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Abstract: We present a CMOS-compatible, Q-switched mode-locked integrated laser 
operating at 1.9 µm with a compact footprint of 23.6 × 0.6 × 0.78mm. The Q-switching rate is 
720 kHz, the mode-locking rate is 1.2 GHz, and the optical bandwidth is 17nm, which is 
sufficient to support pulses as short as 215 fs. The laser is fabricated using a silicon nitride on 
silicon dioxide 300-mm wafer platform, with thulium-doped Al2O3 glass as a gain material 
deposited over the silicon photonics chip. An integrated Kerr-nonlinearity-based artificial 
saturable absorber is implemented in silicon nitride. A broadband (over 100 nm) dispersion-
compensating grating in silicon nitride provides sufficient anomalous dispersion to 
compensate for the normal dispersion of the other laser components, enabling femtosecond-
level pulses. The laser has no off-chip components with the exception of the optical pump, 
allowing for easy co-integration of numerous other photonic devices such as supercontinuum 
generation and frequency doublers which together potentially enable fully on-chip frequency 
comb generation. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

High repetition-rate ultrafast mode-locked lasers (MLL) have unique advantages for 
applications such as photonic analog-to-digital converters, comb spectroscopy, optical 
arbitrary waveform generation and low-noise microwave synthesis. Traditionally, repetition 
rates beyond 1 GHz were achieved by either active modulation techniques [1,2], which 
restricted the pulse duration to more than a few picoseconds, with nonlinearity-induced 
optical bistability where multimode noise suppression was necessary for a stable operation 
[3,4], or by introducing a semiconductor saturable absorber, in which case the pulse duration 
also remained more than a few picoseconds [5–7]. Alternatively, passive mode-locking 
techniques have been shown to generate femtosecond-level pulses at high repetition rates 
when used with some form of an external repetition-rate multiplier to bring the system into 
the GHz-level regime [8,9]. Harmonic mode-locking, where several pulses circulate in the 
cavity at the same time, has also been used to demonstrate high repetition rates [10]. In all of 
the above cases the architecture of the laser system itself was based on a fiber laser or a diode 
laser, with the rest of the cavity constructed with free-space optical components. Such 
systems could significantly benefit from an on-chip implementation which would 
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dramatically reduce the footprint, enable scalable mass-production, eliminate moving 
elements, and reduce the cost of fabrication. Moreover, the compact size of the gain cavity 
integrated on chip together with an on-chip passive mode-locking technique could provide 
GHz-level pulse repetition rates with pulse durations in the femtosecond regime without any 
external repetition rate multiplication [11,12]. Recent growth in integrated photonics 
capabilities enables such an on-chip MLL implementation in principle. Moreover, recently 
demonstrated wafer-scale electronic-photonic integration enables the possibility of on-chip 
control loops with nanosecond response time [13,14] which, when designed together with on-
chip MLLs, could lead to demonstrations of fully-stabilized and fully-on-chip frequency 
combs and ultra-low-noise microwave oscillators. 

Silicon nitride (SiN) on a silicon-on-insulator (SOI) platform is an excellent candidate for 
on-chip mode-locked lasers due to its low passive waveguide losses, appreciable Kerr 
nonlinearity, and the lack of two-photon-absorption at near infrared wavelengths [15,16]. 
Numerous passive photonic components necessary for integrated MLLs have already been 
demonstrated in this fabrication platform. These devices include wavelength filters/couplers, 
mode-locking elements, and integrated diffraction gratings [17,18]. The remaining challenge 
is an integrated electrically pumped light source, either as a continuous wavelength (CW) 
laser, or as a pump for an on-chip laser. One method used to achieve this involves III-V-based 
laser bonding to the SOI chip. More commonly an off-chip optical pump source is used for 
this task. For SiN on SiO2, optically pumped gain may be incorporated on-chip, for example, 
in a form of a rare-earth-doped film deposited on top of the SiN/SiO2 layers. In fact, such an 
approach has been successfully developed over the past 10 years [19–21], borrowing from the 
extensive experienced obtained with rare-earth-based fiber lasers. With a well-developed on-
chip gain platform and demonstrated passive components necessary for mode-locking, it is 
evident that on-chip high repetition rate MLLs will follow a similar development path to that 
of the conventional lasers, proceeding along the path from a continuous wavelength to Q-
switched, then to Q-switch-mode-locked, and ultimately to CW mode-locked devices. 

