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Microbial communities have numerous potential applications in
biotechnology, agriculture, and medicine. Nevertheless, the lim-
ited accuracy with which we can predict interspecies interactions
and environmental dependencies hinders efforts to rationally
engineer beneficial consortia. Empirical screening is a complemen-
tary approach wherein synthetic communities are combinatorially
constructed and assayed in high throughput. However, assem-
bling many combinations of microbes is logistically complex and
difficult to achieve on a timescale commensurate with microbial
growth. Here, we introduce the kChip, a droplets-based platform
that performs rapid, massively parallel, bottom-up construction
and screening of synthetic microbial communities. We first show
that the kChip enables phenotypic characterization of microbes
across environmental conditions. Next, in a screen of ∼100,000
multispecies communities comprising up to 19 soil isolates, we
identified sets that promote the growth of the model plant sym-
biont Herbaspirillum frisingense in a manner robust to carbon
source variation and the presence of additional species. Broadly,
kChip screening can identify multispecies consortia possessing any
optically assayable function, including facilitation of biocontrol
agents, suppression of pathogens, degradation of recalcitrant sub-
strates, and robustness of these functions to perturbation, with
many applications across basic and applied microbial ecology.

synthetic ecology | microbial interactions | community assembly |
high-throughput screening | droplet microfluidics

Microbial communities exhibit emergent consortia-level func-
tions that are vital to all ecosystems on Earth. These func-

tions include photosynthetic and chemosynthetic primary production
(1), regulation of greenhouse gases (2), recycling of organic ma-
terials (3), and symbiotic protection of hosts against infectious
agents (4, 5). The functionality and robustness of natural microbial
communities suggest that synthetic consortia may someday be
leveraged broadly as biotechnological tools (6). Indeed, such con-
sortia have already been deployed for bioproduction (7), bio-
remediation (8), and probiotic-mediated therapies for a wide range
of hosts and diseases (9–12).
The complexity of microbial interactions and environmental

dependencies (13–16) can lead to unpredictable behaviors even in
apparently simple communities, posing a challenge to design of
consortia. Addressing this challenge likely requires the integration
of multiple approaches, including the reverse-engineering of nat-
ural communities (e.g., inference-based co-occurrence analysis)
(17) and further development of forward-engineering strategies
(e.g., metabolic flux-balance analysis) (18, 19). Complimentarily,
screening experimentally constructed synthetic combinations of
strains can identify consortia with desired properties or validate
rational designs (20–22).
High-throughput phenotypic screening has found widespread use

as a discovery strategy for novel gene targets (23) and drugs (24),
but its adoption in microbial consortia discovery has been hindered
by the logistical complexity of constructing strain combinations.

Conventional liquid handling techniques and platforms (e.g.,
pipette-based construction of combinations in multiwell plates)
may not be sufficient to adequately sample combinatorial space in
a single experiment (25). For example, from a library of just n = 16
strains, generating all subsets of size k = {1, 2, . . ., 7} in a single
medium would require ∼160,000 liquid handling steps and 275 96-
well plates (without replicates). As these combinations could not
be prepared in advance and would have to be assembled on the
timescale of cell division (∼1 h), generating even 10% of these
combinations would likely be logistically impractical. Because
constructing each community requires a unique set of liquid
transfers, these experiments are also difficult to automate robot-
ically. Indeed, combinatorial studies conducted in liquid media
typically construct <103 unique synthetic communities (20, 26–28).
Some of the largest combinatorial studies (29) use the Burkholder
agar assay instead, whereby an array of n microbial colonies is
introduced to an agar gel inoculated with a second species, gen-
erating n × 1 combinations per agar plate. Single studies using this
assay can generate ∼103–104 interactions but are typically re-
stricted to binary compositions. Diffusion between colonies fur-
ther places an upper bound on the density of the colony array and
throughput of the screen.
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species. Here, we introduce a platform to automatically con-
struct and test synthetic communities of microbes from a set of
input species at a scale of ∼100,000 communities per day. As a
first demonstration, we discovered specific compositions of
bacteria isolated from local soil that promote the growth of a
model plant symbiont. More broadly, our platform can be
adopted for the discovery of microbial consortia with many
useful properties, such as suppression of pathogens or degra-
dation of recalcitrant substrates for use in biofuel production
or environmental remediation.
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Here, we present a platform we call the kChip that addresses
the experimental scale and setup time requirements to assay
microbial community function in high throughput. The kChip
system enables parallel construction and quantitative screening
of ∼105 synthetic microbial communities per day and requires no
robotic liquid handling. The platform screens n-multichoose-k
combinations, meaning each community is composed of k inputs
(e.g., strains, media) randomly selected from a larger library of n,
where both n and k are selected by the user. The kChip platform
generalizes a high-density microwell array approach (30, 31) that
groups and merges sets of nanoliter droplets that each carry input
components, a strategy we previously demonstrated for pairwise
combinatorial compound screening (32). Droplets self-assemble
randomly into groupings of k = {1, 2, . . ., 7, 19} dictated by
microwell geometries, greatly reducing the time and logistical
complexity of combination assembly. As with other droplet
microfluidic systems, the kChip platform is amenable to fluores-
cent and label-free optical assays and uses small assay volumes
that conserve valuable inputs. Furthermore, the length scale of
kChip microwells (∼100–1,000 μm) is a natural ecological scale for
interaction-driven microbial community assembly (33).

