 2.1. Set Y is nonempty.

Assumption 2.2. Set Xh is nonempty and compact for any h ∈ {1, . . . ,s}.

Remark 2.1 Assumption 2.2 implies that the feasible set of Problem (P) is compact for y

fixed to any element in Y . So Problem (P) either has finite optimal objective value or is

infeasible due to the continuity of the functions therein.
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2.1 Convexification - Lower Bounding Problem

Definition 2.1 (Convex Relaxation) Given convex sets Πh and Θh ⊂ Rnq , continuous func-

tions u f ,h : Πh×Θh→R, ug,h : Πh×Θh→Rm, up,h : Πh×Θh→Rmp , uq,h : Πh×Θh→Rmq

define convex relaxations of functions fh, gh, ph, qh, if:

(1) u f ,h, ug,h, up,h and uq,h are convex on Πh×Θh;

(2) For any x̂h ∈Πh, there exists q̂h ∈Θh so that u f ,h(x̂h, q̂h)≤ fh(x̂h), ug,h(x̂h, q̂h)≤ gh(x̂h),

up,h(x̂h, q̂h)≤ ph(x̂h) and uq,h(x̂h, q̂h)≤ 0.

The convex relaxations involve additional variables qh and constraints uq,h(xh,qh) ≤ 0

that may be required to construct differentiable relaxations. Several convex relaxation tech-

niques are available to generate convex relaxations, e.g., McCormick relaxation [28] and

outer linearization [21] for factorable nonconvex functions, which usually introduce addi-

tional variables and constraints for differentiable relaxations, and αBB for twice-differentiable

nonconvex functions [29], which does not require additional variables and constraints. Read-

ers can refer to [30] for more discussions on the convex relaxation techniques.

Since Problem (P) is separable in the continuous and the integer variables, the contin-

uous and discrete feasible regions can be individually characterized [24]. So it suffices to

replace the nonconvex functions in Problem (P) with their convex relaxations to yield a

lower bounding problem in the following form:

min
x1,...,xs,

q1,...,qs,y

s

∑
h=1

wh
(
cT

h y+u f ,h(xh,qh)
)

s.t. ug,h(xh,qh)+Bhy≤ 0, ∀h ∈ {1, ...,s},

(xh,qh) ∈ Dh, ∀h ∈ {1, ...,s},

y ∈ Y,

(LBP)

where Dh = {(xh,qh) ∈ Πh ×Θh : up,h(xh,qh) ≤ 0,uq,h(xh,qh) ≤ 0}. Obviously, Problem

(LBP) is convex. If the functions fh,gh, ph in Problem (P) are all convex, Problem (LBP) is

equivalent to Problem (P) and the NGBD method reduces to the traditional GBD method.

Assumption 2.3. Set Dh is compact for any h ∈ {1, ...,s}.
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Remark 2.2 Assumption 2.3 implies that the feasible set of Problem (LBP) is compact for

y fixed to any element in Y . So Problem (LBP) either has finite optimal objective value or is

infeasible due to the continuity of the functions therein.

Assumption 2.4. Problem (LBP) satisfies Slater’s condition for y fixed to those elements in

Y for which Problem (LBP) is feasible.

Remark 2.3 Assumption 2.4 implies that strong duality holds for Problem (LBP) for y fixed

to those elements in Y for which Problem (LBP) is feasible. This validates the dualization

manipulation of the problem to a master problem.

Remark 2.4 Linear equalities may appear in Problem (LBP) as paired linear inequalities.

For this case, a refined Slater’s condition [31] for Problem (LBP) (to guarantee strong

duality) can be stated as: For Problem (LBP) for y fixed to any element in Y for which

Problem (LBP) is feasible, there exist (x̂h, q̂h) ∈ relint(Πh×Θh) (h = 1, ...,s) for which all

the linear constraints of Problem (LBP) are satisfied and all the nonlinear inequalities of

the problem are strictly satisfied. Here relint(·) denotes the relative interior of a set.

2.2 Projection/Dualization - Master Problem

Problem (LBP) is potentially a large-scale convex MINLP because the number of its contin-

uous variables depends on the number of scenarios addressed in the problem. According to

the principle of projection explained in [15], Problem (LBP) can be projected from the space

of both the continuous and integer variables to the space of the integer variables, and any

subproblem with a fixed integer realization can be reformulated into its dual. Thus, Problem
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(LBP) can be transformed into the following master problem:

min
η ,y

η

s.t. η ≥
s

∑
h=1

inf
(xh,qh)∈Dh

[
whu f ,h(xh,qh)+λ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

(
whcT

h +λ
T
h Bh

))
y,

∀λ1, ...,λs ≥ 0

0≥
s

∑
h=1

inf
(xh,qh)∈Dh

[
µ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ
T
h Bh

)
y, ∀(µ1, ...,µs) ∈M1,

y ∈ Y, η ∈ R,

(MP1)

where

λh ∈ Rm, µh ∈ Rm, h = 1, ...,s,

and

M1 = {(µ1, ...,µs) : µ1, ...,µs ≥ 0,
s

∑
h=1

m

∑
i=1

µh,i = 1}.

For convenience of establishing valid subproblems later, Problem (MP1) is further reformu-

lated into the following form (by replacing set M1 with set M):

min
η ,y

η

s.t. η ≥
s

∑
h=1

inf
(xh,qh)∈Dh

[
whu f ,h(xh,qh)+λ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

(
whcT

h +λ
T
h Bh

))
y,

∀λ1, ...,λs ≥ 0

0≥
s

∑
h=1

inf
(xh,qh)∈Dh

[
µ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ
T
h Bh

)
y, ∀(µ1, ...,µs) ∈M,

y ∈ Y, η ∈ R,

(MP)

where

M = {(µ1, ...,µs) : µ1, ...,µs ≥ 0,
s

∑
h=1

m

∑
i=1

µh,i > 0}.

The equivalence of Problems (MP1) and (MP) will be proved in the next section.
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2.3 Restriction - Primal Problem, Primal Bounding Problem and Feasibility Problem

The primal problem is obtained through restricting y in Problem (P) to an element y(l) in

Y , where the superscript l enumerates the sequence of integer realizations visited by the

primal problem (i.e., the integer realizations for which the primal problem was solved). This

problem can be written as follows:

ob jPP(y(l)) = min
x1,...,xs

s

∑
h=1

wh

(
cT

h y(l)+ fh(xh)
)

s.t. gh(xh)+Bhy(l) ≤ 0, ∀h ∈ {1, ...,s},

xh ∈ Xh, ∀h ∈ {1, ...,s},

(PPl)

where ob jPP(y(l)) denotes the optimal objective value of Problem (PPl) (which depends on

the integer realization y(l)). Problem (PPl) can naturally be decomposed into subproblems

for each of the s scenarios as follows:

ob jPPh(y
(l)) =min

xh
wh

(
cT

h y(l)+ fh(xh)
)

s.t. gh(xh)+Bhy(l) ≤ 0,

xh ∈ Xh,

(PPl
h)

where ob jPPh(y
(l)) denotes the optimal objective value of Problem (PPl

h), h = 1, ...,s. Obvi-

ously, ob jPP(y(l)) = ∑
s
h=1 ob jPPh(y

(l)).

