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When a qubit or spin interacts with others under a many-body Hamiltonian, the information it contains
progressively scrambles. Here, nuclear spins of an adamantane crystal are used as a quantum simulator to
monitor such dynamics through out-of-time-order correlators, while a Loschmidt echo (LE) asses how
weak perturbations degrade the information encoded in these increasingly complex states. Both
observables involve the implementation of a time-reversal procedure which, in practice, involves inverting
the sign of the effective Hamiltonian. Our protocols use periodic radio frequency pulses to modulate the
natural dipolar interaction implementing a Hamiltonian that can be scaled down at will. Meanwhile,
experimental errors and strength of perturbative terms remain constant and can be quantified through the
LE. For each scaling factor, information spreading occurs with a timescale, T2, inversely proportional to the
local second moment of the Hamiltonian. We find that, when the reversible interactions dominate over the
perturbations, the information scrambled among up to 102 spins can still be recovered. However, we find
that the LE decay rate cannot become smaller than a critical value 1=T3 ≈ ð0.15� 0.02Þ=T2, which only
depends on the interactions themselves, and not on the perturbations. This result shows the emergence of a
regime of intrinsic irreversibility in accordance to a central hypothesis of irreversibility, hinted from
previous experiments.

DOI: 10.1103/PhysRevLett.124.030601

Recent achievements in the preservation and manipula-
tion of complex quantum states bring us ever closer to
practical quantum information processing [1]. However, as
the number of qubits increases [2–4], it becomes crucial to
assess the robustness of multiqubit superpositions. These
superposition could shed light onto the foundations of
quantum statistical mechanics [5–7], the black hole infor-
mation paradox and the related quantum information roots
of space-time geometry [8,9]. These issues launched a
renewed interest on many-body quantum chaos. In par-
ticular, the neighborhood of a black hole is maximally
chaotic. Thus, a field theory that satisfies the classical/
quantum (AdS=CFT) correspondence should be affected by
a “quantum butterfly effect” [10–12]. Indeed, for one-body
chaotic systems, a semiclassical analysis predicts that the
fraction of a quantum excitation recovered under a per-
turbed time reversal, i.e., a Loschmidt echo (LE) [13,14],
decays with a classical Lyapunov exponent. Such exponent
also controls the growth of quantum uncertainties evaluated
through out-of-time-order correlators (OTOCs) [15,16].
While some spin Hamiltonians show spectral signatures
of chaos [17,18], they do not have a classical equivalent.
Thus, it is not clear whether the expected Lyapunov-like
dynamical instability actually holds [10–12]. Besides, one
might suspect that such instability could also amplify small

errors that could limit the unscrambling process. Indeed,
different experiments seem to find an unbeatable limit to
the reversibility, despite their effort to reduce experimental
imperfections [19–22]. This led us to formulate a central
hypothesis of irreversibility [23,24] stating that, for
unbounded systems, there is an intrinsic irreversibility
timescale proportional to the scrambling time. Our present
work gives definitive support to this statement.
Within solid-state nuclear magnetic resonance (NMR)

[25], we engineered periodic sequences of radio frequency
(rf) pulses to implement different target dipolar XXZ
Hamiltonians and invert their sign allowing time reversal
[26]. This quantum simulator (QS) enables us to monitor
how information scrambles through an unbounded 3D lattice
of interacting spins (qubits) under unitary evolution, and
how precisely it can be recovered. Indeed, the traditional
magic echo (ME) [19,27] and multiple quantum coherence
(MQC) experiments [28,29] inspired the new procedures for
LEs and OTOCs [30]. We suspected that our NMR-QS
might reveal an emergent behavior of many-body systems, in
this case towards intrinsic irreversibility [24], as it did for
quantum dynamical phase transitions (QDPTs) [21,31] and
other quantum phase transitions (QPT) [32–35].
Thus, by changing the Hamiltonian strength by a scaling