Results and Discussion
The kChip Rapidly Constructs Massively Parallel Community Sets of
Controlled Size. To generate parallel synthetic communities from
a library of n inputs, each kChip contains tens of thousands of
microwells where each microwell randomly groups k inputs. Mul-
tiple kChips and values of k can be used in accordance with the
desired size, number, and replication of combinatorial groupings.
Setup (∼30 min) requires three steps: (i) droplet generation

and pooling (10 min), (ii) droplet loading and grouping (20 min),
and (iii) droplet merging (10 s) (Fig. 1A). Before droplet gen-
eration, a “color code” (unique ratio of three fluorescent dyes) is
mixed with each input such that droplet contents can be reidentified
via imaging (32). Color-coded droplet sets are generated sepa-
rately on the benchtop (∼20,000 1-nL droplets per 20 μL) and
pooled together to form a droplet library. The droplet library is
loaded onto the kChip in a single pipetting step (via a custom
kChip-loading jig; SI Appendix, Fig. S1). Droplets self-assemble
into random groupings of k droplets determined by the size,
shape, and internal design features of the microwells (Fig. 1B
and SI Appendix, Figs. S2 and S3). The kChip is imaged (2×
magnification) to identify the contents of each microwell from
the droplet color codes (SI Appendix, Fig. S4). The droplets in
each microwell are subsequently merged to combine their con-
tents via exposure to an alternating-current electric field (corona

treater; Electro-Technic Products) (Fig. 1) to finally generate the
set of parallel n-multichoose-k synthetic communities.
Microwells that group different numbers of inputs can be

combined on a kChip in any organizational pattern (SI Appendix,
Fig. S2). Because microwell density on a kChip decreases as k
increases (owing to the increase in microwell size) (Fig. 1B), the
total number of assay points on a kChip depends on its microwell
layout (∼60,000 if all microwells are k = 1, ∼13,000 if all
microwells are k = 7). Our working kChip, used for screening
applications described below, has microwells that group up to
seven or 19 droplets (“k = {1:7;19}”) with roughly even repre-
sentation of each microwell type by number to enable simulta-
neous construction and assessment of communities of different
richnesses (Fig. 1B).

Growth of Labeled and Unlabeled Strains Can Be Profiled Across
Environmental Conditions. kChip screening allows for rapid func-
tional profiling of fluorescently labeled and unlabeled strains
across libraries of environmental conditions (e.g., antibiotics,
natural products, carbon sources) with flexible temporal resolu-
tion (limited only by kChip scan time, <15 min at 2× magnifi-
cation). To compare kChip performance with a conventional
approach, we obtained carbon utilization profiles [i.e., growth
curves for each strain across different single carbon sources in a
minimal medium (SI Appendix)] for a panel of both droplet
cultures and conventional 96-well plate cultures (SpectraMax
plate reader). On the kChip, we pooled a library of microbe-
containing droplets with a library of carbon source-containing
droplets and loaded the droplets onto a k = 2 Chip (i.e., all
microwells on the kChip grouped two droplets). From microwells
that received one droplet from each library (∼1/2 of the total
microwells, or ∼17,000 microwells), we profiled the growth of
each strain on each carbon source.
To track growth, we used one of two assays: (i) measurement