Remark 2.5 The nonlinear programming (NLP) problem (PPl
h) can be solved to ε-optimality

in finite time by state-of-the-art global optimization solvers, such as BARON [21] [32], pro-

vided suitable convex underestimators of the participating functions can be constructed.

Similarly, the primal bounding problem is obtained through restricting y in Problem

(LBP) to an element y(k) in Y , where the superscript k enumerates the sequence of integer
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realizations visited by the primal bounding problem. This problem can be written as follows:

ob jPBP(y(k)) = min
x1,...,xs,
q1,...,qs

s

∑
h=1

wh

(
cT

h y(k)+u f ,h(xh,qh)
)

s.t. ug,h(xh,qh)+Bhy(k) ≤ 0, ∀h ∈ {1, ...,s},

(xh,qh) ∈ Dh, ∀h ∈ {1, ...,s},

(PBPk)

where ob jPBP(y(k)) denotes the optimal objective value of Problem (PBPk). The primal

bounding problem can naturally be decomposed into subproblems for each of the s sce-

narios as follows:

ob jPBPh(y
(k)) =min

xh,qh
wh(cT

h y(k)+u f ,h(xh,qh))

s.t. ug,h(xh,qh)+Bhy(k) ≤ 0,

(xh,qh) ∈ Dh,

(PBPk
h)

where ob jPBPh(y
(k)) denotes the optimal objective value of Problem (PBPk

h), h = 1, ...,s.

Obviously, ob jPBP(y(k)) = ∑
s
h=1 ob jPBPh(y

(k)).

If Problem (PBPk
h) is infeasible for a scenario, Problem (PBPk) is infeasible. Then the

following feasibility problem is solved:

ob jFP(y(k)) = min
x1,...,xs,q1,...,qs,

z1,...,zs

s

∑
h=1

wh||zh||

s.t. ug,h(xh,qh)+Bhy(k) ≤ zh, ∀h ∈ {1, ...,s},

(xh,qh) ∈ Dh, zh ∈ Zh, ∀h ∈ {1, ...,s},

(FPk)

where ob jFP(y(k)) denotes the optimal objective value of Problem (FPk), ||zh|| denotes an

arbitrary norm of the slack variable vector zh for h = 1, ...,s, set Zh ⊂ {z ∈ Rm : z≥ 0} and

it has three additional properties (for h = 1, ...,s):

(1) Zh is a convex set;

(2) Zh is a pointed cone, i.e., 0 ∈ Zh, and ∀α > 0,z ∈ Zh implies αz ∈ Zh;

(3) There exists ẑ ∈ Zh such that ẑ > 0 (therefore the cone Zh is unbounded from above in

each dimension).
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Each element of z measures the violation of a constraint, so the norm of z is minimized for

minimum violation of the constraints. Since any norm function is convex, Problem (FPk) is

convex. Again, Problem (FPk) can naturally be decomposed into convex subproblems for

each of the s scenarios as follows:

ob jFPh(y
(k)) = min

xh,qh,zh
wh||zh||

s.t. ug,h(xh,qh)+Bhy(k) ≤ zh,

(xh,qh) ∈ Dh, zh ∈ Zh,

(FPk
h)

where ob jFPh(y
(k)) denotes the optimal objective value of Problem (FPk

h), h = 1, ...,s, and

∑
s
h=1 ob jFPh(y

(k)) = ob jFP(y(k)).

Remark 2.6 If the convex subproblems (PBPk
h) and (FPk

h) are smooth, they can be solved

by gradient-based optimization solvers such as CONOPT [33], SNOPT [34], CPLEX [35]

(only for linear programs, convex quadratic programs and quadratically constrained pro-

grams). Otherwise, they may be solved by nonsmooth optimization methods such as bundle

methods [36].

Remark 2.7 When the number of scenarios addressed is large, wh may be so small that

the optimal objective values of Problems (PPl
h), (PBPk

h) and (FPk
h) are smaller than the

tolerance set for the optimization (for some scenarios). To avoid such ill-conditioning in

practice, these problems can be solved without multiplying the cost function by wh.

2.4 Relaxation - Relaxed Master Problem

Although the number of decision variables in the master problem is independent of the

number of scenarios in the original problem, the master problem (MP) is still difficult to

solve directly because of the infinite number of constraints. For easier solution, Problem

(MP) is relaxed at the kth GBD iteration into the following relaxed master problem with a
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finite number of constraints:

min
η ,y

η

s.t. η ≥
s

∑
h=1

inf
(xh,qh)∈Dh

[
whu f ,h(xh,qh)+

(
λ
( j)
h

)T
ug,h(xh,qh)

]

+

(
s

∑
h=1

(
whcT

h +
(

λ
( j)
h

)T
Bh

))
y, ∀ j ∈ T k,

0≥
s

∑
h=1

inf
(xh,qh)∈Dh

[(
µ
(i)
h

)T
ug,h(xh,qh)

]
+

(
s

∑
h=1

(
µ
(i)
h

)T
Bh

)
y, ∀i ∈ Sk,

∑
r∈{r:y(t)r =1, r=1,...,ny}

yr− ∑
r∈{r :y(t)r =0, r=1,...,ny}

yr ≤ |{r : y(t)r = 1}|−1,

∀t ∈ T k ∪Sk,

y ∈ Y, η ∈ R,

(RMP1k)

where the index sets

T k = { j ∈ {1, ...,k} : Problem (PBP) is feasible for y = y( j)},

Sk = {i ∈ {1, ...,k} : Problem (PBP) is infeasible for y = y(i)}.

λ
( j)
h are the Lagrange multipliers for Problem (PBP j

h), which form an optimality cut

for iteration j (∀ j ∈ T k). µ
(i)
h are the Lagrange multipliers for Problem (FPi

h), which form a

feasibility cut for iteration i (∀i∈ Sk). The additional constraints in Problem (RMP1k), which

do not appear in the master problem (MP) stated before, represent a set of canonical integer

cuts that prevent the previously examined integer realizations from becoming a solution

[37].

Definition 2.2 λ ∗ is a Lagrange multiplier for the optimization problem

min
x

f (x)

s.t. g(x)≤ 0,

x ∈ X ,

12



if λ ∗ ≥ 0 and f (x∗) = infx∈X
[

f (x)+(λ ∗)Tg(x)
]
, where x∗ denotes an optimal solution of

the problem.

