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Abstract

Automotive engine intake filters ensure clean air delivery to the engine, though

over time these filters load with contaminants hindering free airflow. Today’s

open-loop approach to air filter maintenance has drivers replace elements at

predetermined service intervals, causing costly and potentially harmful over-

and under-replacement. The result is that many vehicles consistently operate

with reduced power, increased fuel consumption, or excessive particulate-related

wear which may harm the catalyst or damage machined engine surfaces.

We present a method of detecting filter contaminant loading from audio

data collected by a smartphone and a stand microphone. Our machine learning

approach to filter supervision uses Mel-Cepstrum, Fourier and Wavelet features

as input into a classification model and applies feature ranking to select the

best-differentiating features. We demonstrate the robustness of our technique

by showing its efficacy for two vehicle types and different microphones, finding a

best result of 79.7% accuracy when classifying a filter into three loading states.

Refinements to this technique will help drivers supervise their filters and

aid in optimally timing their replacement. This will result in an improvement

in vehicle performance, efficiency, and reliability, while reducing the cost of

maintenance to vehicle owners.
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applications and technology, intelligent vehicles, ambient intelligence

1. Introduction1

Every year, the average vehicle’s age and annual miles traveled increase[1, 2]2

and with the shift toward shared mobility, the need for efficient, reliable and3

durable vehicles continues to grow.4

Most of the 260-million vehicle U.S. light-duty fleet [3] is gasoline powered [4],5

with engines that consume air and fuel, ignite this mix to propel a piston, and6

exhaust combustion byproducts. Any inefficiency causes engine performance,7

economy and longevity to suffer.8

The intake system is critical to optimal performance. Incoming air must be9

free-flowing to attain efficiency, clean, to protect engine surfaces against abra-10

sion and cold, so that the increased density allows more fuel to be combusted,11

improving power.12

A key element of engine intakes, filters reduce contaminant concentration to13

safe levels [5] while ensuring free fluid flow to limit intake air heating. These14

filters are wear items, needing cleaning or replacement once loaded with dirt,15

dust, and debris.16

Optimal filtration improves particulate entrapment, reducing engine cylinder17

erosion. Small changes to efficiency have significant impact: engine wear is18

8 times faster for a filter that is 98% versus 99% efficient[5]. Further, ideal19

filtration reduces cabin noise levels and improves engine power and response. In20

contrast, dirty filters limit power, cause noise, waste fuel[6] [7] and may cause21

downstream catalytic converter failures. These challenges are most significant in22

carbureted vehicles[8] lacking closed-loop fuel control. While new cars switched23

to fuel injection by the mid-1990’s, many cars, motorcycles and other light24

transport vehicles around the world still use carburetors.25

Changing filter elements early seems an obvious solution, but early replace-26

ment causes subtle but serious problems. Particulate capture efficiency increases27

with loading[6], so lightly used elements reduce engine wear and extend service28
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life. There exists an optimal window in which to change a filter – one in which29

the filter captures a majority of particulates and minimally restricts flow.30

In-vehicle sensors have been designed to solve the problem of optimal filter31

replacement, but most new vehicles with On-Board Diagnostics typically do32

not monitor this condition and older vehicles typically lack any sensing. Few33

vehicles offer vacuum-based intake pressure drop sensors [6] that indicate an34

increase over baseline pressure drop of 1-2.5kPa[7, 8]. Where sensors are not35

present, drivers are typically unaware and therefore rely on data-blind timing,36

with most drivers replacing filters at set intervals (often 15, 000km [7]) or when37

they look dirty. These methods are inaccurate, with vehicles used in varied38

environments with different particulate loads and unpredictable airflow rates[5].39

In a survey of 21 air filters tested after removal, 15 were removed early while40

two had been changed after performance-degrading occlusion begun[7]. This41

indicates that drivers taking vehicles in for service change filters too early but42

is inherently biased, as the dirtiest filters are found in those cars never taken43

for service. Assuming a 2% loss in fuel economy in the under-serviced vehicles,44

an average driver spending $1, 680 per year in fuel wastes $33.60 driving with a45

dirty filter. This exceeds a typical filter’s cost and demonstrates the potential46

savings for optimal replacement timing, not to mention the long term damage47

to engines and catalytic convertors.48

Streamlined, realtime filter classification could reduce vehicle operating costs49

and emissions while improving reliability. There exists latent demand for this in-50

formation – 81.4% of people would take recommendations from a data-informed51

system [9].52

To reduce the need for behavioral changes, low-cost, pervasive sensing using53

smartphones may be used to repurpose existing devices[10]. In recent years,54

consumer electronics manufacturers have increased mobile sensing capabilities.55

These new inputs, ranging from atmospheric pressure and device orientation to56

temperature, touch, and proximity, have met with commensurate enhancements57

in mobile computation, storage, and connectivity [11]. Our own work has shown58

that it is possible to monitor engine ignition using such devices [12].59

3



We aim to transition from today’s reactive maintenance paradigm to proac-60

tive, availing ourselves of these resources. We apply mobile audio to observe61

how a car “breathes” to classify air filter performance with the goal of creat-62

ing a “remaining life” indicator and condition monitor for air filters to enhance63

compliance with automotive best maintenance practices. This paper demon-64

strates how mobile audio data and ensemble classification may be applied to65

categorizing air filter condition into multiple loaded states.66

In Section 2, we hypothesize that sound emanating from the intake changes67

with particulate loading, while Section 3 explores related work. Section 4 de-68

scribes an experimental procedure to collect data and simulate contaminants69

restricting airflow. We describe our ensemble classification algorithm in Sec-70

tion 5 and present results in Section 6, showing high accuracy in differentiating71

new, gently used, dirty and obstructed filters. Finally, Section 7 discusses of72

future improvements for this algorithm and applications of pervasive sensing to73

other vehicle faults.74

2. Problem Description75

The ideal combustion engine demands a limitless supply of free-flowing,76

clean, cold air. In reality, engines require filters to clean air and limit wear.77