factor �δ, while keeping the experimental errors nearly
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constant, we were able to (i) transform an initially localized
spin excitation into a complex multispin superposition
under the Hamiltonian unitary dynamics while varying
its timescale with respect to that of perturbations and errors,
(ii) measure the information scrambling on the unbounded
lattice through OTOCs, and (iii) use the LE to quantify the
information recovered from these scrambled states under
different conditions. We find that information scrambles
among a spin network, whose size grows diffusively while
the LE becomes exponentially small. An intrinsic irrevers-
ibility rate, interpreted as the Lyapunov exponent of the
spin system, is seen to emerge when the Hamiltonian
dominates over the experimental imperfections (Fig. 5).
Controlling the many-body dynamics.—The N ≈ 1023

equivalent 1H nuclear spins 1
2
of polycrystalline adamantane

[36], precess at frequency ω0 under the magnetic field
along z of the laboratory frame. The large magnetic field
ensures a thermal state ρð0Þ ≈ 1 − βω0

P
i I

z
i with ℏ ¼ 1,

βω0 ≈ 10−5, 1=β proportional to the room temperature and
Izi , the z component of ith spin operator. A first ½π=2�x rf
pulse, dubbed X, creates an excitation by tilting each spin
to xy plane, Izi → −Iyi , where they evolve under the secular
dipolar Hamiltonian [37],

Hzz
d ¼

X

i<j

dijð−Ixi Ixj − Iyi I
y
j þ 2Izi I

z
jÞ

¼
X

i<j

dij

�
−
1

2
½Iþi I−j þ I−i I

þ
j � þ 2Izi I

z
j

�
; ð1Þ

dubbed XXZ. Here, dij is a dipolar coupling. Terms of the
form dij½Iþi Iþj þ I−i I

−
j � were already neglected as dij ≪ ω0.

Since Iyi and Hzz
d do not commute, the polarization IyðtÞ

decays in a time T2 ¼ 1=
ffiffiffiffiffiffiffi
M2

p
, with M2 ¼ Tr½Hzz; Iy�2=

Tr½IyIy� the second moment of the Hamiltonian [38]. After
a time τ a new pulse attempts to recover the z polarization
yielding eiðπ=2ÞIxe−iH

zz
d τe−iðπ=2ÞIx Iz ¼ e−iH

yy
d τIz. Thus, the

dynamics of each Iyi ¼ 1
2
ðIþi − I−i Þ under XXZ is fully

equivalent to that of Izi under XYX, the nonsecular
Hamiltonian in the toggling frame [37],

Hyy
d ¼ −

1

2
Hzz

d −
3

4

X

i<j

dij½Iþi Iþj þ I−i I
−
j �: ð2Þ

A sequence of different π=2 rf pulses and free
evolution periods yields, in the Trotter approximation,
e½−iH

xx
d τð1−δÞ� × e½−iH

zz
d τ� × e½−iH

yy
d τð1−δÞ� ≈ e½−iH

yy
d τδ�. A repeti-

tion of this cycle yields an average Floquet Hamiltonian
Hδ ≃ δHyy

d whose strength scales with δ. More precisely, Izi
evolves under the average Hamiltonian Hδ þ Σ, where Hδ

is, at zeroth order, our engineered Hamiltonian and Σ ¼
P∞

i¼1H
ðiÞ
δ is a constant perturbation described by the

Magnus expansion, whose strength does not change much
with δ [39–41] [42]. For compactness, we include in Σ any
other small experimental imperfection. Thus, we designed