The lasers in this work were developed for DARPA’s Direct-On-chip-Digital-Optical 
Synthesizer (DODOS) program, the goal of which is to create a fully-integrated ultra-stable 
optical frequency synthesizer in the communications C-band, referenced to an external 
10MHz clock source. MIT’s approach utilizes a tunable single frequency laser that is locked 
to a self-referenced frequency comb, the repetition rate of which is in turn locked to the 
external RF source. The on-chip octave-spanning continuum generation, second-harmonic 
generation, and the octave-wide spectral filter required for this approach have previously been 
reported [22–24]. 

Here we describe demonstrations of compact optically pumped on-chip Q-switched and 
mode-locked lasers in a CMOS-compatible Si3N4 platform, with thulium-doped aluminum 
oxide glass used as a gain material. The lasers operate near 1900nm and have no off-chip 
components other than the optical pump source. The first demonstration of such a laser was 
achieved in our group in 2017 [25]. The laser had a footprint of 25 × 12 mm, cavity repetition 
rate of 680 MHz, a Q-switching rate of about 1 MHz, and pulse duration of 1.2 ps. In this 
work we demonstrate a significantly improved laser architecture that allows for truly compact 
devices (23.5 × 0.78 mm) and achieves a cavity repetition rate of 1.2 GHz, with bandwidth 
that would support 215fs pulses. 

2. Laser architecture and fabrication platform 

The architecture of the MLL is shown in Fig. 1. This laser consists of three gain section 
segments connected using compact Si3N4 bends. A wide photonic trench is etched in the 
entire gain region of the laser, shown as the shaded area in Fig. 1. The purpose of the trench is 
to allow the gain material deposited on top of the chip to come into close contact to Si3N4 
layers and form the gain waveguide. This laser is pumped with an external 1614 nm L-band 
Erbium-doped fiber amplifier (EDFA). The pump light enters the lasing cavity via a 
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pump/signal combiner component (Section 3.1) shown in the upper left in Fig. 1. The gain 
waveguide consists of three nearly straight, approximately 2cm-long sections where the pump 
and the signal modes have large overlap with the gain material (Section 3.2). These three gain 
waveguide sections are connected by compact Si3N4 bends (Section 3.3). Prior to each bend, 
both the pump and the signal are transferred from a large-mode-area gain waveguide into a 
silicon nitride layer with a much more confined optical mode. This makes it possible to 
achieve tight 180-degree bends without significant losses. Following the three gain sections, 
the 1900nm signal is again transferred to the Si3N4 layer as it enters a Kerr-nonlinearity-based 
mode-locking element, which we refer to as a nonlinear interferometer (NLI). The NLI acts as 
a CW reflector for 1900nm at low incident optical power. When the incident optical power is 
high enough, the NLI produces intensity-dependent reflection that can increase for higher 
input power (Section 3.5). This produces artificial saturable absorber action and can be used 
to form optical pulses. The 1900nm signal is then reflected back into the laser cavity, 
propagates through the three gain sections, and enters the pump/signal combiner element. The 
pump-signal combiner is a four-port device allows most of the 1614nm pump to couple 
directly through, while simultaneously coupling the 1900nm signal light across. The cross-
port of the pump-signal combiner has an integrated Si3N4-based grating, which serves both as 
a laser resonator-forming reflecting element and as a dispersion-compensating component 
(Section 3.4). The laser cavity is formed by the integrated grating on one end, an NLI on the 
other end, and three gain sections in between, connected with compact bends. The unique 
design of the bends together with the parameters of the gain waveguide allows for the 
compact footprint of this laser. 

 

Fig. 1. Schematic of the MLL architecture (not to scale). 