When new, these filters restrict intake airflow, and as the filter loads with con-78

taminants, this restriction and related pressure drop increase. While intake79

systems are tuned to minimize noise, vibration and harshness, changes in flow80

ultimately lead to perceptible changes in the audio emanating from the intake.81

We assert that these pressure and flow changes related to occlusion may be82

discerned using digital audio samples to inform machine learning algorithms.83

In intakes with a new filter, the housing is the primary cause of pressure84

drop. With a loaded filter, the system’s pressure drop is dominated by the85

filter element[5]. Since the filter housing is rigid, it’s pressure drop remains86

largely constant irrespective of filter loading. This suggests that as filter load-87

ing increases, the pressure drop will bias from housing to filter. Experimental88
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analysis corroborates this trend[6].89

We listened to an idling vehicle with old and new filters and hypothesized90

that contaminant-based blockage leads to an increase in audio frequency as91

more air passes through smaller filter apertures. This is because modern engine92

control systems hold volumetric airflow constant, even as filter loading changes.93

We further note that flow rate reaches an asymptotic limit as loading in-94

creases. In Jaroszcyk’s Figure 4 [5], high flow rate filtration efficiency plateaus95

at a critical loading point due to particle reentrainment, suggesting there may96

be a similar plateau indicative of an optimal changeover point where the filter97

is at peak efficiency and does not yet limit flow.98

Two factors complicate audio-based particulate identification: the intake is99

tuned to attenuate noise emissions to minimize occupant annoyance[13, 5], and100

engine intakes vary across vehicles.101

As a result of this first issue, intake noise is not clearly audible in the car’s102

cabin – and though the air intake system’s sound may be distinguished under the103

hood of an operating vehicle, changes in filter loading contribute small signals104

to large, combustion-related noise. To maximize classification accuracy, we will105

record audio under the hood to reduce background contributions. Further, we106

record one data set from a stationary microphone to minimize variability and107

another from a moving microphone representative of how a person might use a108

phone to record samples.109

To resolve intake geometry variance, we propose creating new models for110

different vehicle types. We therefore will collect data and train models for111

two distinct vehicle types which might be used to classify vehicles with similar112

engines. These “pseudo-custom” classifiers will ultimately allow mobile devices113

to identify the optimal inflection point between clean and dirty filters.114

3. Prior Art115

Characterizing vehicle performance, classifying component condition and116

identifying abnormal behavior using time-domain signals is not a new field. In-117
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vehicle sensing in particular has been applied to air filter monitoring. However,118

multi-state classification and pervasive condition monitoring remain underex-119

plored.120

This is not for lack of pervasive vehicle diagnostics. The use of audio signals121

is especially prevalent in research and industrial applications because acoustic122

signals do not require rigid contact between a sensor and the instrumented123

object.124

Researchers have used audio processing to identify cylinder misfire faults,125

capturing the sound from an engine using a microphone and analyzing the signal126

in the time and frequency domain to differentiate normal and abnormal engine127

operation[12]. Dandare [14] and Sujono [15] used dedicated recording equipment128

to classify engine misfires in a laboratory environment, with Dandare’s artificial129

neural network’s accuracy ranging from 85-95%[14]. Kabiri and Ghaderi [16][17]130

used noisy samples with principal component analysis and correlation-based131

feature detection to obtain accuracies of 70-85% in identifying misfires.132

Beyond identifying misfires, Wu et al’s audio-based approach uses the dis-133

crete wavelet transform and Parseval’s theorem to decompose signals into con-134

stituent energy distributions as input into a neural network capable of identify-135

ing air intake manifold leaks, ECT and camshaft sensor failures, and cylinders136

with accuracies exceeding 95% accuracy[18]. Yadav et al. use audio feature sig-137

natures to compare samples against known-good or known-failed sample data,138

conducting Sumpeak analysis using a band-pass filter to window input into a139

critical frequency range and applying the Hilbert transform. This approach140

uses cross-correlation to detect whether an engine is normally or abnormally141

operating and subsequently conducts secondary correlation analysis on faulty142

engines to further differentiate faults with up to 91% normal/abnormal detec-143

tion accuracy[19]. Kemalkar applied similar concepts to diagnosing motorbike144

combustion engines, using mel cepstrum and Fourier features to identify normal145

versus abnormal operation and then conducting additional classification to dif-146

ferentiate faults, with accuracy ranging from 52-79% on faults related to engine147

oil, piston rings, or valve timing[20].148
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Outside of applications for audio data to identifying vehicle faults and main-149

tenance needs, other pervasive signals such as GPS-derived location histories or150

accelerometer-inferred vibration patterns have been used to identify suspension-151

related malfunctions[21, 22]. Vibration analysis can also determine cylinder152

head faults[23].153

Contemporary studies focus on classifying vehicle condition into binary states154

of normal or abnormal operation, whereas condition identification and remain-155

ing life calculation would yield actionable insight to reduce a vehicle’s total cost156

of operation and improve longevity. We propose to conduct condition-based157

monitoring to identify air filter maintenance needs before a fault presents.158

Exploring domains such as optimal, data-informed air filter replacement tim-159

ing will ultimately improve vehicle efficiency, performance, and reliability sim-160

