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Abstract 

Detailed modeling of complex chemical processes, like pollutant formation during 

combustion events, remains challenging and often intractable due to tedious and error-

prone manual mechanism generation strategies. Automated mechanism generation 

methods seek to solve these problems but are held back by prohibitive computational 

costs associated with generating larger reaction mechanisms. Consequently, automated 

mechanism generation software such as the Reaction Mechanism Generator (RMG) must 

find novel ways to explore reaction spaces and thus understand the complex systems 

that have resisted other analysis techniques. In this contribution, we propose three 

scalability strategies — code optimization, algorithm heuristics, and parallel computing — 
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that are shown to considerably improve RMG’s performance as measured by mechanism 

generation time for three representative simulations (oxidation, pyrolysis, and 

combustion). The improvements create new opportunities for the detailed modeling of 

diverse real-world processes. 

1 Introduction 1 

Reaction mechanisms are valuable engineering tools that provide insight into the 2 

evolution and fate of chemically reactive systems. Coupled with or integrated into 3 

multiscale-multiphysics models, reaction mechanisms can help elucidate physical 4 

phenomena that are driven by chemical kinetics. Ultimately, this insight can be used to 5 

design and optimize a wide range of processes and materials. Traditionally, reaction 6 

mechanisms are generated manually, but in the past decade, the computer-assisted 7 

development of reaction mechanisms has emerged as a promising tool leveraging the 8 

combined power of theoretical insight and extensive experimental data (Burke, 2016). 9 

Several software packages are available that harness the power of automation in the field 10 

of chemical kinetics (Vandewiele et al., 2012; Broadbelt et al., 1996; Van de Vijver et al., 11 

2015; Rangarajan et al., 2012; Warth et al., 2000; Blurock, 1995). In the following work, 12 

we focus on the Reaction Mechanism Generator (RMG) project, which provides a 13 

framework for the automated, computer-assisted development of reaction mechanisms, 14 

with the goal of producing high-fidelity, predictive, and reproducible kinetic models 15 

(Green, 2007).  16 

Several recent advancements in kinetic modeling (Vandewiele et al., 2015; Allen et al., 17 

2014; Gao et al., 2015; Prozument et al., 2014; Carr et al., 2015; Seyedzadeh and West, 18 
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2016; Class et al., 2016) and novel chemical kinetic applications (Jalan et al., 2010, 2013; 1 

Suleimanov and Green, 2015) are posing new challenges to RMG. For instance, to 2 

improve fidelity, single-component fuel surrogates are being replaced by more realistic 3 

multicomponent formulations (Narayanaswamy et al., 2016). This enhances 4 

understanding of the impact of existing and novel feedstock blends on the overall process, 5 

but greatly increases the complexity of the modeling, challenging automated strategies. 6 

Other advancements in kinetic modeling aim to reduce the uncertainties in model 7 

parameters. For instance, the Quantum Mechanics Thermodynamic Property (QMTP) 8 

module for estimating thermodynamic properties using on-the-fly quantum chemistry 9 

calculations (Magoon and Green, 2013) complements the existing Benson group 10 

additivity methods (Benson, 1968) that suffered from limited accuracy for some classes 11 

of molecules, including polycyclic species. Quantum chemistry has been used to improve 12 

the thermochemical parameters in a kinetic model, at the cost of significantly increasing 13 

the CPU time required (Magoon and Green, 2013). Methods for calculating pressure-14 

dependent rate coefficients improve estimates for rate coefficients of pressure-dependent 15 

reactions (Allen et al., 2012). In addition, capabilities such as sensitivity analysis (Gao et 16 

al., 2016) and uncertainty quantification (Gao et al., 2019) are being added to RMG. All 17 

the additions may facilitate the construction of high-fidelity kinetic models, but they also 18 

increase computational demands. Consequently, without addressing the scalability of the 19 

algorithms, many of the current and upcoming features will be available in theory, but 20 

unaffordable in practice. Although considerable effort has been spent in developing robust 21 

and scalable numerical schemes for solving the sets of equations associated with specific 22 

chemical processes, such as combustion (Shi et al., 2011), there has been little focus on 23 
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the scalability of computer-assisted reaction mechanism generation. This shortcoming is 1 

addressed in the present contribution. We begin by assessing the computational 2 

complexity of RMG simulations and identifying the most time-consuming bottlenecks for 3 

three simulations selected to represent the diversity of computational challenges faced 4 

by automatic mechanism generation. Barriers that inhibit scalability and performance are 5 

discussed and guide the proposed changes to code optimization, algorithm heuristics, 6 

and parallel computing. These enhancements are then explained and analyzed in detail. 7 

Finally, the strategies are evaluated with respect to walltime and memory consumption in 8 

the three RMG test simulations. 9 

2 Automated reaction mechanism generation 10 

2.1 RMG - Overall structure and key components 11 

This section outlines the overall structure and the key components that govern the 12 

computational performance of RMG simulations. Details regarding the chemical 13 

meaningfulness and accuracy of the employed methods have been published previously 14 

(Gao et al., 2016; Hansen et al., 2013; Zhang et al., 2018; Gudiyella et al., 2018). RMG 15 

uses the rate-based algorithm of Susnow et al. (1997) to iteratively grow (“enlarge”) the 16 

reaction mechanism one or more species at a time. The starting point in this enlargement 17 

scheme is a user-defined set of species that corresponds to the reactants of the modeled 18 

chemical process and acts as the initial species of the reaction mechanism to be enlarged. 19 