All the lasers and test structures described in this work, with the exception of the rare-
earth-based gain material, were fabricated at Colleges of Nanoscale Science and Engineering 
(CNSE) at SUNY Polytechnic Institute in Albany, New York, on a 65nm CMOS 300mm 
wafer platform. The laser gain material used for 1900nm emission was deposited over 
individually diced chiplets at MIT’s Microsystems Technology Laboratories. 

The photonic layers for the full fabrication process are shown in Fig. 2. Starting from SOI 
wafers, photonic layers include three Si3N4 layers, with 400nm, 200nm, and 200nm respective 
thicknesses. We refer to those layers, from the 400nm layer up, as “BN” for “Bottom 
Nitride”, “FN” for “First Nitride”, and “SN” for “Second Nitride”. The top two Si3N4 layers 
are separated by 100nm, allowing for the design of the waveguides where the optical mode at 
1900nm will reside in both 200nm Si3N4 layers simultaneously. A large 4µm-deep photonic 
trench is etched in SiO2 over the gain region of the lasers, with the “SN” Si3N4 layer serving 
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as the etch stop. The gain material (thulium-doped aluminum oxide glass), deposited on top of 
the chip, partially fills in the trench to a thickness of 1.1µm. 

To characterize the optical properties of the photonic layer materials, separate films of 
Si3N4 were deposited and the refractive indices were measured using the prism-coupler 
technique at multiple wavelengths for each nitride layer. Index-vs-wavelength data were fit to 
the Sellmeier formula which in turn was used in the photonic design process. Linear losses of 
each silicon nitride layer were measured for each wafer by using ring-resonator test-structures 
implemented in corresponding layers [26]. 

Fig. 2. Photonic layers used in fabrication process. 

Due to various design requirements (such as loss, effective Kerr nonlinearity, and 
dispersion), different MLL components are implemented using different available photonic 
layers from Fig. 2. Layer-to-layer transition components are designed to facilitate low loss 
light coupling between those layers. Table 1 lists the main MLL photonic components and the 
corresponding fabrication layers they are implemented in. 

Table 1. MLL components and corresponding photonic layers. 

Component Name Layer Name Layer Height [nm] 
Input/Output spotsize converters FN/SiO2/SN 200/100/200
Pump/Signal combiner BN 400 
Gain waveguide FN/SiO2/Tm 200/100/1100
Compact bends (connecting gain waveguide sections) BN 400 
Mode-locking element FN/SiO2/SN 200/100/200
Chirped grating BN 400 

3. Laser components design and characterization

3.1 Pump/signal combiner 

The purpose of the pump/signal combiner element is to allow the 1600nm pump light to enter 
the gain waveguide and to simultaneously guide the 1900nm light coming from the MLL to 
the chirped grating that serves as the end-reflector of the laser. This component was designed 
as a Mach-Zehnder interferometer with zero phase delay for 1900nm which consists of two 
directional couplers, each having 50% transmission at 1900nm. The layout of the pump/signal 
combiner is shown in Fig. 3(a), with a close-up of a single directional coupler shown as close-
up underneath the layout. 
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design of the MLL. Many MLL components (gain waveguide, bends, photonic layer 
transitions) must work for both the pump and the signal simultaneously, which is significantly 
easier to achieve when the pump and the signal wavelengths are close to each other. 
Therefore, MLLs in this work were designed for 1600nm pumping. 

Al2O3:Tm3+ films were characterized spectroscopically to obtain the upper-state lifetime, 
absorption cross-sections, background losses, and active ion concentration [29]. These 
parameters were subsequently fed into a comprehensive laser gain model that was used to 
design the gain waveguide cross-section and to optimize the length of individual gain 
sections. Separate gain films with various thicknesses and active ion concentrations were 
deposited on SOI wafers to be used for spectroscopic characterization. In order to achieve 
different active ion concentrations, different levels of RF power were applied to thulium 
targets in the deposition chamber. The Rutherford back-scattering technique was used on each 
of those films to measure the active ion concentration. Absorption cross-section was extracted 
from the loss measurements on active films using a Metricon 2010/M prism coupler as a 
function of wavelength (for both 790nm and 1600nm) using the known active ion 
concentration values. Film background losses were measured with a prism coupler at 633nm, 
which is outside of absorption/emission of thulium, and were used as upper bound values. 
Upper state lifetimes were measured by characterizing the amplitude and phase response of a 
1900nm signal coupled through the waveguide with a large mode fraction in the gain 
material, as a function of the frequency and amplitude of the modulated 1600nm pump light 
[29]. A summary of the relevant spectroscopic parameters is given in Table 2. 