ilarly to how on-board sensors can be used to indirectly monitor the wear of161

engine oil to optimize change intervals[24].162

4. Experimental Procedure and Hypothesis Validation163

This section describes how we generated audio samples from a vehicle with164

varying degrees of air filter contamination to train a three-state classifier for165

multiple vehicles.166

We first discuss an experiment collecting data to prove the concept of using167

audio features to differentiate old from new filters. Then, we present a procedure168

for generating controlled data for multi-state contamination classification and169

explain how this approach assures our classifiers’ robustness. Here, we collect170

data from two cars using stationary and mobile microphones to create labeled171

training and testing data. The result is three labeled data sets: one from a172

Honda Civic and a stationary microphone, one from a Honda Civic with a173

moving iPhone, and one from a Mazda 2 with a moving iPhone. Finally, we174

describe an experiment simulating non-uniform filter occlusion such as is caused175

by entrapment of a leaf in the intake airbox. These experiments generate data176

useful to identify the loading state as well as the type of contaminant.177
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4.1. Uncontrolled Data Collection178

Our initial experiment used a 2014 Mazda 2 with a normally aspirated inline179

four engine. This non-turbocharged engine provided clearer audio signal relative180

to a forced induction variant.181

We allowed the vehicle to warm up to operating temperature by driving for182

five minutes, ensuring the use of a consistent engine calibration table across runs183

and eliminating the presence of a “fast idle” signal contribution. Maintaining184

constant engine temperature is important to control for air intake density and185

flow rate and the resulting audio changes.186

Once at operating temperature (180F in this case), the vehicle was put into187

park and allowed to sit for one minute at idle to allow the transmission’s rotating188

elements to spin down. The engine was left operating at idle for data collection189

to minimize the amplitude of the combustion audio relative to the engine’s190

“breathing” noise. This noise comes from the intake orifice and is impacted by191

engine load and speed[13], so testing at idle minimizes both variables’ impact.192

We recorded samples from under the hood to minimize the impact of sound193

deadener and to increase the signal-to-noise ratio.194

This process closely mirrors our process for collecting misfire audio[12], with195

the user recording data for each vehicle and every test case with the phone con-196

stantly moving under the hood. This approach allowed us to collect data from a197

phone with changing orientation and different reflected and environmental noise.198

This approach helps create training data that are location and orientation in-199

sensitive. This ensures that our classifier’s features (discussed in Section 5) are200

robust to physical perturbation.201

We recorded binary classification data first, recording samples for new and202

dirty air filters. We first used a new filter to ensure a clean baseline. The filter203

is shown in Fig. 1204

We recorded ten minutes of audio data from the new filter onto an iPhone205

6S, though in our frequency range of interest (20Hz-20kHz) most smartphone206

microphones perform similarly. The widely-used MEMS microphones in mobile207
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Figure 1: The new filter is light in color

and the areas between pleats are clean.

Figure 2: A dirty filter shows significant

particulate build-up, causing the element

to discolor. Areas between pleats show sig-

nificant debris.

phones have flat frequency response across their operating range, so power-208

normalized data should be interchangeable for classification regardless of the209

originating device. The volume of the engine is similar to the volume of human210

speech, so smartphone microphones will have an appropriate sound pressure211

level to minimize distortion and saturation. These behavior similarities have212

been explored on enthusiast websites. 1
213

Data were recorded to an uncompressed stereo WAV file at 48kHz. The214

iPhone was moved and reoriented across the entirety of the engine’s visible215

surface. An example showing the phone in a representative orientation and216

distance from the engine is shown in Figure 3.217

We then replaced the clean filter with the dirty filter (c.f Fig. 2) that had218

been present in the Mazda 2 and repeated the process. There was no way to219

quantify what operating conditions had contributed to the dirty state of the220

Mazda 2’s filter as the filter was obtained from a rental vehicle, but we believe221

the filter to have approximately 30, 000 miles of contamination on it based on222

the vehicle’s mileage and visual inspection.223

1http://blog.faberacoustical.com/2010/ios/iphone/iphone-4-audio-and-frequency-response-limitations/
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4.2. Validating Binary Classification224

We conducted frequency analysis for the clean and dirty filter data, first225

dividing the minimum 10.5 minutes (630s) of data into 252 chunks of 2.5s each.226

For each chunk, we normalized the data by the root mean square (RMS) value227

to account for variations in phone position and environmental noise. We then228

computed a Fourier Transform (FT) of the time domain data for each chunk. We229

binned the FT transform data into 1Hz bins and considered spectral components230

between 20 Hz and 20 kHz. We assigned a lower cutoff of 20 Hz to avoid231

contamination by 1
f noise. We imposed the upper cutoff of 20 kHz as it is the232

upper limit for human auditory perception. We did this because we cannot be233

confident that consumer mobile device microphones perform well outside this234

range, and therefore avoided sampling right up to the Nyquist cutoff frequency235

of 24 kHz. Finally, we averaged each of the 252 FT and plotted them for236

visual comparison. Fig 6 shows noticeably different energy content between the237

clean and dirty filter and lends credibility to our idea that particulate loading238

generates a different auditory signal.239

4.3. Controlled Experiment, Multi-State Classification240

Following visual validation, we needed data to prove robustness for multiple241

vehicles and states, as well as to determine whether moving microphone data242

works reliably. The following section describes the experimental procedure and243

data collection process we used to collect three labeled data sets: one set from244

a Honda Civic recorded with a stationary microphone, one set from a Honda245

Civic recorded by a moving iPhone, and one set from a Mazda 2 recorded by a246

moving iPhone.247

We planned to record samples from a moving iPhone 6S to simulate how248

a “point and click” app might work. For the stationary microphone, we set249

up a TASCAM DR-40 recorder connected to a stationary microphone located250

approximately 30cm from the air intake. This is shown in Fig 4.251

It takes thousands of driven miles for a vehicle’s filter to transition from clean252

to filthy. For the purposes of our experiment, we wished to reliably simulate the253
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Figure 3: This photo shows the phone be-

ing moved across the engine’s surface while

recording audio. Relative motion is more

representative of real-world use, e.g. when

the algorithm is running self-contained as

a mobile application.

