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Abstract

Thermal Conductivity of Earth Materials

at High Temperatures

by
John Frank Schatz

Submitted to the Department of Earth and
Planetary Sciences on May 21, 1971
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

The total thermal conductivity (lattice plus radi-
ative) of several important Sarth mategials is measured

in the temperature range 500°K to 1900°K. A new tech=-
nique is described which uses a CO, laser to generate a

low frequency temperature wave at 6ne face of a small,
disk-shaped sample, and an infrared detector focused on
the other face to detect the phase of the emerging radi-
ation, A mathematical expression is derived which enables
phase data at several frequencies to be used for the simul-
taneous determination of the thermal diffusivity and mean
extinction coefficient of the sample., The lattice and
radiative thermal conductivities may then be calculated.
Results for single crystal and polycrystalline
forsterite-rich olivines indicate that, even in relatively
pure, large-grained material, the radiative conductivity
does not increase rapidly with temperature, The predicted
total thermal conductivity at 500 km depth in the earth's
mantle is less than, twice Bhglsurface olivine value of

about 0.012 cal cm “secC c .
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INTBRODUCTION

An evolving planetary intérior 1s a glant heat
engine. A fundamental aspect of that engine is the
total effect of the three modes of internal heat
transport: conduction, radiation, and convection, This
work is a contribution to the understanding of two of
those modes, conduction and radiation, in solid earth
materials and in the earth's mantle, A new experimental
technique is described which facilitates the separation
of the effects of conduction and radiation in partially
transparent solids at high temperatures,

A precise knowledge of the magnitude of the para-
meters of conductive and radiative heat transport is more
important in some calculations than in others. One
calculation sensitive to these parameters is that of
the temperature in the upper mantle (to about 600 km),
where changes in thermal transport may affect the forma=-
tion of a partial melt or phase change. Another is the
temperature field of a downgoing slab (in plate tectonics),
as considered by Minear and Tokséz [1970] and Toks8z,
Minear, and Julian [1971], where the heating rate in and
near to the slab is important to the prediction of
geophysical effects. Calculations less sensitive to
the parameters of conductive and radiative heat transport

are often those involving the entire thermal history of

a planet [MacDonald, 1959, 1963; Lublimove, 1967; Kopal,
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1964; Lee, 1968). In these large-scale calculations,
other considerations, such as initial condifions, the
existence and extent of convective motioén, chemical
reactions, and the distribution of sources of heat,
are likely to be more important,

The experimental results obtained in this work
are used to study temperatures in the earth's upper
mantle, the moon, and the downgoing slab, But, the pri-
mary purpose of this investigation is to contribute to
the general understanding of heat transport in earth

materials, for any application,



1
A

14
1 . MECHANISMS OF HEAT TRANSPCRT IN SOLIDS

Consider the time dependent heat flow equation for
solids without convective motion or internal sources

of heat (whlch can be added later):
eCp%—% = —V‘O. (1.1)

where o 1s the density, Cp 1s the speciflic heat at
constant pressure, and Q is the net flux of heat at a
point in the solid, For the case of simultaneous

conduction and radiation of heat, Q may be separated into

two parts as

Q:—. —K9T + Qn (1.2)

where K is the usual thermal conductivity and Qp is
the unspecified (for now) radiative heat flux, X 1is,
in general, the sum effect of several conductive
mechanisms and QR is a complicated function of the
geometric and radiative properties of the medium,
Suppose for the moment that QR can be expressed in a

manner analogous to normal conduction as

Qg = ~ KpvT (1.3)
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where KB is the "radiative conductivity®". Then, if the
conductivities are weak functions of positlén compared

to temperature, equation (l.1l) becomes the normal heat

flow equation,

eCrst = (Kexn)oeT (1.4)

but with an effective conductivity(k + KR)[Clark. 1957].
The assumptions leading to thls extremely simplified
view of radiative heat transfer will be discussed
later, It is sufficlent here to note that equation
(1L.4) (with the addition, if necessary of sources and
convectlion), is valid for the study of the earth's
interior. ‘owever, it 1s generally not appllcable to
the reduction of data from high temperature laboratory
experiments which use either small samples or time
devendent boundary conditlions,

If, as in equatlion (1.4) a conductivity can be
assoclated with each mechanism of heat transport, then
classical kinetle theory provides a simple method of
evaluating that conductivity., For general reference,
see Kittel [1966]. Each mechanism 1s considered to

consist of a cloud of particles which move, collide, and

carry heat such that
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K= 5C, VL ) (1.5)

where Cy 13 the local specific heat per unit volume

(at constant volume), V 1s a characteristic particle
speed, and L is the mean free path between collisions.
The major assumptions implicit in this method are that
each particle is in thermodynamic equilibrium with
respect to its immediate surroundings and that the mean
free path is much smaller than the external dimensions

of the medium, The kinetic formula, equation (1.5),

then provides a convenient method of comparison of
conductivity mechanisms. But in order to use this theory
to evalnate the thermal conductivitlies in earth materilals,
all of the mechanisms that are possibly important must

be ldentified,

The types of heat-carrying quasl-particles may be
divided into two groups according to the nature of
their excitation energy: those which have a continuum
of excited states immedliately above the ground state
and those which have a distinct energy gap between the
ground and first excited state [Krumhansl, 1959;
Whitmore, 1960]. 3ecause Increased particle excitation
is produced mainly by increase of temperature, the
contlnuum particles may be important at any temperature

while the energy gap particles are important primarily
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at hlgh temperatures. MajJor representatives of continuum
particles are phonons (quantized lattice vibratlons)

and photons (quantized electromagnetic radlation).
Important examples of energy gap particles are free
carriers (electrons, holes, and electron-hole pairs)

and excitons (bound electron-hole pairs),

If numerous and moblle, energy gap particles can
be major contributors to thermal conduction, It is not
surprising that their influence upon heat conduction in
the earth has been the subject of considerable discussion
and some speculation. See, for example, Lawson and
Jamieson [1958] and Lubimova [1960, 1967] . The contri-
bution of free carriers may be estimated by the Wiedemann-
Franz law or an appropriate modification thereof. See
the text by Smith [1961] for a good dlscussion. The
electrical conductivity in the mantle does not appear
to exceed roughly 1 to 10 ohm'lcm'l [Madden and Swift,
1969]. It 1is several orders of magnitude less in the
moon [Sonett et al., 1971]. The assoclated thermal
conductivity is almost certainly negligible,

Evaluation of the exciton contribution is a some-
what more difficult problem., The maln questions are
whether or not excltons exist at all in the insulating
oxides and silicates, and if they do, what thelir
excitatlon energles are, Any expression for the

exciton thermal conductivity contains, by the kinettic
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formula, a term proportional to the number of excltons
which depends upon e-E/KT, where E 1s the excitatlion
energy. Thls exponential dominates the temperature

dependence. If E is of the order of 1 ev, exclton

: thermal conductivity could be important in the earth,

but if E i1s of the order of 10 ev this form of conductivity

is almost certainly negligible. Shankland, [1968] has

0 shown that the first important exciton energy in the
forsterite lattice is at least 8 ev. Any excitons of
lower energy would probably have insufficlent mobility
To contribute significantly to thermal conductivity,
Exciton conductivity in olivines thus seems unlikely.
Dlscussions 1n the ceramic and semi-conductor literature
[Joffe, 1956; Whitmore, 1960; Lee and Kingery, 1960]
lead to similar conclusions. In particular,
Vishnevskii and Skripak [}969] show that A1203 (corundum)
seems to show even less evidence for exitonic thermal
transport than belleved earlier [Jamleson and Lawson,
1958]. 1In view of the insufficlent evidence for this
mechanism in any of the materials of interest here,
we consider it no further, A similar conclusion 1is
reached by Clark [}969]. Thus, no energy gap particles
are likely to be important in the earth's mantle as
carriers of heat. OCnly the two continuum mechanisms,
lattice vibrations and radiation, remain important.

Thus the total thermal conductivity 1s the sum of Xr,
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and ¥g only, and X, 1n equation (l.4), can be replaced by Kg e

Before continuing with more detalled discussions of
lattice and radiative thermal conductivity, it may be
useful to indicate thelr most important differences in
light of the kinetic formula. First, the length of the
mean free paths for the two mechanisms 1is vastly different
in earth materials: angstroms for phonons and milli-
meters or more for photons. It follows that violation
of the assumption of large sample size compared to mean
free path is, when reducing laboratory data, most
likely to occur for radiation. Second, the speed of
radiation (light) is clearly much greater than the speed
of phonons (approximately the speed of sound). The
speclfic heat of the photon gas must therefore b»e much
less than that of the phonon gas, or else radiative
heat transport would always dominate, Indeed this 1is
the case, Only at an impossibly high temperature could
a solid absorb more energy in the form of internal
equilibrium radiation than in lattice vibrations., In
fact, the photon specific heat is small enough that,
although radliative heat transport can be theoretically
important at any temperature, it 1s in actuality a

high temperature phenomenon.
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2. LATTICE THERNAL CONDUCTIVITY

~

Under standard conditions of temperature and pressure,

lattice thermal conductivity may be correlated rather
well with crystal structure [Spitzer, 1970]. The most
important generallzation is that increasing structural
complexity leads to lower conductivity., Horal [19?1]
and Horal and Simmons [1969] present conslderable data
which support thls and other related generalizations for
rock-forming minerals, However, a more quantitative
description is required to estimate temperature and
pressure effects, To this end, equation (1,5) may be
used to obtain an expression for the lattice thermal
conductivity. Ziman [1960] reviews the derivation of
an expression for KL. Only a brief outline is given
here in order to indicate the method.

The specific heat of the 1attlce.1s assumed to
have 1ts classlcal value for materials at or above

the Debye temperature:
Cv= 3Nk (2.1)

where N 1s the number of atoms per unit volume, The
characteristic particle speed of phonons 1s the speed of
sound, because the phonons which contribute most to the
thermal transport are those which are at the lower end

of the acoustlc branches of the phonon spectrum, The
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velocity V 1s thus given by

3 _

\ 2 :
v '\7}*7‘3 (2.2)

where V, and Vg are, respectively, the longitudinal and

p
transverse sound velocitles. The last parameter required

in the kinetic formula, the phonon mean free path, L,
needs more discussion. But first, a simple procedure
indicates the values expected for L., If equations (2.1)
and (2.2) for Cy and V are substituted 1n equation (1.5),
then the expected mean free path can be evaluated from
the expression obtatined, L = 3K./C,V , by using thermal
conductivity and velocity data. For earth materials
Horal [19711, finds a varlation of L from one to several
tens of lattice spacings. A correct theoretical

expression must give results of this magnitude,

Phonon Mean Free Path

Two mechanisms of phonon scattering are lmportant
in large grained crystals. They are collislons with
(1) other phonons and (2) imperfections. Each of these

may be associated with a mean free path such that

A LI
L L, L1 (2-3)

-
—

The smallest of L;y or Ly will thus dominate.
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Ly* the mean free path due to phonon-phonon inter-

actions, 1s probably best described by the Umklapp

three-phonon scattering process, which gives the result,

eV"&.
Nk ¥*T

L, =

(2.4)

where o 1s the denslty, a the lattice constant and ¥
the Grunelsen constant, Now, suppose for the moment
that L; 1s much smaller than L2. Then by equation

(2.3), L=L; and the lattice thermal conductlivity can

be found by substitution in equation (1l.5):

K = QV’&
- T

(2.5)

Alternate forms of equation (2.5) may be found by
substitution of several equalities or approximations,
involving for example, the Debye temperature, the volume
coefficlent of expansion, or the melting temperature
from the Lindemann formula,

The possible dominance of a four-phonon scattering
process, considered by Pomeranchuk [1941], leads to
a T'S/u instead of T‘l devendence, but the resulting
difference in conductlivity is not really significant
with respect -0 the uncertainties in exverimental data.

Under one condition, however, the Umklapp “hree-phonon
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model for Li almost certalnly breaks down: That 1s, if
L, as calculated from equation (2.4) 1s smaller than
the lattice spacing, a., This would occur at very high
temperatures, where equation (2.4) allows L; to decrease
without bound. However, thls cannot be, for a discrete
elastic model should not allow scattering to occur more
often than once per atom. It thus seems reasonable

to place an absolute lower limit of L of
Llh'\h = a

where a i1s the mean interatomlc spacing. The resulting

expression for the minimum KL is

a

|

2
KLna.'—‘ Nkva = kV( )3 (2.6)

E4|

where M 1s the mean atomic welght, The validity of the
concept of a lower limit on lattice conductivity is
supported by the general observatlions of Soltzer [1970].
In a glassy material, where general disorder always
limits the free path, equation (2.6) should apply even
at room temperature.

Joffe [1959] proposes a mechanism of conductivity
by quantum hope of energy from one atom to another. 1In
this case K;, has no minimum since the hopping frequency
can be as small as one might desire. This model,

however, is without experimental support.