Table 2. Spectroscopic parameters of Al2O3:Tm3+ films. 

Upper state spontaneous emission lifetime, τu 568 ± 48 µs 
Absorption cross-section (at 1614nm), σa 2.75 × 10−21 cm2 
Absorption cross-section (at 790nm), σa 6.5 × 10−21 cm2 
Film background losses, αb 0.1 dB/cm 
Thulium ion concentration*, Nt 2.9 × 1020 cm−3 
*Thulium ion concentration is given for the actual film used in final demonstrated 
MLLs 

The cross-section of the gain waveguide is shown schematically in Fig. 4(a). It consists of 
a 5-piece, 200nm thick segmented silicon nitride waveguide, a 100nm oxide gap layer, and a 
1.1µm thick layer of Al2O3:Tm3+. A 4µm-deep trench is etched into the SiO2 layer, over the 
entire active area of the chip to allow the gain material to be within 100nm of the Si3N4 layer. 
The pump and signal modes are guided by the silicon nitride pieces, but the majority of the 
optical modes reside in the thulium-doped aluminum oxide layer. The waveguide was 
designed to optimize the overlap of the pump and signal modes with each other and with gain 
material, and to ensure sufficient pump intensity in the gain material to invert the population 
of active ions. The Si3N4 waveguide design was chosen to be segmented because this reduces 
the effective index of the signal and pump modes, and thus increases the mode fraction inside 
the gain region. The optimized gain waveguide has a 60% pump-signal overlap in the gain 
material. The pump and the signal intensity modes are shown in Fig. 4(b) and 4(d) 
respectively. The mode confinement factor in the gain material is 83% for the 1614nm pump, 
and 79% for the 1900nm signal for the optimized gain film thickness of 1.1µm. 
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Fig. 4. [a] Gain waveguide schematic; [b] Optical intensity profile of the gain waveguide for 
the pump (1614nm) mode; [c] Measured gain spectrum; [d] Optical intensity profile of the gain 
waveguide for the signal (1900nm) mode. 

To measure the small-signal gain of the gain waveguide described above, a separate gain 
test structure was added to each chip. This test structure included three sections of the gain 
waveguide interconnected with compact bends as shown in Fig. 1, but with pump/signal 
combiners at the input and output of the chip and no mode-locking or dispersion-
compensating elements. The pump and a low level of signal were coupled into the gain 
waveguide and the output signal enhancement was measured as a function of pump power. 
The insertion losses of the pump/signal combiners, transition elements, and on/off chip 
coupling losses were calibrated out. The results of the gain measurement are shown in Fig. 
4(c). 

3.3 Compact bends 

Compact bends at the end of the gain waveguide sections were designed to bend both the 
pump and the signal light by 180 degrees. In order to minimize the bend radius, prior to the 
bend the optical mode is shifted from the main gain waveguide to the bottom silicon nitride 
layer by an adiabatic taper transition. First, the segmented FN layer Si3N4 pieces composing 
the gain waveguide of Fig. 4(a) are tapered to form a single, wider Si3N4 piece, which is 
shown in Fig. 5(a). This is done by slowly moving the four nitride side blocks away from the 
central one, while increasing the width of the central nitride piece. Next, the width of this 
central FN layer piece is slowly decreased while the width of the bottom 400nm thick BN 
layer is slowly increased. The higher effective index of the BN layer pulls the optical mode 
down until it is mostly confined in that layer, as shown in Fig. 5(b). Insertion loss for this 
transition component was measured by a variation of the cut-back method, where 20, 30 and 
40 such transitions were nested together back-to-back. Measured loss per each such transition 
is 0.02 dB at 1900nm. 