Remark 2.8 Definition 2.2 for Lagrange multipliers follows from [38] in the context of

duality theory (where they are called geometric multipliers instead). This definition is con-

sistent with the one used by Geoffrion (where they are called optimal multipliers) for the

GBD method [15] and duality theory [39]. Note that the Lagrange multipliers defined here

are in general different from the multipliers that satisfy the Karush-Kuhn-Tucker (KKT) con-

ditions, which are usually called KKT multipliers. However, for the convex program (PBPk
h)

or (FPk
h) discussed in this paper, KKT multipliers are also Lagrange multipliers, as implied

by the theorem on page 211 of [40]. State-of-the-art optimization solvers, such as CONOPT,

SNOPT, CPLEX, offer such multiplier values at the solution, so there is no need to develop

an additional algorithm to obtain the Lagrange multipliers for Problem (PBPk
h) or (FPk

h) in

NGBD.

When T k = /0, Problem (RMP1k) is unbounded; in this case, the following feasibility

relaxed master problem is solved instead:

min
y

ny

∑
i=1

yi

s.t. 0≥
s

∑
h=1

inf
(xh,qh)∈Dh

[(
µ
(i)
h

)T
ug,h(xh,qh)

]
+

(
s

∑
h=1

(
µ
(i)
h

)T
Bh

)
y, ∀i ∈ Sk,

∑
r∈{r:y(t)r =1, r=1,...,ny}

yr− ∑
r∈{r :y(t)r =0, r=1,...,ny}

yr ≤ |{r : y(t)r = 1}|−1, ∀t ∈ Sk,

y ∈ Y.

(FRMP1k)

As will be demonstrated in the next section, the inner optimization problems in Problems

(RMP1k) and (FRMP1k) can be removed according to the solution of the previously solved

primal bounding problems and feasibility problems. Then Problem (RMP1k) is equivalent
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to the following single-level mixed-integer linear program (MILP):

min
η ,y

η

s.t. η ≥ ob jPBP(y( j))+

(
s

∑
h=1

(
whcT

h +
(

λ
( j)
h

)T
Bh

))(
y− y( j)

)
, ∀ j ∈ T k,

0≥ ob jFP(y(i))+

(
s

∑
h=1

(
µ
(i)
h

)T
Bh

)(
y− y(i)

)
, ∀i ∈ Sk,

∑
r∈{r:y(t)r =1, r=1,...,ny}

yr− ∑
r∈{r :y(t)r =0, r=1,...,ny}

yr ≤ |{r : y(t)r = 1}|−1,

∀t ∈ T k ∪Sk,

y ∈ Y, η ∈ R,

(RMPk)

and Problem (FRMP1k) is:

min
y

ny

∑
i=1

yi

s.t. 0≥ ob jFP(y(i))+

(
s

∑
h=1

(
µ
(i)
h

)T
Bh

)(
y− y(i)

)
, ∀i ∈ Sk,

∑
r∈{r:y(t)r =1, r=1,...,ny}

yr− ∑
r∈{r :y(t)r =0, r=1,...,ny}

yr ≤ |{r : y(t)r = 1}|−1, ∀t ∈ Sk

y ∈ Y.

(FRMPk)

Notice that the size of Problem (RMPk) or Problem (FRMPk) is independent of the number

of the scenarios in the original problem.

2.5 Summary

This section details the reformulation of the original stochastic MINLP into a collection

of subproblems through convexification, projection/dualization, restriction and relaxation.

Figure 1 summarizes these subproblems and the way to obtain them. The subproblems in

boxes with dashed lines are the intermediate subproblems for the reformulation which are

not solved directly in NGBD. The subproblems in boxes with solid lines are solved directly

in NGBD (by calling appropriate optimization solvers), including relaxed master problem
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s
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PP 

Subproblem 1 

(PP1)
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Subproblem s

(PP
s
)

Decomposition Decomposition

Decomposition

Figure 1 Overview of the reformulation and the subproblems in nonconvex GBD.

and feasibility relaxed master problem, decomposed primal bounding subproblems and fea-

sibility subproblems, and decomposed primal subproblems. Notice that the sizes of all the

subproblems to be solved are independent of the number of the scenarios addressed by the

original problem. Next, the important properties of the subproblems derived in this section

will be outlined and discussed via a set of propositions in Section 3. Based on these results,

the NGBD algorithm is developed with a convergence proof in Section 4.

3 Properties of the Subproblems

Proposition 3.1 The optimal objective value of Problem (LBP) represents a lower bound

on the optimal objective value of Problem (P).

Proof. According to Definition 2.1 for the convex relaxations, for any (x̂1, .., x̂s, ŷ) that

is feasible to Problem (P), there exists q̂h ∈ Θh which gives u f ,h(x̂h, q̂h) ≤ fh(x̂h) ≤ 0,

ug,h(x̂h, q̂h) ≤ gh(x̂h) ≤ 0, up,h(x̂h, q̂h) ≤ ph(x̂h) ≤ 0 and uq,h(x̂h, q̂h) ≤ 0 (h = 1, ...,s). So

15



(x̂1, .., x̂s, q̂1, .., q̂s, ŷ) is feasible to Problem (LBP) and it renders an optimal objective value

∑
s
h=1 wh

(
u f ,h(x̂h, q̂h)+ cT

h ŷ
)
≤∑

s
h=1 wh

(
fh(x̂h)+ cT

h ŷ
)

(noticing wh > 0). Therefore the lower

bounding property follows.

Proposition 3.2 Problems (LBP) and (MP1) are equivalent in the sense that:

(1) Problem (LBP) is feasible iff Problem (MP1) is feasible;

(2) The optimal objective values of Problems (LBP) and (MP1) are the same;

(3) The optimal objective value of Problem (LBP) is attained with an integer realization iff

the optimal objective value of Problem (MP1) is attained with the same integer realization.

Proof. Given Assumption 2.4, the results follow immediately from Theorems 2.1, 2.2 and

2.3 in [15].

Proposition 3.3 Problems (MP1) and (MP) are equivalent in the sense that:

(1) Problem (MP1) is feasible iff Problem (MP) is feasible;

(2) The optimal objective values of Problems (MP1) and (MP) are the same;

(3) The optimal objective value of Problem (MP1) is attained with an integer realization iff

the optimal objective value of Problem (MP) is attained with the same integer realization.

Proof. The results can be proved by showing that Problems (MP1) and (MP) have the same

feasible set. Denote the feasible regions of Problems (MP1) and (MP) by FMP1 and FMP,

respectively. FMP1 = FMP can be proved by showing FMP ⊂ FMP1 and FMP1 ⊂ FMP.

First, for any (ŷ, η̂) ∈ FMP,

s

∑
h=1

inf
(xh,qh)∈Dh

[
µ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ
T
h Bh

)
y≤ 0, ∀(µ1, ...,µs) ∈M,

so
s

∑
h=1

inf
(xh,qh)∈Dh

[
µ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ
T
h Bh

)
y≤ 0, ∀(µ1, ...,µs) ∈M1,

because M1⊂M. Therefore, FMP ⊂ FMP1.