An iterative procedure generates all reactions between the species of the current 20 

mechanism, called the “core”. These reactions are synchronized to avoid double 21 

occurrences and the resulting product species that are not yet part of the core are added 22 
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to the “edge”. The rate-based enlargement algorithm dictates that an edge species is 1 

moved to the core when the flux Ri to the edge species i exceeds a certain threshold 2 

value, Eq. 1. 3 

𝑅𝑖 =  
𝑑𝐶𝑖

𝑑𝑡
 >  𝜖 ∙ 𝑅𝑐ℎ𝑎𝑟 Eq. 1 

with ε being the user-specified error tolerance and Rchar the characteristic flux of the 4 

system, defined by Eq. 2 5 

𝑅𝑐ℎ𝑎𝑟 =  √∑ 𝑅𝑗
2

𝑗

     Eq. 2 

for all core species j. An isothermal, isobaric batch reactor model is used to evaluate 6 

species fluxes and species concentrations. A system of ordinary differential equations 7 

(ODEs) containing only the reactions from the mechanism core is integrated in time until 8 

the rate of formation of a species in the edge exceeds the threshold value. Whenever an 9 

edge species is added to the core, the reactor is initialized back to time zero and species 10 

fluxes and concentrations are re-evaluated through integration. This iterative enlargement 11 

procedure is the main loop through which the mechanism is grown. The enlargement 12 

procedure of the mechanism is complete when none of the edge species fluxes meets 13 

the threshold value and the user-defined termination criteria, i.e., residence time for the 14 

simulation (t>tterm) or a specific conversion of a given initial species (X>Xterm) is reached. 15 

The final model includes all the species and reactions in the core. To obtain all the 16 

information that is required to decide which species should be added to the core, the 17 

enlargement procedure passes through four key phases: reaction generation, 18 
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synchronization, chemical data computation, and finally, reaction system integration, see 1 

Fig. 1. 2 

 

Figure 1: The schematic outlines the workflow for automated reaction mechanism generation with one reactor 3 

for an isothermal, isobaric condition. The enlargement step that integrates a species from the edge into the 4 

core consists of four key components: reaction generation, synchronization, calculation of chemical data such 5 

as thermodynamic properties of species and finally solving the system of ODEs including the calculation of 6 

species concentrations and fluxes.  7 
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2.1.1 Reaction generation 1 

In the reaction generation phase, the species that was added in the previous enlargement 2 

iteration is used as a reactant to generate new reactions and species. For unimolecular 3 

reactions, this is done by iteratively matching the new reactant to the templates of a series 4 

of built-in unimolecular reaction families. For bimolecular reactions, the new species is 5 

paired with each species already present in the model core and then matched to the 6 

bimolecular templates. When a set of compatible reactants and template are found, 7 

products are created by applying the reaction family-specific recipe. This recipe precisely 8 

describes the transformation from reactants to products with instructions to break and 9 

form specific bonds, gain or lose electrons, etc. The reaction generation step results in 10 

the creation of a large number of, potentially redundant, new reactions and species which 11 

requires additional processing called synchronization.  12 

2.1.2 Synchronization 13 

During synchronization, RMG iterates over the list of newly generated reactions and 14 

species and determines if any are redundant. If a newly generated species is identical to 15 

a species in memory, RMG deletes the new structure and replaces it with a reference to 16 

the existing structure in memory. A similar mechanism is in place for reactions. RMG 17 

requires synchronization because tracking unique species and reactions allows 18 

distinction between the model’s core and edge. This distinction is required for the iterative 19 

enlarging procedure and allows for the proper formulation of the system of ODEs to solve. 20 

Furthermore, synchronization avoids the redundant computation of chemical data. The 21 

uniqueness of species is established through isomorphism comparisons of the 22 

corresponding chemical graphs that represent the species. The uniqueness of reactions 23 
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is determined by comparing the reactants and products of the reactions and hence also 1 

relies on graph isomorphisms. If there are multiple transition states of comparable energy 2 

connecting these species then the rates should be summed together to give the overall 3 

flux from some set of reactants to some set of products. 4 

2.1.3 Chemical data computation 5 

After the synchronization phase has determined a list of new species and reactions, the 6 

chemical data computation phase calculates thermodynamic properties of the species or 7 

kinetic parameters of the reaction. Both thermodynamic property and kinetic parameter 8 

calculations rely heavily on performing subgraph isomorphism queries on a large number 9 

of substructures contained in RMG’s databases. The uncertainty of the models due to the 10 

uncertainty of the thermodynamic and kinetic parameters can be estimated using recently 11 

added tools (Gao, 2016). Different models and observables have different degrees of 12 

sensitivity to these uncertainties precluding any blanket statements about uncertainty 13 

requirements. 14 

2.1.4 Reaction system integration 15 

In this final step, the state variables are re-computed, and a new species is selected and 16 

added to the core. The system of ODEs that corresponds to the new state of the reaction 17 

mechanism “core” is solved. The first edge species whose formation rate exceeds a 18 

threshold, see Eq. 1 and Eq. 2, is chosen as the next species to be added to the core. 19 

From here the cycle restarts, with the next reaction generation step based on the newly 20 

added species.  21 
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2.2 Performance bottlenecks  1 

To assess performance bottlenecks of the automated reaction mechanism generation 2 

tool, three simulations are analyzed in depth. They are selected to represent a diverse 3 

collection of cases that make use of a large part of RMG’s features and settings, Tab. 1. 4 

Table 1: Characteristics of three representative RMG simulations. 5 

 
Initial stage of 

diesel oxidation 
Hexadiene 
pyrolysis 

Rich natural gas 
combustion 

 

Initial mixture 
Six-component 

diesel surrogate, 
oxygen 

Hexadiene, 
methane, 
hydrogen, 
nitrogen 

Natural gas, air 

Isothermal and 
isobaric operating 

conditions 

500 K 1350 K 1400 K 

200 bar 1 bar 20 bar 

Thermodynamic 
property 

calculation method 

Benson group 
additivity 

QMTP 
Benson group 

additivity 

Initial molar ratio 

n-C11 : n-C13 : n-
C16 : n-C19 : n-C21 : 

n-decylbenzene : O2 
= 

1.00 : 1.27 : 1.67 : 
1.20 : 0.67 : 0.80 : 