25

The mean free path assoclated with imperfection
scattering, L,, should be relatively independent of

temperature at high temperatures., For scattering by

substitutional impurities,

a
L2 S(N/N) (2.7)

where S 1s the dimenslonless scattering cross section
(equal to the actual cross section expressed in units of
lattice spacing) and N_ /N 1is the relative concentration
of impurities [Joffe, 956, 1960], Because S 1s about unity,
L2 1s about equal to the spacing between impuritlies, or
probably several times the lattice constant,

If both L; and L, are 1ncluded, then the general

lattice conductivity expression becomes

*T
K_= NkVa [_N‘;f‘/‘ _ +S(NL/N):’ (2.8)

Effect of Temperature and Pressure

Equation (2.8) contains many implicit approximations
and seldom gives numerically accurate values, A more
reliable approach for the purpose of extrapolation |is
to assume that the functional devendence 1is correct,
to write the expression in terms of arbitrary constants,

and to fit a curve to experimental data by adjusting the
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constants.

If we assume, first, only fariatlon with temperature,

then equation (2,8) can be rewritten as

Ko = A+BT (2.9)
where A and B are constants. In a like manner, the
minlimum KL becomes

.. = constant
Kinmin (2.10)

It should be possible to fit & curve of the form of
equation (2.9) to any data 1n a range of temperature

where only lattice conductivity 1is important. 1In Filgure
2.1, such a curve has been fitted to the data of Birch and
Clark [19&0] for dunite (of olivine composition Fog,Fag).
By observing equation (2.9), the prediction can be made
that forsterite of composition Mg,510, should theoretically
have a higher lattice conductivity, corresponding to

A=0 (if the 1ron acts as a substitutional scattering
center). This prediction is confirmed by the experimental
data of this investigation, shown also in Figure 2.1,

Note that the theoretical lower limit should be reached

at about 1200 %K. Clark [1969] calculates the values of
the constants A and 3 for several other materials of

geophysical interest, However, he uses data at temperatures
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Flgure 2.1 Lattice thermal conductivity of
olivine as a functlon of temperature,

The curve fitted to the data of Birch

and Clark [1940] 1is K, = 1/(26 + .21T).
The curve for forsterite, Fo=1g,510,,

is K, = 1/.21T, and the data polints are
the values measured by Kingery et al,
[1954] minus the radliative conductivity

measured in this investigation. (See

Figure 6.4.) The lower limit,

Kimin = 0037, 1s calculated from equation
(2.6) for FoggFajg with M = 21,

€= 3.33 g/cm3, and V = 5,35 km/sec,
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where radlation 1s often important, and his values of A

and B may not be the true values for lattice conductivity.

If we consider both temperature and pressure varlatlons,

then the expressions for lattlice conductlivity are

3 2 %/A+8BT,
K= “'-o(%a) (%—) (%, (Atar) (2.11)
and
£
i = Keming (L) (5
(2.12)

where the zero subseripts denote 1lnitlal values. Fuji-
sawa et al. [1968] verify the kinetic formula approach for
predicting both pressure and temperature variations of
lattice thermel conductlvity by measuring the conductivities
of forsterite and sodium chloride up to 1100 %% and 50 kb.
Hughes and Sawin [1967] measure the conductivity of dunite
to 500 °K and 18 kb but the scatter in their data make

uncertaln a further verification of the kinetic formula.

Lattice Conductivity in the Mantle

Zharkov [1958] and Lubimova [196?] calculate
values of KL for the earth's interior using exoressions

5/4

similar to (2.11). (Lubimova uses a T expression.)

MacDonald [1959] simply assumes that K is constant in
the mantle, which 1s surorisingly adequate because of the

tendency for the effects of Ddressure and temverature to

cancel each other.
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We can eliminate the Grunelsen constant from
equation (2.11) by using an estimate of the volume-
dependence of ¥ for earth materials discussel by
Wang [197Q]. The estimate may be written as (EL)==(f-)

). ©e
where n has a value between one and two. If n*= 7/3

i{s chosen, equation (2.11) becomes

K= K._o(!f—f(/:iiz-’) (2.13)

An 1llustration of possible results for K in
the mantle 1s given in Flgure 2.,2. In computing these
results, we use the parameter values given in Table 2.1,
The use of these particular values is meant only as an
example to demonstrate results for K+ The significant
features appear to be the dominance of the 1/T devendence
throughout the upper 80 km or so, and the subsequent
dominance of the pressure-dependence in the remaining
depths. Note that KLmin may be attalned throuzhout much
of the upper mantle. We suggest that a sufficient
approximation to K1, in the mantle 1s to set KL = KLmin
except immediately below the crust, where only the
temperature~devendence need be considered,

Although the discussion above should apply to

both phases involved in a polymorphic phase transition
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Flgure 2,2 Zxample of a calculation of lattice
thermal conductivity as a function of
depth in the mantle., The equatlions for

the curves are

oltvine Ky = .011( *

32 + z'T‘

3
spinel X, .018 ( v 6) ( -3—:5:'.';,—,-)

z
3

both Kimin = .00031 Ve
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Table 2.1 Parameters used in calculation of lattice

thermal conductivity in the mantle, .

Depthlm Temperature® O Density g/cm3 Mean velocity km/sec

0 300 3.33 5.35
60 1070 3.4 5.2
100 1400 3.5 5.0
200 1980 3.5 4,8
400 2600 3.75 5.6
600 2980 4,0 6.1
800 3260 L. 4 6.9
1000 3460 4,6 7.1
1500 3800 4,8 7.5
Vob eob Ko, cal/cm sec %
Olivine 5.35 3.33 011
Spinel 6.01 3.68 .018°

8vacDonald [1959], ¥Model 19.
bChung[l97l]. olivine composition FoggpFaqj.
Cestimated from data of Fujlsawa et al, [1968].
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(1f the new values of the zero subscripted constants

are known) an interesting effect might arise in the midst
of such a transition. Zhuze, et al, [1969] show

evidence for the existence of a strong minimum in

thermal conductivity in the vicinity of a phase
transition, which they'attrlbute to the greatly disturbed
short-range order of the lattice. However, this

effect 1s likely to be small in the earth if the lower

limit on X, has already been approached for both phases.



35
3. RADIATIVE THZRNAL CONDUCTIVITY

The kinetlc formula, equation (1.5)v‘may be applied

to the case of photons as follows:

oo T3
6T |
(<5

n? (3.1)

Q
<
[

c

a—

v n

L = éf

where ¢ is the speed of light 1n a vacuum, n is the
refractive index of the medium and O 1is the Stefan-
Boltzmann constant., (See Fukao [1969] for a more
explicit discussion of the application of the kinetic
formula to radlative transfer,) The extinction coeffi-
cient € , sometimes called the opacity, is deflned as
the sum of an absorption coefficient, & , and
scattering coefficlient, s , such that the attenuation

of I, the intensity of radiation in the medlium, ls

glven by

- €eX
1=1.¢ (3.2)

Substitution of equation (3.1) in equation (l.5) gives
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. T3 .
R (3.3)

Radiation Heat Flux in a Solid

Unfortunately, when equation (3.3) is derived in
this manner, no indlcatlions of 1its limits of applicability
are obvious other than the fact that L must be smaller
than the medium dimensions. A useful alternate approach
is to find the exact form of the radiative heat flux
QR' which appears in equation (1.2) as a mrt of the
total heat flux, and then to examine the conditlions
under which a "radiative conductivity” of the fornm
(3.3) may be used such that Qz = -KpVT.

Clark [1957] first used this approach in the earth
scilences, Additional references to the early literature
are given by Lee and Kingery [1960]. Sparrow and Cess
[1966] derive a rather general expression for QR in
their radiation heat transfer text, We willl follow
their derivation below,

Consider a radiation emitting, absorbing, and
scattering region of thilckness D bounded by two
parallel planes, Assume local radiation balance. The
extinction coeffliclient 1s defined as before, except
that it (and all other propertles) are wavelength-

dependent. (All wavelength-dependent quantities are
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called "spectral", such as the "spectral absorption
coefficlient,"”) For slmplicity{ only one dimensional
flux (in the x-direction) is considered. Deflne an
"optical coordinate" T, such that Tyr= €)X

and T,, = €,D . Let L, (x,©) be the
local intensity of radliation as a functlon of wavelength,
position, and angle, as shown in Figure 3.1, The wave

length dependent radiation heat flux is then given by

Qry (T2) = SIA(Cx,B) cos © dew (3.4)
4m

where the integration is over the entire solid angle.
Two differential equations are now formulated: one

describing the augmentation or attenuatlon of L in

the positive directlon as a result of absorption,
scatterling, and emission within a volume element; and
the other desceribing the same effects 1n the negative
directlon. Scattering is assumed to be coherent (no
wavelength change) and isotropic {equal probability of
scattering direction). The two differential equations

are solved and substituted in equation (3.4) to give

R R D s el L h L e
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where h is the spectral black-body emissive power in
the medium and x' 1s a dummy variable, Gy 18 the

total incldent energy per unit area within the medium

11'
Gren = 27 |Ta (e,

(=]

given by
5 sinw © dS

and the En's are the (well tabulated) exponential intezral
functions. BO) and BD% are the diffuse spectral
"radlosities"” of the surfaces 0 and D. (The assumptlion

of diffuse surfaces is used for simplliclty of expression
in equation (3.5) only; it 1s not necessary.)

Only one of the assumptions underlying equation
(3.5) is inaccurate, namely, that of isotropic scatter-
Ing. The general case for the aggregate materials of
interest in the earth sclences is not lsotropic
scattering., (See Pitt and Tozer [1970b] .) The
consequences of this fact will be discussed in a later

section. It 1s worth mentlioning here that no severe
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problems arise. Otherwlse, equation (3.5) 1s quite
generally valild, even if conveétion i1s included in the
heat flow equation, provided that the flow velocltles
are much 1ess than the speed of light (!).

The total Qp 1s found by lntegrating Qg over

all wavelengths,

o0

o

If Qp 1s then substituted in the heat flow equation, a
non-linear integro-differential equation results which

{s extremely difficult to solve, even approximately,

except in certaln special cases.

One of these speclal cases 1s that of an optlcally
thick medium--that 1s, when D i1s large compared to
the length 1/6) . (pepartures from thermal equilidbrium
also have to be small and smooth such that they are
expandable in a Taylor's series.) Equatlion (3.5) may
then be simplified as follows: Flirst, assume far
removal from the boundaries such that the surface

radiosity terms may be dropped; then, define

- & 5
F—A(‘Cﬂ z eb\(tx)-*qexex(tﬂ

and expand F, 1in a Taylor's serles about x'=zy,
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which gives

F) (!'\ - F)(‘Cﬂ + d& (x’_tn +.‘£ drFy (x/-T }\“ O
-dT, 4T ,~

Substitute this into equation (3.5), to yield
Tor-Ta :]

Ta
Qa,(t,\\—: z’:'x('cﬂ [SE,_(;)J;-— SE,_(z')d%’
Q

)
Coy -T
-2 deCtx] Ta b
_ j z2E,(arde + | =/ E(2ndz2’
aT ) f3) o

where Z2=T,_x/ and z'= x'-T\) ,
Now, if we are far from the boundaries of the medium, the

conditions T) — o= and T.,,-T,-—= o apply, and the

expression for Qa, becomes

oo
dF
Quy = -+ =2 sz,_ce\da - -1+ dh
4Ty ? dTA
o

(3.7)

A similar procedure for G, gives

G, = 4ei,(Ty
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Putting G, and the definition of F, 1into equation (3.7)

yields )
QK) = -5

(3.8)

W

This equation concludes the outline of Sparrow and

Cess'!s presentation.
Now, let

’ debr _ debr 4T

A x Flan AXY

where only temperature is assumed to be a function of

position in the medium. (This assumption need be true

only over the length /€, .) Integration of equation
(3.8) over all wavelengths as illustrated by equation

(3.6) gives the total radiation heat flux:

o

_4 d7 | L dE€b,
Qp = 3 'jf\} €\ Lo A
) (3.9)

Expression of equation (3.9) in the form

Q _ _ Kk, dT

= |
® ox
yields

o2
4 | L d4ey,
= A
KR 3 [ €y aT ’ (3-10)
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which is the desired result of a "radiative conductivity."
: A further simplification puts equation (3.10) in
: the simple form of equation (3.3). The Rosseland mean

extinction coefficient, € , is defined by

wdebx
f dA (3.11)

[ Sparrow and Cess, 1966, p. 215] . Substitute equation

(3.11) in (3.10) to give

o

o
+ 4
. — = Chy dA
Ka 3e dT Xd

Furthermore, if the refractive index is only a weak

function of wavelength (and temperature) near to the

maximum of deb , then
aT
4
_da- = -d— fond T" = 4“L€T;
dffe\,,u dT(V\ d )
4
so that
A —ntT?
Ka= 3 —
(3.12)

which is identical to equation (3.3) with € replacing€.
For an optically thick medium, the most important

unknown quantity in radiative transfer is the mean
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ks
i extinction coefficient, which ;s the spectral coefficlent
i averaged and welghted with respect to the ;emperature
derivative of the spectral black body emissive power.
However, the temperature derivative of black body
emission has a strong maximum very near to the maximum
of the black body functlion itself, so. ln essence, the
most important contribution to the value of €
probably results from those wavelengths near the peak

of €b)

elsevhere),

(unless the medium is extremely transparent
This observation means that, even 1f €)

were not a functlion of temperature (which 1s not the
case) € would still, in general, be a function of
temperature, Flgure 3,2 demonstrates this relation:
by 1s plotted at several temperatures for comparison

with the wavelength dependent absorption coefflclent

for olivine at room temperature, Note that as

temperature increases,

eb, moves into the more

transparent regions. Thus € would decrease, The

most important wavelength interval for radlatlve transfer

at mantle temperatures is 0.5 to 4 mierons.