of a constitutively expressed fluorescent protein [green fluores-
cent protein (GFP) or yellow fluorescent protein (YFP)] (Fig.
2A) or (ii) reduction of resazurin dye to the fluorescent product
resorufin by cellular metabolism (proportional to cell density), a
label-less assay that can be used with unlabeled or genetically
intractable strains (34) (Fig. 2B). We selected 10 fluorescently
labeled strains (SI Appendix, Table S1), and first confirmed that
glucose utilization was recapitulated on a k = 1 Chip (SI Ap-
pendix, Fig. S5). We then crossed this strain panel with 13 carbon
sources (SI Appendix, Table S2). Carbon utilization profiles
produced from GFP or YFP signal on a k = 2 Chip and 96-well
plates correlated strongly (Pearson r = 0.868) (Fig. 2C and SI
Appendix, Fig. S6) with on-chip consistency between technical

Fig. 1. kChip enables massively parallel construction of microbial communities. (A) To run a kChip screen, 1-nL droplets are first produced. Each droplet
contains a color code (a specific ratio of three fluorescent dyes) that maps to a corresponding input. After they have been pooled, droplets are loaded onto
the kChip, where they randomly group into microwells (SI Appendix, Fig. S1). The microwells are designed to group precisely k droplets. The kChip is imaged
to identify the contents of each microwell from the droplet color codes. Droplets are then merged within their respective microwells via exposure to an
alternating-current electric field, generating parallel synthetic communities. Community phenotypes can be tracked via optical assays, including fluorescent
protein expression and respiration-driven reduction of resazurin to the fluorescent product resorufin. (B) Example micrographs show grouping and merging
of droplets for different microwell types, the designs for which are described in SI Appendix, Fig. S2. Microwells are densely packed on the kChip, with
microwell density varying inversely with size (k). A single microwell type can be arrayed across a kChip (“Full kChip”). For the screening application reported in
Figs. 3 and 4, we have generated a “k = {1:7;19} Chip” that includes different microwell types arranged in parallel.
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replicates (R2 = 0.968; SI Appendix, Fig. S7). Similarly, growth
measurements of unlabeled strains using the resazurin assay (k =
2 Chip) correlated strongly with optical density (OD600) mea-
surements in 96-well plates (Pearson r = 0.969) for a panel of
three strains profiled across four carbon sources (Fig. 2D and SI
Appendix, Fig. S8).

kChip Screening Identifies Compositions That Robustly Promote Growth
of Herbaspirillum frisingense. One application of kChip synthetic
community screening is the discovery of compositions that pro-
mote or suppress the growth of a strain of interest. Moreover, the
robustness of the effects of these compositions across abiotic en-
vironments and the presence of additional environmental strains
(“isolates”) can be simultaneously assessed. Discovering such
communities might inform the composition of defined probiotic
interventions.
In a pilot screen, we measured the yield of a GFP-expressing

strain of Herbaspirillum frisingense (“Hf-GFP”) (35), a model
plant symbiont for which growth is likely impacted by variable
biotic and abiotic environments in agricultural settings. We iso-
lated a diverse set of soil bacteria (“isolates”) (SI Appendix, Fig.
S9 and Dataset S1) and measured Hf-GFP yield across com-
munities composed of Hf-GFP and combinations of isolates.
These communities were constructed across different carbon
sources that included carbohydrate oligomers (sucrose, lactose,
and raffinose) and their monomeric constituents (glucose, ga-
lactose, and fructose) (Fig. 3A). Hf-GFP grew in monoculture to
various extents on each of these carbon sources, with no de-
tectable growth on sucrose (SI Appendix, Fig. S10).
We generated droplets that each contained the following:

(i) Hf-GFP (starting OD600 = 0.02), (ii) one isolate (starting
OD600 = 0.02, chosen among 14 isolates + one no-isolate control +
one negative control) such that the synthetic communities
contained the same initial [Hf-GFP]/[total isolate] ratio if no
control droplets were present, and (iii) one carbon source. All
droplets that received the same carbon source were loaded onto

the same kChip such that droplet grouping produced combina-
tions of k = 1, 2, . . ., 7, or 19 inputs with the carbon source type
and concentration held constant. Overall, we produced ∼100,000
assay points (evenly divided among the carbon sources) (Fig. 3B
and Dataset S2).
Most combinations of isolates affected Hf-GFP yield at 72 h,

showing both suppressive (decrease in yield) and facilitative (in-
crease in yield) effects (Fig. 3C and SI Appendix, Fig. S10). On
carbon sources where Hf-GFP monocultures achieved high yield
(glucose and galactose), the addition of other isolates almost always
attenuate Hf-GFP growth. By contrast, facilitative compositions
were common on carbon sources where Hf-GFP growth was low
(fructose, raffinose, and lactose) and ubiquitous when undetectably
low (sucrose).
To score the effect of each combination, we here differentiate

between a “composition” as a given isolate subset of size s, for
example, [A + B + C] (s = 3), and a “community” as a larger set
of size k that contains the given composition and one or more
additional isolates, for example, all communities [A + B + C +
X + . . . + Y] (k ≥ 4) (Fig. 3D). For the majority of compositions,
the facilitative effect did not persist across different carbon
sources or community contexts. For example, the composition
[Bacillus sp. I + Rahnella sp.] ([BaT + Ra]), measured at k = 2 on
each kChip, facilitated Hf-GFP growth on fructose, sucrose, and
raffinose, but suppressed its growth on the other carbon sources
(SI Appendix, Fig. S11A). Similarly, the facilitation imparted by
the composition [Enterobacter mori + Dyella sp.] ([En + Dy])
(measured at k = 2) in a medium containing galactose was not
robust to community context [En + Dy + one or more additional
unique isolates] (an s = 2 composition among all k ≥ 3 com-
munities on the same kChip) (SI Appendix, Fig. S11B).
We sought to determine the facilitative compositions that

were most robust to both carbon source and community context.
We scored each composition in two ways (Fig. 3D). First, we
computed median Hf-GFP yield at 72 h in coculture with just the
composition across all carbon sources (“Hf-GFP median yield”).

Fig. 2. Carbon utilization profiles of labeled and unlabeled strains were measured on k = 2 Chips. (A) Droplet libraries can be made from a library of
fluorescently labeled strains (SI Appendix, Table S1) and a set of carbon sources (SI Appendix, Table S2). The ability of each strain to grow on each carbon
source can be measured by monitoring microwells that receive one microbe-containing droplet and one carbon source-containing droplet. (B) To measure
growth of unlabeled strains, the dye resazurin is added to carbon source inputs before droplet production (postmerge concentration of 40 μM). Resazurin is
reduced to the fluorescent product resorufin in the presence of metabolically active cells. (C) We measured fluorescence for a panel of 10 fluorescent strains
(starting OD600 = 0.02) across 15 conditions [13 carbon sources at 0.5% (wt/vol), one additional glucose replicate control, and one negative control (no
carbon)] in k = 2 Chip microwells (21 °C, no shaking) as well as 200-μL cultures in 96-well plates (21 °C, 220 rpm). Heatmaps show the relative signal at 50 h,
with interleaved columns corresponding to the kChip and 96-well plates (Pearson r = 0.868) (full time course is shown in SI Appendix, Fig. S6). (D) We
measured the resazurin signal (fluorescence due to resorufin accumulation) for three strains (starting OD600 = 0.005) across four carbon source conditions in
k = 2 Chip microwells (21 °C, no shaking) and compared those signals with OD600 measurements from 200-μL cultures in 96-well plates (21 °C, 220 rpm).
Heatmaps show signal at 22 h (Pearson r = 0.969) (full time course is shown in SI Appendix, Fig. S8). In C and D, the relative signal for each row is obtained by
normalizing to the maximum across all carbon sources and time points after background subtraction. Ec, Escherichia coli; GlcNAc, N-acetylglucosamine; Hf,
Herbaspirillum frisingense; Pae, Pseudomonas aeruginosa; Pau, Pseudomonas aurantiaca; Pch, Pseudomonas chlororaphis; Pci, Pseudomonas citronellolis; Pf,
Pseudomonas fluorescens; Pp, Pseudomonas putida; Ps, Pseudomonas syringae; Pv, Pseudomonas veronii; Rep, replicate.
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Second, we computed the 10th percentile of Hf-GFP yield in
coculture with all communities containing the given composition
to detect whether the composition’s effect on Hf-GFP was ap-
preciably diminished by additional isolates across all carbon
sources (“Hf-GFP robustness”). Based on analysis of variability
in Hf-GFP monoculture data, we restricted the analysis to in-
stances where a given composition was represented five or more
times, on average, on a kChip (or ≥30 times in total) (SI Ap-
pendix, Fig. S12), which occurred for about half of s = k = 3
compositions (SI Appendix, Figs. S13 and S14).
We uncovered two isolate compositions that were strongly