two sets of periodic trains of π=2 rf pulses to achieve
−ð1=2Þ ≤ δ ≤ 1 while keeping fixed the pulse number and
cycle period tc and thus the experimental errors. The eight-
pulse sequences, dubbed 8Pδ-F, for Forward, and 8Pδ-B,
for Backward, are shown in Fig. 1. The other two, 16Pδ-F
and 16Pδ-B, repeat the cycle tc with opposite phases,
cancelling all odd-order corrections in Σ. Both cancel out
the Zeeman terms. We simplify the notation
by saving obvious indices and making explicit the sign
of the scaling of the acting XYX Hamiltonian: Hδ;FðBÞ ¼
�Hδ þ Σ ¼ �δHþ Σ (i.e. δ ≥ 0 from now on). Our
experiments start with the nonequilibrium polarization Iz

along the new z axis where it evolves under�δH, the scaled
XYX [see Fig. 1(c)]. As the sequence ends at time t, the
polarization IzðtÞ rests along the laboratory z (see [41]) and
it is recorded as a standard time-ordered correlation function:

PδðtÞ ¼ heiHδ;FðBÞtIze−iHδ;FðBÞtIziβ ¼ hIzðtÞIzð0Þiβ;
¼

X

j;i

hIzjðtÞIzi ð0Þiβ: ð3Þ

Here, h·iβ denotes the expectation on the thermal state,
normalized to its value at t ¼ 0. PδðtÞ decays with a rate
1=T2, which already hints at, but does not quantify, its
scrambling. A first order Trotter expansion, Izi ðτÞ ≈ Izi ð0Þ
cos½τ=T2� − i½Hδ; I

z
i ð0Þ� sin½τ=T2�, at τ ¼ ðπ=2ÞT2 shows

that after n steps IzðtÞ scrambles as coherences, i.e., a
superposition of different K-spin operators, say I−l I

þ
k I

z
i � � �,

each of them decaying in a time of about T2=
ffiffiffiffi
K

p
[29,43].

A small n suffices for the phases to become pseudorandom

FIG. 1. Scaled XYX dynamics δHyy
d . (a) Forward and (b) back-

ward eight-pulse sequences, (8Pδ-F and 8Pδ-B), consist of π=2 rf
pulses along X or Y. The interpulse delays Δ1;F ¼ τð1 − δÞ,
Δ2;F ¼ τð1þ 2δÞ, Δ1;B ¼ τð1þ δÞ, Δ2;B ¼ τð1 − 2δÞ, resulting
in a cycle time tc ¼ 12τ. An evolution time t, requires n ¼ t=tc
cycles. In 8Pδ-B, pulses are rotated by φ. (c) Polarization
dynamics hIzðtÞIzð0Þiβ. The longitudinal total magnetization is
probed after a last π=2 pulse [41]. (d) Loschmidt echo (LE),
MδðtÞ, concatenates the forward, 8Pδ-F, and backward, 8Pδ-B,
dynamics. OTOC protocol. It inserts a perturbation, Φ ¼ eiI

zðtÞφ,
before time reversal, achieved by shifting all pulses in the
backward block by φ to get. SφðtÞ ¼ hΦ†ðtÞIz0ð0ÞΦðtÞIz0ð0Þiβ
with Sφ¼0ðtÞ≡MδðtÞ.
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and suppress quantum interferences. Thus, the decay path-
ways in the Liouville space can be viewed as a set of
discrete-time random walks or particles falling in a Galton’s
board, justifying its interpretation as “equilibration” [7,44].
Scaled dynamics.—Our protocols were tested by

measuring PδðtÞ, which slows down as δ decreases
(Fig. 2) and, most crucially for LE and OTOCs, they
show identical forward and backward dynamics. Ideally,
Pδ¼0ðtÞ should not evolve [25]. Instead, its decay reveals
the effect of Σ. The 16-pulse sequence exactly cancels
out all odd-order terms in Σ, giving longer coherence
times at δ ¼ 0, while the evolution for δ > 0 yields
similar results to 8Pδ [41]. This shows that Hð0Þ is a good
approximation to the acting Hamiltonian in both cases.
We use 8Pδ-F;B to monitor fast dynamics as it allows
more frequent observations.
The reliability of the scaling is quantified in Fig. 2 by Pδ

as a function of the self-time, δt ¼ δ × t. Remarkably, all
data collapse into a single curve with a characteristic
oscillation [38] at around δt ≈ 100 μs that describes a
nonsecular dipolar dynamics [38], PðtÞ ¼ sinc½wt�
exp½−ðhtÞ2=2�. This yields the Hamiltonian second
moment M2 ¼ ð1=T2Þ2 and its corresponding relaxation
time, 1=T2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ w2=3

p
, linear in δ (as shown in [41]).

