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Abstract

A main group-catalyzed method for the synthesis of aryl- and heteroarylamines by intermolecular
C-N coupling is reported. The method employs a small-ring organophosphorus-based catalyst
(1,2,2,3,4,4-hexamethylphosphetane) and a terminal hydrosilane reductant (phenylsilane) to drive
reductive intermolecular coupling of nitro(hetero)arenes with boronic acids. Applications to the
construction of both Cgp>—N (from arylboronic acids) and Cgpz—N bonds (from alkylboronic acids)
are demonstrated; the reaction is stereospecific with respect to Csp3—N bond formation. The
method constitutes a new route from readily available building blocks to valuable nitrogen-
containing products with complementarity in both scope and chemoselectivity to existing catalytic
C-N coupling methods.
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Aryl- and heteroarylamines comprise a diverse class of organic compounds with significant
value as pharmaceuticals, agrochemicals, fine chemicals, and optoelectronic materials. The
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prevailing strategy for the preparation of these useful compounds—A\-arylation of the parent
aniline through carbon-nitrogen (C-N) coupling (Figure 1A)—is currently shaped by
transition metal catalyzed methods (e.g. Buchwald-Hartwig, Ullmann, Chan-Lam
couplings).12 Herein, we describe an alternative main group approach to catalytic
intermolecular C-N bond construction that does not rely on transition metals, enabling a
complementary route from readily accessible components to (hetero)arylamines.
Specifically, we show that a redox active organophosphorus-based catalyst operating in the
P!1/PV=0 manifold drives reductive coupling of nitroarenes and boronic acids with C-N
bond formation to give (hetero)arylamine products (Figure 1B) in a manner functionally
distinct from current catalytic practice.

Nitroarenes are common intermediates in synthesis (most typically as aniline precursors),
but are relatively underutilized for direct catalytic C-N bond forming reactions.3 Notable
exceptions include the work of Nicholas* and Baran,® who have reported iron-catalyzed
reductive C-N bond construction by reaction of nitroarenes with alkynes and alkenes,
respectively. Hu has reported a related iron-catalyzed reductive C—N bond formation by
reaction of nitroarenes with alkyl® and acyl” electrophiles. Stoichiometric main group metal
approaches have also been described; Knochel,® Kiirti,® and Niggemann19 have
demonstrated reductive conversion of nitroarenes to A-arylanilines.

Our entry into nitroarene functionalization has centered on the use of a redox-active small-
ring phosphorus-based compound. We have previously reported that a simple
trialkylphosphine catalyst containing a core four-membered ring, in combination with
phenylsilane as a terminal reductant, constitutes a competent system for the catalytic
transformation of nitroaromatic substrates into azaheterocycles through intramolecular C-N
bond forming Cadogan cyclization.11:12 In this chemistry, the phosphacyclic catalyst
promotes reductive O-atom transfer from the nitroarene substrates by cycling in the P!/
PV=0 catalytic couple.13-16 We considered whether introduction of a suitable exogenous
coupling partner to the P''//PV=0 catalytic conditions might enable the construction of C-N
bonds in an intermolecular manner.

The reaction of nitrobenzene (1) and phenylboronic acid (2a) to give diphenylamine (3) was
chosen for discovery and optimization studies (Table 1). An initial attempt at reductive
coupling using conditions previously reported for Cadogan cyclization proved promising,
providing diphenylamine in an unoptimized 59% yield (Fig. S1). Using the Design of
Experiments approach to evaluate the impact of temperature, concentration, and reagent
equivalencies on the reaction outcome (Fig. S2), optimization studies converged on the
conditions outlined in Table 1 (entry 1, 1.1 equiv of 2a, 15 mol % of 4¢[O], 0.5 M in m-
xylene, 120 °C). Under these conditions, the organophosphorus-catalyzed reductive coupling
of nitrobenzene and phenylboronic acid gave diphenylamine in 86% GC yield, and 80%
isolated yield on a one millimole scale. A comparable performance is observed if the
corresponding tricoordinate phosphacycle 4 is employed as catalyst (entry 2), consistent
with the interconversion of P! and PY=0 oxidation states by catalytic cycling. Relatedly, a
stoichiometric implementation of the reductive coupling of 1 and 2a employing 3
equivalents of phosphetane 4 is successful (89% yield) (Table S2).17 Control experiments
omitting either the phosphorus catalyst (entry 3) or the terminal silane reductant (entry 4) do
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not give the desired product. The reaction performed well in a variety of nonpolar solvents
(entries 1,5,6), but was less efficient in a solvent of high donicity (entry 7). The identity of
the boron reagent was found to play a significant role in the success of the reaction (Table
1); both phenylboronic acid (2a) and phenylboroxine (2b, entry 8) were successfully
aminated by nitrobenzene to give diphenylamine 3 under standard catalytic conditions.
However, other common phenylboronic esters are either less productive
(catecholatoboronate 2c — entry 9) or unproductive (pinacolato-boronate 2d — entry 10)
when employed as the aryl donor in the catalytic C-N coupling reaction, suggesting the
possibility of chemoselective differentiation of boryl moieties (vide infra).