To tndicate the values of the mean extinctlion

coefficient that are important, ¥Xp 1s plotted in Figure
3.3 for several hypothetical values of € . The
previous result for lattice conductlivity iln forsterite

1s shown for comparison. A value of € less than about

20 cm~1 (corresvonding to a photon mean free path
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Figure 3.2 3lack body emission at various
temperatures compared to typical

absorption spectrum of olivine (White

and Keester._l966].
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Figure 3.3 Radiative thermal conductlvity

as a functlon of temperature for several

values of mean extinction coefficient.
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greater than ,05 cm) would cause Xg to dominate at

temperatures above 1500 %k, -
A socmewhat detailed discussion of the contributlons

of scattering and absorption to the extinction coefflclent

{s given below, but, due to the complicated nature of

these phenomena in crystalline solids, we do not attempt to

describe the general case. Tnstead, the discussion is
l1imited to a brief descriptlon applled to the common
gilicates and oxides--elther {n thelr pure state or

containing iron as an example of a transition metal

impurity.

Scattering

Two general types of scattering media are of interest.
The first is a rather large grained assemblage of
particles of two or more slightly different refractlive
indices. The second 1s a material of very small,
uniform grain size with a great many interzranular

volds. The size of the volds may be comvarable to the

radlation wavelength. The majoT difference between the

two 1s that in the first the laws of geometric optlcs

apply to the scattering Drocess, while in the second,

they do not. OCnly 1ln the second 1s the scattering

strongly wavelength-dependent.

A large-grained (several millimeters) assemblage 1s

possibly tynical of the earth's interior, Aronson
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et al. [1967 a,ﬁ] consider such assemblages without

the (previously mentioned) restrictive assumption of

Thevy find, particularly for the

{sotropic scattering.

larger grain sizes, that the form of the equation

for the mean extlinctlon coefficlent 1s essentlially

unchanged from 1lts lsotropic form, provided that s

is consldered to ve the backscattering, and not total

scattering, coefficient. They consider scattering

caused at grain interfaces by the mechanisms of

refraction and reflection for the case of two different

refractive indlces. If the difference between the

l/nz;'L) then the refractlon

tndices is small (L 2N 7

term dominates. Furthermore, if the difference is very

small ( l.Z.m/"z7'%')5 as 1s probably the case 1n

earth materials, Aronson's result reduces to

I3
- 4 ' z
> % Ira [Z(I' n./n,)] (3.13)

where d 1s the average distance between interfaces.

This function 1is plotted in Figure 3.4, For example, if

m/nfz 0.9 and 4 =0.1 cm, then s =2 cm‘l. This result

tndicates that, i\f the mean grain size in the mantle

{s 1 mm or largeT, then 2 cm'l {s a rough uvper limit

to the size of the scatterinz coeffictent. 1In the next

section, the absorotion coefficlient, X , will be

shown to be generally larger than 2 cm'% whilch indlcates



Figure 3.4 The quantity €4 for scattering

in a large-grained particle assemblage
as a function of relative refractive

index of the grains [Aronson et al.,

j}967a] .
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that scattering is of secondary importance 1in the
mantle. | .

Some laboratory samples are extremely small-
grained materials,and the tiny pores, rather than the
grain interfaces, act as scattering centers. The
grains, in fact, are only a passive matrix in which the
pores are located. Van de Hulst [1957] demonstrates
the application of Mie scattering theory to the case of
spherical, randomly distributed scattering centers.

Lee and KingeTry [1960] successfully apply this theory

to several ceramlc materials. The wavelength-dependent

scattering coefflclent is glven by

32 Vper
=7 5 (3.14)

where Voo {s the volume fraction porosity, r is the
pore radius, and E {s the wavelength-dependent
extinction efflclency. The extinction efflclency is

most easlly descrited as a function of P » where
p = 4T N %f —i\ where n; and n,
A >
are the refractlve tndices of pore and matrix. gsxtinction
curves are shown in Filgure 3.5 for several values of
relative refractive ilndex M= n‘/n,_, Note that if p > 2
then Ej =2. ror example, if n; = 1 and np =1.5, then

b is greater than 2 if T /A $  1/3, which s probabdly

often (but not always) true for sintered ceramics. In



Figure 3.5 Extinction efflclency for a

porous small-grained particle assemblage

as a function of the parameter P

[van de Hulst, 1957].
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this case, the scattering 1s independent of wavelength

>

and

3 V ov
.S- - —— _f—-—

2 r (3.15)
For example, if V.., = 0.0l and r=3 X 10-% cm, then
8= 50 cm'l, a rather large value, This example shows

that scattering can be the doninant extinctlon mechanlsm

in a material contalning a large number of pores.

Absorotion

The physical nature of the absorption spectra of
silicates has been reviewed in articles by Clark [1969] ,
Shankland [1970]. and Burns [19?0]. Thelr general
observations, outlined below, apply also to insulating
oxides. The maln features of the absorption spectra
are the strong absorptions in the near infrared and
visible-ultraviolet--separated by a relatively non-
absorbing region from about 0.5 to 3 microns. (See
Figure 3.2.) The non-absorbing region, or "pass band",
may contain absorptions due to the presence of iron
or other transition metal impurities. The strength of
these pass band absorptlons are critical to the
limitation of radlatlon transfer.

The strong absorptions in the near infrared begin

at about 3-5 microns and extend to longer wavelengths,
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They are due to the vibrations of the lattice itself

and are expected to lncrease in intensity and shift to

shorter wavelengths as temperature and pressure in-

crease. However, at all but the lowest temperatures,

the majority of the radiant energy 1s at even shorter

wavelengths, Changes in the lattice infrared absorptlons

are thus not critical to the value of the mean

absorption coefficlent.

The strong absorptlons at the short wavelength end

of the spectrum in the visible blue or ultraviolet

begin at 3 micron and continue to shorter wavelengths,

corresponding to energies of about 3.8 ev, There are

two types: The first (lowest energy) 1is due to charge

transfer--the result of electron exchange between
impuritles such as iron and the nelghboring crystal

fons; and the second is due to processes more intrinsic

to the lattlce electronic structure, including exciton

and band gap absorptions. The long wavelength edges of

these absorptlons are generally observed to move %o

longer wavelengths with increasing temperature and

pressure, although Pitt and Tozer [1970a] observe the

opposlite pressure effect 1n some materials. At all

but the very highest temperatures, most of the radiant

energy 1s at longer wavelengths than these absorptlons,

so again, the effect on mean absorption coefficlent 1s

small, except perhaps \n the deep mantle.
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Pure end-member silicates and oxldes are quite
transparent 1h the range between these two groups of
strong absorptions, having values of x probably
much less than 1 cm '1. If such a high degree of
purity existed 1n earth materials, the radlatlive con-

duetivity would be very large indeed, exceeding the

lattice conductivity by several orders of magnitude.
Clearly, any tmpurity-caused absorotions in the pass
pand are of eritical lmportance to the magnitude of
radiative heat transfer.

The commonest ahsnrptions in the oass band involve
the 4 and f level electrons in transition metal
impuritlies, and are best explained by ervstal fileld
theory. Ferrous iron (Fe2+). {s the most lmportant
of these impurities. It has absorptlon bands in the
olivine lattlce which center at about 1.1 mieron, but
are not verv sharp. There are simlilar bands in most
other silicate and oxide lattices. 3But, even account ing
for the presence of these absorptlons, the extravolation
of Toom temperature spectral data for olivine would

-1
still result in an & of less than 1 ¢ at high

temperatures [Fukao et al. 1969] . Apparently, then,

the temperature and pressure behavior of crystal fleld

transitions controls the ragnitude of radiative enerav

transfer in the earth.
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Effect of Temperature and Pressure

The crystal fleld absorptlons broaden- and
increase with temperature above 500 °K [Fukao et al.
1968; Aronson et al, 1968]. As a result, the mean
absorption coefflicient lncreases with temperature
almost rapidly enough to offset the increase of

radiative conductivity. The present investigation

extends the observed increase of mean absorption coefficient

to 1900 °k., Figures 3.6 and 3.7 1lllustrate the tem-
perature-dependences of spectral absorption in olivine.
Although the absorption bands shift with pressure
to shorter wavelengths, whlch causeées a decrease in
€ , the pressure shift (about O.llﬂ extrapolated
to 150 kb) is not as important in geophysical appllicatlons
as the thermal broadening [Shankland. 1970] . Pitt and
Tozer [1970b] calculate Kp 1in ollviné from the data of
Fukao et al, [1968] and include pressure corrections.
Thelr results are shown in Flgure 3.8. By comparison with
the values of lattice conductivity given in Flgures 2.1
and 2.2, it is apparent that Kg ard X might be of
comparable magnitude in the rantle.
The above discussion should apoly, at least
qualitatively, to the splnel side of the olivine-

spinel phase transition though the iron crystal field



FPigure 3.6 Absorption spectra of clivine

at hicgh temperatures [Fukao et al., 1968}.
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Figure 3.7 Mean extinction coefficient

in olivine as & function of temperature

( Fukao et al., 19683 Aronson et al.,

1968 ].
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Figure 3.8 Radlatlve thermal conductivity
in olivine as a functlon of temperature

and pressure [Pitt and Tozer, 1970b].
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ahsorptions might occul at longer wavelengths and block

more of the radiation. Reed and vay [1969) deronstrate

the Fe2+ absorptions in the gl 3.5A12)3 spinel

structure. The question arises, though, as to what
naopens to the material which is ln the ~idst of a
polymorphle transition. Burns [1970] argues that

the absorption should \increase strongly, due to the
general lncrease in disorder within the crvstal. On
the other hand, the situation in which the {ron has a
tendencv to acecumulate in only one of the volymorphic
structures 18 conceivable. Then the material would
pecome a m1X of relatively ovaqueé and transvarent

grains, which might actually have & decreased absorvtion,

and an increased radiative thermal conductivity.
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4, EXPERIMENTAL METHOD

General Remarks

The discussion 1n the previous chapters indicates
that the heat transfer within a small laboratory sample

is governed by the interrelated effects of lattlce

conductlion, radiation, and sample geometry. To fully

understand these effects, 1t would be desirable to have a

method of thermal conductivity measurement which clearly

separates conduction and radiation, partlcularly at high

temperatures where radiation 1is most 1ikely important.

The new method described here is in a general sense an

extenslon of the fngstrom method (see Carlslaw and Jaeger

[1959] ) to the case of internally radiating media, but

with the purpose of not only correctling for radiation,

but actually measuring both K and Kp. Before

describing the new method, some general remarks are in

order.
Perhaps the simplest method of sevarating aporoximately

the conductive and radlative contributions 1s first to

measure the total conductivity as a function of tempera-

ture; and second, to use the experimental values near Troon

temperature (where Ky {s small and KEKL) to establish a

r=! curve for the lattlce conductivity. Kp at higher
temperatures {s then found by subtraction. Lee and

Kingery [196Q] apply this technique to ceramics and
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Kanamor! et al, [1968] to rock-forming minerals, Accuracy
of values obtained by this technique is poor due to the
difficulties of extrapolating a curve over.a large
range and the approximate nature of the T’l law.

The best method in principle 1is to devise a technique
of measuring accurately the total conductivity as a
function of temperature and then to spectroscopically
measure the infrared absorptlon coefficlient on the same
sample under exactly the same conditions. A value for
Kg may then be calculated from equation (3.12) and X; found
by subtraction., See Lee and Klngery [1960] for an
example of thls technlque. Several difflculties arise:
An accurate total conductlivity experiment 1s difficult
to devise when radliative effects are important., It 1s
jnconvenlient to use the same sample for both thermal
and spectroscoplc measurements because of the different
requirements for each apparatus, and identical condltlons
are hard to duplicate, even with the sare sample.
Furthermore, quantitative spectroscopnlc measurements 1in
the near infrared are not at all easy. Sample surfaces
must be carefully prepared and small absolute magnitudes
of radlatlion must be accurately measured. Complicatlons
also arise from the fact that the integral for < ,

equation (3.11), is most senslitive to the smallest

values of €, , which are the most difficult to determine

accurately. Certainly, spectroscoplc measurements of
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i extinction coerflclents have value, particularly for

the understanding of the physical nature of the mechanlisms,

but, they are difficult, ard a simpler way of measuring

KR would be desirable.