This trend continues for δ ¼ 0.1 and below. PδðδtÞ also
coincides with a free evolution of Iz under Hyy

d (i.e.,
forward evolution with δ ¼ 1), and under a continuous
high power irradiation as in the ME [19] (i.e., backward
evolution with δ ¼ 1=2). For the smaller δ the oscillations
smear out because of the longer experimental time required
for the same self-time.

Time reversal, OTOCs and spin counting.—The combi-
nation of a forward and backward dynamics [Fig. 1(d)] for
the same evolution time t yields the LE:

MδðtÞ ¼
X

j;i

heþitHδ;FeþitHδ;B Izje
−itHδ;Be−itHδ;F Izi iβ;

≈ heþitHδ;FeþitHδ;B Izj¼0e
−itHδ;Be−itHδ;F Izj¼0iβ: ð4Þ

Only if Σ ¼ 0 to all orders does the LE become perfect,
MδðtÞ≡ 1. Thus, the irreversibility is quantified by the LE
decay time Tδ

3, defined as by MδðTδ
3Þ ¼ 1=2. The scram-

bling of IzðtÞ can be monitored by an instantaneous spin
rotation Φ ¼ e−iφI

z
that labels portions of the Hilbert space

according to their spin projection. Let us assume that Σ ¼ 0
in Eq. (4) except at the beginning of time reversal, when Φ
perturbs IzðtÞ. Thus, the LE depends on φ. Identifying
ΦðtÞ ¼ eitHe−iφI

z
e−itH we write the LE as an OTOC:

SφðtÞ¼
X

j;i

hΦ†ðtÞIzjΦðtÞIzi iβ≈ hΦ†ðtÞIzj¼0ð0ÞΦðtÞIzj¼0ð0Þiβ:

ð5Þ

By repeating for φn ¼ 2πn=Q, n ¼ 0; 1;…; Q − 1, we get
[27] SδqðtÞ ¼

PQ−1
n¼0 e

iqφnSδφn
ðtÞ. Each Sq is the sum of all

the strengths jhm0
zjIzðtÞjmzij2 describing superpositions

with spin projections mz and m0
z with jmz −m0

zj ¼ q,
i.e., the coherences of order q [45] While the sum of
MQC intensities yields the LE, their second moment,
Q2 ¼ P

q q
2SqðtÞ is the expectation value of a squared

commutator [30,46,47], CzzðtÞ ¼ hj½IzðtÞ; Izð0Þ�j2iβ ∝ Q2.
Traditionally, the second moment is associated with the
number of spins effectively correlated (Spin counting [45]).
The pseudorandom phases smooth the oscillations of MQC
intensities, enabling a combinatorial analysis that associ-
ates their distribution at a given time, t, with the number K
of spin operators with a coherence q as ð2KÞ!=½ðK þ qÞ!
ðK − qÞ!� approximated by SqðKÞ ∝ e−q

2=K. The width of

FIG. 2. Polarization dynamics: (a) forward and backward
evolution, (b) backward evolution as a functions of self-time,
δt ¼ δ × t. Scaled dynamics are obtained with the 8Pδ sequences
for δ ∈ ½0; 0.4� and the ME forward, δ ¼ 1 (spin-echo) and
backward δ ¼ 0.5 (on-resonance irradiation) portions.