0.33 

1,3-hexadiene : 
CH4 : H2 : N2 

= 
1.00 : 152.00 : 
23.00 :1288.00 

CH4 : C2H6 : C3H8 : 
O2 : N2 

= 
1.00 : 0.09 : 0.02 : 

0.71 : 0.33 

Kinetics source 

 Training 
reactions 

 RMG ‘default’ 
kinetics families 

 Rate rules 

 Training 
reactions 

 RMG ‘default’ 
kinetics 
families 

 Rate rules 

 Training 
reactions 

 RMG ‘default’ 
kinetics families 

 Rate rules 

Final model 
size  

(Base case) 

Core 
Species: 26 
Reactions: 24 

Species: 131 
Reactions: 4689 

Species: 376 
Reactions: 17,739 

Edge 
Species: 13,429 
Reactions: 41,355 

Species: 44,604 
Reactions: 
156,906 

Species: 679,127 
Reactions: 
1,691,134 
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The first case is a partial oxidation of a diesel surrogate, which consists of five larger 1 

linear alkanes and n-decylbenzene. The automatic mechanism generation of this system 2 

leads to a large number of generated reactions even in the early stages of the simulation. 3 

In the second case, a kinetic mechanism for the pyrolysis region of a 1,3-hexadiene doped 4 

methane flame is generated. This model could be employed to study soot formation 5 

(Sharma et al., 2007; Sharma et al., 2010, Vermeire et al., 2017). To address the need 6 

for accurate thermodynamic properties of cyclic and polycyclic species in these studies, 7 

the Quantum Mechanics Thermodynamic Property (QMTP) method is used rather than 8 

Benson group additivity. Case three generates a mechanism for natural gas combustion 9 

containing methane, ethane, and propane as the initial reactants. Due to the reactant 10 

molecules being small in size, only a small number of reactions per iteration is generated 11 

early in the simulation, contrasting case one. However, this simulation is run long enough 12 

that the generated mechanism grows comparatively large in size. The main purpose of 13 

the present work is to improve the scalability of our automated reaction generation tool. 14 

To test the improvements within a reasonable time frame, the initial stage of diesel 15 

oxidation and rich natural gas combustion simulations were evaluated after fourteen days 16 

of wall clock time. For the hexadiene pyrolysis case, that is dominated by the computation 17 

of thermodynamic properties with the QMTP method, results are evaluated for 130 core 18 

species. 19 

Figure 2 compares the four key phases of mechanism enlargement and their contribution 20 

to the overall mechanism generation time for each of the three cases. These cases  21 
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 will be called “base cases” in the remainder of the manuscript.  1 

Figure 2: Contribution of key enlargement phases to overall kinetic mechanism generation time. 2 

For the diesel oxidation case, which involves longer n-alkanes with multiple reacting sites, 3 

the reaction generation phase is by far the largest performance bottleneck. The 4 

synchronization step, the chemical data computation phase, and the ODE integration step 5 

have minor or negligible contributions to the overall simulation time. In case two, 6 

hexadiene pyrolysis, which employs the computationally expensive QMTP method for 7 

estimating thermodynamic properties, the chemical data computation phase becomes the 8 

limiting factor.  Finally, as the RMG simulation advances to larger mechanism sizes in the 9 

natural gas combustion case, a significant amount of time is spent in both the reaction 10 

generation phase as well as the ODE integration phase. In this third case, the chemical 11 

data computation, synchronization and input/output (I/O) events play a minor role. These 12 

observations suggest that the computational load of RMG simulations cannot be isolated 13 

in a single routine, but rather, is dynamic in nature and heavily dependent on the chemical 14 

system under investigation. For example, while improvements to assignment, tree-15 

structure search, and reaction path degeneracy calculations could accelerate mechanism 16 

generation in the diesel oxidation case, these strategies would have negligible impact in 17 

the hexadiene pyrolysis case. As a result, multi-faceted strategies that focus on 18 
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computational performance across the spectrum of simulations are required to 1 

significantly reduce the wall clock time spent generating the kinetic reaction mechanisms.  2 

3 Scalability strategies 3 

3.1 Challenges and tradeoffs  4 

Scalability strategies for automated reaction mechanism generation face four main 5 

challenges: continuity, programming language, information-rich data structures, and data 6 

consistency. 7 

3.1.1 Continuity 8 

The RMG project has existed for almost two decades. Many incremental developments 9 

have grown RMG into a codebase containing about 125 400 lines of Python code and 13 10 

900 lines of Cython code, including a separate text-based database with about 277 700 11 

lines of Python code for chemical data storage. A single codebase simultaneously 12 

maintains a Django-powered website (http://rmg.mit.edu), serves as production code on 13 

high performance clusters, and supports desktop versions on Linux and Mac OSX. 14 

Furthermore, as a collaborative, open-source project with over 2000 commits added in 15 

the last year by more than twenty developers in distributed development teams, the 16 

capabilities of RMG are constantly expanding. However, each new update poses a risk 17 

to the accuracy and performance of the software. While more than one thousand unit and 18 

regression tests are embedded in the automated continuous integration system to catch 19 

blatant bugs, subtler changes resulting in structural or numerical deviations in the final 20 

converged mechanisms can arise from the synergistic effects of coupling multiple 21 

features. These errors are more difficult to discover. Therefore, any code modification 22 
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must strike a balance between performance and software reuse and robustness, which 1 

inevitably results in compromises to both.  2 

3.1.2 Programming language 3 

One such compromise is the choice of the programming language. RMG is implemented 4 

in Python, after a 2012 rewrite from the original version in Java (Song, 2004). Python has 5 

a rich ecosystem of scientific libraries that enable fast-paced development and ease of 6 

portability. RMG currently contains over twenty external dependencies ranging from low-7 

level numerical libraries such as NumPy (van der Walt, 2011) and SciPy (Jones and 8 