To illustrate the problems involved in thermal

conductivity measurement where radiation effects are

important, we consider the simple, ideallzed experiment,

shown in Figure 4.1, The medium is a slab of thlckness D

with a lattice thermal conductlivity K, and a wavelength

independent extinction coeffliclent € . Suppose that

a constant heat flux, Q, through the sample is maintalned
by heaters of known characteristics at x=0 and x=D and
the thermal gradient in the sample 1s kept small, Two

thermocouples measure the temperatures T, and T, near

the surfaces. One way to find the total thermal conductlvity

is to assume that Q = =K AT everywhere, such that
- AXx

K is given by

K= (4.1)

Equation (4.1) gives the true total conductlivity only 1if

the medium 1s optically thick ( €D >> 1 ). Otherwise,

some of the heat originating at and near x=0 wlll be

radiated directly to the surface x=D, thereby belng lost

to the internal heat transfer process. The temperature

difference (T = T2) becomes smaller, and the apparent

conductlivity is larger than the optically thick conductivity.




Figure 4.1 Geometry of medium for ideallized

thermal conductivity experiment.
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There 1s, howeverT, another way of looking at the

game experiment. Suppose that the temperature difference

(T, = Tz) 1s held constant by varying the heat flux Q.

Then, only if the sample 1is optically thick are the
results the same as before. If the sample 1s not

optically thick the results may differ in several ways

depending on the actual method of measurement. Imagine

that the amount of heat transmitted directly from x=0

to x=D by radlation can be determined and subtracted from

the total heat flux to give the internal heat flux, Q< .

Then Qr which 1s smaller than the total Q, 1s used to

calculate K from equation (4.1) and the apparent con-

ductivity of the medium {s found to be smaller than the

optically thick conductivity. Thus two viewsof the
game experiment have given conflicting results.
In general, the sample may be thought to have a

lattice conductivity, an internal radlatlive conductivity,

and a transmisslon radtative conductlivity. ("Cconductivity"

is not strictly defined here.) In the optically thlck

case, the transmission conductivity 1s zero, ard the

internal radlatlve conductivity 1s equal to Kp as given

by equation (3.12). The first version of the fdeallzed

experiment measures the sum cf the internal and trans-

mission radlative conductivities, which may be larger

than Kp. while the second version measures only the

i{nternal component, whilch 1s less than KR' The value of
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the internal component as a function of sample size 18
discussed by Fukao [1969]. He calls the varlation the
ngize effect” after the similar effect on l;ttlce
conductivity in single crystals at cryogenic temperatures.
Engelmann and Schmidt [1966] dlscuss the effect of larger
than negliglible thermal gradlents.

In neither of the above versions of the ideallzed
experiment can the desired values of KL and KR be
separated. The problem is further complicated by the
fact that the thermocouples may themselves participate
in the emission and absorption of radiation, and thus
not remain exactly at the temperature of thelr general
surroundinzs. Sonxe separation of K[ and Kp might be
possible by varying the experimental geometry while
xeeping constant conditions (for example, by using
gseveral sample thicknesses). But, the assoclated
difficulties, such as the measurement of small differences
in the amplitude of several quantities, make the success
of such a technlque unlikely.

A good example of the effect of radlatlion on
measurements 1s the many different values of thermal
conductivity of fused gilica found 1in the literature.

This material 1is quite transparent in the near infrared,
and the onset of radlation effects apbvears at temperatures
only slightly above Troom temperature. Accordingly, the

results obtailned by several investigators are quite
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different, particularly at higher temperatures, (See,

for example,Kingery [1955]1 wray and Connolly (19591 :
Devyamkova et al. [1966]; Sugawara [1962].). Though
these investigators have not completely ignored radiative
effects, thelr measurement disagreements seem too often

to be attributed to differences in sample purity and not

often enough to a careful analysis of radiation effects.

Romashin [1969] attacks this problem admirably by

measuring the thermal conductivities of both pwue, clear

fused silica and a ceramic made from the same material,
followed by careful analysis of radiatlon effects.

Radiatlive conductivity is minimized in the ceramic due

to scattering, and so the difference between 1t and the

fused material is almost solely attributable to radliation.

Romashin's technique 1s a good one, but 1t unfortunately

involves rather elaborate sample preparatlon.

Backeround of the New Technigue

The ease and accuracy of many scientiflc measurements

have been improved by the utilization of a time varying,
but quasi-steady state technique 1n which frequency or
phase, rather than amplitude, 1s measured. One such
technique is the fngstrém method of measuring thermal
diffusivity. In this method, a low frequency sinusoldal
source of heat 1s applled to one end of a sample, and the

phase of the decaying sinusoidal temperature wave which
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passes into the sample is measured at a position Xx.

Mathematical analysis of the technique shows that the

phase 1is essentially a function of the quantity (:ZAC) X

and surface radliatlon corrections, where P& is the

thermal diffusivity of the medium. Slince thermal

diffusivity, density, specific heat, and thermal

conductivity are related by

K= eCeXk (4.2)

only the values of density and speciflc heat, which can

be obtained elsewhere, are needed to determline the thermal

conductivity. This technique has been desceribed and

utilized (with correction for surface, but not internal

radlation) by Kanamori et al. [1968 . 1969] , for the

measurement of thermal diffusivity in rock-forring
minterals.

In the fngstrém method, the sources and detectors
of heat are often electrical heaters and thermocouples
attached directly to the sample, Problems assoclated
with heaters and thermocouples at hlgh temperature can

be the greatest limitation on the maximum attalnable
experimental temperature. It would be desirable then,
to have a hlgh temperature experiment with a remote heat

input and thermal sensor. The advantages of remote input
and output were brought to our attentlon by the "flash

method" (a transient method of determining thermal
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diffusivity) described by Parker et al. (1961] , Deem

and Wood [1962], and Shaw and Goldsmith [1964]. 1In
Parker's work, a flash tube supplies a pulsed heat input
and in the second two experiments, a lead sulfide infrared
radiation detector provides remote temperature measure-
ment.

A quasi-steady state, remote tnout-output method of
thermal diffusivity measurement has been proposed by
Cowan [1961] and achieved, for example, by Wheeler [1965]
and Serizawa [1969]. A modulated electron beam is used
as the heat source. Cowan's mathematical analysls 1s
rather complete but does not include the effects of
internal radiation; 1t strictly applles only to samples
which are opaque in the infrared, Nevertheless, his
mathematlical treatment 1ls in some ways similar to the
technique of this investigation, as bresented tn the

next chapoter, and the two should produce the same

results for opaque samples.

Description of Apparatus

The purpose of this experiment 1s to calculate the
1attice and radlative thermal conductivities that a
sample material would have in bulk form (or in situ)
from measurements of the phase of a thermal siznal in
a small sample. The apparatus conslists of a laser, whlch

provides an oscillating heat lnout to the front of a
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sample enclosed in a furnace, and an infrared detectcr,
which 1s focused on the back of the sample and provides
the output signal. If the sample is opaque in the
infrared, the detector "sees" only the back face of the
sample, and the measurement 1s sensitlive only to the
thermal diffusivity, as in Cowan's method. But, 1if
the sample 1s partlially transparent (which is more
generally the case), the detector "sees 1lnto" the sample,
and the signal phase lag 1s less than in the opaque
case. The phase of the detector signal with respect
to the laser input 1s in thils case a functlon of both
the thermal diffusivity and infrared extinction
coefficlent of the sample. With a knowledge of the form
of that function, and two or more independent measure-
ments of phase, K and KR can be calculated.

The experimental apparatus is shown schematlically
in Filgure 4.2, We discuss, ln order, the laser, furnace
and sample assembly, and detector-output instrumentation.
A carbon dloxide gas laser capable of continuous
operatiscn for long veriods was bullt speciflcally for
thls experiment. However, 1lts design and operatlon are
not unusual and similar units are now avallable
commercially. The laser beam has a dlameter of 2 cm
and a maximum power of 100 watts but is generally
operated ln the range 10-25 watts. The laser power
supply !s connected to a low frequency oscillator and

switch assembly which turn the beam on and off continually



Figure 4,2 Sec

apparatus.

hematic diagram of experimental
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with a perilod of 10 to 30 seconds, Moét of the energy
which emerges'from the laser tube is in the form of a
coherent beam with a wavelength of 10.6 microns.
However, in the earliest experimental work a small
amount of "nolse" energy was discovered at shorter
wavelengths whlch was enough to seriously disturb the
quality of the output data for the case of a relatively
transparent sample. To eliminate this problem, the

raw output of the laser 1s now passed through a band -

pass fllter with short wave cutoff at about 7 microns.

(The fllter was supplied by Infrared Industries, Inc.,
62 Fourth Ave., Waltham, Nassachusetts.) No significant
external energy at wavelengths other than 10.6/« now

reaches the sample.

A CO, laser has several advantages as the oscillatory
heat source for this experiment: It 1is conveniently
placed far from the sample. The 10.6 A beam 1S
absorbed very strongly by sillcates and most of the
oxides of interest due to 1ts colncldence with the
wavelength of many structural absorption bands. This
rapld surface absorption makes the laser act as a
source of heat at the surface of the sample--just as if
a heater had been glued to 1it. Furthermore, the rad ia-
tion detector which provides the output data (to be
described below) is not sensitive to radlatlon

at 10,6 4 . So, If some of the laser radlation

should leak around the sample, it will not appear as
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noise in the output. None of the other candidates for

a heat source, e.g£. an arc-image furnace OT an electron-

beam gun, has all of these advantages.

The laser creates mainly a small oscillatory heating
of the sample (of the order:l0 °C at the sample face);
the main, constant heating is provided by the large
silicon carbide rod element furnace. (The furnace 18

Model 54233 made by Linberg gevi-duty, 304 Hart St.,

Waterton, Wisconsin.) The maximum temperature attainable

\s 1765 9K for continuous duty and in excess of 1900 °K
{1f short element lifetime (several days) 1s tolerable.
There are eight hexting elements, each passing through
the body of the furnace perpendlcular to the furnace
tube. The furnace hot zone 1s at least 6 inches long
(manufacturer's data), while the sample holder (described
below) is 2% inches long, so constant tempersture 1s
easily malntained over the entire holder.

The furnace temperature 1s controlled by an on-off
time-proportioning controller connected to a platinum +
137 rhodium vs. platinum thermocouple which 1s mounted
just outslide the furnace tube. Possible error in
determining the sample temperature from having the
thermocouple in this position (rather than right at the
sample) was checked by melting a gold standard 1ln the
actual sample positlon in the tube without operating the

laser, The error in melting temperature 1is less than 1
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percent. The small d.c. heating of the sample produced

by the laser durlng an experimental run is measured by
using the detector in a d.c. mode as an optical pyrometer.

The reported sample temperatures are the furnace temperature

plus thls pyrometer correction. The magnitude of the

correction 1s in the range 0 to 50 °c.
During an experimental run, the perlodic up and down

furnace temperature changes produced by the on=off

switching of the controller are intolerable. Smoother
temperature control is achleved by turning off the

controller entirely and ad justing the furnace current

to maintain a constant temperature., The large thermal

inertia of the furnace used 1s an advantage here, since

temperature can easily be held within one degree centl-

grade for an hour--more than enough time for a measurement.

The furnace tube contalns the sample holder. (The

tube 1s Number 997 PT 134, manufactured by McDanel

Refractory Porcelain Co., Reaver Falls, Pennsylvania.)

It 1s 30 inches long with an outside dlameter of 2
inches. The detalls are shown in Flgure 4.3. The

tube is made of pure, low porosity alumina; is gas=-tight,
and does not soften below at least 1900 °%. An

o-ring sealed aluminum end cap 1s mounted at the laser
end of the tube. The end cap is machined to accept a
sodium chloride optical window which 1s mounted at the

Brewster angle with respect to the laser beam such that




Figure 4.3 Detall of furnace tube

to scale).

(not
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nearly 100% of the beam 1s transmitted to the sample.
This end-cap also contalns a vacuum pump outlet fitting
which connects to a standard roughing pump ;apable of
evacuating the tube (if 1t were sealed) to 0.1 torr.

A similar end cap 1s mounted at the detector end of
the furnace tube. On this cap we mount an infrared=-
transmitting fused silica lens of 20 cm focal length
which focuses the radiatlion emitted by the sample
onto the detector. (The lens 1s made of vwInfrasil" and
ground and polished by A.D. Jones Optical Works,

64 cambridge St., Burlington, Mass.) An irls dlaphragm
placed over the lens allows variation of the magnitude
of radlatlon striking the detector. The 1ris diameter
adjusts from 2 to 18 mm, and the radiatlion magnitude
may be changed by a factor of 80, This end cap also
contains gas inlet and pressure gauze fittings. The
experimental gas 1is a dry nitrogen-5% hydrogen,
commercially prepared mixture. (Argon was first used,
but 1t caused jrreversible changes 1n sample color

after high temperature runs--probably due to the presence
of water in the gas.) The gas pressure in the tube,

as measured by a thermistor gauge near the inlet, 1s
maintained in the range 1 to 5 torr durling an experiment,
which correspords to a measured gas flow rate of
approximately 1 to 5 liters/minute.