                                                                                                    Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 3548 



Fig. 5
transit

Once the 
5(c)). The be
linearly as a f
is the angle, a
abrupt transit
waveguide cro
bend radius a
0.04dB for bo
in the accumu

3.4 Dispersio

One of the 
implemented 
signal and as 
locking, net M
pulses [31–33
therefore, the
for the net no
mode-locking

The key d
of bandwidth 
this bandwidt

This integ
thickness allo
larger anomal
achieved by a
schematically
introduced by
width constan
necessary to 
apodization p
and allows th
of the grating
and group del
designs with 
three gratings
two gratings 

5. Intensity of the 
tion; [c] Compact 

light is in the 
end design, ba
function of the 
and s is the pat
tions from stra
oss-section for

at the 90ᵒ point 
oth the pump a
ulated insertion

on-compensa

two reflectors
in silicon nitrid
a dispersion-c

MLL dispersio
3]. The disper
 anomalous di

ormal dispersio
g dynamics bas
design paramet

to support opt
h, and targeted

grated chirped 
ows for a larg
lous dispersion
adding small s

y in Fig. 6(a)
y changing the 
nt. A third or

achieve the 
rofile which ai

he grating to be
g as a function
lay dispersion 
group delay d

s have a relativ
with highest 

optical mode at th
bend layout. 

bottom nitrid
sed on the Eu
path length, so

th length [30]. 
aight to bend 
r the Euler bend
of the bend is

and the signal w
n loss of only a

ating grating 

s forming the
de. The grating

compensating e
on should be s
rsion of most 
ispersion of th
on in the rest o
sed on the optim
ers for the grat
tical pulses sho
d amount of an

grating is imp
er refractive in
n. The perturb
side blocks to 
. The side bl
length of the i

rder polynomia
desired group
ids in reducing
e broadband. F
n of normalized
(GDD) are sho

dispersion valu
ely ripple-free 
anomalous dis

he beginning [a] a

e layer, a 180ᵒ

uler spiral, has
o that 1/R = dθ
Such a smooth
mode typical

d in the BN lay
s 60µm. Per-be
wavelengths. F

about 0.16dB. 

e laser resona
g serves both a
element in the 
slightly anoma

of the MLL 
he grating is ca
of the laser. Se
mum anomalou
ting are the 19
orter than 100f
omalous dispe
plemented in t
ndex contrast,
ation of the re
the main 900

locks are 1.6µ
individual side
al function wa
p-delay-dispers
g group-delay o
Figure 6(d) sho
d position with
own in Fig. 6(b
ues of −46,000
GDD profile o

spersion value

and the end [b] of

ᵒ compact ben
s a radius of c
θ/ds, where R 
h change in be
lly responsible
yer is 400 × 25
end losses wer
Four bends per

ator cavity is 
as a reflecting e
laser cavity. F

alous in order 
components 

arefully design
ection 4 describ
us dispersion v

900nm central w
fs, high (over 9
ersion. 
the BN layer 
, resulting in a
efractive index
0nm-wide Si3N
µm wide. Th
e blocks, keepi
as used to obt
sion. The gra
oscillations typ
ows the simula
hin the device
b) and 6(c), fo
0fs2, −38,000f
over 100nm, ce
es have reflect

f the vertical layer

nd is implemen
curvature that 
is the bend cur

end curvature e
e for bend los
500nm, and the
re measured to 
r cavity roundt

an integrated
element for the

For soliton-bas
to achieve the
is normal (Se

ned to over com
bes the modeli
value of the gra
wavelength, ov
95%) reflectivi

since the 400n
a stronger gra

x forming the g
N4 waveguide a
he wavelength 
ing the main w
tain the gratin

ating has a sy
pical in chirpe
ated apodizatio
e. Simulated re
r three differen

fs2, and −30,00
entered at 1900
tion above 95

 

r 

nted (Fig. 
increases 
rvature, θ 

eliminates 
sses. The 
e smallest 
be under 

trip result 

d grating 
e 1900nm 
ed mode-
e shortest 
ection 4); 
mpensate 
ing of the 
ating. 
ver 30nm 
ity across 

nm Si3N4 
ating with 
grating is 
as shown 

chirp is 
waveguide 
ng period 
ymmetric 
d mirrors 
on profile 
eflectivity 
nt grating 
00fs2. All 
0nm. The 
% across 

                                                                                                    Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 3549 



100nm, and the grating with −30,000fs2 has reflection over 90% across the same wavelength 
range. Larger anomalous GDD values result from longer gratings, which also provide 
stronger reflection (smaller insertion loss); therefore, there is a fundamental trade-off between 
the amount of anomalous dispersion and insertion loss. All three designed gratings have 
dispersion values which put the net dispersion of the MLL into the anomalous regime and 
provide more-than-sufficient bandwidth to support pulse durations of under 50fs. 