Oliphant) to graph visualization toolkits such as GraphViz (Gansner and North, 1999). 9 

However, due to the interpreted, dynamically typed nature of Python, it bears significant 10 

performance penalties compared to other popular choices of programming languages for 11 

scientific software. 12 

3.1.3 Information-rich data structures 13 

The fundamental entities that are manipulated in RMG are “Species” and “Reaction” data 14 

structures. They are highly nested, object-oriented data structures that systematically 15 

categorize the layers of molecular information needed by the different parts of RMG. 16 

Moreover, the species and reaction data structures do not merely store the primitive 17 

variables required within a simulation, they also contain meta-variables for analysis, 18 

visualization and post-processing of the generated reaction mechanisms. For example, 19 

upon calculation of the thermodynamic properties of a species via the Benson group 20 

additivity method (Benson, 1968), the matched groups and origin of the groups will be 21 

stored as part of the Species data structure and can be verified posteriori to confirm their 22 

validity. The downside of using such high-level, information-rich data structures is that 23 
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their manipulation is difficult to translate into the arithmetic operations of mathematical 1 

data structures such as arrays of floating-point numbers. Instead, the types of operations 2 

that species and reactions undergo are complex and require accessing substantial out-3 

of-cache data, which in turn leads to suboptimal performance on architectures designed 4 

for compute-bound mathematical problems. 5 

3.1.4 Data consistency 6 

RMG extensively makes use of references to existing objects in memory. This strategy, 7 

inherent to many object-oriented software paradigms, not only prevents anomalies during 8 

the RMG simulation, but also reduces memory requirements and avoids redundant 9 

computation and duplication of associated data. The extensive use of object references 10 

is not only a result of the choice of programming model but is also inherent to the nature 11 

of automated reaction mechanism generation. Typically, for mechanisms generated by 12 

RMG consisting of about 100 species and 3000 reactions, every unique species will be 13 

created 300 times during each reaction generation phase before being called in 14 

synchronization. Further, each species appears in seventy-five distinct reactions on 15 

average. The extensive use of object references in lieu of newly created objects in 16 

memory undoubtedly leads to performance gains, it does, however, pose problems for 17 

parallel computing.  18 

3.2 Proposed scalability strategies 19 

Accounting for the iterative nature of RMG’s mechanism generation approach, the 20 

identified performance bottlenecks, and the discussed challenges and tradeoffs for 21 

scalability strategies, we have focused on performance improvements within the 22 

individual phases of a mechanism enlargement loop. While post-processing features such 23 
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as periodic checkpointing and intermediate mechanism writing may significantly increase 1 

the computational cost, they can be deactivated and are therefore not further considered 2 

for performance optimization. Conventional strategies to reduce the computational load 3 

of simulations, such as those that are employed by computational fluid dynamic software, 4 

e.g., domain discretization and decomposition, don’t apply to RMG. The strategies 5 

proposed in this work can be roughly categorized into code optimization, algorithm 6 

heuristics, and parallel computing. 7 

3.2.1 Code optimization 8 

RMG uses several code optimization techniques. To reduce the performance penalty 9 

imposed by Python, large parts of RMG that contain critical code, such as the VF2 (Foggia 10 

et al., 2001; Cordella et al., 2004) algorithm used for (sub-)graph isomorphism have been 11 

converted to Cython (Behnel et al., 2011). The Cython project compiles Python-style code 12 

to C through static typing, leading to an expected speed up of about an order of magnitude 13 

for numerically intensive code. Another technique involves prescreening to determine that 14 

molecule pairs are non-identical before calling the graph isomorphism algorithm. 15 

Currently, the prescreening uses the molecular formula of the molecule as a fingerprint 16 

and filters out about 80% of the molecule pairs. Finally, the integration of the ODE system 17 

is performed by DASPK (Li and Petzold, 1999), a Fortran-based differential algebraic 18 

system solver accessed through the PyDAS (PyDAS) Python interface.  19 

3.2.2 Algorithm heuristics 20 

To further target the reaction generation bottleneck, especially for simulations with large 21 

molecules, a “reaction filtering” approach is implemented. Reaction filtering reduces the 22 

number of reactions generated with each iteration trading off kinetic mechanism 23 
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completeness for speed-up by neglecting species with extremely low concentrations. Per 1 

the laws of mass action, the rates of reactions whose reactants have very low 2 

concentrations must be very low as well. Very slow reactions necessarily contribute little 3 

to the overall rate of formation of high flux, and thus important, species. If a very slow 4 

reaction contributes significantly to the overall rate of formation of a species, that species 5 

must be formed in only low concentrations and thus can be excluded from the mechanism. 6 

Despite the limited importance of slow reactions to the overall mechanism, the time spent 7 

in the reaction generation phase is independent of the kinetic (un)importance of a 8 

reaction. A heuristic approach is chosen that prevents species from undergoing reactions 9 

if the highest achievable reaction rate between those species is below a threshold. In 10 

each iteration, prior to the generation of reactions, the following inequality is verified: 11 

𝑘𝑚𝑎𝑥 ∙ ∏ 𝑐𝑖𝑖 <  𝜖 ∙ 𝑅𝑐ℎ𝑎𝑟 , Eq. 3 

with kmax being an upper limit for the rate coefficient of a reaction between the reactants 12 

i, ci being the concentration of reactants evaluated at any given time in the reaction 13 

system, ε being the model error tolerance and Rchar being the characteristic flux defined 14 

in Eq. 1Eq. 1. The left-hand side of Eq. 3 can be interpreted as the highest reaction rate 15 

possible for the examined reaction. The choice of  𝜀 ∙ 𝑅𝑐ℎ𝑎𝑟 allows user input on the 16 

tolerance through ε, while ensuring that the threshold follows the dynamics of the 17 

simulated reaction system through Rchar. Values for the upper limit of kmax are chosen 18 

based on the reaction order. For unimolecular reactions, kmax is set to  (𝑘𝐵 ∙ 𝑇) ℎ⁄  , where 19 

kB is the Boltzmann constant, T is the temperature and h is Planck's constant. This 20 

maximum can be interpreted as the rate coefficient from the Eyring equation (Eyring, 21 