In order to maintaln the vacuum integrity and spectral
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characteristics of the salt wiqdow and silica lens, the
temperature of the end caps must be kept welL_below
the maximum temperature of the furnace, To keep the
end caps cool, we locate, near each end cap and within
the tube, a cylindrical plece of standard fire brick
which has a longitudinal hole just large enough to
allow radiation to pass 1in or out of the furnace but
not strike the end cab.

The sample holder 1s made of pure alumina, high
porosity (for low thermal conductivity) fire brick. It
is cylindrical and sized to just slide into the furnace
tube, A transverse slot at its center 1s just wide
enough to hold the disk-shaped sample. The laser slide
of the sample holder has a longitudinal hole about 2 cm
in dlameter to pass the laser beam, and the detector
side of the holder has a smaller longitudinal hole
(about % cm in diameter) which allows radlation to
reach the lens and detector from only the center of the
sample).

A PbS infrared detector 1s used, (The detector
manufacturer is Santa Barbara Research Center, 75
Coromar Dr., Goleta, california.) Its area 1s
1 mm? and it has a dark resistance of 450 k¥ ohm., It
is mounted and enclosed in a foam insulated box to
prevent temperature fluctuations but 1s not cooled
below room temperature. The detector's mercury battery

voltage source and high pass filter, shown in Figure 4.4,




Figur

e 4,4 Detector electronic circultry.
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are also enclosed in the detector box. The time constant
of the fllter with recorder attached 1s approximately

60 seconds, which 1s always greater than the. laser
switching period, so 1t effectively blocks only the

d.c. bilas voltage of the detector. The data are
corrected for the phase characteristics of this filter.
The a.c. Signal amplitude at the recorder input 1s

from 10-5 to 102 volts.

The spectral characteristics of the detector and
silica lens are shown in Figure 4.5. Note that the
transmission of the jens 1s essentially constant over
the entire sensitive range of the detector; thus the
lens will not affect the spectral characteristics of
the detected radlation. The output of the detector,
generally a distorted sine wave, {s plotted on a stripo
chart recorder. In addition, a plp (obtained from the
laser switching oscillator) is inserted into the record
to mark the laser turn-on and turn-off times. The
desired phase lag 1s measured by comparing the position

of the signal zero crossings with the pips, as shown

in Figure L4.6.



Figure 4.5 Detector sensitivity and lens

transmission as functions of wavelength.

Detector data {s from manufacturer

(Santa Barbara Research Center) and lens

data is from Wolfe [1965] foT “Infrasil”

(made by Engelhard).

92
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Figure 4.6 Example of recorder output,
jdealized. Actual output 1s similar, but
with the additlion of some noise and drif¢t,
particularly at high experimental teao-
peratures. If sample 1is extremely trans-

parent, phase lag = 7 /2. (Time increases

to the left.)
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5. MATHEMATICAL ANALYSIS

The mathematlcal analysls of the experiment 1is
broken down into three parts, to be discussed in the
following order: (1) The radiation received at the
detector which produces the signal output 1is functionally
related to the sample temperature; (2) The temperature
wave produced by the laser in the sample is found as
a function of position and time; (3) The phase of the
output signal 1s related to the lattice thermal

diffusivity, K. = \<L/9Cp , and the mean extinction

coefficlent, € = 16w T> [3Kg, from which Kp and Kp are

calculatzd., The physical process to be mathematically
describved 1s 11lustrated in Flgure 5.1,

In the entire analysis, only one-dimensional varlations
(in the x-direction) are considered, The assumption
of one-dimensionallity 1s valld if the dlameter of the
disk-shaped sample 1s much larger than 1ts thickness,
and Lf the laser radlation is nearly unifarm over the
sample surface. Furthermore, the radiation detector
must be on the axls of the center of the sample and far
from the surface. The conditlion most likely to be
violated here is that of large sample dlameter.
However, Pridmore-Brown [1970] calculated the magnitude
of error due to two-dimensional effects on the measurement

of thermal diffusivity of disks and rods., By hls

eriteria, thils error in the present experiment is at



Figure 5.1 Tllustration of the

process of the experiment.

physical
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most about 4%, but generally much less.

In the following analysls.'terms are someﬁimes
replaced by thelr approximations or dropped completely.
Some of these actlions are necessary to obtaln the
result, while others are done solely %o simplify the
expressions without incurring great loss of accuracy.
For more complete mathematical expressions, see the
Appendix.

Radlation at the Detector

Each point in the sample radiates energy in
proportion to its spectral black body emissive power

eby (x,4) , but, thils radiation 1s exponentially
attenuated on 1its way to the surface such that the
time dependent radiation per unit area leaving the

sample (which 1s the sum of the radiation from all

points) 1s glven by

> - é)("")

Ra(e) = feb><">ﬂe dx (5.1)
-}
where € 1s the spectral extinctlion coefficlent of
the sample, as defined earlier. The total signal at
the detector, aslde from geometric constants, 1is
equation (5.1) multiplied by the detector spectral

sensitivity x?; and integrated over all wavelengths:
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L ad
R&) = f3>°~>(*3“ (5.2)
Substitution of equation (5.1) into (5.2) gives
Y > 6)(9-1\
R(t\=fijeb;(*.¢\e dx A (5.3)

We now define a wavelength lndependent mean

extinction coefficient € which replaces € in

equation (5.3). This definition of € 1s the key

simplification of this analysis. It 1s given by the
equation

g -&,(®=%)
-Z(D-lw IJ\ €% (x,-l:) e ok »
= 4

f.é’x epy (x,t)dA
o

The wavelength integral 1n equation (5.3) may now be

performed to glve, aside from constants of proportlonality,

v —
_E (=9

R&® = ].Tﬁe dx (5.5)

o

where T is the temperature In the sample. (In the rest

of this analysis, constants of proportionality are often

dropped where they do not affect the phase of the result.)

Let the temperature in the sample be glven by
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where T, is the constant background temperature produced
by the furnace and the d.c. component of laser heatling.
T(x,t) 1s the time-varying temperature produced by the
laser. Since, by ad justment of the laser power, T(x,t)
may be kept small compared to T, the fourth power of

the sample temperature may be expanded in a power

series as
T4z T+ 4TS Toon -

Substitution of the first time-vary ing term of this

expansion into equation (5.5) glves, aside from

constants,

'R(t\: jT(x,‘t)Q d x (5.6)

Equation (5.6) is the basis of the experimental
method. 1If the temperature T(x,t) can be found as a
function of lattice thermal diffusivity, mean extinctlion
coefficient, and laser switching frequency, then a

measurement of the phase of the detector signal, R(t),

at two frequenclies can be used to calculated A'_ and & .
Much cof the validity of the remaining analysls

depends upon whether or not £ , as defined Ly equation

(5.4) and used to find equation (5.6), 1s similar to
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£ defined earlier by equation (3.11)- Note that
only the earller definition of £ 1s strictly valld for
calculating Kp. To show that the two forms are always
equivalent 1is impossible, but it is possible to show
that they are qulte close over the range of conditlons
of thls experiment. In fact, simple measurement error
generally overshadows error caused by the differences
in the two definitions of mean extinction coefficlent.

For example, conslider a material with the ideallized

spectral extinctlon coefficlient at 2000 %Kk glven in
Figure 5.2, The true mean extinction coefflclent

calculated from equation (3.11) for thls material 1s

R

E a.G

This 1s, of course, the correct value to use in calculating
Kg. To compute the corresponding £ from equation
(5.4), note that for all but the most transparent of
materials, most of the radlation received at the

detector arises near the back of the sample, where the

quantity (D-x) 1s a fairly small number. ASSume, for

simplicity, that (D-x)=0.1 cm. The resulting mean
extinctlion coefficlent 1s

Z = 4.8

which 1s within 5% of the first value. This result
1s only a weak function of the value of (D-x). Thus,
for the stated condlitlions, at least, the two definitions

of € are sufficlently equivalent for our purposes.
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Figure 5.2 Spectral extinctlon coefficlent

of a hypothetlcal material for use 1in

comparison of definitions of mean

extinction coefficlent.
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The values of € resulting from the two definitions
of Z are similar because both are heavily welghted
near the peak of €%, , and because the quantity
e- &2 (@™ which occurs in equation (5.4) and
the quantity i/é» which occurs in equation (3.11) depend
gsimilarly on &, . In fact, the difference in values
is caused almost entirely by the non-uniformity of the
detector spectral sensitivity £y i the new € might
be considered to be the original € welghted by In
It follows (for a PbS detector), that wheneer the
wavelengths lmportant to €  are less than about
314 , satlisfactory results are expected from the
experiment. For olivine, this corresponds to temperatures
greater than about 800 %K. It would be desirable in a
future experiment to use a detector with a more uniform

£\, over the wavelengths of interest (e.g. a thermo-

couple detector).

Temperature in the Sample

The time variation of the heat flux generated by
the laser at the sample face x=0 1s that of a square
wave. 1In anticipation of the fact that the higher
frequency components of the temperature wave in the

sample decay very rapldly as they pass into the sample,

we conslder only the fundamental sinusoidal component

of the flux, gilven, aside from constants, by
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wt

F= Fysinwt = -LF e . (5.7)
where F° is the laser beam power density, and W 1is the
laser switching frequency. Assume then, that the
temperature wave produced in the sample 1s a sum of

decaying waves in the positive and negative x-directions

such that

-@x 'e;(ut+83+we¢xei(uf+ v)

T(‘;‘t\“: Ue (5.8)

Expressions for U,W, & , and ¢ (which are real
numbers) will now be found from the boundary conditions
at x=C and x=D, and an expression for the propagation
coefficient @ (which i1s a complex number) will be
found from the general heat flow equation including
radlation.

In equation (5.8) the U-wave may be thought of as
a primary wave generated at x=0 and the W-wave as a
reflection caused by the boundary at x=D, The W-wave
then decays as it moves back through the sample and is
much smaller than the U-wave when it gets to x=0. For
this reason, we assume that the U-wave only, need be
considered in using the boundary conditions at x=0,
whereas both waves should be considered at x=D,.

Boundary cond!tions which involve radlation to and
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from a surface are highly non-linear and can seldom be
specified exactly [carlslaw and Jaeger, 1959 ]. we
approximate the poundary condition as follows: the laser
input flux balances the sum of the heat conduction

into, and radiation away from, the sample, such that

F= - Kee ST) + qa (5.9)

X=o X=0

where K .44 1s the "effectlve thermal conductivity”
of the sample and qr 1s the heat radiated away from

the surface. The effectlive thermal conductivity 1s the

sur of the lattlce conductivity and a rough approximation
to the internal radiative conductivity of the sample:
3
40"\1'-‘_0 D

Ke{‘ = KL+ 1 " ?__-é'b (5.10)
Py .

(Note that if ED>>1, then Kets = K=K +Ke )
The heat radlated from the surface 1s given by
€D
%.i = 2j eb (x',4) Ea(xy o
o

¥=0

where the exponential integral function,rejﬂ,may be

approximated [Sparrow and Cess, 1966] as

. Ex!
E:. (A" = e

EN \u)
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so that, if small temperature variations are assumed,

the expression for q, becomes N

D ) _3Ex
L_ex i(uttd) -3
%‘l = 62¢T:J.ue ¢ e e d x
X=o ° (5.11)

Substitution of equations (5.7), (5.10), (5.11), and
the derivative of (5.8) into equation (5.9) gives

1]
-
N
-
(%
T

-.F,

where

(5.12)

Equation (5.12), expanded into its real and lmaglnary

parts and solved for & and U glves

§ - tan (— H‘—/-HL)

and
— Fo
_ o Te
v = . cord

(5.13)
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where H, and Hi are the real and imaginary parts of H.
The boundary condition at x=D, from which V and ¥

are found, is similar, except that there 18 no laser

flux:

0= Kets =— s
J ¥x=D
x=D

where both the U and W-waves must now be considered.