Fig. 6. [a] Chirped grating layout; [b] Reflection profile for three designs; [c] Corresponding 
GDD profiles for three different designs; [d] top – grating coupling strength as a function of 
normalized position, bottom – gap between central waveguide and side blocks, as a function of 
normalized position along the grating. 

3.5 On-chip mode-locking element 

The mode-locking element in the laser is an integrated nonlinear interferometer device, which 
is based on the Kerr nonlinearity of silicon nitride [18,34]. The schematic of the device is 
shown in Fig. 7(a). The device has an input coupler with a 90/10 splitting ratio at 1900nm 
between its two arms. Each arm consists of a 9.8mm long section of Si3N4 waveguide and is 
terminated with a near-perfect reflector, implemented as an integrated loop mirror. The loop 
mirrors reflect 99.8% of the incident light back into the interferometer arms and the light is 
recombined at the coupler. At low power the 90% output of the device goes back into the 
laser while the 10% port is used as the MLL output. The two arms of the interferometer have 
identical lengths, cross-sections, and loop mirrors. Therefore, at low incident power the 
nonlinear interferometer acts as a CW reflector forming the right side of the laser resonator 
cavity. At higher incident power a differential nonlinear phase shift forms between the two 
arms of the device due to the difference in their powers and Kerr nonlinearity. This nonlinear 
phase shift is proportional to the effective nonlinearity of the waveguide, the length of the 
waveguide, and the power difference between the two arms. The output of the nonlinear 
interferometer in this case has a sinusoidal-like dependence on the input power that, with 
proper linear bias, can provide higher reflection for higher incident power and act as a fast 
artificial saturable absorber. 

To ensure the proper linear phase bias, integrated titanium-gold micro-heaters were 
deposited along the two arms after the gain medium deposition. The heaters are 20μm wide, 
8mm long, with a thickness of 150nm of titanium followed by 100nm of gold. The average 
resistance of a heater is 180 Ohms. By applying current to one heater, linear phase bias is 
introduced to a corresponding device arm due to thermo-optic coefficient of silicon nitride. 
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Fig. 7. Integrated mode-locking element. [a] Overall schematic/layout of the device; [b] 
waveguide cross-section with electric field intensity profile; [c] Nonlinear reflection for two 
different device lengths. 

This device is implemented with a combination of the FN and SN silicon nitride layers, 
which allows a waveguide cross-section with maximized effective nonlinearity and 
minimized dispersion. The cross-section of the optimized waveguide, along with the optical 
mode, are shown in Fig. 7(b). Longer interferometer lengths allow the accumulation of higher 
Kerr nonlinearity but also decrease the reflected power due to accumulated linear losses of the 
silicon nitride waveguide. Lower power at the output of the interferometer results in 
significantly reduced CW laser power in the cavity. Therefore, the device length is optimized 
to provide sufficient reflection back into MLL cavity, while also providing a sufficiently large 
self-amplitude-modulation coefficient (the slope of reflection vs peak power) and modulation 
depth for the expected incident power during laser operation. Simulated transmission and 
reflection of the device are shown in Fig. 7(c) for two different device lengths – 23mm and 
9.8mm (one-way length). For 23mm-long devices the simulated modulation depth is 12.3% 
and self-amplitude-modulation coefficient is 3.7 × 10−4 W−1. For 9.8mm-long devices, the 
modulation depth is 19.2% and the self-amplitude-modulation coefficient is 2.8 × 10−4 W−1. 
The 23mm devices were characterized as separate nonlinear interferometer test structures 
using femtosecond optical pulses from a commercial optical parametric oscillator centered at 
1900nm. The measured modulation depth of the device was 9% (compared with the 
theoretical value of 12%), and the self-amplitude-modulation coefficient extracted from 
measured data was 7 × 10−5 W−1 [16]. The discrepancy between the design and the measured 
values are likely due to underestimating the waveguide dispersion. Higher normal dispersion 
will result in greater pulse spreading inside of the nonlinear interferometer, thereby 
decreasing the peak pulse power and reducing both the effective self-amplitude-modulation 
coefficient and modulation depth. 