Second, for any (ŷ, η̂) ∈ FMP1,

s

∑
h=1

inf
(xh,qh)∈Dh

[
µ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ
T
h Bh

)
y≤ 0, ∀(µ1, ...,µs) ∈M1, (1)
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For such (ŷ, η̂), for any (µ̂1, ..., µ̂s) ∈M,

s

∑
h=1

m

∑
i=1

µ̂h,i > 0, (2)

so new multipliers (µ̃1, ..., µ̃s) can be defined as

µ̃h,i = µ̂h,i/

(
s

∑
h=1

m

∑
i=1

µ̂h,i

)
, ∀h ∈ {1, ...,s}, ∀i ∈ {1, ...,m}, (3)

then

(µ̃1, ..., µ̃s) ∈M1. (4)

From (1) and (4),

s

∑
h=1

inf
(xh,qh)∈Dh

[
µ̃

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ̃
T
h Bh

)
y≤ 0. (5)

Considering (2), (3) and (5)

s

∑
h=1

inf
(xh,qh)∈Dh

[
µ̂

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ̂
T
h Bh

)
y

=

(
s

∑
h=1

m

∑
i=1

µ̂h,i

)(
s

∑
h=1

inf
(xh,qh)∈Dh

[
µ̃

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ̃
T
h Bh

)
y

)

≤0

Therefore,

s

∑
h=1

inf
(xh,qh)∈Dh

[
µ

T
h ug,h(xh,qh)

]
+

(
s

∑
h=1

µ
T
h Bh

)
y≤ 0, ∀(µ1, ...,µs) ∈M

as well, so (ŷ, η̂) ∈ FMP too. Thus, FMP1 ⊂ FMP.

Proposition 3.4 For y fixed to any element in Y , if Problem (PPl) is feasible, its optimal

objective value is no less than the optimal objective value of Problem (P).

Proof. This result trivially holds due to the construction of Problem (PPl) and the principle

of restriction.
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Proposition 3.5 If the primal problem (PPk) is feasible, the corresponding primal bounding

problem (PBPk) is feasible as well. In this case, the optimal objective value of Problem (PPk)

is no less than that of Problem (PBPk). The same relationship holds for the decomposed

primal subproblem (PPk
h) and the decomposed primal bounding subproblem (PBPk

h) for

each scenario.

Proof. This can be proved according to the construction of these problems and Definition

2.1 in the same way to prove Proposition 3.1.

Remark 3.1 Proposition 3.5 implies that, if the optimal objective value of Problem (PBPk
h)

is worse than that of Problem (P), there is no need to solve Problem (PPk) because y = y(k)

cannot lead to an optimum of Problem (P). This property will be exploited in the NGBD

algorithm to reduce the number of the primal problems to be solved, since obtaining a

global optimum for the primal problem is computationally expensive.

Proposition 3.6 Denote the known upper bound on the optimal objective value of Problem

(P) by UBD. If Problem (PPl) is feasible and ob jPP(y(l))≤UBD, then

objPPh
(y(l))≤UBDh =UBD−

h−1

∑
i=1

ob jPPi(y
(l))−

s

∑
j=h+1

ob jPBP j (y
(l))

for any h ∈ {1, ...,s}.

Proof. If Problem (PPl) is feasible, Problem (PPl
h) is feasible for any h ∈ {1, ...,s}. Since

ob jPP(y(l)) =
s

∑
h=1

ob jPPh(y
(l)),

ob jPPh(y
(l)) = ob jPP(y(l))−

h−1

∑
i=1

ob jPPi(y
(l))−

s

∑
j=h+1

ob jPP j (y
(l)), ∀h ∈ {1, ...,s}.

According to Proposition 3.5,

ob jPBPh(y
(l))≤ ob jPPh(y

(l)), ∀h ∈ {1, ...,s},

so

ob jPPh(y
(l))≤UBD−

h−1

∑
i=1

ob jPPi(y
(l))−

s

∑
j=h+1

ob jPBP j (y
(l)), ∀h ∈ {1, ...,s}.
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Remark 3.2 Since UBDh =UBD−∑
h−1
i=1 ob jPPi(y

(l))−∑
s
j=h+1 ob jPBP j (y

(l)) can be calcu-

lated before solving Problem (PPl
h), this value can be used to accelerate the global solution

of Problem (PPl
h) without excluding a solution that may lead to a global optimum of Problem

(P). For example, this value can be used in branch-and-bound type solver, such as BARON,

to fathom the nodes that do not contain solutions better than UBDh.

Proposition 3.7 For any h ∈ {1, ...,s}, Problem (FPk
h) satisfies Slater’s condition and it

always has a minimum, say (x∗h,q
∗
h,z
∗
h). ||z∗h|| > 0 for those scenarios in which Problem

(PBPk
h) is infeasible.

Proof. According to Assumption 2.4, set Dh has at least one Slater point, say (x̂h, q̂h). Due

to the continuity of function ug,h, ug,h(x̂h) + Bhy(k) is finite, so there exists ẑh ∈ Zh such

that ug,h(x̂h)+Bhy(k) < ẑh. Then (x̂h, q̂h, ẑh) is a Slater point of Problem (FPk
h), and strong

duality holds for the problem. In addition, Problem (FPk
h) has a closed feasible set and ||zh|| is

continuous and coercive on Zh, so Problem (FPk
h) has a minimum according to Weierstrass’

Theorem [38]. If Problem (PBPk
h) is infeasible for scenario h, z∗h 6= 0, so ||z∗h||> 0.

Proposition 3.8 If µ∗h are Lagrange multipliers for Problem (FPk
h) (h = 1, ...,s), then:

(1) µ∗h ≥ 0;

(2) inf(xh,qh)∈Dh

[
(µ∗h )

T
(

ug,h(xh,qh)+Bhy(k)
)]

> 0 and ∑
m
i=1 µ∗h,i > 0 for those scenarios in

which Problem (PBPk
h) is infeasible;

(3) µ∗h = 0 are valid Lagrange multiplier values for Problem (FPk
h) for those scenarios in

which Problem (PBPk
h) is feasible;

(4) (µ∗1 , ...,µ
∗
s ) are Lagrange multipliers for Problem (FPk) and ∑

s
h=1 ∑

m
i=1 µ∗h,i > 0.

Proof. First, as Lagrange multipliers,

µ
∗
h ≥ 0, ∀h ∈ {1, ...,s}. (6)
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Second, let (x∗h,q
∗
h,z
∗
h) be a minimum of Problem (FPk

h), then due to strong duality,

wh||z∗h||= inf
(xh,qh,zh)∈Dh×Zh

[
wh||zh||+(µ∗h )

T
(

ug,h(xh,qh)+Bhy(k)− zh

)]
= inf

zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
+ inf

(xh,qh)∈Dh

[
(µ∗h )

T
(

ug,h(xh,qh)+Bhy(k)
)]

.