Following a procedure similar to the above glives

0 = Kess \'_GUe"GDe"‘— @We"”e""']

R P yets _32%Dp _-°P
+ eET |, [ -(_3—:-1—: (e - ) (5.14)
(

k3

Wand § are found by substituting equation (5.13)
into (5.14) and solving the result. At this point,
uW, & ,and ¢ have all been found in terms of
experimental knowns and @, € ,and X = KL elp -

To - find @. , consider the general equation of heat
flow (including radlation) which results from the
substitution of the wavelength integral of equation

(3.5) into equatlons (1.,1) and (1.2)1

GCP"—&‘{—'; k 9T _ 4% cnrT7
gx* (5.15)

D
+2Con” jT‘(x') E, (& x-xNdx
o

There 1is no general solution to this equation, but
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there are conditions under which a solution of the form

(1,‘ e(_.((d‘fa 463

-r'..- T,U?‘ (5-16)

A | PN PSSR T T rav

B Y S AT

is successful. Approximate Tu. as before, by

T4*= T '~ 4'&‘lJe“”'e>"'("’°"'n
(-]

RE T 2o T

and substitute it into equation (5.15) to give

]
e® (- p(E) ere) = 3B [T E@omer BT

o

Kg_e. C_ W)

PR LRVIAGR PR TR AR TN >

where P = and q = L£—=f— .
leanrTo? L cwrTS3E
Now change variables to z= €(x-x) if (x-x'>>0

2T (X0 OF (x=x') €€

and
Equation (5.17) bvecomes, with %é =" ,
€ x Z(D-X) -
\ -h®
_ eW* 2vg= 7 J kg (2)dz ¥ | € E(z\dzj
ER A A F A o (5.18)

To find the value of @ equation (5.18) must be solved

for h,
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First, consider an optically thick medium (ZD>>1)
with the additional condition h <1 . The integrals
on the right hand side of equation (5.18) may then be

evaluated as in Kourganoff [1963] to give

(Integrals) =Z("f§"‘""";“'*"") (5.19)

The fact that this is the only case for which the

integrals may be evaluated exactly implies that it is

also the only case in which a temperature wave of the

form (5.16) is a strictly valid solution to equation

(5.15). However, the integrals may be approximated for

other conditions to extend the range of usefullnes of

the solution (5.16).
Consider the case h<1l, but do not otherwlise

restrict the value of € , Assume that most of the con=

tribution to the integrals of equation (5.18) arises when

x=32D, This assumption is chosen because the internal
radiation should have 1its maximum effect at x=3D, the

sample center. 1f this value of X i3 used to evaluate

the integrals, they become

(IntegraIS) =2 <|+ C, + Coih'+ C’:l"‘“"‘ ) (5.20)

where
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- 2R )
C\‘ _E"(T)
o %
C.’_= 3 p e E4(,_)

-

_EO ~ . "
€D o= [(e_f_f + EO wl - €. (82)

Note that equation (5.20) reduces exactly to (5.19)

for ZD>> 1. This fact justifies to some extent

the assumption of x=%D used 1n approximating the integrals.
Now, cqnsider the opposite case, h>> 1. The

integrals are now equal to zero. Equation (5.20) gives

approximately the correct result if the series in powers

of h is truncated at the fourth term, There is no

theoretical justification for this truncation. It appears

as though an assunmption sufficient for our purposes 1is

that equation (5.20) is valid for all h, if the above

mentioned series trucation is used. This assumption 1s

completely unsupported for nh¥1. In the actual experiment,

it is possible to avoid most of the problems in evaluating
h by adjustment of the laser switching frequency to main-

tain the condition h < 1. (Note that h<<1 is not

required.)
Wwhen equation (5,20), with truncation of the serles,

{s substituted in equation (5.18), the equation for h

becomes . W
"Pht*"'% = C‘ ﬁ'c-;.b‘ + C}
(5.21)

or, written in terms of 8.

- = 1 4 C 1 ¢ C v
-FO"'+L%6L— < & * v @ 3‘5‘:‘
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which ls a fourth order complex algebralc equation in
e - But, it is only a second order equation in @2.
and can be easily solved for @, and @40+ the real
and imaginary parts of G .
What does equatlon (5.21) for h (or & ) mean?

If the medium \is optically thick, the equation reduces

to
—pht+ iq = -‘i\ﬂ%

and the solution for (5 is
|

B= (14 [_G_Eiﬁ"__]l

Z(FQ_+KF)

o)
Thils solutlon 1s that expected 1ln the Angstrdm method
for no surface radiation, or in Cowan's method. If

the medium 1is optically thin, however, the equation

reduces to
..P'f\"-t—i.%'-‘ -1

and the solutlon for (@ is

o - (HQLE,S:_‘SLT“

2 Ko

which is, asgaln, as expected, since radiation does not

participate in the conduction process within an optically

thin medium, Note that only for the optlically thick orT

thin cases does (Br = 3 4

As a final comment {n this sectlon, we discuss the



114

concept of optical thickness as it applies to a non-steady

problem. From the form of the heat equation with radiation,

it appears that for .the oscillatory but qua%i-steady state
case the parameter n~l= €/ must be considered along with

the dimensionless optical thickness, ZD . Only if both

these parameters are large does the optically thick sclution

for temperature and radiation apply. An example of the

implications of h'1 can be found in the following rough

analysis of the Sngstram method. Generally, the sample

used is one or more thermal wavelengths long. Assume,

for simplicity, that it is exactly one wavelength long.
Then, @ = 7_:_"} and w'< &b , Thus, the Bngstrém method

k—3

sample is "less optically thick" than a sample of the same

gize but used in a steady state experiment, If this

effect is not taken into account, the accuracy of results

obtained by the Rngstr&m method at high temperatures for

internally radiating media is suspect.

Phase of the Output Signal

The final step of the analysis is to find the phase
of the output signal as a function of K,.and € .
This is accomplished by the substitution of equation

(5.8) for the sample temperature into the output signal

equation (5.6). The result is



P
. -¢(p-x) 115
L(ubf‘) -P*e e xdx
Ry = Ve {e
o -
e,;(w-umf o & om E(P
[

+ W

If the integrals in equation (5.22) are evaluated, we find

Rep -yl rl Temero =7
z-& L
(5.23)
+ W e(.(o-"t'l'fz -e@p_ e—gb]
(8 +6) -
Equation (5.23) can be written in the form
i (wt +P)

where cP is the phase of the output signal and Ro is
time-independent. The equation for CP which results
from substitution of equation (5.24) into (5.23) is

(¢ _  Ue‘d _@o -ED
-Roe m [e - e ]

¢ _ED
+ we¥ [e@b_ eé ]
(Z+3)

where U, W, ¢, ¢, and @ have been found in the

previous sectlions as functions of /C‘L_, €, W , and
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experimental knowns. Thus, equation (5.25) 1s the
d esired equation for 56 as a function of -4, and € .

All experimental results are based on this equation.

Method of Data Reduction

In general, two measurements of ¢ (each at a

different frequency) are sufficlent to determine 4_ and

€ . Each measurement 1s obtalned by averaging the

phase of at least five waveforms, and calculating a
confidence interval based on a normal distribution of

random error. To this conflidence interval, we add

+.01 radians to allow for systematic error. Equatlon
(5.25) cannot be directly tnverted to find solutlons
for 4#_and & from measurements of ¢ . Instead, 1t
is evaluated in the foward direction (by computer) to

find the range of all pessible palrs of 4_and € which

give theoretical phase values within the stated confl-

dence intervals of the measured phase values. The 4 and

Z pairs thus obtalned are called "good solutions." For

example, in Figure 5.3 we show the range of good

solutions for aluminum oxide (at 1200 %) with 80%, 907,

and 95% conflidence tntervals., For the remalining

results, a 90% confldence interval ls chosen.
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Figure 5.3 Example of method of obtaining
solutions for photon mean free path,
1/€ , and lattice thermal diffusivity,
A 1+ Shown are the ranges of good
solutions for sintered aluminum oxide
at 1200 9K for 80%, 904 and 95% conflidence

intervals.
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6. RESULTS

Complete experimental results are presented below
for the following materials:

(1) sintered aluminum oxide, A1203

(2) sintered forsterite, Fo=NMg,510,

(3) single crystal olivine, Fog.Fa,,

(4) single crystal olivine, F‘onga8

(5) twin sisters dunite, F°95Fa5

(6) single crystal enstatite, En90Fs10

For each material, one table describes the sample, and
a second table lists the ranges of good solutions for
lattice thermal diffusivity, 4_ , and inverse mean
extinction coefficient, !/& (or photon mean free path),
as functions of temperature. Two figures show the
corresponding values of photon mean free path and total

aml radiative thermal conductivities as functlons of tem=

perature,
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Table 6.1 Description of sample, aluminum oxlde

A1203. sintered. " .

Property Value Comment
Density 3.95 g/cm’ picnometer
Refractive index 1,76 estimate from compositlon
Graln slze 20 A
thin sectlion

Void slze <1lA
Composition A1203 99 wt. % manufacturer's data

sio, 1 ° .} (Norton Co., Worcester, Mass.)
Thickness 0.645 cm
Mean diameter 2 cm trapezoidally shaped

Appearance
before heating
after heating

Specific heat?

cream to white colored, smooth
same, but slightly whiter
.255 + ,0335 x 10777 - ,007/(T x 10-3)%cal/e°c

aexpression from

(Goranson, 1942].
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Table 6.2 Results for aluminum oxlde A1203. sintered,

range of good solutions at 9qz”conf1denc9 interval.

Temperature °K 39 cm’/sec 1/€ cm K cal/cm sec °C
530 .050 -.062 .001-.135  .0478-,0600
634 .033 -.045 ,096-.196  .0340-.0450
717 ,026 -.028  .174-.196  ,0279-.0299
813 020 -.025 .142-,186  ,0234-,0286

1007 ,0075-.0100 ,174-,186  .0121-,0150

1203 .0060-.0100 ,166-.177  .0130-,0175

1390 ,0050-,0060 .142-,147  ,0140-,0153

1589 ,0005-.0035 .126-.138  ,0115-.0161

1924 ,0005-.0105 .001-.069  ,0100-.0135

15918 0010-,0035 .121-.127  .0117-.149
7342 .030 .18k .0328
550° .052 ,017 .0503

8 descending temperature points to check reproducibility.
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Figure 6.1 Photon mean free path in
sintered aluminum oxide, A1203. Open
circles are points measured at descending
temperature. The lowest curved line 1s
obtalned by Lee and Kingery [1960]
for a material of Ve = 0.25% and
= 0.7,4 . The upper curve is for a
material with the same characteristics
except Veor = 1.0%, which 1s the

approximate porosity of our material.
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Figure 6.2 Total and radiative thermal

conductivities in sintered aluminum
oxide, A1203. Open circles are points
measured at descending temperature and

the x's are data of Lee and Kingery [1960].
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Table 6.3 Description of sample, forsterite

-

Property Value Comment
Density 3.05 g/cm3 picnometer
Refractive index 1,66 estimate from composition
Graln silze 5 M
thin section
Vold size <1k
Composition olivine x-ray (manufacturer:
structure 99{} American Lava Co.)
Thickness 0.297 cm
Mean dlameter 1l cm rectangular
Appearance
before heating cream colored, smooth

after heating same, possibly slightly increased

grain slze

Specific heat® .255 + 047 x 10T - .006/(T x 10-3)2 sal/2°C

2 as given by [Orr, 1953].
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Table 6.4 Results for forsterite Fo=Mg,510, , sintered,

range of good solutlons at 90% confidence interval,

Temperature K Ky cm/sec 1/ cm K cal/em sec °C
543 .,0098-,0136 .206-.218  ,0084-,011%4
632 ,0074-,0100 .202-,.214 .0071-,0092
812 ,0058-.0076 .178-.186  .0068-,0085

1006 .0037-,0049 ,142-,150 .0061-,0074

1204 .0013-,0021 .109-,114 .0048-,0058

1392 .0015-.0055 .029-,067 . 049,069

1582 ,0003-,0042 ,025-.055 045,061
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Figure 6.3 Photon mean free path in

sintered forsterite, Fo=Mg281ou.
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Figure 6.4 Total and radlatlve thermal

conductivities in sintered forsterite,

Fo=Mg,S510) . The x's are data of Kingery

et al. [1954].
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Table 6.5 Description of sample, olivine

F°86F314' single crystal.

>

Property Value Comment
Density 3.39 g/cm3 picnometer
Refractive index 1.68 estimate from compositlion
Composition FoggFajy estimate from density
Thickness 0.620 cm
Mean dlameter 1l cm irregular circle
Orientation within 10° x-ray

or {010}
Avpearance

before heatling

after heating

medium green, some crystal
imperfectlions

slightly darker green, with perhaps
some brownish-yellow, but no

drastic change-

Specific heat 2,239 + .056 x 10731 - .006/(T x 10~°)%cal/e®

8as given by [orr, 1953] .
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Table 6.6 Results for olivine FoggFaj,, single crystal,

range of good solutlions at 903 confidence interval,

Temperature °K Ky, cmz/sec 1/€ em K cal/cm sec °C

565 .0089¢ .62 .0098
650 .0077¢ .51 . 0095
745 . 0067¢ .38 .0092
835 .0060¢ .32 . 0093
930 .0044-,0069 .232-.262 ,0079-.0108
1020 ~ .0040-,0056 .190-.198  ,0079-.0096
1205 ,0032-,0041 ,123-,125 ,0076~-,0084
1402 .0036-,0070 ,043-,077 .0081-,0098
1600 .0020-,0048 ,043-,066  ,0075-.0088
12088 .0030-,0043 ,121-.124  ,0073-.0086
1700 .0012-,0058 .033-.067 .0079-.0099
1850 .0001-,0054 ,031-.065 .0082-,0101
1205P .0033-.0046 ,119-.125 ,0076-,0088
7300 .0068° 42 .0093

& ecycled temperature point to check reproducibility.

b descending temperature points to check reproducibility{
C These values are estimates used to compute 1/€ .