1935) when the Gibbs free energy of activation is equal to zero. For bimolecular reactions, 22 



 17 

kmax is set to 108 m³ mol-1 s-1, a typical high-pressure-limit rate coefficient for radical 1 

recombination reactions where the radicals are polyatomic molecules. Since barrier-less 2 

radical recombination reactions are among the fastest bimolecular reactions, it is 3 

expected that this value for kmax should not exclude important reactions. To ensure the 4 

chemical accuracy of a generated model the validity of the chosen kmax has to be carefully 5 

studied. Here we just employ the reasonable default RMG values. 6 

On a similar basis, another heuristic approach, called “species flux pruning” (Han et al., 7 

2017), was implemented to reduce the memory requirements of RMG simulations. In this 8 

algorithm, normalized fluxes are used as a metric to identify negligible species during 9 

model generation to prune them and the reactions in which they participate. A potential 10 

risk of species flux pruning is the erroneous identification of important species as 11 

unimportant and their subsequent deletion, leading to a loss of model accuracy. However, 12 

careful selection of pruning parameters allows reduced memory requirements for building 13 

accurate kinetic models, without loss of accuracy.  For example, for a model with 200 to 14 

300 species the memory requirement can be reduced by about a factor of four, allowing 15 

creation of larger models that were unreachable using earlier versions of RMG due to 16 

limited hardware resources. 17 

3.2.3 Parallel computing 18 

For several years processor clock speeds have been relatively stable and are not 19 

expected to increase substantially in the near future (Millett and Fuller, 2011). However, 20 

new chip designs allow for the addition of more cores to a single processor to increase 21 

code performance. In addition, depending on the hardware manufacturer, each core can 22 

allocate a number of threads. Taking advantage of the hardware architecture, 23 
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computationally intensive parts of RMG such as reaction generation and chemical data 1 

computation can be executed in parallel. Python’s multiprocessing package effectively 2 

side-steps the Global Interpreter Lock (GIL) by using processes instead of threads. The 3 

GIL mechanism is used by the CPython interpreter to assure that only one thread 4 

executes Python bytecode at a time aiming to make the object model, e.g., Python 5 

dictionaries, implicitly safe against concurrent access (Python). In this work, Python’s 6 

multiprocessing package’s pool object is used to parallelize function execution across 7 

multiple input values by distributing the input data across processes, so called data 8 

parallelism (Python).  9 

Due to the dominant overall contribution of the reaction generation and chemical data 10 

calculation phases to the automated mechanism generation time, parallelizing these two 11 

computationally intensive parts of RMG is expected to result in considerable performance 12 

gains. The chemical data computing phase may become more demanding in the future 13 

as more advanced quantum chemical methods replace the semi-empirical methods 14 

currently supported (MOPAC2016).  A schematic of the parallel workflow is presented in 15 

Fig. 3. 16 

Despite the potential for parallel computing in the aforementioned target areas, highly 17 

non-uniform task workloads hamper the parallel efficiency as it becomes increasingly 18 
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 1 

Figure 3: Parallelization scheme for the reaction generation and chemical data computation phases as part of 2 

one enlargement iteration in RMG. The scheme distributes the generation of reactions by creating one task per 3 

molecule and molecule-molecule pair and subsequently creates reactions through application of the list of 4 

reaction families. The generated reactions created per task are sent to the base process, bundled together and 5 

further processed in the synchronization phase, where newly generated species are identified that have no 6 

thermodynamic properties associated before creating one task per species in the chemical data computation 7 

phase for submission to the QMTP part of RMG. After all tasks are completed the spawned processes are 8 

joined together to continue the ODE integration.  9 

difficult for the task scheduler to achieve a uniform workload across the available 10 

processes. Figure 4 presents the percentage of generated reactions per reaction family 11 
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 over the course of the simulation for the selected cases in Tab. 1.  1 

 2 

Figure 4: Generated reactions per reaction family through the course of a simulation. Out of 66 available 3 

reaction families in RMG, only a limited number of families is responsible for the large majority of the generated 4 

reactions. Only reaction families that contribute more than 1% to the generated reactions are presented. 5 

For all three cases most reactions are generated using the disproportionation and H-6 

abstraction reaction family. However, the number of generated reactions is highly 7 

dependent on the molecules that are paired together. For a molecule pairing that is 8 

highly reactive, often with a larger number of atoms, submitting one task including all  9 



 21 

 available reaction families in RMG will lead to rather large loads in comparison to the 1 

load associated with a more unreactive molecule pairing. Figure 5 is a heat map of the 2 

number of generated reactions throughout an RMG simulation between two species 3 

represented as SMILES. It can be observed that the number of reactions per molecule 4 

pair is highly dependent on the nature of the species and varies widely.  5 

Figure 5: Heat map showing the number of generated reactions between two species presented as SMILES 6 

during an RMG simulation. Darker colors imply a higher number of generated reactions. 7 

In response to this imbalance, parallelization across the reaction families for molecules 8 

larger than ten non-hydrogen atoms is implemented in RMG to create tasks with a 9 

computational load that is more uniformly distributed. A threshold of ten non-hydrogen 10 

atoms has been chosen based on scaling tests exhibiting a performance loss when 11 

employing family splitting with species that have a smaller number of atoms. The 12 
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 schematic of the workflow is outlined in Fig. 6. 1 