A qualitative assessment of the electronic demand of the reaction was undertaken (Figure
2A). For a series of differentially para-substituted nitroarenes, an empirical electronic trend
is observed where increasingly electron-withdrawing para substituents lead to faster
qualitative rates and higher yields of C-N coupling (cf. 5-8). Complementarily, the inverse
empirical trend with respect to electron demand of the arylboronic acid moiety is observed,
where increasingly electron-donating para substituents result in higher yields of C-N
coupling (cf. 9-12). The consequence of these two differing trends is that the
organophosphorus-catalyzed C-N coupling reaction is most productive for union of electron
deficient nitroarenes with electron rich arylboronic acids, as illustrated in the synthesis of 15
in 88% by the coupling of electron-deficient nitroarene 13 with electronic-rich boronic acid
14 (Figure 2A). This observed electronic preference serves as a point of distinction with
respect to palladium-catalyzed C-N coupling, where the arylation of electron-deficient
arylamine substrates are among the most persistently challenging.1® The current
organophosphorus-catalyzed method may therefore provide a route to construction of
otherwise electronically deactivated C—N bonds.

Additional synthetic examples illustrating the reaction scope are collected in Figure 2B. The
main group-catalyzed conditions for the C—N coupling method show good functional group
compatibility and provide complementary chemoselectivities with respect to established
transition metal coupling. Since phosphines do not readily undergo oxidative addition to
Csp2—X bonds, halogen substitution is well-tolerated on both the nitroarene component (7,
19, 20) and the boronic acid (11, 23, 24) component. Even very electrophilic 2-chloro and 2-
bromopyridyl substrates (26, 27), which are known to be excellent electrophiles for both
SNAr and transition metal-catalyzed substitution, are carried through the phosphine-
catalyzed reductive C-N coupling without undesired cleavage. Protic functional groups such
as anilines (18, 24) and phenols (25) are orthogonal in reactivity to the nitro group and are
therefore tolerated in the coupling chemistry without explicit protection. Even multiple
distinct nitro or boryl moieties within a single reaction pair can be differentiated in select
circumstances. Due to the aforementioned electronic trends in C-N coupling (Figure 2A),
1,4-dinitrobenzene becomes electronically deactivated following an initial reductive C—-N
coupling event, such that selective mono-coupling product 28 may be isolated in good yield.
And notably, only selective C—N cross coupling product 29 is observed in the reaction of 4-
pinacolatoborylnitrobenzene and phenylboronic acid; the Bpin moiety is inert to the main
group-catalyzed conditions, allowing for further functionalization by known transition
metal-catalyzed chemistry if so desired.
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The reaction is not limited to Cspo—N bond formation; indeed, the amination of nitrobenzene
with Cspz boronic acid reagents including methyl (30), primary alkyl (31), secondary alkyl
(32), and strained cycloalkyl (33) provide serviceable yields of the desired Cspz-N cross
coupling products. As a further illustration of the synthetic utility of the transformation, a
number of heteroarylamine structures displaying varied substitution on both the nitro and
boronic acid components were synthesized. Carboxyesters on either the nitroarene or
boronic acid reaction component were well tolerated (34, 35), and both r-deficient (37) and
re-excessive (39) heterocycles are readily employed. As a general point, since the
organophosphorus catalyst is only weakly Lewis acidic, substrates and products with Lewis
basic functionalities (amines, pyridines, sulfides) are not inherently inhibitory under these
main group coupling conditions.

To demonstrate the potential synthetic utility of this methodology in the context of
pharmaceutical chemistry, mefenamic acid (40) and tolfenamic acid (41) (Figure 3A)—
members of the fenamate group of nonsteroidal anti-inflammatory drugs (NSAIDs)
marketed under the tradenames Ponstel and Clotam, respectively—were synthesized with
67% and 73% yields on 1 millimole scale in one-pot by organophosphorus-catalyzed
reductive C-N cross coupling of 2-nitrobenzonitrile and either 2,3-dimethylphenylboronic
acid or 3-chloro-2-methylphenylboronic a cid, followed by alkaline nitrile hydrolysis
according to a known procedure.1®

The stereospecificity of the catalytic C—N coupling reaction was evaluated by amination of
stereochemical probe molecules (Fig. 3B). Reductive coupling of antr-
phenylcyclopropylboronic acid (ant-42) with nitrobenzene under standard main group-
catalyzed conditions gave the A-phenyl tranylcypromine derivative ant-43 in 71% NMR
yield with retention of configuration. Relatedly, reductive coupling of the syr-cyclopropane
epimer (syn-42) with nitrobenzene furnished syr-43, in 61% NMR vyield with
stereochemical retention. Consistent with related protocols for amination of boron
derivatives, 20 the reductive C-N coupling reaction is stereospecific with respect to the
boronic acid component, permitting its potential implementation in stereoselective synthesis.