4. Laser mode-locking dynamics 

We investigate the steady-state mode-locking characteristics of the laser by using a Nonlinear 
Schrodinger Equation (NLSE)-based model of the complete MLL. For each integrated 
photonics sub-component in the MLL cavity, the parameters such as gain/loss, Kerr 
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nonlinearity, dispersion, and effective mode area, are measured and calculated. Those 
parameters are then put into an NLSE model based on the following equation: 

 
2
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2 NL

A z t A z t
j A z t A z t gA z t lA z t

z t
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where A(z,t) is field amplitude, defined such that |A(z,t)|2 is the optical power, β2 is the 
dispersion in fs2/m, γNL is the effective nonlinearity in (W-m)−1, l is the linear loss in units of 
m−1, g is the energy-dependent electric field gain in units of m−1, where power gain is defined 
as g = g0/(1 + Esat/E), where E is pulse energy at any given time and g0 is small signal gain. 
Table 3 lists all the MLL components used in the model, with their respective parameters. 
The NLSE is numerically solved in a slowly-varying envelope approximation for each 
successive MLL component. The result of a stable and well-designed MLL is a steady-state 
pulse which circulates inside the laser cavity. It should be noted that this analysis does not 
take into account the laser start-up or laser gain dynamics that would have to be included to 
describe Q-switching behavior. 

Table 3. Dispersion and nonlinearity values for MLL components, in order of 
appearance in MLL cavity. 

 Layer Width Length 
Component 
dispersion 

Component 
nonlinearity

Round-trip 
dispersion 

Round-trip 
nonlinearity 

  µm mm fs2/mm (W m)−1 fs2 W−1 
Chirped grating BN 0.7  -  −38,000  
Pump/Signal combiner BN 1.0 0.430 2001 0.78 1,721 6.7 × 10−4 
Gain waveguide (part 1) FN/TR - 20.03 100 0.088 4006 3.5 × 10−3 
Euler bend 1 BN 2.5 0.6 761 0.7 913 8.4 × 10−4 
Gain waveguide (part 2) FN/TR - 19.7 100 0.088 3,950 3.5 × 10−3 
Euler bend 2 BN 2.5 0.6 761 0.7 913 8.4 × 10−4 
Gain waveguide (part 3) FN/TR - 20.03 100 0.088 4006 3.5 × 10−3 
BN waveguide BN 1.0 0.26 2001 0.78 1035 4.0 × 10−4 
NLI FN/SN 1.50 9.48 820 0.6 15,547 1.1 × 10−2 
     Total: -5,910  

The flow of the model is shown in Fig. 8(a), with components in order of appearance in 
the MLL cavity (from Fig. 1), starting from the chirped grating side. The model includes the 
chirped grating, pump/signal combiner, three near-straight sections of gain waveguide with 
connecting bends, a small section of BN waveguide connecting the last section of gain 
waveguide to the NLI, and the NLI itself. The dispersion of the chirped grating used for this 
model is −38,000fs2, which makes the net dispersion of the laser −5,910fs2 - in the net 
anomalous regime as shown in Table 3. The NLSE model for this laser converges on a steady 
state solution. The resulting pulse duration dynamics as a function of position along the laser 
cavity are shown in Fig. 8(b). Since most of the components in the laser have normal 
dispersion, the pulse is up-chirped when it is incident on the grating. The grating provides a 
large amount of anomalous dispersion which over-compensates for the normal dispersion of 
the rest of the cavity. The pulse exits the grating strongly down-chirped, and as it propagates 
through the gain material towards the NLI the normal dispersion of the gain waveguide 
slowly counteracts the negative chirp, shortening the pulse as it propagates towards the NLI. 
Compact bends, although short compared with the gain waveguide, have a larger amount of 
normal dispersion per unit length, and this is evident in the sudden slope changes on the pulse 
duration plot in places that coincide with bend locations. The NLI provides a large amount of 
normal dispersion, and the pulse is again up-chirped as it exits the nonlinear interferometer. 
The pulse duration changes by over 100fs as it circulates within the laser, with pulse duration 
being the shortest when the pulse is incident on the NLI, and longest when the pulse is 
incident on chirped grating. The output of the MLL is directly after the NLI – not quite at the 
point of shortest pulse duration. This suggests that a better MLL design should have more 
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uniform dispersion distribution within the laser cavity. Future designs include redistributing 
the anomalous dispersion by placing gratings at both ends of the MLL cavity - within NLI 
itself as well as after the pump-signal combiner. This way the pulse duration will be more 
constant within the laser and the output of the NLI could be designed to have the shortest 
duration. 