 2 

Figure 6: Reaction generation schematic with family splitting to address unbalanced task loads. In Task 1, 3 

bimolecular reactions using reactant A and B and RMG’s reaction family “Family 1” are created. In Task 2, 4 

bimolecular reactions using reactant A and B and “Family 2” are created and in Task 3, bimolecular reactions 5 

using several families “Family N” are created. The same task generation method is then applied for bimolecular 6 

reactions using reactant A + C and “Family 1” like presented in Task 4.  7 

Load distribution is relatively well balanced for the parallel calculation of thermodynamic 8 

properties. Figure 7 shows a histogram of the time to completion for the calculation of the  9 

Figure 7: Distribution of the individual times to successfully complete an QMTP calculation for 390 unique 10 

hydrocarbons (C2 – C18) using MOPAC2016 at the PM7 level. 11 

thermodynamic properties of 390 hydrocarbons ranging from C2 to C18 using QMTP 12 

methods. The majority of the calculations take less than 25 s to complete, although some 13 

require more than 50 s. Due to the large number of events less than 25 s, load balancing 14 
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is expected to be less of an issue in this case. Furthermore, it is outside the scope of this 1 

work to modify the computation time of semi-empirical methods called from within RMG. 2 

4 Benchmarking the scalability strategies 3 

4.1 Parallel efficiency and load distribution 4 

To evaluate the parallel performance, the elapsed wall clock time or real-time and the 5 

parallel efficiency for the reaction generation and thermodynamic property calculation 6 

phase are analyzed outside an RMG simulation in three standalone test cases, A to C, 7 

with results shown in Tab. 2.  8 

Table 2: Standalone testcases to analyze wall clock time and parallel efficiency for parallel reaction 9 
generation and chemical data computation. The reactants are obtained from cases presented in Tab. 1. 10 

 A B C 
Thermodynamic 

property 
calculation 

Number of reactants 52 50 100 390 

Reactants obtained 
from  

Initial stage 
of diesel 
oxidation 

Hexadiene 
pyrolysis 

Rich natural 
gas 

combustion 

Unique 
hydrocarbons 

ranging from C2 

to C18 

Generated reactions 25 987 51 953 37 675 - 

Wall clock 
time 

reduced 
to 

Family 
splitting 

10% 10% 4% 

5% No 
family 

splitting 
15% 12% 14% 

Speedup 
factor 

40 
processes 

 Family 
splitting 

10.3 10.2 24.0 

18.0 No 
family 

splitting 
6.6 8.3 7.0 

 11 

The average number of atoms per reactant decreases from test A to C. Strong scaling 12 

tests were chosen for the analysis meaning the scaling behavior of a fixed problem size 13 
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with an increasing number of processes was assessed. The parallel efficiency measures 1 

the efficiency of processes to execute a given parallel algorithm and is calculated with 2 

Eq. 4: 3 

𝐸 =  
𝑇1

𝑚 ∙ 𝑇𝑚
, Eq. 4 

where T1 and Tm are wall clock times to complete the problem, using one up to m equipped   4 

 5 

 6 

processes, respectively. The scaling tests were carried out on a MacBook Pro (Early 7 

2015, 2.9 GHz Intel Core i5, 8 GB 1867 MHz DDR Memory) and our in-house cluster 8 

Figure 8: Wall clock time and parallel efficiency for strong scaling tests using core species generated in the initial diesel 

oxidation, hexadiene pyrolysis, and natural gas combustion cases as reactants for reaction generation. The maximum 

achievable speed-up is presented as dashed lines for linear scaling. 
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(Silicon Mechanics, Rackform R4422.v6, two Intel® X®(R) CPU E5-2630 v4 @ 2.20GHz 1 

each equipped with ten cores, 128 GB 2400 MHz DDR4 Memory). Hyperthreading allows 2 

for the execution of up to forty processes per node. Both environments showed similar 3 

scaling, while the MacBook was only tested up to four processes. The cluster results are 4 

presented here. Scaling tests were performed with and without splitting the reaction 5 

families over several tasks to improve load balancing, see Fig. 8. In test C family splitting 6 

allows for almost linear scaling and a parallel efficiency of over 90% up to twenty 7 

processes. The parallel efficiency then decreases to 60% for forty processes, probably 8 

due to the use of hyperthreading. Without family splitting, the parallel efficiency in test C 9 

decreases to about 50% with just four processes and to less than 20% for forty processes. 10 

However, due to relatively small reactant sizes and low reactivities in case C, reaction 11 

generation is a rather fast process and using family splitting considerably increases the 12 

number of tasks to be submitted to the task scheduler. This larger number of tasks causes 13 

the test C wall clock time with family splitting to be significantly higher than the wall clock 14 

time without family splitting when using one to forty processes. For test B, with medium 15 

sized reactants, the wall clock times with or without family splitting are very similar. In test 16 

A, with relatively large and reactive species, wall clock times are reduced through family 17 

splitting. These observations lead to the heuristic of employing family splitting only for 18 

reactants larger than ten non-hydrogen atoms. Finally, using forty processes instead of a 19 

single process reduces the wall clock time to at least 15% of its original value. These 20 

improvements correspond to speed-up factors ranging between 6.6 and twenty-four. The 21 

parallel efficiency was improved with family splitting, but in tests A and B still fell rapidly 22 

with only a few processes in use. 23 
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Similar to the analysis for reaction generation, Fig. 9 presents the elapsed wall clock time 1 

and parallel efficiency for the calculation of thermodynamic properties in an isolated test, 2 

i.e. not embedded in an RMG simulation.  3 

Figure 9: Strong scaling test for the calculation of thermodynamic properties of 390 unique hydrocarbons 4 

ranging from C2 to C18 with MOPAC2016 at the PM7 level. 5 

Parallelization allowed for a wall clock time reduction to about 5% of its original value, 6 

corresponding to a speed-up factor of eighteen when using forty processes. Only small 7 

deviations from linear scaling as well as a smooth decline in parallel efficiency can be 8 

observed up to twelve processes. For twelve to forty processes the parallel efficiency 9 

decrease is relatively steep, ending below 50%. As in the reaction generation tests, the 10 

decrease in parallel efficiency implies that further increasing the number of processes will 11 

result in only marginal reductions of the overall wall clock time. To improve our 12 

understanding of the decreasing parallel efficiency, two more possible bottlenecks 13 

besides load balancing are investigated: contention for shared resources and 14 

communication time. 15 
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4.1.1 Shared resources 1 