(7)

Suppose that

inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
< 0, (8)

then ∃ε > 0 such that

inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
<−ε. (9)

Hence, ∀α > 0,

α inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
<−αε, (10)

which is

inf
zh∈Zh

[
wh||αzh||− (µ∗h )

T(αzh)
]
<−αε. (11)

Since ∀zh ∈ Zh, αzh ∈ Zh as well,

inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
= inf

zh∈Zh

[
wh||αzh||− (µ∗h )

T(αzh)
]
<−αε (12)

and therefore

inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
=−∞. (13)

Equations (7) and (13) imply wh||z∗h|| = −∞, so ||z∗h|| = −∞ (since wh > 0 as stated at the

beginning of the paper), which contradicts the definition of a norm. Therefore, (8) is not true

and

inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
≥ 0. (14)

When zh = 0 (∈ Zh), wh||zh||− (µ∗h )
Tzh = 0, so

inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
≤ 0. (15)
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Inequalities (14) and (15) imply

inf
zh∈Zh

[
wh||zh||− (µ∗h )

Tzh
]
= 0. (16)

Then, (7) and (16) imply

inf
(xh,qh)∈Dh

[
(µ∗h )

T
(

ug,h(xh,qh)+Bhy(k)
)]

= wh||z∗h||. (17)

If Problem (PBPk
h) is infeasible, ||z∗h||> 0, then Equation (17) implies

inf
(xh,qh)∈Dh

[
(µ∗h )

T
(

ug,h(xh,qh)+Bhy(k)
)]

> 0, (18)

which further implies

µ
∗
h 6= 0. (19)

Inequalities (6) and (19) imply
m

∑
i=1

µ
∗
h,i > 0. (20)

Third, if Problem (PBPk
h) is feasible for a scenario, the corresponding Problem (FPk

h)

has an optimal objective value of 0. According to Definition 2.2, µ∗h = 0 are valid Lagrange

multiplier values for Problem (FPk
h) for this scenario.

Finally, if a point (x∗h,q
∗
h,z
∗
h) is a minimum of Problem (FPk

h) for any h ∈ {1, ...,s}, then

the point (x∗1, ...,x
∗
s ,q
∗
1, ...,q

∗
s ,z
∗
1, ...,z

∗
s ) is a minimum of problem (FPk). According to (17),

s

∑
h=1

wh||z∗h||=
s

∑
h=1

inf
(xh,qh)∈Dh

[
(µ∗h )

T
(

ug,h(xh,qh)+Bhy(k)
)]

= inf
(xh,qh)∈Dh,
∀h∈{1,...,s}

s

∑
h=1

[
(µ∗h )

T
(

ug,h(xh,qh)+Bhy(k)
)]

.
(21)

Therefore, (µ∗1 , ...,µ
∗
s ) are Lagrange multipliers for Problem (FPk). In addition, solving

Problem (FPk) implies that the related Problem (PBPk) is infeasible, i.e., the related Problem

(PBPk
h) is infeasible for at least one scenario and for this scenario ∑

m
i=1 µ∗h,i > 0. Considering

the nonnegativity of the Lagrange multipliers, ∑
s
h=1 ∑

m
i=1 µ∗h,i > 0 holds.
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Remark 3.3 If Problem (PBPk
h) is feasible for a scenario, the optimal objective value and

one group of Lagrange multipliers of the corresponding Problem (FPk
h) are known (i.e., all

of them are zero), as indicated by (3) of Proposition 3.8. Therefore, there is no need to solve

Problem (FPk
h) for this scenario in NGBD.

Proposition 3.9 Problem (RMP1k) is a relaxation of the master problem (MP) when (MP)

is augmented with the relevant canonical integer cuts excluding the previously examined

integer realizations.

Proof. As Lagrange multipliers, λ
( j)
1 , ...,λ

( j)
s ≥ 0 (∀ j ∈ T k). According to Proposition 3.8,

(µ
(i)
1 , ...,µ

(i)
s ) ∈ M (∀i ∈ Sk). Therefore, Problem (RMP1k) is a relaxation of the master

problem (MP) excluding all the previously examined integer variables (i.e., augmented with

the integer cuts).

Proposition 3.10 Problems (RMP1k) and (RMPk) are equivalent.

Proof. This follows from the separability of the functions in the continuous and the integer

variables. Detailed proof can be found in [15].

Corollary 3.1 The relaxed master problems (RMP) and the feasibility relaxed master prob-

lem (FRMP) never generate the same integer solution twice.

Corollary 3.2 The optimal objective value of Problem (RMPk) is a valid lower bound for

the lower bounding problem (LBP) (or the master problem (MP)) augmented with the rele-

vant canonical integer cuts and the original problem (P) augmented with the relevant canon-

ical integer cuts.

4 NGBD Algorithm

4.1 Algorithm

Initialize:

1. Iteration counters k = 0, l = 1, and the index sets T 0 = /0 , S0 = /0 , U0 = /0.
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2. Upper bound on the problem UBD =+∞, upper bound on the lower bounding prob-

lem UBDPB =+∞, lower bound on the lower bounding problem LBD =−∞.

3. Set tolerances εh and ε such that ∑
s
h=1 εh ≤ ε .

4. Integer realization y(1) is given.

repeat

if k = 0 or (Problem (RMPk) is feasible and LBD < UBDPB and LBD < UBD− ε)

then

repeat

Set k = k+1

1. Solve the decomposed primal bounding subproblem (PBPk
h) for each scenario

h= 1, ...,s sequentially. If Problem (PBPk
h) is feasible and has duality multipli-

ers λ
(k)
h for all the scenarios, add an optimality cut to the relaxed master prob-

lem (RMPk) according to the multipliers λ
(k)
1 , ...,λ

(k)
s , set T k = T k−1∪{k}. If

ob jPBP(y(k))=∑
s
h=1 ob jPBPh(y

(k))<UBDPB, update UBDPB= ob jPBP(y(k)),

y∗ = y(k), k∗ = k.

2. If Problem (PBPk
h) is infeasible for scenario ĥ, stop solving it for scenarios

ĥ+1, ...,s and set Sk = Sk−1∪{k}. Then, set µ
(k)
h = 0 for h = 1, ..., ĥ−1, and

solve the decomposed feasibility subproblem (FPk
h) for h = ĥ, ...,s and obtain

the corresponding Lagrange multipliers µ
(k)
h . Add a feasibility cut to Problem

(RMPk) according to µ
(k)
1 , ...,µ

(k)
s .