The sample 1s too transparent for the method to be
sensitive to both KL and €. The error analysis 1s not

meaningful for these points,
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Figure 6.5 Photon mean free path 1n
olivine single crystal, F°86Falu' The
open circle 1s a point measured at
descending temperature, and the x's
are data of Tukao et al. [1968].
Solutions below 900 9K are obtained
using assumed values of /CL. The
olivine composition of Fukao's

crystal is F°88F812'
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Figure 6.6 Total and radlative thermal
conductivities in olivine single crystal,

FoggFaqy. Oven circles are polnts

measured at descend ing temperature.

Solutlons below 900 Ok are obtailned using

assumed values of K1,
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Table 6.7 Description of sample, olivine

F092Fa8. single cryétal.

Property Value Comment
Density 3,31 g/cm3 Picnometer
Refractive index 1,67 estimate from compositlion
Composition S102 41.09 wt?)
Aly03 .00 Microprobe analysis, (Dr.
FeO 7.92 Arch Reild, NASA, MSC,
MgO0 49.85 FHouston)
Cal .03
N10 .39 J
Thickness 0,558 cm
Mean Diameter 12 - 2 cm teardrop shaped (cut gem)
Orientation within 10° x-ray
or {o10}
Appearance

before heating

after heating

light green, very good crystal,
some parallel tralns of small
platy oriented incluslons

slightly deeper green, but no

brown or red, a few surface pits.

Specific heat®.245 + .052 x 10=31 - .006/(T x 1072)%cal/eC

84s given by [Orr, 1953] .
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Table 6.8 Results for olivine FogyFag, single crystal,

range of good solutions at 90% confidemnce interval.

Temperature °K 39 cm?/sec 1/€ em K cal/cm sec °c
530 .0132P 1.5 .016
635 .0110° .95 . 0144
735 .0095° .62 .0133
825 .0085P 47 .0130
923 .0076° .35 .0125

1026 .0068P .275 .0123

1120 .,0048-,0081 ,216-.231  ,0107-.0143

1215 .0035-.0053 ,180-.186 ,0098-.0118

1310 .0041-,0071 ,136-.148 ,0106-,0132

1406 .0033-.0089 .092-.124  ,0101-,0142

1503 .0033-.0068 .080-,106 ,0105-,0125

1600 .0036-.0071 .051-1079  ,0101-,0117

1750 .0001-,0067 .039-.085 ,0090-,0114

1850 .0001-,0072 ,035-,081 ,0100-,0129

1500 .0001-,0052 ,039-.071  ,0090-,0111

12002 .0051-,0089 ,190-,200 ,0116-,0153

& descending temperature point to check reproducibility.

b gee note ¢, Table 6.6.
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Figure 6.7 Photon mean free path in
olivine single crystal, Fongés. The open
circle is a point measured at descending
temperature and the x's are data of
Fukao et al, [1968]. Solutionslbelow
1100 °K are obtained using assumed values

of £y . The olivine composition of Fukao's

crystal 1is F°88Fa12°
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Figure 6.8 Total and radiative thermal

conductivities in ollvine single

crystal Fongas. Open circles are points

measured at descending temperature,

Solutions belowll00 °K are obtalined

using assumed values of /cL,
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Table 6.9 Description of sample, dunite, twin sisters,

F°95Fa5‘
Property value Comment
Density 3.25 g/cm3 plenometer
Refractive index 1,66 estimate from composition
Grain slze l1-2 mm
Composition olivine 98.5 vol.%
ore (chromite?)l.3 thin sectlion
gserpentine 0.2
Thickness 1,030 cm
Diameter 3% cm circular
Appearance
before heatlng medium to dark green rock, highly
variable grain size.
after heating all intergranular surfaces reddish

colored. entire sample red-brown,
but interior of grains still clear

Specific heat®,250 + .050 x 1031 - .006/(Tx1072)%cal 2/°C

8as given by (orr, 1953],
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Table 6.10 Results for dunite, twin sisters FogsFaS.

range of good solutions at 90% confidenée interval,

Temperature %K «xp cm?/sec 1/€ cm K cal/cm sec °C
554 .0091-,0102 ,086-,103 .0079-,0089
650 .0085-,0090 ,075-.088 .0078-.,0083

747 ,0077-,0079 ,058-,065 ,0074-,0076

843 .0068-,0072 .051-.058 .0068-,0072

933 .0058-,0065 .041-,061  ,0064-,0068
1022 ' .0053-.0054 .043 .0060-,0061
1200 .0043~,0046 ,030-.040 .0054-,0056
10244 .0046-,0055 ,029-.0L7 .0054-,0059

8 descending temperature point to check reproducibility,
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Figure 6,9 Photon mean free path in twin
sisters dunite, F095Fa5. Dotted line

13 for a hypothetical material without

oxidation effect.



CM™

I/¢

147

l

DUNITE

500

1500



148

Figure 6.10 Total and radlative thermal
conductivities in twin sisters dunite,
F095Fa5. Dotted llnes are for a

hypothetical material without oxidation

effect.
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Table 6.11 Description of sample, enstatlite

EnggFs; g, single crystal.

Property Value Comment

Density 3.32 S/°m3 picnometer
Refractive index 1.68 estimate from composltion
Composition EngoFslo estimate from density
Thickness 0.558 cm

Mean Diameter l cm {rregular rectangle
Appearance

before heating dark transparent brown with some

imperfections
after heating same, but somewhat deeper brown

Specific heat®.232 + .080 x 1077T - 006/(Tx10"2)2cal/g°C

845 given by [Goranson, 1942],
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Table 6.12 Results for enstatlte EngoFslo' single crystal,

range of good solutions at 90% confidehce interval.

Temperature %K cm?/sec 1/€ em K cal/cm sec o)
600 ,0110-,0134 ,062-,092 .0100-,0120
756 .0063-,0068 .062-,068 .0065-,0069
934 ,0057-.0058 ,OkLl . 0064~,0065

1025 .0056-,0057 .034-,036 .0065=-,0066

1218 .00L7 .026 . 0060

1315 . 0040 . 025 . 0055

1405 ,0040-,0042 ,023-,024 .0058=-,0068

1503 . 0042 . 027 . 0067

1600 ,0040-., 0044 ,022-,027 .0068-.0071

11278 , 00L47 .034 .0059

a descending temperature point to check reproducibility.
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Figure 6.11 Photon mean free vath in
enstatite, EngoFslo. The open circle
is a point measured at descendling

temperature,
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Figure 6.12 Total and radiative thermal

conductivities 1n enstatite EngoFle.

Open circles are polints measured at

descend ing temperature.
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Discussion

-

The measurement of sintered aluminum oxide 1s
intended primarily as a verificatlon of the effectiveness
of this technique. Sample description and results are
given in Tables 6.1 and 6.2 and in Figures6.l and 6.2,
The present total conductivity values agree well with
the values for similar materlal of Lee and Kingery [1960].
Furthevrmore, our photon mean free path results follow
a curve approximately proportional to Lee and Kingery's,
though they have different values. However, we can
account for this difference by using the = 1% porosity
of our material (instead of their 0.25%) to calculate
the scattering coefficient from equation (3.14). The
photon mean free path in our material 1s typical of
that in a strongly scattering porous medium., In such
a medium, the decreasing wavelength of radliation

agsaclated with increasing temperature leads to greater

radiation-pore interaction. Thus, scattering increases

with temperature.

For sintered forsterite, the results are agalin
typlcal of a strongly scattering material, Sample

description and results are glven 1n Tables 6.3 and 6.4

and in Figures 6.3 and 6.4. Agreement with the total

thermal conductivity measurements of Kingery et al.
[195MJ 1s very good. The photon mean free path falls

off somewhat more rapidly at high temperatures than one
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would expect from pure scattering. This phenomenon \is
probably due to the effects of both scattering and
absorption at high temperatures.

Sample description and results for an olivine
(F°86Fa1u) single crystal are given in Tables 6.5
and 6.6 and in Filgures 6.5 and 6,6, The photon mean
free path values are similar to, but slightly less than
those of Fukao et al. [1968] and Aronson et al. [1968].
This difference 1s probably caused by the greater iron
content and the resulting increase of infrared absorption
in the present specimen as compared to those of the
previous experiments. At the highest temperatures, the
mean f'ree path has a value such that KL and Kp are about
equal. Only above about 2000 °k (which 1is beyond the
range of this experiment), would the radiative conductivity,
1f extrapolated, begin to dominate,

Sample description and results for an olivine
(F092F38) single crystal are given in Tables 6.7 and
6.8 and in Figure 6.7 and 6,8, The photon mean free
path values again are similar to, but this time slightly
greater than the results of Fukao et al. [1968] and
Aronson et al, [1968] . Thils difference is due to the
lower iron content of this speclmen as compared to any
of the previous specimens. As the temperature 1is
increased to 1900 %k, the mean free path decreases;
nevertheless, it is large enough in this crystal to

cause Kp to dominate over KL at all temperatures above
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1200 °k,

The radlative conductivity in twin sisters dunite \is

rather low, even though the crystal grains are larsge

and transparent (to the eye). Sample description and

results are given in Tables 6.9 and 6.10 and in Flgures
6.9 and 6,10, Apparently, a great deal of extinction
is caused by absorption and scattering at the grain

boundaries. However, the theoretical result of Aronson

et al. [1967a] , as shown by equation (3.13), negates
the possibillity that scattering alone completely accounts

for the extra extinction. Thus, the extra extinction

must be due in part to absorptlon. Unfortunately, most
of the graln surfaces in thils sample became red-brown
in color before the conclusion of the experiment. Thls
irreversible coloring of the graln surfaces 1s likely

due to the breakdown of small amounts of serpentine and

other impurities. Probably the results are not character-

istic of thls matertal under less oxidizing or more pure
conditions. Without oxidation, one might surmise that
a hypothetical dunite sanple would have a photon mean
free path that remalns approximately constant near to
its low-temperature value until about 1400 °K. Then, the
bulk absorption, demonstrated by single crystals with
similar olivine composition, begins to dominate.

Curves for thls hypothetical dunite are shown also 1in
Figures 6,9 and 6.10.

The photon mean free path in enstatite 1s lower by
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at least a factor of two over most of the temperature

range, than in an olivine of c&mparablé Fe/Mg ratio. As

a result, KR does not increase much with temperature,

and little or no increase is observed in total conductlvity.
Sample description and results are given in Tables 6.11

and 6.12 and in Figures 6,11 and 6.12, This result 1is
consistent with spectroscoplc observations of the

pyroxene structure made by Burns [1970] and White and
Keester [1966] in which an absorption band not present

in olivine is found at 1-9,ﬂ « This band probably

blocks much of the near-infrared radiation that would

otherwise contribute to KR'

Thermal Conductivity of !Mantle Olivine

The photon mean free paths and lattlice thermal
conductivities in the four olivine materlals investigated
here are summarized in Figure 6.13.and 6.14, Also shown
are curves for a hypothetical mantle olivine with
composition F°90Falo' Thls mantle olivine has the same
infra-red spectral propertles as the hypothetical dunite
described above. Grain boundary absorptlon and
scattering together 1imit the photon mean free vath to
a value not greater than 0.1 cm from 500 %K to 1400 °K,
However, above 1400 9K the material acts spectrally as
a single crystal. (The limitation at the middle
temperatures could also be caused by the additlion of
some enstatite, which ls more opaque than olivine, to

the material.) The lattice conductlvity of the
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Figure 6.13 Summary of photon mean free
path as a function of temperature in
olivines, including hypothetical mantle

material.
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Figure 6.14 Summary of lattice thermal
conductivity as a function of temperature

in olivines, including hyvpothetical

mantle material,
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hypothetical materlal reaches its lower limit at 1200 °K,
a8 gsuggested by the data shown.in Fig;re 6.14,

The hypothetical mantle material has total and
radlative conductivities shown as functions of temperature
in Figure 6.15. The most lmportant characteristics of
the total conductivity are an initial decrease due to
the T'1 dependence of lattice conductivity, and then a
slow, almost linear increase due to the increase of
the radlative component. If the hypothesized grain
boundary extinction in the range 500 %k to 1400 °K dld
not occur, i.e. if the material were "clean", then the
conductivity in this temperature range would be somewhat
higher, as shown in Flgure 6,15, But, because the upper
mantle 1s probably not composed entirely of clear
crystals, the lesser conductivity values are preferred.
Above 1400 °x, the hypothetical material acts ln every
respect as a single crystal with olivine composition
F°90F310' Its total conductivity increases slowly,
but remains less than its room temperature value of

.011 cal/cm sec °C until above 2000 K.
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Figure 6.15 Total and radlatiVe conductlvities
of hypothetical mantle material as
functions of temperature, Curves
labeled "clean" are for materlal without

grailn boundary absorption and scattering.
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7. GEOPHYSICAL APPLICATIONS

In applying the results of this investigation to the
earth, we assume the followlng thermal conductivitlies:
(1) The lattlce conductivity is given by the

larger of

where Z s the depth in km and T 1s the temperature
in K. Units are cal/cm sec °C.
(2) The radlative conductivity is given by
Ka= © for T £ 500°K
(7.2)

and » )
s s xio-¢(T-500) For T > s00°K

Ke=

Equations (7.l1) produce the theoretical curve for KL in
olivine of composition F°9OF310' as shown in Figure 6.14,
Equations (7.2) are a plecewise linear approximation to
the curve for KR in the same material, as shown in

Figure 6,15, Kr 1s assumed to be pressure lndependent.