Figure 4: This figure shows a stand micro-

phone placed over the air intake, to record

flow data. The stationary microphone and

proximity to the air intake minimized the

impact of extraneous engine noise on the

recording.

transition on demand. We therefore removed the air filter and applied a layer of254

carbon filter material approximately 2mm thick to the filter’s exterior (intake255

facing) side to represent uniform particulate buildup. This additional material256

was applied tightly to the base filter to minimize leakage around the filter. This257

is shown in Fig 5.258

We then collected 10 minutes of audio data using the process from Section 4.259

We first collected data with the filter covered with carbon filter material and260

obtained the average FT profile as discussed in Section 4.2 to determine whether261

this experimental procedure is representative of real-world filter loading. Fig 7262

shows the response of simulated particulate build up. A comparison with Fig 6263

confirmed that the carbon filter occlusion closely approximates particulate build264

up and therefore is an appropriate surrogate for data collection.265

To simulate additional contamination, we repeated the process of adding266

carbon filter layers three more times. We collected data from a new filter and267

each variation from one to four layers of additional filtration material. This268

resulted in a total of five sets of training data, ranging from a brand new filter to269
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Figure 5: Simulation of filter loading using

carbon filter material. Additional layers pro-

vide additional restriction, representing more

significant occlusion.

a filter with four layers of carbon paper providing additional obstruction.2 Fig 8270

illustrates the average FT response of all five states. There are discernible peaks271

for all five states that a classification algorithm could use for state determination.272

However, there also appears to be the potential for state confusion in the two273

highlighted zones shown in Fig 9. In these zones, the amplitude of the clean274

and one layer case is very similar. The amplitude of the three and four layer275

case is similarly likely to be misclassified.276

Based on this confusion and our hypothesis that the air filter reaches a form277

of asymptotic loading from Section 2, we chose to reduce our state space and278

focus on classifying only states with a new filter, one restrictive layer, and four279

layers of material.280

We repeated this data collection process for both a Honda Civic and Mazda 2281

with normally-aspirated, four cylinder engines. Section 5 discusses the accuracy282

with which we can differentiate among these three states using our optimized283

classifier. We examine models for the Honda with the iPhone and stand micro-284

2These samples are available for download on Harvard Dataverse: https://dataverse.

harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3PDXSI.
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Figure 6: A comparison of the FT response of a clean and dirty filter. There are

noticeable differences in the FT peaks for the two filters.

Figure 7: A comparison of the FT of a clean filter and a filter covered with 1 layer of

carbon filter material. The position of the differences in FT peak positions resemble

actual particulate buildup.
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Figure 8: A comparison of the FT response for a clean filter and filters with 1-4 layers

of attached additional carbon filtration material. The figure focuses on a frequency

range where the peak differences are more noticeable.

Figure 9: Zones of potential feature obfuscation for the clean and 1-4 layers of

carbon filter material. The frequency axis has been truncated to 350 Hz so that the

individual peaks can be easily discerned.
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phone data, and Mazda with the iPhone.285

4.4. Controlled Experiment, Large Occlusion286

Frequently, large debris such as leafs enter engine intakes. These occlusions287

may become stuck to the air filter in operation and cause lean engine operation.288

This can decrease power and increase engine operating temperatures and thus289

should be avoided.290

As a final experiment, we removed all of the carbon filter layers and collected291

a set of data testing for the presence of large, nonuniform contaminants by292

inserting a mid-size (10 cm × 10 cm) piece of paper inside the airbox on the293

exterior side of the filter (c.f Fig 10). This simulated the presence of a leaf or294

other foreign body in the intake.295

From these data, we observed a new peak forming in the Fourier Transformed296

data. This peak indicates that the occluding material creates a strong signal at297

a particular frequency, suggesting that the paper may be acting similar to a reed298

on a wind instrument. This bifurcated peak is shown in Figure 11. This feature299

suggests we will be able to differentiate filter loading between large contaminants300

and particulates using only audio.301

5. Algorithm Development302

From Fig 5, we hypothesized that the FT peak differences could be used to303

differentiate among three states, with additional features improving classifica-304

tion accuracy. In this section we discuss how we generated features, tuned a305

classifier, and selected the optimal input parameters to maximize filter loading306

classification accuracy while minimizing overfitting.307

5.1. Feature Generation308

Using only Fourier features led to poor outsample results. Based on our309

previous successful diagnostics[12], we therefore additionally generated mel-310

frequency cepstrum and wavelet features.311
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Figure 10: Use of a piece of paper to non-

uniformly constrict the filter to represent dis-

crete foreign body loading, such as occurs

when a leaf enters the intake system.

Figure 11: Appearance of bifurcated peak for filter non-uniformly covered with a

piece of paper. The frequency axis has been truncated to 500 Hz so that the indi-

vidual peaks can be easily discerned.
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Figure 12: This plot shows the cumulative energy distribution function for the

Mazda’s full five states. We used this cumulative energy function to determine

an appropriate cutoff frequency for input to the classifier.