FIG. 3. Scrambling growth from OTOCs using the 16-pulse
sequence for different δ. The number of correlated spin NðδtÞ
(circles) fit a power law (black solid line), NðδtÞ ¼ Aδtb, with
b ¼ 1.49� 0.04.
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this distribution is then associated to the number of
correlated spins, NðtÞ ¼ Q [43].
By implementing 16P-F and 16P-B, we extracted the

normalized OTOC intensities SδqðtÞ for several scaling
factors and evolution times. Figure 3 shows the number
of correlated spins N as a function of the self-time. All the
data fall into a single curve NðδtÞ ∼ δt3=2. This indicates
that each Izi ð0Þ scrambles into multispin states within a spin
network whose radius grows diffusively. This unbounded
growth differs from the linear growth recently observed in
linear chains [35]. It also contrasts with the exponential
growth of NðtÞ seen in adamantane [34,43] under the
“ballistic” dynamics of H2Q ∝

P
i<j dij½Iþi Iþj þ I−i I

−
j �.

This confirms the disruptive role of the many-body effects
of Izi I

z
j, which lead to MBL when they dominate

[5,7,35,48]. The usual discussions of MQC and OTOCs
assume [30,45] a perfect time reversal Hδ;F ¼ −Hδ;B, but
they work even under Σ ≠ 0. We may understand why by
noting that these observables are based on a set of
independent (i.e., incoherent) equivalent spin excitations
Izi , [49]. Since each of them scrambles into a coherent
superposition in a timescale T2 [27,43,45], we may focus
on one of them, say Iz0ðtÞ. The time reversal after the Φ
perturbation cannot fully undo its dynamics. Thus, a
substantial number of backward paths in the Liouville
space do not lead to Iz0 but remains as a multispin super-
position without net z polarization [12,29]. Thus, the
observed polarization after a LE corresponds to the small
portions of paths that has unscrambled the multi-spin
correlation into its original Iz0ð0Þ [29]. While the intensity
SφðtÞ is further diminished by the imperfection Σ this is
compensated by a normalization with the LE Sφ¼0ðtÞwhich
does not affect its dependence on φ [27,43]. Thus, one can
safely remove the sum over j in Eq. (5) justifying the
approximations in Eqs. (4) and (5). This means that the
normalized OTOC, SφðtÞ, describes the probability that a
local excitation at the 0th spin returns to its origin, when
only Φ prevents a perfect time reversal.
Loschmidt echoes.—We may finally focus on the crucial

question of how a constant Σ limits the recovery of
quantum information scrambled into a multispin system.
Σ can be quantified using Mδ¼0ðtÞ. Its decay (see inset
of Fig. 4), fits a model [24,50,51] that interpolates
between an initial Gaussian (dubbed quantum Zeno
regime) and a Fermi golden rule decay Mδ¼0ðtÞ ¼
exp ½2ðΓ2=σ2Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ4=σ4Þ þ Γ2t2

p
� (red line in inset of

Fig. 4; details in [41]). Its half maximum intensity defines
the timescale associated with the time reversal imperfec-
tion, TΣ ¼ Tδ¼0

3 . For δ > 0, we observe that LE data,
normalized by Mδ¼0ðtÞ, overlap when plotted as function
of the self-time (Fig. 4). The decay can be best fitted to a
sigmoid, ð1þ eλðt−tsÞÞ−1, underlying an initial slow decay
before the exponential dominates [41]. This law was first
found for a ME experiment [52] and only then identified

in the LE in a 2D gas of rigid spheres [53], where 1=ts
depends on the perturbation strength and λ is a Lyapunov
exponent. Thus, our experimental rate 1=Tδ

3 accounts for both
timescales. Strikingly, the tendency of MδðδtÞ=Mδ¼0ðδtÞ to
overlap for the bigger δ unveils that all the irreversibility rates
1=Tδ

3, as well as λ, tend to be proportional to δ, i.e., to the
Hamiltonian strength. This suggests [24] a plot of the
normalized decay rate, Tδ