The complementarity of the current main group method for C—N coupling with respect to
existing transition metal strategies is exemplified by the diversification of 1,3,5-trisubstituted
arene 44 (Figure 3C). Whereas C-N coupling under existing Cu-mediated (Chan-Lam) or
Pd-catalyzed (Buchwald-Hartwig) methods permits chemoselective functionalization at the
anilide (site b, 46) or arylbromide (site ¢, 47) positions, respectively, catalytic arylamination
by the newly developed organophosphorus-catalyzed coupling approach results in selective
functionalization at the nitro moiety (site a, 45) in 81% yield. These results suggest a
strategic orthogonality between the bond constructions possible with the various C-N
coupling methods. Viewed in this light, we envision that the main group method will
augment technical capacity by providing new freedom to synthesize valuable arylamine
products from diverse and readily available building blocks.

The foregoing results constitute a practical, scalable, and operationally robust
organophosphorus-catalyzed protocol for intermolecular C-N coupling of nitroarenes and
boronic acid partners. These findings expand the biphilic reactivity of phosphetanes as

JAm Chem Soc. Author manuscript; available in PMC 2019 November 14.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Nykaza et al. Page 5

platforms for catalytic reductive O-atom transfer operating in the P"'//PV=0 redox couple,
providing further precedent for the catalytic potential of main group compounds in reaction
classes heretofore dominated by transition metal catalysis.
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A) Established methods for intermolecular C-N coupling. B) This work: P''l/PV=0-
catalyzed reductive C-N coupling of nitroarenes and boronic acids.
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B. Synthetic Examples variation of nitro coupling partner on of boronic acid coup.
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Figure2.

Examples of catalytic reductive C-N coupling. (A) Electronic effects on C-N coupling. (B)
Synthetic examples of C—N coupling. See Sl for full experimental details and conditions.
Yields are reported for isolated material following purification on a 1 mmol scale, except as
noted. Compounds 5-12 were prepared on 2 mmol scale; compound 26 was prepared on a 3
mmol scale; and compounds 34-39 were prepared on 1 gram scale. Preparation of 22 used
1.3 equivalents of boronic acid. Compound 36 was isolated as its hydrochloride salt.
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A. Target synthesis (yields for two steps)

1. 15 mol% 4+[0] HO,C

CN Me 3 :
2 equiv PhSiH; H
NO; (HO).B X m-xylene, 120 °C, 3-5 h N
+ >
2. KOH, A

X=Me; mefenamic acid (Ponstel®) 40 67%
X=CI; tolfenamic acid (Clotam®) 41 73%
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15 mol% 4+[0]

R 2 equiv PhSiH
Ph-NO, + (HO)B” :l ? i > PhHN? q

R m-xylene, 120 °C
! 8h
1 anti-42 (R1=H, R,=Ph)

C. Orthogonality of C—N Coupling Methods

'Ph Chan-Lam
AcN
[Cu]
N02
15 mol% 4+[0] NHAc
Br 4‘2 2 equiv PhSiH,
52% 2NO, ———>
m-xylene, 120 °C
4h
AcHN Br
44 45
B0y 81%
main group-catalyzed
PhHN ¢ [Pd] I C-N coupling
47
71% Buchwald-Hartwig
0

Figure 3.

anti-43 (Ry=H, R,=Ph) 71%
syn-42 (Ry=Ph, Ry=H) syn-43 (Ry=Ph, Ry=H) 61%
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Synthetic applications of the catalytic reductive C—N coupling reaction. (A) Synthesis of
mefenamic acid and tolfenamic acid. (B) Demonstration of the stereospecificity of C-N
coupling. Yields determined by NMR spectroscopy. (C) Selectivity and complementarity in
the functionalization of 44 by C—N coupling methods. See Sl for full experimental details

and conditions.
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Discovery and optimization of the organophosphorus-catalyzed reductive C—-N coupling reaction.”

Table 1.
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Me
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Ph
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Pn’é“o’é‘ph 0~B~pn O’é"Ph
2a 2b 2c 2d
Entry [B] Solvent RzP=0 Yield (%)

1 2a m-xylene 4+[0] 86% (80%)
2 2a m-xylene 4 82%
3 2a m-xylene none 0%
4 2a m-xylene 4+[O]; no silane 0%
5 2a dibutyl ether 4+[0] 86%
6 2a toluene 4+[0] 80%
7 2a DMF 4+[0] 17%
8b 2b m-xylene 4+[0] 74%
9 2c m-xylene 4+[0] 54%
10 2d m-xylene 4+[0] 2%
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aYieIds were determined through analysis by gas chromatography (GC) with the aid of an internal standard. Yield in parenthesis (entry 1) is for
isolated material from a 1.0 mmol reaction scale.

b0.37 mmol of 2b was used. See Sl for additional optimization experiments.
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