3. If T k = /0, solve the feasibility relaxed master problem (FRMPk); otherwise,

solve Problem (RMPk). In the latter case, set LBD to the optimal objective

value of Problem (RMPk) if Problem (RMPk) is feasible. In both cases, set

y(k+1) to the y value at the solution of either problem.

until LBD≥UBDPB or (Problem (RMPk) or Problem (FRMPk) is infeasible).

end if

if UBDPB <UBD− ε then

1. Solve the decomposed primal subproblem (PP∗h) (i.e., for y = y∗) to εh-optimality

for each scenario h= 1, ...,s sequentially. Set U l =U l−1∪{k∗}. If Problem (PP∗h)
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has optimum x∗h for all the scenarios and ob jPP(y∗) = ∑
s
h=1 ob jPPh(y

∗) < UBD,

update UBD = ob jPP(y∗) and set y∗p = y∗, x∗p,h = x∗h for h = 1, ...,s.

2. If T k \U l = /0, set UBDPB =+∞.

3. If T k\U l 6= /0, pick i∈T k\U l such that ob jPBP(y(i))=min j∈T k\U l{ob jPBP(y( j))}.

Update UBDPB = ob jPBP(y(i)), y∗ = y(i), k∗ = i. Set l = l +1.

end if

until UBDPB ≥ UBD− ε and (Problem (RMPk) or Problem (FRMPk) is infeasible or

LBD≥UBD− ε).

An ε-optimal solution of Problem (P) is given by (y∗p,x
∗
p,1, ...,x

∗
p,s) or Problem (P) is

infeasible.

4.2 Finite Convergence

Assumption 4.1. Compared to Problem (PPl
h), Problems (PBPk

h) and (FPk
h) (which are

convex programs) and Problems (RMPk) and (FRMPk) (which are MILPs) can be solved

with a much tighter tolerance, which is then negligible for the discussion of the ε-optimal

solution of the NGBD algorithm.

Assumption 4.2. The optimal objective value of a problem returned by a global optimizer

is greater than or equal to the real optimal objective value.

Remark 4.1 If a solution of Problem (PPl) consists of εh-optimal solutions of Problem

(PPl
h) for h = 1, ...,s, then this solution is an ε-optimal solution of Problem (PPl) when

∑
s
h=1 εh ≤ ε .

Remark 4.2 Notice that UBDPB is neither the upper bound, nor the lower bound for Prob-

lem (P). UBDPB has two functions in the algorithm. One is to control the “inner loop”

of the algorithm (which is a GBD-like procedure). The other is to prevent solving Problem

(PP) for any integer realization that will not lead to a global solution of Problem (P), and

this is explained in Lemma 4.1.

Remark 4.3 Since an ε-optimal solution of Problem (PPl) is used to update UBD, Remark

4.1 implies that the difference between UBD and the real upper bound is at most ε . So the
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satisfaction of the condition, LBD < UBD− ε , guarantees the gap between LBD and the

real upper bound as expected. Similarly, the satisfaction of UBDPB <UBD−ε guarantees

the gap between UBDPB and the real upper bound as expected.

Lemma 4.1 If the NGBD algorithm terminates finitely with a feasible solution of Problem

(P), this feasible solution is an ε-optimal solution of Problem (P).

Proof. Notice the algorithm terminates with “UBDPB ≥ UBD− ε and (Problem (RMPk)

or Problem (FRMPk) is infeasible” or “LBD ≥ UBD− ε)”. First, it is demonstrated that

this termination condition ensures that an integer realization which leads to an ε-optimal

solution of Problem (P) has been visited by Problem (PBP). Second, it is demonstrated that

if one such integer realization has been visited by Problem (PBP), the termination condition

ensures that y = y∗p is one such integer realization and UBD is an ε-optimal objective value

of Problem (P).

Consider the case in which Problem (RMPk) or (FRMPk) is infeasible. Since Prob-

lem (P) is feasible, Problem (FRMPk) cannot be infeasible and the infeasibility of Problem

(RMPk) implies that all the feasible integer realizations have been visited by Problem (PBP),

so any integer realization leading to an ε-optimal solution of Problem (P) has been visited

by Problem (PBP).

Consider the case in which LBD≥UBD−ε . Denote the real optimal objective value of

the original problem (P) by ôb jP. Denote the real optimal objective value of Problem (PP)

for y = y∗p by ôb j
∗
PP and the one returned by the solver by ob j∗PP. Obviously,

ôb j
∗
PP ≥ ôb jP. (22)

According to Assumption 4.2,

UBD = ob j∗PP ≥ ôb j
∗
PP. (23)

From (22) and (23),

UBD≥ ôb jP. (24)
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Assume any integer realization that leads to an ε-optimal solution of Problem (P) has not

been visited by Problem (PBP), then any such integer realization has not been excluded by

the canonical integer cuts in Problem (RMPk). According to Corollary 3.2,

ôb jP ≥ LBD≥UBD− ε. (25)

Inequalities (24) and (25) imply that y = y∗p obtained at the termination of the algorithm

leads to an ε-optimal solution of Problem (P) and this integer realization has been visited by

Problem (PBP), which contradicts the assumption. Therefore, in the case in which LBD ≥

UBD− ε , at least one integer realization that leads to an ε-optimal solution of Problem (P)

has been visited by Problem (PBP) as well.

Finally, the algorithm ensures that UBDPB equals to the minimum optimal objective of

Problem (PBP) for those integer realizations that have been visited by Problem (PBP) but

not by Problem (PP) (and UBDPB = +∞ if no such integer realizations exist). Then at the

termination when UBDPB ≥UBD− ε always holds, such integer realizations cannot lead

to a global optimal solution of Problem (P) due to Proposition 3.5. Therefore, an integer

realization that leads to an ε-optimal solution of Problem (P) has been visited by Problem

(PP), which has been recorded by y = y∗p and UBD = ob j∗PP is an ε-optimal objective value

of Problem (P).

Theorem 4.1 If all the subproblems can be solved to ε-optimality in a finite number of

steps, then the NGBD algorithm terminates in a finite number of steps with an ε-optimal

solution of Problem (P) or an indication that Problem (P) is infeasible.

Proof. Notice that all the integer realizations are generated by solving Problem (RMPk)

or (FRMPk) in the algorithm. According to Corollary 3.1, no integer realizations will be

generated twice. Since the cardinality of set Y is finite by definition and all the subproblems

are terminated in finite number of steps, the algorithm terminates in a finite number of steps.

Lemma 4.1 shows that if Problem (P) is feasible, the algorithm terminates with its ε-

optimal solution. If Problem (P) is infeasible, the algorithm terminates with UBD = +∞
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because UBD can only be updated with an ε-optimal solution of Problem (PP), which is

infeasible for any integer realization in Y (and therefore UBD is never updated).

5 Case Studies

5.1 Implementation

All the cases study problems were solved on a computer allocated a single 2.83 GHz CPU,

2 GB memory and running Linux Kernel. GAMS 23.4 [41] was used to formulate the prob-

lems, program the NGBD algorithm and interface the solvers for the subproblems. The

NGBD method employed BARON 9.0.5 to obtain global solutions for the primal subprob-

lems (PPh), where CPLEX 12.1.0 was used as Linear Program (LP) solver and CONOPT

3 was used as the local NLP solver. The NGBD method itself employed CPLEX 12.1.0

to solve LP/MILP subproblems and CONOPT 3 to solve convex NLP subproblems. The

feasibility problem (FP) minimized the 1-norm of the slack variable vector for all the case

studies, using the standard smooth reformulation. The major purpose of the case study is to

compare the computational efficiency of NGBD and two commercial global optimizers in

GAMS 23.4, BARON and LINDOGLOBAL [42]. The relative and absolute termination cri-

teria were set to be 10−3. The solution times reported here are only the solver times reported

by GAMS solvers.