facilitative and robust to both carbon source and community context
(Fig. 3E). While most facilitative compositions showed robustness to
community context for a given carbon source (SI Appendix, Fig.
S15), few showed robustness to both carbon source and community
context. Interestingly, we identified that a single isolate, Burkholderia
sp. I (BuC), or the isolate composition, [Bacillus sp. II + Rahnella sp.]

([BaL + Ra]), was consistently present among combinations that
scored highly on both metrics. We validated these two compo-
sitions’ facilitative effects on Hf-GFP with the different carbon
sources in 96-well plate coculture experiments (SI Appendix,
Fig. S16).

Facilitation Increases with Community Richness and Is Driven by a
Small Number of Strains. Systematic screening data like those we
generated here can reveal ecological trends that underpin par-
ticularly facilitative or robust compositions like BuC or [BaL + Ra].
Broadly, we found that Hf-GFP yield either increased or declined
with community richness depending on its baseline growth on each
carbon source in monoculture. In raffinose, lactose, and sucrose,
the three carbon sources where it grew most poorly, Hf-GFP yield
increased and then plateaued with community richness (Fig. 4A).
We observed a similar but weaker trend in fructose, where Hf-GFP
grew to a limited extent alone, and an isolate-agnostic suppressive

Fig. 3. High-throughput kChip screening identifies H. frisingense-promoting compositions that are robust to carbon source and community context. (A)
Screen schematic to identify Hf-GFP–promoting compositions. Assays are constructed whereby Hf-GFP represents half of the starting biomass (starting Hf-GFP
OD600 = 0.02) and the other half is divided evenly among one to seven or 19 soil isolate inputs (starting total isolate OD600 = 0.02 if no control droplets are
present). Each of these communities is constructed in one of six media that each contain a single carbon source. Each carbon source enables a different Hf-GFP
monoculture yield (SI Appendix, Fig. S10). Droplets containing the same carbon source are pooled and loaded onto the same kChip (six kChips in total, 21 °C, no
shaking). After droplet merging, Hf-GFP yield is measured (24 h, 48 h, and 72 h) in each community/carbon source environment. (B) Total number of assay points
collected for different values of k (about evenly divided among the six kChips; Dataset S2). (C) Ranked Hf-GFP yield at 72 h for all constructed compositions. A
median is represented when a composition is replicated more than one time (with a mean calculated in instances of two replicates), error bar = SEM, and dotted
line = Hf-GFP yield in monoculture. (D) Effect of each s-sized composition on Hf-GFP was analyzed in two ways to identify the most facilitative and robust
compositions. Here, the composition [BaL + Ra + Ps] is used as an example. (Top) First, all instances of [BaL + Ra + Ps] appearing in k = 3 microwells were identified
across all carbon sources, and the median Hf-GFP yield for these was calculated (“Hf-GFP median yield”). (Bottom) Second, all instances of [BaL + Ra + Ps + one or
more additional isolate] in k ≥ 4 microwells were identified across all carbon sources, and the 10th percentile of Hf-GFP yield for these was calculated (“Hf-GFP
robustness”). The color of each data point indicates the carbon source. Gray dotted line = minimal viable Hf-GFP yield (1,500 GFP counts, or 1 SD above Hf-GFP
monoculture yield in sucrose medium). (E) For compositions represented 30 or more times across all carbon sources (only k = 1, k = 2, and k = 3 compositions met
this criterion; SI Appendix, Fig. S13), Hf-GFP median yield and Hf-GFP robustness were calculated as described in D. Dark blue points indicate a composition
contains at least BuC. Dark green points indicate a composition contains at least [BaL + Ra]. The diagonal line is the x = y line. a.f.u., arbitrary fluorescence units;
Av, Averyella dalhousiensis; Ch, Chryseobacterium sp.; Co, Collimonas sp.; Ew, Ewingella americana; Ps, Pseudomonas fluorescens.
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effect in glucose and galactose, where Hf-GFP grew well in mono-
culture (SI Appendix, Fig. S17). We observe the same trend for k =
1–7 inputs and a roughly equivalent yield of Hf-GFP for seven and
19 inputs when considering all sampled community compositions (SI
Appendix, Fig. S18).
In coculture with a single isolate (k = 1 microwell), we iden-