Shared resources can refer to shared variables within sections of the code designated as 2 

critical. Critical sections are defined to ensure shared data is accessed in a serial way, 3 

thus avoiding race conditions. As a result, only one process may execute a critical section, 4 

or access a shared variable within a critical section simultaneously. Contention for shared 5 

resources during the parallel generation of reactions and calculation of thermodynamic 6 

properties is assessed by calculating the sum of the time spent in individual tasks as a 7 

function of the number of processes. Figure 10 shows that the total time spent in the tasks 8 

remains generally constant up to twenty processes, after which it gently increases for 9 

most of the tests. 10 

Figure 10: Sum of the times spent in tasks generating reactions or calculating thermodynamic properties as a 11 

function of the number of processes. Circles represent tests including the splitting of reaction families across 12 

multiple tasks while crosses represent tests without family splitting.  13 

 Based on the results shown in Figure 10, it becomes clear that writing to shared variables 14 

within critical sections is not an important factor when analyzing the parallel efficiency 15 

decrease. This is likely mainly due to the internal forking algorithm used in Python’s 16 

multiprocessing package that generates copies of the base process when spawning 17 
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processes and the fact that for reaction generation in RMG, processes only read the static 1 

RMG databases but never write data to them, which would require a locking mechanism 2 

to avoid race conditions. Writing to shared variables only occurs when the generated 3 

reactions from a process are added to the collection of reactions on the base process or 4 

the calculated thermodynamic properties are returned to the molecule. Both actions are 5 

handled internally by the multiprocessing package. 6 

4.1.2 Communication overhead 7 

In the case of a physical shared resource such as system memory, the off-chip bandwidth 8 

puts a limit on the maximum data transfer rate that can be achieved between the system 9 

memory and the CPU chip. As discussed before, Python’s GIL prevents the simultaneous 10 

execution of multiple threads. Therefore, the parallel execution of tasks is achieved by 11 

running them through processes with separate memory spaces and, as a result, data 12 

communication occurs through message passing. This step requires the serialization of 13 

the object hierarchy into a binary representation, the transfer of that byte stream, and 14 

finally the inversion operation, or deserialization of the stream into the object hierarchy 15 

containing the original data. The current parallel reaction generation scheme requires two 16 

communication operations: sending the resonance structure pair from the base process 17 

to the parallel processes and sending a list of generated reactions back from the parallel 18 

processes to the base process. Since the transferred objects consist of highly layered 19 
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 and complex objects, data communication contributes significantly to the overall wall 1 

clock time. 2 

The time spent on data communication TDC is calculated with  3 

where TTask is the time spent in one task, treated in parallel with m other tasks. Therefore, 4 

the second term on the right-hand side represents the average sum of time spent in a 5 

task. As the time spent on data communication varies for different processes due to the   6 

Figure 11: Time spent on data communication as a contribution to the overall wall clock time and as a function 7 

of the number of processes. Circles represent tests including the splitting of reaction families across multiple 8 

tasks while crosses represent tests without family splitting. 9 

distribution of task sizes, TDC  represents an average across the processes as opposed to 10 

a process-specific metric. The percentage of time spent on data communication as a  11 

portion of the overall wall clock time is presented as a function of the number of processes  12 

in Fig. 11. The test cases are identical to those used previously and defined in Tab. 2. 13 

Generally, for reaction generation, a larger fraction of time is spent on data 14 

communication as the number of processes increases, eventually taking a majority of wall 15 

clock time.  The exception to this is test C with family splitting. Due to the submission of 16 

𝑇𝐷𝐶 = 𝑇𝑚 −  
∑ 𝑇𝑇𝑎𝑠𝑘

𝑚
  ,   Eq. 5 
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a large number of tasks with relatively short execution times, the data communication 1 

time as a percentage of the overall wall clock time is larger for a smaller number of 2 

processes. This trend also does not hold for thermodynamic property calculation. In that 3 

case, the data communication time in percent is considerably lower as compared to the 4 

reaction generation cases.  5 

Overall, the results suggest that the drop in parallel efficiency for reaction generation is 6 

mainly due to time spent on data communication, which is observed to take up to 80% of 7 

the overall wall clock time.  8 

4.2 RMG simulations 9 

After having assessed the scalability characteristics of the individual components, we now 10 

assess their impact on wall clock time and memory consumption for the RMG simulations 11 

summarized in Tab. 1. First, we compared reaction filtering, pruning, or multiprocessing 12 

in isolation to the base cases. Next, we employed the heuristic algorithm improvements 13 

— reaction filtering and pruning — together. Finally, we used all the improvement 14 

strategies together. Table 3 presents the obtained wall times for each case. 15 

Figure 12.a presents the wall clock time and memory consumption for the diesel oxidation 16 

case. Pruning or multiprocessing alone did not have a significant impact on the number 17 

of core species in the model after a wall clock time of fourteen days. However, reaction 18 

filtering allowed for a larger number of core species. A combination of pruning, reaction 19 

filtering and multiprocessing allowed for about twice as many core species to be 20 

generated in the same wall clock time as compared to the base case. Steep increases in 21 

 22 
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Table 3: Wall times for model generation with the suggested changes in RMG. Evaluated at 24, 125, and 218 core species 1 
generated for diesel oxidation, hexadiene pyrolysis, and natural gas combustion, respectively. FS indicates 2 
splitting reaction families over several tasks for reactants containing more than ten non-hydrogen atoms. No 3 
FS indicates that all reaction family matches for one reactant or reactant pair are evaluated in a single task. 4 

Wall times 
(h) 