To reduce computation time, we windowed the DFT results, selecting 20312

Hz as a cutoff limit based on typical smartphone microphones, and examined313

energy content to set the appropriate upper cutoff limit. We computed the314

cumulative energy contribution versus frequency for each input set and found315

the 75% cutoff to be near 3, 350 Hz, striking a balance between computation316

time and feature richness. The CDF is shown in Fig 12.317

Whereas the Fourier Transform decomposes a signal based on a model of318

sinusoidal waves, the Wavelet Transform decomposes a signal based on functions319

in the Fourier space as well as the real space. We used the Discrete Wavelet320

Transform (DWT) at level 10 using Daubechies 4 wavelet to calculate 33 features321

from each input segment, including the mean, standard deviation, and skewness322

at each level of signal decomposition.323
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Mel-Frequency Cepstral Coefficients use short-term frames from an original324

signal to create a spectral signature useful for classification. We applied a frame325

size of 1024 with each frame incrementally shifted by 512 samples, extracting326

12 coefficients from each frame. We used the GNU “voicebox” toolbox3.327

We concatenated these DFT, DWT, and MFCC features to form training328

and testing vectors for each labeled set.329

5.2. Classifiers330

Machine learning algorithms aim to prove a hypothesis, using high dimen-331

sional inputs and limited training data. It is a challenge to avoid overfitting332

while learning a stable classifier capable of making predictions on unseen data.333

Ensemble learning is an approach where several models are learned and the final334

prediction is made by a weighted or unweighted vote of the individual classifiers335

to improve robustness[25].336

While we preferred Adaboost based on our misfire work[12], this approach337

often fails in multi-class learning[26] . We therefore decided optimize our perfor-338

mance and robustness using bagged trees based on Breiman’s random forests[27].339

Bagging (bootstrap aggregating) is an ensemble learning method that works340

by training several classifiers on a random sampling (with replacement) of the341

original training data. The bagged classifier is then the majority vote of the in-342

dividual classifiers. Bagging increases the stability of predictions while reducing343

variance and overfitting and has been successfully applied in bioinformatics[28],344

finance[29], sensor networks[30] and health care[31].345

5.3. Grid Search346

Upon selecting a bagged classifier, we developed an approach for model train-347

ing, testing, and validation. We first decided to allow 25% leave-out data for348

model testing and used the remaining 75% for 5-fold cross-validated training349

3Voicebox is GNU licensed; available http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

voicebox.html
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and testing as we conducted a grid search to identify each cars’ best-performing350

hyperparameters.351

To find the optimal model, we varied parameters including:352

• Time Segment Length (s): 0.5, 1, 2, 5353

• DFT Bin Size (Hz): 0.25, 0.5, 0.75, 1, 2, 3, 4 and 5354

• Number of Trees: 10, 100 and 1000355

• Maximum Tree Splits: 5, 10, 15 and 25356

Subtle changes could significantly alter the classifier’s performance: increas-357

ing the length of each time segment used for feature generation decreased the358

number of clips used for training, testing, and validation, but increased immu-359

nity to small perturbations in input signal. Increasing the DFT bin size allowed360

more features to be lumped together, reducing the number of DFT elements361

but making it harder to discern narrow bandwidth features.362

For each parameter, we determined likely maximum and minimum values363

and grid sizes to bound search time. We limited the maximum segment time364

to t = 10.0s to ensure a sufficient number of samples for training and testing,365

and to ensure a reasonable maximum time for users to hold their mobile devices366

near their vehicles. To simplify computation, we imposed a minimum DFT367

bin size of 0.1 to limit the number of features generated, while we constrained368

the maximum bin width to 5.0Hz to capture narrow-band features. Finally,369

we capped the number of trees bagged at 1, 000 to assure that this application370

might be able to run quickly on typical desktop computers. The number of371

maximum splits allowed in each tree was selected to ensure that at the low end372

of 5 splits, most trees would undergo pruning, while the upper limit of 25 splits373

would likely exceed the splits present in unpruned trees.374

For each data set and classifier permutation, we calculated the 5-fold cross-375

validated accuracy from insample data. For each car and recording setup, we376

selected the best validated result (determined as having the minimum misclas-377

sification rate/ maximum 5-fold classification accuracy on the insample data).378
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Figure 13: This plot shows how the algorithm’s insample classification

accuracy varies based on maximum number of splits allowed in the

classifier’s constituent trees. We see here that the 5 branch case works

best, suggesting that reducing the number of splits may lead to the

creation of more common decision points across the ensemble’s trees.

To ensure that these results are stable, we generated a series of plots for each379

car showing how insample predictor performance varies with changing parame-380

ters. In each, we selected the optimal value for all parameters except that being381

permuted. Representative figures for the Honda with stationary microphone are382

shown in Fig 13-16.383

Finally, we used these optimized tuning parameters to calculate the outsam-384

ple performance using the 75% insample data for training and the remaining385

25% hold-out data for testing.386

5.4. Ranking387

Though filtering based methods can rank individual features, they often miss388

non-linear multivariate interactions[12]. Bagged trees, however, learn the im-389

portance of variables as a part of the model learning process. The importance390

score of a feature is calculated by computing a normalized measure of the reduc-391

tion in classification error due to the feature’s associated splits[32]. Therefore,392

we used MATLAB’s “predictorImportance” parameter for ranking the features393
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Honda (TASCAM) Classification Accuracy vs DFT Bin Size

Figure 14: This plot shows how the algorithm’s insample classification

accuracy as it changes with different FFT frequency bin widths. We see

a maximum at the low end of our allowable bin size, 0.25Hz, suggesting

that the constituent trees are making use of narrow-band peaks for

classification.

and eliminate all zero-importance features from the training set.394

Reducing the feature count using predictor rank is important when consider-395

ing implementing this approach on a mobile device, as these features no longer396

need to be generated, uploaded, or stored. The net result is faster computation,397

improved mobile battery life, reduced file sizes, and no impact on accuracy (as398

the classifier already ignored all zero-importance features).399

6. Out-Sample Results400

This section shows the outsample, optimized results for the three tested data401

sets in tabular form.402

In Table 1, we see the optimal configuration for each of the three models and403

the 5-fold cross-validated insample performance as well as the 25% outsample404

performance.405

We note trends in optimal model parameters. Each model tends to select406

small bin sizes, suggesting that the DFT elements will play an important role407
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Figure 15: This plot shows how the algorithm’s insample classification

accuracy varying with number of trees used for bagging. We see a peak

accuracy occurring at 1000 iterations and an upward trajectory, but

note that returns are diminishing with increasing trees.