tified “primary facilitator” strains that facilitated Hf-GFP growth
on a given carbon source (SI Appendix, Fig. S19). We further
found that the inclusion of one or more primary facilitator
strains was necessary and almost always sufficient to facilitate
Hf-GFP growth regardless of the number of other strains present
(calculated from k > 1 microwells) (Fig. 4B). In conjunction with
the screen, we also assayed growth rates of the isolates on the
different carbon sources via the resazurin assay on a k = 2 Chip
(SI Appendix, Fig. S20). For the raffinose, lactose, and sucrose
conditions, we found that the subset of isolates that could grow
(one or more doublings by 36 h) matched the subset of primary
facilitators (Fig. 4C). We concluded that, for these conditions,
growth of an isolate was necessary and sufficient for its ability to

facilitate Hf-GFP growth. To investigate why facilitation increased
with community richness beyond the presence of one primary
facilitator, we first considered the k = 2 level. We found many
instances where Hf-GFP yield in the presence of two isolates
was greater than its yield with either isolate individually, par-
ticularly when the carbon source was sucrose (SI Appendix, Fig.
S21). With a single primary facilitator present, we observed that
the largest Hf-GFP yield increases were imparted by the addi-
tion of a second primary facilitator (SI Appendix, Fig. S22).
We observed modest increases imparted by the addition of a
non[primary facilitator] when a primary facilitator was present.
These data point to general design principles useful in con-

structing facilitative consortia. Based on carbon source utiliza-
tion as a criterion for primary facilitation (Fig. 4C), we might
expect that certain “core” compositions of isolates facilitate Hf-
GFP across all carbon sources if at least one isolate within the
core composition is able to grow on each carbon source. Further,
based on the increase in Hf-GFP yield we see with community
richness on carbon sources disfavored by Hf (Fig. 4A and SI
Appendix, Figs. S21 and S22), we might expect improvements to
the facilitative effect size or its robustness with the incorporation
of specific isolates to the composition. Indeed, results from our
two top-scoring compositions, BuC and [BaL + Ra], are con-
sistent with these principles (SI Appendix, Fig. S23).

Conclusion
Droplet microfluidics have recently been applied in single-cell
transcriptomics, drug discovery, and microbiology (30, 36). The
kChip platform expands upon these applications to enable the
rapid construction and high-throughput screening of beyond-
pairwise combinations. Here, we have demonstrated that the
kChip screening paradigm is compatible with diverse bacterial
strains and media conditions, and supports various optical growth
assays. Demonstrating the utility of kChip screening, we discov-
ered and validated compositions that facilitate the model plant
symbiont H. frisingense in a manner robust to carbon source and
community context. We further extrapolated ecological trends in
the data, derived principles from our large dataset about consortia
design principles, demonstrated the applicability of these princi-
ples to top-scoring compositions identified in the screen, and ex-
plored the underlying ecology of our results (SI Appendix,
Supplemental Discussion).
The kChip has numerous applications in elucidating microbial

community ecology. For example, datasets might be leveraged to
parameterize or assess mathematical models of growth or in-
teractions as well as to determine how biotic metrics (e.g., spe-
cies diversity) and abiotic factors (e.g., carbon substrates) drive
metabolic decision making and interactions. Screens can also be
used to suggest community design principles (37) and the envi-
ronments that induce desirable interactions (38, 39).
Beyond fundamental ecological studies, kChip screens can

generate short lists of “hit” microbial mixtures that are also ro-
bust to relevant biotic and abiotic perturbations and constitute
attractive candidates for development into therapeutic probiotics
(10–12, 40–43) (SI Appendix, Supplemental Discussion). More
broadly, any optically detectable community-wide phenotype can
be screened, providing access across many fields of application
(e.g., the production of cryptic interaction-mediated metabolites
for natural products discovery) (44).