Base 
case 

Multiprocessing Pruning 
Reaction 
filtering 

Pruning 
+ 

Reaction 
filtering 

Pruning + 
Reaction filtering 

+ 
Multiprocessing 

No FS FS 

Diesel 
oxidation 

249.6 118.9 199.0 144.9 37.1 22.1 18.7 

Hexadiene 
pyrolysis 

95.2 47.4 81.9 16.0 15.8 - 7.4 

Natural gas 
combustion 

11.1 9.9 130 1.9 4.5 - 1.9 

 5 

wall clock time for the addition of a single species were observed even when splitting the 6 

reaction families over several processes. We suspect that this is because a large 7 

computational load is associated with a single reactant pair and reaction family. Such a 8 

task is not divisible under the current family splitting strategy. A further reduction in wall 9 

clock time, especially for the first steep increase, could be obtained by generating more 10 

and smaller tasks for the work done within the reaction generation for one family. This is 11 

also expected to decrease the data communication time and therefore improve the 12 

parallel efficiency for this case. Speed-up factors for the three cases and the suggested 13 

code improvements are reported in Tab. 4. The base cases are also presented in Fig. 2. 14 

Monitoring the memory consumption is important because the forking algorithm limits the 15 

number of available parallel processes by the memory consumption of the base process  16 
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 1 

 2 

 3 

Figure 12:  Wall clock time and memory consumption as a function of the number of species added to the core 4 

employing the discussed scalability strategies either alone or combined for the cases outlined in Tab. 1. 5 

 6 
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and the maximum available memory on the machine. Therefore, when using the parallel 1 

computing strategy, the memory consumption mimics the base case, limiting the number 2 

of allowed processes to below the available maximum of forty. Due to these restrictions 3 

for very memory intense cases, parallel computing might not be possible, causing the 4 

simulation to be carried out in serial. However, the combination of pruning and reaction 5 

filtering allows for a smaller memory footprint compared to the base case. Therefore, 6 

adding the multiprocessing option to these two heuristic strategies allows for better 7 

leveraging the parallel computation strategy. Similar observations can be made for the 8 

hexadiene pyrolysis and natural gas combustion cases presented in Fig. 12.b and c, 9 

respectively. 10 

The speed-up between using algorithm heuristics alone and combining them with parallel 11 

computing is still about a factor of two. This seems to be a comparatively small  12 

 13 

Table 4: Speed-up factor compared with the base cases for the suggested changes in RMG. Evaluated at 24, 14 
125, and 218 core species generated for diesel oxidation, hexadiene pyrolysis, and natural gas combustion, 15 
respectively. FS indicates splitting reaction families over several tasks for reactants containing more than 16 
ten non-hydrogen atoms. No FS indicates that all reaction family matches for one reactant or reactant pair 17 
are evaluated in a single task. 18 

Speed-up 
Base 
case 

Multiprocessing Pruning 
Reaction 
filtering 

Pruning 
+ 

Reaction 
filtering 

Pruning + 
Reaction 
filtering + 

Multiprocessing 

No FS FS 

Diesel 
oxidation 

1 2.1 1.3 1.7 6.7 11.3 13.3 

Hexadiene 
pyrolysis 

1 2.0 1.2 6.0 6.0 - 12.9 

Natural gas 
combustion 

1 1.1 0.1 6.0 2.5 - 6.0 

 19 
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improvement, however, as Amdahl’s law (Amdahl, 1967) dictates, the maximum 1 

achievable speed-up in an enlargement iteration is governed by the time spent in the 2 

serial parts of the code. 3 

5 Conclusions and perspectives 4 

The complexity of modeling processes driven by chemical kinetics has been a long-5 

standing challenge. With the concerted efforts outlined in this paper, we have identified 6 

critical bottlenecks and provided scalability solutions to make computer-aided reaction 7 

mechanism construction a tool with practical usefulness in the generation of predictive 8 

detailed reaction mechanisms. It was shown that bottlenecks for the overall performance 9 

of RMG simulations are dynamic in nature and depend on the state of the simulation and 10 

the methods used for the calculation of chemical data. A three-pronged approach 11 

consisting of code optimization, algorithm heuristics and parallel computing was 12 

employed to accelerate the essential phases of the rate-based enlargement procedure. 13 

Tests that measured the individual scalability characteristics have shown speed-up 14 

factors with respect to the use of a single process ranging between 6.6 and twenty-four 15 

for reaction generation and of about eighteen for thermodynamic property calculation. 16 

However, the parallel computing benchmarking also revealed issues that are of 17 

fundamental importance to automated mechanism generation tools. The goal of 18 

augmenting important entities with metadata competes with scalability and operation 19 

speed. Therefore, we believe that future efforts should be directed at devising novel data 20 

structures and approaches that fully take advantage of the vast computational resources 21 

available today, while creating information-rich models that enable analysis and scrutiny. 22 
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To conclude, this work demonstrated how the new version 2.4.0 of the Reaction 1 

Mechanism Generator opens up new opportunities for the construction of more 2 

comprehensive and accurate mechanisms of chemical processes. It also creates 3 

avenues for the modeling of real-world processes that were previously too complex to 4 

model. RMG is a free-to-use open-source code under the MIT X/11 license. The 5 

scalability improvements described in this paper are implemented in the latest version 6 

found at  https://github.com/ReactionMechanismGenerator/RMG-Py. Expecting that the trend 7 

towards computer-assisted reaction mechanism generation continues, the identified 8 

hurdles and proposed solutions in this work might be applicable in a broader context 9 

outside the realm of RMG and may impact other adjacent computational approaches. 10 

More specifically, even though each of the available automatic mechanism generators 11 

are quite unique in their algorithms they are all expected to benefit from the described 12 

strategies when adapted accordingly. Parallelization of thermodynamic property 13 

calculation and reaction generation would be helpful in any software where the 14 

thermodynamic data or reactions are algorithmically generated. 15 
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