Table 1: This table shows the optimized ensemble classifier’s parameters and performance for

the three models tested.

Vehicle Recorder
Segment

Time

Bin

Width

Input

Trees

Maximum

Splits

Insample

Accuracy

Outsample

Accuracy

Honda TASCAM 1 s 0.25 Hz 1000 5 62.85% 74.24%

Honda iPhone 1 s 0.75 Hz 1000 15 40.42% 76.61%

Mazda iPhone 2 s 3 Hz 1000 10 39.381 79.66%
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Figure 16: This plot shows how the algorithm’s insample classification

accuracy varies based on training and testing segment time. We see a

maximum occurring at t = 1.0s. Using a relatively short time allows

more segments to be used in training, cross-validation, and testing,

thereby improving eventual robustness of the classifier.

Table 2: This table shows the features selected for use in classification as having non-zero

values for MATLAB’s PredictorImportance function.

Vehicle Recorder
DFT

Selected

DWT

Selected

MFCC

Selected

Features

Selected

Features

Total
Reduction

Honda TASCAM 352 5 1496 1853 14452 87.18%

Honda iPhone 526 23 3572 4121 5575 26.08%

Mazda iPhone 120 20 2342 2482 3374 26.44%

in differentiating states and that the features of interest are focused on narrow408

spectral regions. We also note that segment times tend to be short, providing409

each model with additional training samples. Finally, we see that each model410

uses the maximum-allowed 1, 000 trees.411

In Table 2, we see the features and types selected as important by the clas-412

sifier. We also highlight the percent of zero-importance features that were able413

to be eliminated.414

Here, we see that each model uses a significant number of DFT and MFCC415
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Table 3: This table shows the percentage of each feature type used by the final classifier. Note

that the total number of features changes based on DFT bin width and segment time.

DFT Selected DWT Selected MFCC Selected

Honda (TASCAM) 18.3% 15.2% 12.0%

Honda (iPhone) 83.9% 69.7% 72.9%

Mazda (iPhone) 75.5% 60.6% 73.6%

Table 4: This table shows the Honda’s performance with the stationary microphone, and

demonstrates a strong diagonal (correct) component. Note that dirty and filthy filters are

never mistaken for clean in this example.

Honda

(TASCAM)
Clean Dirty Filthy

Clean 97 14 11

Dirty 0 52 24

Filthy 0 19 47

elements, with fewer DWT elements. Interestingly, the stationary microphone416

was able to eliminate a higher percentage of features. This suggests that either417

the TASCAM microphone has reduced system noise or that the moving mod-418

els are classifying based on features other than those related to the air filter’s419

performance.420

We examine these feature types’ inclusion in Table 3.421

Note that the TASCAM audio input allows the algorithm to select fewer422

features across the board. FFT features a higher inclusion rate relative to the423

MFCC and DWT elements for this model and for the Honda’s iPhone model.424

In identifying mechanical system faults, false positives and negatives are425

important to understand. We consider the outsample confusion matrix to de-426

termine the number of false positives (reports dirty or filthy when actually clean)427

and false negatives (reports clean when actually filthy or dirty). These results428

are shown in Tables 4-6.429

The overall performance and false positive rate (clean filter reported as non-430
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Table 5: This table shows the Honda’s performance with the moving iPhone, and demonstrates

a similarly-strong diagonal component. Here again we see a slight bias towards reporting a

clean filter as dirty.

Honda

(iPhone)
Clean Dirty Filthy

Clean 182 51 38

Dirty 5 97 12

Filthy 1 9 101

Table 6: This table shows the Mazda’s performance with the moving iPhone, and demonstrates

another strong diagonal. Once more, we see a bias towards reporting clean filters as being

dirty.

Mazda

(iPhone)
Clean Dirty Filthy

Clean 66 18 1

Dirty 9 49 5

Filthy 3 12 73
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Table 7: This table summarizes each model’s performance and false positive/false negative

rate.

Vehicle Recorder Outsample Accuracy False Positives False Negatives

Honda TASCAM 74.24% 9.47% 0.00%

Honda iPhone 76.61% 17.94% 1.21%

Mazda iPhone 79.66% 8.05% 5.08%

clean) and false negative rate (non-clean filter reported as clean) are shown in431