Materials and Methods
Microbial Culture Input Preparation. All bacterial cultures underwent an initial
“starter phase,” whereby glycerol stocks of environmental isolates and flu-
orescently labeled strains were inoculated into 525 μL of lysogeny broth (LB)
medium (2-mL-deep, 96-well plate via pin replicator) and 4 mL of LB (15-mL
culture Falcon tube), respectively (30 °C, 220 rpm, 16 h). A subsequent
“preculture phase” (30 °C, 220 rpm, 24 h) consisted of washing cells and
resuspending them in M9 minimal medium (MM) with 0.5% (wt/vol) glucose
at an initial OD600 of 0.01. The “experimental phase” consisted of washing
and resuspending cells typically to a starting OD600 of 0.02 in MM (or ∼20
cells per droplet).

Fig. 4. Facilitation increases with community richness and is driven by a
subset of strains. (A) In a medium containing sucrose, lactose, or raffinose, Hf-
GFP yield increased with community richness. Colored distributions indicate
median Hf-GFP yields for all unique compositions at a given k (i.e., all droplets
in a given combination contain different strains). The black data point indi-
cates the median of distribution. Outlined distributions represent medians of
100 bootstrap-resampled datasets at each k, whereby the Hf-GFP yield dataset
for each k was resampled with replacement (with a resampling sample size
equal to the actual sampling size), and a median of the resampled data was
calculated each time. (B) Presence of one or more primary facilitator (P.F.) (SI
Appendix, Fig. S19) was necessary and typically sufficient to enable Hf-GFP
growth and drive a facilitative effect when additional isolates were present.
In the case of raffinose, one of the two primary facilitators (Ra) facilitated Hf-
GFP weakly, giving rise to a clear bimodal distribution. Colored distributions
indicate Hf-GFP growth in communities possessing one or more primary fa-
cilitators. Gray distributions indicate Hf-GFP yield in communities with no
primary facilitators (with distributions absent when there were no communi-
ties in the dataset consisting of all unique inputs and no primary facilitators).
(C) Resazurin assay was conducted on a separate k = 2 Chip in parallel with the
screen to measure the growth rate of each isolate (SI Appendix, Fig. S20). The
subset of isolates that grew on a given carbon source (defined as one or more
doubling of resorufin fluorescence by 36 h) corresponded to the subsets of
isolates identified as primary facilitators. The number of data points in each
distribution is given in Dataset S2. a.f.u., arbitrary fluorescence units; BuH,
Burkholderia sp. II; BuI, Burkholderia sp. III; Co, Collimonas sp.; Ps, Pseudo-
monas fluorescens.
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kChip Input Preprocessing. For the screen described in Fig. 3, each droplet
contained Hf-GFP, a single cocultured isolate, and a single carbon source.
Every input received a “color code,” a unique ratio of three fluorescent dyes
(1 μM or 10 μM) before generating droplets (SI Appendix, Fig. S4). Every
input received 0.05% (wt/vol) bovine serum albumin to aid in retention of
hydrophobic small molecules during droplet pooling and loading (32, 45).

Droplet Making and kChip Loading. Droplets were produced on a Bio-Rad
QX200 Droplet Generator in a fluorocarbon oil (3M Novec 7500). Droplets
were pooled to prepare a total of 200 μL of droplet suspension (∼5 min) and
injected into a custom-built kChip loading apparatus (SI Appendix, Fig. S1).
Each microwell randomly sampled k droplets (∼5–10 min). The kChip was
scanned at 2× magnification to identify the droplets in each microwell from
their color codes (∼12–15 min) (SI Appendix, Fig. S4). Droplets were merged
within their microwells via ∼10 s of exposure to an alternating-current
electric field (4.5 MHz, 10,000–45,000 volts; Electro-Technic Products corona
treater).

Fluorescence Microscopy. All fluorescence microscopy was performed using a
Nikon Ti-E inverted fluorescencemicroscopewith fluorescence excitation by a
Lumencor Sola light-emitting diode illuminator. Images were collected by
means of a Hamamatsu ORCA-Flash 4.0 CMOS camera.
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