2=T
δ
3, versus the perturbation’s

characteristic rate Tδ
2=TΣ. All pulse sequences used here

(8Pδ, 16Pδ, andME) fall in a universal curve (Fig. 5) despite
the different origin of theirΣ. At small δ,Σ dominates over the
intrinsic dipolar dynamics, Tδ

2=TΣ ≫ 1 and hence the exper-
imental points fall on a line with unit slope (Tδ

3 ≈ TΣ). For
larger δ, the reversible interactions become dominant,
Tδ
2=TΣ ≪ 1. Strikingly, the ratio Tδ

2=T
δ
3 does not vanish,

but it saturates at the critical fraction R ≈ 0.15� 0.02. This
holds forΣswith different strengths andnature: 8P, 16P,ME,
and a mixture of them. In this weak perturbation limit, the
“reversible” interactions producing the scrambling also
determine an intrinsic irreversibility rate.

FIG. 4. Loschmidt Echo decay normalized by Mδ¼0ðtÞ (in the
inset), as a function of self-time, using the 8Pδ sequence, for
different δ. Lines are fits to a sigmoid.

FIG. 5. Scaled LE decay rates Tδ
2=T

δ
3 versus perturbation rate

Tδ
2=TΣ, for 8Pδ (blue) and 16Pδ (green). Also shown is the ME

result (δ ¼ 0.5, red). Blue and green lines are fits to the function
ðTδ

2=T
δ
3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðTδ

2=TΣÞ2
p

. The black line is a guide to the
eye. The inset is an enlargement of the region of saturation of
ðTδ

2=T
δ
3Þ.
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Conclusions.—By scaling down a XXZ Hamiltonian
and inverting its sign, we measured, through OTOCs,
the information scrambling and, through the LE, how
much of this information is recoverable. Indeed, scrambling
dynamics depends on the system, the initial state, the
observable, and the specific Hamiltonian. For our system,
Iy0ðtÞ under dipolar XXZ dynamics [17,18] does not
scramble exponentially, as might be expected [10], but
with a diffusive power law. Nevertheless, the “butterfly
effect” manifests in the exponential decay of the LE.
However, being this decay rate λ ∝ T2 ≪ 1=β, it confirms
that XXZ falls short [11] from the strong chaos required for
a quantum many-body system to satisfy the AdS=CFT
correspondence [10,11].
By reaching the regime where the spin-spin dynamics

dominates over the perturbations we found an intrinsic
upper bound for LE decay time Tδ

3 ≤ Tδ
2=R. This demon-

strates the validity of our central hypothesis of irreversibility
stating that, for weak perturbations, the LE decays with a
perturbation-independent rate that is proportional to the
local secondmoment of the unperturbedHamiltonian. Thus,
1=T3 plays the role of the Lyapunov exponent in a semi-
classical limit, where weak perturbations control a FGR
decay of the LE, but a Lyapunov decaymanifests forΣ ≥ Σc
[13,14]. The present observation of Σc ¼ 0 becomes con-
ceivable [54,55] in the thermodynamic limit of N → ∞ and
then Σ → 0. Thus, it seems that we are in presence of a
quantum dynamical phase transition [21,24,31] where the
perturbation dependent range [14] collapses, yielding
intrinsic irreversibility. This could be seen as a departure
from unitary quantum dynamics with strong implications
for the black hole information paradox [10].
Finally, the perturbation-independent timescale of the LE

decay seems to set a limit to the retrieval of information
scrambled as complex superpositions and to its preserva-
tion from thermalization. However, the decay is neither an
exponential [13] nor a Gaussian [21,56], but a sigmoid
[52]. This indicates that in many-body systems far from
equilibrium information remains fairly retrievable at the
initial stages. This should allow the implementation of
error correcting protocols, as it is only after a few times T2

that the scrambling becomes irreversible to all practical
purposes.
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