Table 7. We prefer a slight bias towards false positives as air filters are low-cost432

and easy replacement, while dirty filters have significant cost implications.433

Finally, our results show us that switching from a stationary to a moving434

microphone has a minimal change in accuracy when classifying the vehicle – in435

fact, the accuracy improves about 2.4% when using the iPhone instead of the436

TASCAM recorder. We also note similar predictor performance across vehicles,437

with a final difference in classification accuracy of approximately 3.1%.438

7. Conclusions439

We demonstrated 80% accuracy in three-state air filter particulate loading440

detection using MFCC, DFT and wavelet features and bagged decision trees,441

proving the viability of batch processed smartphone audio for filter classifica-442

tion. Multi-state classification is a step towards condition monitoring, while the443

demonstrated classifier’s sensitivity suggests early response is possible. A mo-444

bile application using this approach may ultimately improve vehicle performance445

and efficiency.446

The results are promising, but much remains to improve the algorithm. We447

intend to conduct an experiment to determine the optimal filter replacement448

and will continue development using an off-vehicle intake system instrumented449

with flow meters and controlled fans. This will enable us to observe how envi-450

ronmental conditions such as barometric pressure, or systemic changes such as451

microphone type and location will impact the classifier’s accuracy.452
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Related work will examine the algorithm’s applicability to forced induction453

engines and consider online implementations. We will further consider how454

to optimally generate “fingerprints” on mobile devices while conserving com-455

putation, bandwidth, and storage. This approach will allow computationally-456

intensive classification to run in the Cloud while delivering accurate results to457

an end user’s constrained device. Ultimately, such a platform may be used to458

identify other maintenance needs from cabin air filters to faults in the exhaust459

system and beyond.460

27



References461

[1] United States Department of Transportation, Federal Highway Adminis-462

tration, December 2015 traffic volume trends (2016).463

URL https://www.fhwa.dot.gov/policyinformation/travel_464

monitoring/15dectvt/465

[2] IHS Inc, Aging vehicle fleet continues to create new opportunity for466

automotive aftermarket, ihs says (2016).467

URL http://press.ihs.com/press-release/automotive/468

aging-vehicle-fleet-continues-create-new-opportunity-automotive-aftermarket469

[3] United States Department of Transportation - Bureau of Transportation470

Statistics, National transportation statistics: Table 1-11: Number of u.s.471

aircraft, vehicles, vessels, and other conveyances (2016).472

URL http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/473

publications/national_transportation_statistics/html/table_474

01_11.html475

[4] U.S. Energy Information Administration, Annual energy outlook 2016: Fig-476

ure mt-25 (2016).477

URL http://www.eia.gov/forecasts/aeo/pdf/0383(2016).pdf478

[5] T. Jaroszczyk, J. Wake, M. J. Connor, Factors affecting the performance479

of engine air filters, Journal of Engineering for Gas Turbines and Power480

115 (4) (1993) 693–699.481

[6] K. Norman, S. Huff, B. West, Effect of intake air filter condition on vehicle482

fuel economy, ORNL/TM-2009/021, February.483

[7] M. Toma, Investigating maintenance procedures for engine air filters, in:484

Proceedings of the European Automotive Congress EAEC-ESFA 2015,485

Springer, 2016, pp. 375–384.486

[8] J. Thomas, B. West, S. Huff, K. Norman, Effect of intake air filter condition487

on light-duty gasoline vehicles, Tech. rep., SAE Technical Paper (2012).488

28

https://www.fhwa.dot.gov/policyinformation/travel_monitoring/15dectvt/
https://www.fhwa.dot.gov/policyinformation/travel_monitoring/15dectvt/
https://www.fhwa.dot.gov/policyinformation/travel_monitoring/15dectvt/
https://www.fhwa.dot.gov/policyinformation/travel_monitoring/15dectvt/
http://press.ihs.com/press-release/automotive/aging-vehicle-fleet-continues-create-new-opportunity-automotive-aftermarket
http://press.ihs.com/press-release/automotive/aging-vehicle-fleet-continues-create-new-opportunity-automotive-aftermarket
http://press.ihs.com/press-release/automotive/aging-vehicle-fleet-continues-create-new-opportunity-automotive-aftermarket
http://press.ihs.com/press-release/automotive/aging-vehicle-fleet-continues-create-new-opportunity-automotive-aftermarket
http://press.ihs.com/press-release/automotive/aging-vehicle-fleet-continues-create-new-opportunity-automotive-aftermarket
http://press.ihs.com/press-release/automotive/aging-vehicle-fleet-continues-create-new-opportunity-automotive-aftermarket
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.eia.gov/forecasts/aeo/pdf/0383(2016).pdf
http://www.eia.gov/forecasts/aeo/pdf/0383(2016).pdf
http://www.eia.gov/forecasts/aeo/pdf/0383(2016).pdf
http://www.eia.gov/forecasts/aeo/pdf/0383(2016).pdf


[9] M. Toma, C. Bobalca, Research on drivers’ perception on the maintenance489

of air filters for internal combustion engines, Procedia Technology 22 (2016)490

961–968.491

[10] J. Engelbrecht, M. J. Booysen, G.-J. . J. van Rooyen, F. J. Bruwer, Survey492

of smartphone-based sensing in vehicles for intelligent transportation sys-493

tem applications, IET Intelligent Transport Systems 9 (10) (2015) 924–935.494

[11] Q. Han, D. Cho, Characterizing the technological evolution of smartphones:495

insights from performance benchmarks, in: Proceedings of the 18th Annual496

International Conference on Electronic Commerce: e-Commerce in Smart497

connected World, ACM, 2016, p. 32.498

[12] J. E. Siegel, S. Kumar, I. Ehrenberg, S. Sarma, Engine misfire detection499

with pervasive mobile audio, in: Proceedings of European Conference on500

Machine Learning and Principles and Practice of Knowledge Discovery in501

Databases 2016, Springer International Publishing, Cham, 2016, pp. 226–502

241. doi:10.1007/978-3-319-46131-1_26.503

[13] P. Davies, K. R. Holland, Ic engine intake and exhaust noise assessment,504

Journal of Sound and Vibration 223 (3) (1999) 425–444.505

[14] S. N. Dandare, Multiple fault detection in typical automobile engines: A506

soft computing approach, WSEAS Transactions on Signal Processing 9 (3)507

(2013) 158–166.508

[15] A. Sujono, Utilization of microphone sensors and an active filter for the de-509