Since this paper does not focus on scenario generation for stochastic programs, all the

uncertain parameters in the case studies are assumed to obey normal distributions and are in-

dependent of each other. A naive sampling rule was used to generate scenarios for normally

distributed uncertain parameters, which is detailed in the online supplementary material.

For all the case studies, convex underestimators for constructing the lower bounding

problems were generated through McCormick relaxation [28] [43], i.e., through recursively

applying rules for the relaxation of sums, products and univariate composition with the

known convex and concave envelopes of the univariate intrinsic functions. In addition, aux-

iliary variables were introduced for the differentiability of the resulting underestimators [30].
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The online supplementary material gives the convex and concave envelopes of the univariate

intrinsic functions in the case studies and the relaxation rule for products.

5.2 Case Study Problems

The following three problems, which can be formulated into MINLPs in the form of Problem

(P), are studied in this paper:

Software Reliability Problem – This problem is to find the optimal software structure

for maximum software reliability while ensuring that expenditures remain within budget.

The deterministic version of the problem was initially presented in [44] and then reformu-

lated in [45] to avoid nonlinear functions of integer variables. In this paper the problem is

revised into a two-stage stochastic problem which explicitly addresses the uncertainty in the

reliabilities of three software modules and maximizes an expected reliability. The resulting

problem has 8 binary variables, 8s continuous variables (where s denotes the total number

of scenarios addressed in the problem) and 3 uncertain parameters.

Pump Network Configuration Problem – This problem is to find the optimal config-

uration of a centrifugal pump network for minimum annualized cost that achieves a pre-

specified pressure rise based on a given total flow rate. The deterministic version of the

problem was initially presented in [46] and then updated in [22] with a set of additional

linear constraints for tighter relaxation in global optimization. In this paper, the problem is

further reformulated to reduce the number of nonlinear functions while exhibiting the struc-

ture of Problem (P). Then it is revised into a two-stage stochastic problem which explicitly

addresses the uncertainty in the pump performance models and minimizes an expected an-

nualized cost. The resulting problem has 18 binary variables, 38s continuous variables and

3 uncertain parameters.

Sarawak Gas Production Subsystem Problem – This problem comes from a real in-

dustrial system, the Sarawak Gas Production System (SGPS) [47]. In [48], optimal operation

of a subsystem of the SGPS is studied. This problem is extended in this paper to a determin-

istic integrated design and operation problem which maximizes the net present value of the

subsystem while satisfying the demand constraints at the end node. This deterministic prob-
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lem is then revised into a two-stage stochastic problem which maximizes the expected net

present value and explicitly addresses the uncertainty in the system, including product de-

mand, product price and the pressure-flow relationship in a pipeline. The resulting problem

has 20 binary variables, 110s continuous variables and 3 uncertain parameters.

Details of the above problems, including their GAMS models, can be found in the online

supplementary material. The problems were solved with each uncertain parameter sampled

for 1, 3, 5, 7, 9 and 11 values, which lead to stochastic programs with 1, 27, 125, 343,

729 and 1331 scenarios for all these problems (since each of them contains 3 uncertain

parameters).

5.3 Results and Discussion

The results for the case study problems with different numbers of scenarios are summa-

rized in Tables 1, 2 and 3. It can be seen that if only one scenario is addressed, BARON

is faster than NGBD for the first two problems and LINDOGLOBAL is faster than NGBD

for the pump network configuration problem. However, the solver time with BARON in-

creases rapidly with the number of scenarios, and BARON did not return a solution within

10,000 seconds when no less than 125 scenarios were addressed for the pump network con-

figuration problem and no less than 27 scenarios were addressed for the SGPS problem.

LINDOGLOBAL was not able to solve any of the problems with no less than 27 scenarios.

(Also notice that LINDOGLOBAL is restricted to problems with up to 3,000 variables and

2,000 constraints.) On the other hand, the solver time with NGBD increases slowly with the

number of scenarios. NGBD solved the largest problem in the case study, the SGPS problem

with 1331 scenarios and almost 150,000 variables, within 80 minutes of solver time. And

NGBD can solve all the case study problems with much more scenarios within reasonable

time, according to the trend shown by the computational results.

Obviously, the time for obtaining global optima for Problems (PPh) dominated the total

solver time in NGBD. By exploiting UBDh, which can be calculated according to the solu-

tions of the subproblems solved in the previous iterations (as defined in Proposition 3.6), the

solution time for Problem (PPh) can be reduced (so that the total solver time for Problem (P)
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can be reduced). For the software reliability problem, the time for solving Problem (PPh)

was reduced by up to 60% when UBDh was used to accelerate the solution, while for the

other two problems the time was reduced by about 30% and 10%, respectively.

Tables 1, 2 and 3 also show the numbers of integer realizations visited by Problem

(PBPh) and Problem (PPh), which are also the numbers of iterations in the “inner loop” and

in the “outer loop” of the NGBD algorithm, respectively. Also, the number of integer real-

izations visited by Problem (PBPh) indicates the size of the largest relaxed master problem

solved in NGBD (since the number of cuts in Problem (RMPk) is twice of the number of

such integer realizations). Notice that NGBD avoided visiting most of the integer realiza-

tions in Y for the case study problems. In the software reliability problem, only about 15%

of integer realizations in Y were visited by Problem (PBPh). For the other two problems

such data are less than 10% and less than 15%. In addition, the number of the visited integer

realizations does not change significantly with the number of scnerios, i.e, the sizes of the

relaxed master problems can be deemed to be independent of the number of scenarios. Also

notice that not all such integer realizations are visited by Problem (PPh); in many cases the

ratio of the integer realizations visited by Problem (PPh) to those visited by Problem (PBPh)

is only about 1/4. This is because in NGBD the solution of Problem (PPh) is postponed as

much as possible and the solution of Problem (PBPh) helps to eliminate some integer re-

alizations that will never lead to a global optimum (as indicated by Proposition 3.5). As a

result, NGBD is much more efficient than a naive integer enumeration in which Problems

(PPh) are solved for all the integer realizations in Y (which would also solve subproblems

whose sizes do not grow with the number of scenarios).