 

Fig. 8. [a] Nonlinear Schrodinger Equation cavity simulation flow. [b] The result of the NLSE 
laser model - a steady state pulse duration evolution for one cavity roundtrip. DCG – 
dispersion-compensating grating, NLI – nonlinear interferometer, ZN – “zero nitride” 
waveguide section. 

5. Results 

The lasers were characterized using a setup shown in Fig. 9(a). The pump laser was an L-
band EDFA, seeded with a tunable laser at 1614nm. The pump was delivered to the chip 
through a fiber-based polarization controller and a lensed SMF28 fiber with a 3µm spot size 
at 1550nm wavelength. The signal from MLL was collected using SM2000 fiber with a 
lensed tip with a spot size of 3µm at 2µm wavelength. The output was split between two 
paths, with one path being directed into an optical spectrum analyzer (OSA), and another part 
going into the fast photodetector (12.5GHz electrical bandwidth) that was connected to an 
oscilloscope and an RF spectrum analyzer. A photo of an individual chip is shown in Fig. 
9(b). Each chip contains 9 full MLLs and numerous other test structures. Titanium/gold 
heaters, deposited on top of NLI arms, are visible on top of each MLL. 

 

Fig. 9. [a] Characterization setup; [b] Photo of a chip with 9 MLLs. 

Figure 10(a) shows the on-chip MLL power as a function of the pump power. CW lasing 
threshold occurs at around 45mW of pump power on-chip. At about 170mW of pump power, 
the lasers go into a Q-switched and mode-locked (QSML) regime. Maximum achieved on-
chip outside-of-the-laser-cavity average MLL power is 9mW, which is limited by available 
pump power. Figure 10(b) shows the optical spectrum of the laser in the QSML regime. The 
central wavelength of the laser is around 1880nm, which is a result of both the emission 
spectrum of thulium and the wavelength-dependent losses in the laser cavity. The fit for a 
sech2 pulse is overlaid on top of the spectrum, with a 17nm 3dB bandwidth which could 
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6. Conclusion 

In this work, we have demonstrated Q-switching and mode-locking in an integrated laser 
operating near 1900nm in a silicon nitride-on-insulator platform, with thulium-doped 
aluminum glass as a gain material. The laser is fabricated using a CMOS-compatible 300mm 
wafer platform, with the gain material deposited separately over SiN/SiO2 layers. The laser, 
with a footprint of 23.6 × 0.6mm, is completely integrated on a chip, with no off-chip 
components with the exception of a 1614nm pump laser. Maximum on-chip signal power is 
9mW, with the fundamental repetition rate of 1.2 GHz and Q-switching rate of 720kHz. The 
laser produces optical pulses centered at 1880nm, with 17nm optical bandwidth which is 
sufficient to support pulses as short as 215fs. This work is a major step towards all-integrated 
CMOS-compatible CW-mode-locked lasers. With suppression of Q-switching instabilities 
and on-chip pump integration, this laser architecture, together with electronic-photonic 
integration, could enable stabilized MLL-based on-chip frequency combs, low phase noise 
microwave sources, and high speed communications applications, fabricated with a compact 
footprint using CMOS and CMOS-compatible processes. 
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