The values of K=K[+Kp obtalned from equations (7.1) and
(7.2) fall within the range of our data at all experimental

temperatures. The equatlions are assumed accurate at all



168

depths and temperatures where ollivine is the stable
phase, They are less dependable, though possibly still
usable, after the olivine-spinel transition. However,

they are at best only a first guess after the spinel-post

spinel transition.

Thermal Conductivity and Temperature in the Upper Mantle

We use the thermal conductivity given by equations
(7.1) and (7.2) to compute steady-state temperature and
conductivity distributions in a continental and two
oceanic upper mantle models. For purposes of comparison,

some of the calculatlons are done twice, once using the

above conductivity, and once using the conductivity used

by MacDonald [1963],

3
006 + 16 a1 ca\ [em sce *C

with & = 10 em~l,
The three upper mantle models we use are based on

those of Sclater and Francheteau[l9?0}. The propertles

of the models are summarized in Table 7.1. The first
model 1s for the mantle beneath a continental shleld;
the second and third are for the mantle beneath old
ocean basins. The difference between the two ocean
basin models is that one has a llthosphere which lis

essentlally depleted of radloactlive sources with respect

to the other. The depleted oceanic model has about the
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Table 7.1 Propertles of models used in upper mantle

temperature calculations

Model Continental Ocean basin Ocean baslin

shield depleted non-depleted
gurface heat flow  1.05x10~®  1,1x10-6 1.1x10-6
cal/cm2 sec
conductivity of . 006 . 006 . 006
crust cal/cm sec °C
Heat production in 1,44x%10-13 .6x10-13 .6::10'13
erust cal/cm’ sec
Depth to Moho 30 10 10

km
Heat production in_  .02x10-}3  ,o02x10713  ,33x10713
1ithosphere cal/cm3sec
Depth to base of 200 110 110
lithosphere km
.1x10-13 .1x10-13 .1x10-13

Heat productign 1in
mantle cal/cm’ sec
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same temperature at the base of its lithosphere as the

continental model, while the non-depleted oceanic model
has about the same heat flux aﬁ the base of its lithosphere
as the continental model.

The conductivity results, shown in Figure 7.1, have
two interesting features. The first is that the present
conductivity 1is predominantly lower than the comparison
conductivity in all models. The present conductivity ls
always less than twice the room temperature conductlivity
of olivine. The second interesting feature 1s the exlstence
of fine structure in the conductivity of the upver 50 km,
as shown in the inset of Figure 7.1 In the upper 50 km
of the continental model, both the present conductlvity and
the comparison conductivity are essentially constant or
slowly increasing. The same is true for the comparison
conductivity in the oceanic models., However, the present
conductivity is quite different in the oceanic models. As
depth increases, it first increases rapidly at the Moho, but
then immediately begins to decrease due to the T‘1 dependence
of lattice conductivity. A minimum 1s reached at about 40
km, followed by the final, gradual increase. The present
investigation indicates that the thermal conductlvity l1s
possibly as much as 30% higher immediately under the
oceanic Moho than under the continental Moho.

The temperature results, glven in Flgure 7.2,
show the effect of the lower present conductivity: The

mantle temperatures are higher for all models. In fact,
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Fizure 7.1 Thermal conductlivity in the

upper mantle.
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Figure 7.2 Temperature in the upper

mantle. The pyrolite solidus 1s from

Ringwood [1969].
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the temperature in the depleted oceanic model rises
rapldly enough to intersect Hlngwood'é pyrolite solidus at
130 km., To avoid large scale melting in this model, it
would be necessary to invoke another mode of heat
transfer, such as convectlon. The non-depleted oceanic
geotherm reaches the pyrolite solidus more gradually and
at grazing incldence. This result is in keeplng with the

notion of inclipient melting at depths of 100 to 200 km.

Thermal Conductivity in the Moon

Sonett et al. [1971} find a temperature distribution
in the moon based on an electrical conductivity proflile
obtained from thelr magnetometer data. Thls temperature,
shown in Figure 7,3, may be used to infer the lunar
thermel conductivity, (for an olivine moon) as shown in
Figure 7.4. We have used the temperature-dependent
conductivity of Figure 6,15, and have assumed a neglible
pressure effect. The result 1s a nearly constant thermal
conductivity at all depths, equal to about .008+ .002
cal/cm sec C. For a material with grain boundary
extinction, lattice conductivity dominates., Without
grain boundary extinction, the lattice and radiative

contributions are about equal.

Temperature Fileld of a Downgoing Slab

The temperature fleld of a downgolng slab has been

computed usirg the thermal conductivity of equations (7.1)
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Figure 7.3 Temperature in the moon

[Sonett et al., 1971].
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Figure 7.4 Thermal conductivity in the

moon.
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and (7.2). The particular model chosen has a velocity of
8 em/yr, descends at an angle oflu5°, and includes all
heating effects and phase changes. We have used N.
Sleep's most recent version of the computer program
developed for this problem by Minear and Toks4z [1970]
and Toks4z et al, [1971}. The present results are
compared to the original results in Flgure 7.5 to show
the effect of the new conductivity. Originally, the
thermal conductivity was taken from MacDonald [1959].

It i1s similar to that given by equation (7.3). The
major difference between the two conductivities 13

that the present 1s considerably smaller than the
original at high temperatures. As a result, the slab
remains cold further into the mantle, and temperature
gradients are increased by as much as a factor of two

at positions above and trailing the leading edge of the
slab. Thils increased gradient implies a somewhat larger

local stress and seismic effect than in the original

model.
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Figure 7.5 Temperature field of a down-
going slab at t = 9.45 m,y. Slab
thickness is 80 km, velocity 1is
8 cm/yr, and angle of descent 1is 45°,
All heating and phase changes are
included. The solid lines are for the
present conductivlity and the dashed
lines are for the original. Temp-

eratures are in °C.
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SUMMARY

In geophysically interesting materials, the dominant
modes of heat transfer are lattice conduction and
radiation. The lattice conductivity, K[ » decreases with
temperature until a lower limit, Kimine 18 reached, K,
increases with pressure., Radlative transfer is less
easily characterized. The radlative conductivity, Kp,
is proportional to'T3/€ , where € 1s the mean extinr:ion
coefficlent. If € were constant, the radiative
conductivity would increase very rapidly with temperature,
but € 1is not constant., It varies with the transparency
of the material in the near infrared. 1In silicates, this
transparency decreases with temperature btut 1s not
strongly affected by pressure. As a result, Kg may
increase only slightly or not at all with increasing
temperature.

The above discussion suggests that a technique of

measuring both KL and Kp at high temperature would te

desirable., Such a technique has been developed during

the course of this investigation. It uses a Col2 laser as
a slowly oscillating heat source at one face of a disk-
shaped sample, The resulting decaying temperature waves
in the sample produce radiation at the other saaple face
which is sensed by an infrared detector. 1In general,.

the radlation seen by the detector appears to originate
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from some position within the sample, rather than at the
back face as it would for an opéque sample, A relation-
ship 1s derived between the phase of the observed signal
and the lattice thermal diffusivity and mean extinction
coefficlient of the sample, from which both KL and KR may
be calculated, To our knowledge, this is a new technique
and is the first to allow conductivity measurements made
on a small, partially transparent sample to be accurately
applied to the case of bulk materlal as in situ.
Measurements on several ceramics and silicates up
to 1900 °X have proven the effectiveness of the
technique. The most noteworthy result 1s that the mean
extinctlon coefficlent of qlivlne single crystals with
composition near to Fo9oFalo increases with temperature
rapldly enough to make the total conductivity, K; + Ko
at 1900 %k only slightly larger than its room temperature

value,

Applications of the results lead to the following
specific observations: (1) The upper mantle thermal
conductivity is less than if there were a large radlative
contribution. As a result, steady state thermal gradients
and temperatures are greater., (2) On a smaller scale,
the thermal conductivity in the first 50 km of the oceanlc
mantle differs from its continental countervart. In the
oceanic case, the conductivity first increases, then

decreases, and then increases again. In the continental
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case, less flne structure exists, and the conductivity
increases more smoothly. The cdnductivlty immediately
below the oceanic Moho is perhaps 30%Z higher than below
the continental Moho. (3) The internal conductivity

of an olivine moon is approximately constant and equal
to about one-half the earth value. (%) A downgolng
slab with 8 cm/yr velocity remains colder and has a
somewhat higher temperature gradient near to its leading

edge than has been previously determlned.
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APPENDIX

Some of the terms approximated or deleted in the
mathematical analysis of the experiment given in Chapter
5 are included more completely and accurately in the
actual analysis we use for computation. These terms are

considered here,

Radiation Leaving the Sample

For the case of a relatively transparent sample,
internal reflectlon can contribute measurably to the
emerging radlation. With one internal reflection

included, equation (5.1) is reprlaced by

P -x)
Ra(t) = fcb>cht)e'é‘<o od X
0
n-i\*“ ° -€Ex (D+x)
Y [ et O
]

where n }s the index of refraction of the sample.

Temperature in the Sample

The temperature in the sample is glven by

T= Tox T(x,t)
(A2)

where T, Ilncludes all time independent terms. The term

To may be expanded in the form
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T. = T,(_ + A-Bx (A3)

o

where Tf is the furnace temperature, A is the uniform
sample temperature increase due to laser heating, and B
1s a small gradient also caused by laser heating.
Equatlons for A and B are found by applying the boundary
condition, equation (5.9), to the steady-state case., The

expressions for A and B which result are

-Kest | _ED _ .
- - = - 2E €D) -2 .
A= B py— = (e 4 (D) :.) + D

E3(éb)‘>€

(Al4)
4
o« (T - T8

Kes ¢

o
I

where Td is the "apparent temperature” of the sample
measured by the detector in o pyrometer mode (as mentioned
in Chapter 4), Kerp 18 given by equation (5.10).

A series expansion of the fourth power of sample
temperature is needed to obtaln the equivalent of

equation (5.6). This expansion, carried to the third
term, 1s

T%= 'ro4 + 4 T:,‘T(x,t) 6 T, 2T *(x,4)
(A5)
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With division by uT°3. and the dropping of time independent

terms, equation (A5) becomes

s _E€(D-
R(t) = fT(x,é)E‘ ¢ ”a(x
»]
2 [0, _E(D-x) (46)
RT;J‘T (x ¢} & d x

9

where T  1s found from equatlons (A3) and (A4). (With
internal reflections, the additional term given by

equation (Al) also must be included.)

Square Wave Comvponents of Flux and Temperature

The square wave heat flux generated by the laser

is given by

n
|
b
oM
Mg
|

F
(A7)

Equation (A7) rerlaces equation (5.7). The resulting

sample temperature wave which replaces equation (5.8) 1is
’ . M . .

=

)
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where U, , W, , 6& v Py and“(s-A are found for each
value of as in Chapter 5. In practice, the sum .
of the terms for j=1 and J=2 is used. The comblnation
of equations (A8) and (A6) then glves the desired

expression for outout signal at the detector,
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Blographical Note

The author was born in New York City in 1942 under
the sign of Leo, which was, by chance, silmultaneously 1n
conjunction with the conflicting forces of Natura and
Technologia., His youth 1in Falr Lawn, New Jersey was
dominated by the forces of Technologla, and to fulfill
part of his destiny, he entered the Massachusetts
Institute of Technology in 1960. There, he studlied
physics and enjoyed philosophy until he graduated 1in
1964 with a Bachelor of Sclence in Physics. Followling
the designs of Technologla, he traveled to Phoenlx,
Arizona to create integzrated clrcuits for the Seml-
conductor Products Division of lNotorola Incorporated.
But, there in the Western wilds, where the influence of
Natura was strong and loving, the author discovered
that the world was not a transistor, He leaped from
his bath shouting °'Eureka! The world 1s a semiconductor!’
He raced back to MIT .but this time to enter the Department
of Earth and Planetary Sclences, where, with the help
of a Natlonal Science Foundation Graduate Fellowship
he could apply his physics to the study of the earth,

As destiny has decreed, Technologla and Natura have

been united, and they are one,

P. S. Say Hello to the folks back home,