Finally, the tables show UBD and LBD at the NGBD termination for all the cases. UBD

stands for an upper bound as well as an ε-optimal objective value of Problem (P). LBD

stands for the lower bound of the Problem (P) excluding all the visited integer realizations,

so LBD can be significantly larger than UBD at the termination and LBD =+∞ implies that

all the feasible integer realizations have been visited. The convergence property of NGBD is

also demonstrated through Figures 2, 3 and 4, which show the values of UBD and LBD over

the iterations of NGBD for the three case study problems with 1331 scenarios, respectively.
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Table 1 Results for the software reliability problem (Unit for solver time: second)

Number of Scenarios 1 27 125 343 729 1331

Number of continuous variables 8 216 1000 2744 5832 10648

Number of binary variables 8 8 8 8 8 8

Total time with BARON 0.2 1.5 45.2 240.0 1650.8 6784.5

Total time with LINDOGLOBAL 0.4 *a * * * *

Total time with NGBD 0.2 4.2 24.6 65.2 139.8 260.7

Detailed results for NGBD

Time for PBPh 0.0 0.9 4.8 13.3 27.5 54.9

Time for FPh 0 0 0 0 0 0

Time for RMP&FRMP 0.0 0.0 0.1 0.1 0.1 0.1

Time for PPh 0.1 3.3 19.7 51.8 112.2 205.8

Time for PPh (UBDh not exploited) 0.2 6.7 46.9 133.7 271.3 501.1

UBD at termination (%) -94.37 -93.16 -93.16 -93.16 -93.16 -93.16

LBD at termination (%) -93.56 -93.19 -91.96 -91.96 -91.96 -91.96

Integer realizations visited by PBPh 9 10 13 13 13 13

Integer realizations visited by PPh 5 6 9 9 9 9

Total integer realizations in Y 81 81 81 81 81 81
a Problem size exceeds the limit of LINDOGLOBAL or the solver terminated with failure.

Table 2 Results for the pump network configuration problem (Unit for solver time: second)

Number of Scenarios 1 27 125 343 729 1331

Number of continuous variables 38 1026 4750 13034 27702 50578

Number of binary variables 18 18 18 18 18 18

Total time with BARON 0.53 28.9 - a - - -

Total time with NGBD 7.7 60.9 328.8 754.1 1497.0 2794.8

Total time with LINDOGLOBAL 5.7 *b * * * *

Detailed results for NGBD

Time for PBPh 0.3 1.9 2.8 9.6 39.0 73.8

Time for FPh 0.1 3.8 7.1 21.5 111.2 230.3

Time for RMP&FRMP 1.8 1.0 0.7 0.7 1.1 1.1

Time for PPh 5.4 54.2 318.3 722.4 1345.7 2489.6

Time for PPh (UBDh not exploited) 5.5 81.1 351.3 943.8 1978.3 3470.0

UBD at termination (FIM) 128.9 136.6 136.3 145.3 145.3 145.3

LBD at termination (FIM) +∞ c +∞ +∞ +∞ +∞ +∞

Integer realizations visited by PBPh 100 72 77 75 77 80

Integer realizations visited by PPh 41 21 20 19 19 19

Total integer realizations in Y 1024 1024 1024 1024 1024 1024
a No solution returned within 10,000 seconds.
b Problem size exceeds the limit of LINDOGLOBAL or the solver terminated with failure.
c Represented by a big number (1010) in NGBD. It indicates all feasible integer realizations have been visited by PBPh.
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Table 3 Results for the SGPS problem (Unit for solver time: second)

Number of Scenarios 1 27 125 343 729 1331

Number of continuous variables 110 2970 13750 37730 80190 146410

Number of binary variables 20 20 20 20 20 20

Total time with BARON 123.2 -a - - - -

Total time with LINDOGLOBAL *b * * * * *

Total time with NGBD 0.6 78.7 372.0 1081.2 2253.1 4234.8

Detailed results for NGBD

Time for PBPh 0.1 5.5 31.3 81.1 172.7 259.4

Time for FPh 0.0 0.0 0.5 1.2 2.7 4.0

Time for RMP&FRMP 0.1 0.8 0.8 0.9 0.8 0.6

Time for PPh 0.5 72.4 339.3 998.1 2076.9 3970.8

Time for PPh (UBDh not exploited) 0.5 81.4 368.4 1370.3 2460.9 4490.0

UBD (Billion $) -7.209 -7.189 -7.187 -7.188 -7.188 -7.188

LBD (Billion $) -7.209 -7.189 -7.189 -7.189 -7.189 -7.189

Integer realizations visited by PBPh 14 70 70 71 70 68

Integer realizations visited by PPh 1 16 16 16 16 16

Total integer realizations in Y 512 512 512 512 512 512
a No solution returned within 10,000 seconds.
b Problem size exceeds the limit of LINDOGLOBAL or the solver terminated with failure.

6 Conclusions

This paper extends traditional GBD to solving rigorously stochastic separable MINLP prob-

lems in the form of Problem (P). A lower bounding problem is introduced for which GBD

iterations can be applied rigorously, and the solution of the lower bounding problem yields

both valid lower bounds for the problem and the integer realizations that can be used to

construct valid upper bounding problems. The resulting method, called NGBD, solves a se-

quence of subproblems whose sizes are independent of the number of scenarios addressed

in the problem. This method terminates finitely with an ε-optimal solution or an indication

of the infeasibility of the problem. The dramatic computational advantage of NGBD over a

state-of-the-art branch-and-reduce global optimization solver, BARON, is demonstrated by

the results of the case studies, in which a highly nonconvex MINLP with almost 150,000

variables was solved with NGBD within 80 minutes of solver time. The results also show

that the time for solving the primal subproblems dominates the total solution time, and this

time can be reduced by exploiting the solutions of the subproblems solved in the previous

iterations. Since most of the subproblems in an iteration can be solved without exchanging
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Figure 2 Evolution of UBD and LBD over NGBD iterations for the software reliability problem with 1331
scenarios.

information among them, the performance of NGBD can be further improved by exploita-

tion of a parallel computation architecture.

The extension of the proposed NGBD method to multistage problems will be interesting

future work. Notice that NGBD is not advantageous if a multistage stochastic program is

formulated into a special two-stage problem with nonanticipativity constraints (that equate

the decisions in different scenarios and with the same uncertainty realizations in all previous

stages) [12], because then the problem cannot be decomposed for different scenarios by

fixing the first-stage decisions (due to the presence of nonanticipativity constraints). On the

other hand, NGBD can be applied to a K-stage problem in a recursive way provided the

decision variables in stages 1, ...,K − 1 are all integers, because such a K-stage problem

can be treated as K− 1 nested two-stage problems in the form of Problem (P). A similar

idea has been used to solve multistage linear programs with Benders decomposition in the
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Figure 3 Evolution of UBD and LBD over NGBD iterations for the pump network configuration problem
with 1331 scenarios.

stochastic programming literature (e.g., [49]). Howerver, if some of the decision variables in

stages 1, ...,K−1 are continuous, the K-stage problem will contain two-stage problems with

continuous complicating variables, which cannot be represented in the form of Problem (P)

and solved by the current NGBD method.
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