tection and identification of detonation (knock) in a petrol engine, Modern510

Applied Science 8 (6) (2014) p112.511

[16] P. Kabiri, A. Makinejad, Using PCA in acoustic emission condition moni-512

toring to detect faults in an automobile engine, in: 29th European Confer-513

ence on Acoustic Emission Testing (EWGAE2010), 2011, pp. 8–10.514

[17] P. Kabiri, H. Ghaderi, Automobile independent fault detection based on515

acoustic emission using wavelet, in: Singapore International NDT Con-516

29

http://dx.doi.org/10.1007/978-3-319-46131-1_26


ference &amp; Exposition 2011, Singapore International NDT Conference517

&amp; Exposition, Singapore, 2011.518

[18] J.-D. . D. Wu, C.-H. . H. Liu, Investigation of engine fault diagnosis using519

discrete wavelet transform and neural network, Expert Systems with Ap-520

plications 35 (3) (2008) 1200–1213. doi:10.1016/j.eswa.2007.08.021.521

URL https://doi.org/10.1016/j.eswa.2007.08.021522

[19] S. K. Yadav, K. Tyagi, B. Shah, P. K. Kalra, Audio signature-based con-523

dition monitoring of internal combustion engine using fft and correlation524

approach, IEEE Transactions on Instrumentation and Measurement 60 (4)525

(2011) 1217–1226. doi:10.1109/TIM.2010.2082750.526

[20] A. K. Kemalkar, V. K. Bairagi, Engine fault diagnosis using sound anal-527

ysis, in: 2016 International Conference on Automatic Control and Dy-528

namic Optimization Techniques (ICACDOT), 2016, pp. 943–946. doi:529

10.1109/ICACDOT.2016.7877726.530

[21] J. E. Siegel, R. Bhattacharyya, S. Sarma, A. Deshpande, Smartphone-531

based wheel imbalance detection, in: ASME 2015 Dynamic Systems and532

Control Conference, American Society of Mechanical Engineers, 2015, pp.533

V002T19A002–V002T19A002.534

[22] J. E. Siegel, R. Bhattacharyya, A. Desphande, S. E. Sarma, Smartphone-535

based vehicular tire pressure and condition monitoring, in: Proceedings of536

SAI Intelligent Systems 2016, 2016.537

[23] Y. Jin, Z.-y. . Y. Hao, X. Zheng, Comparison of different techniques for538

time-frequency analysis of internal combustion engine vibration signals,539

Journal of Zhejiang University-SCIENCE A 12 (7) (2011) 519–531. doi:540

10.1631/jzus.A1000384.541

URL https://link.springer.com/article/10.1631%2Fjzus.A1000384542

[24] J. Siegel, R. Bhattacharyya, A. Deshpande, S. Sarma, Vehicular engine543

oil service life characterization using on-board diagnostic (OBD) sensor544

30

https://doi.org/10.1016/j.eswa.2007.08.021
https://doi.org/10.1016/j.eswa.2007.08.021
https://doi.org/10.1016/j.eswa.2007.08.021
http://dx.doi.org/10.1016/j.eswa.2007.08.021
https://doi.org/10.1016/j.eswa.2007.08.021
http://dx.doi.org/10.1109/TIM.2010.2082750
http://dx.doi.org/10.1109/ICACDOT.2016.7877726
http://dx.doi.org/10.1109/ICACDOT.2016.7877726
http://dx.doi.org/10.1109/ICACDOT.2016.7877726
https://link.springer.com/article/10.1631%2Fjzus.A1000384
https://link.springer.com/article/10.1631%2Fjzus.A1000384
https://link.springer.com/article/10.1631%2Fjzus.A1000384
http://dx.doi.org/10.1631/jzus.A1000384
http://dx.doi.org/10.1631/jzus.A1000384
http://dx.doi.org/10.1631/jzus.A1000384
https://link.springer.com/article/10.1631%2Fjzus.A1000384


data, in: IEEE SENSORS 2014 Proceedings, IEEE, 2014, pp. 1722–1725.545

doi:10.1109/ICSENS.2014.6985355.546

[25] C. Zhang, Y. Ma, Ensemble machine learning, Springer, 2012.547

[26] J. Zhu, H. Zou, S. Rosset, T. Hastie, Multi-class adaboost, Statistics and548

its Interface 2 (3) (2009) 349–360.549

[27] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32. doi:10.550

1023/A:1010933404324.551

URL http://dx.doi.org/10.1023/A:1010933404324552

[28] D. Che, Q. Liu, K. Rasheed, X. Tao, Decision tree and ensemble learning553

algorithms with their applications in bioinformatics, in: Software Tools and554

Algorithms for Biological Systems, Springer, 2011, pp. 191–199.555

[29] D. Zhang, X. Zhou, S. C. Leung, J. Zheng, Vertical bagging decision trees556

model for credit scoring, Expert Systems with Applications 37 (12) (2010)557

7838–7843.558

[30] D.-I. Curiac, C. Volosencu, Ensemble based sensing anomaly detection in559

wireless sensor networks, Expert Systems with Applications 39 (10) (2012)560

9087–9096.561

[31] A. Kelarev, A. Stranieri, J. Yearwood, H. F. Jelinek, Empirical study of562

decision trees and ensemble classifiers for monitoring of diabetes patients in563

pervasive healthcare., in: 2012 15th International Conference on Network-564

Based Information Systems, 2012.565
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