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RANDOMIZED RESIDUAL-BASED ERROR ESTIMATORS FOR
PARAMETRIZED EQUATIONS\ast 

KATHRIN SMETANA\dagger , OLIVIER ZAHM\ddagger , AND ANTHONY T. PATERA\S 

Abstract. We propose a randomized a posteriori error estimator for reduced order approxi-
mations of parametrized (partial) differential equations. The error estimator has several important
properties: the effectivity is close to unity with prescribed lower and upper bounds at specified high
probability; the estimator does not require the calculation of stability (coercivity, or inf-sup) con-
stants; the online cost to evaluate the a posteriori error estimator is commensurate with the cost
to find the reduced order approximation; and the probabilistic bounds extend to many queries with
only modest increase in cost. To build this estimator, we first estimate the norm of the error with a
Monte Carlo estimator using Gaussian random vectors whose covariance is chosen according to the
desired error measure, e.g., user-defined norms or quantity of interest. Then, we introduce a dual
problem with random right-hand side the solution of which allows us to rewrite the error estima-
tor in terms of the residual of the original equation. In order to have a fast-to-evaluate estimator,
model order reduction methods can be used to approximate the random dual solutions. Here, we
propose a greedy algorithm that is guided by a scalar quantity of interest depending on the error
estimator. Numerical experiments on a multiparametric Helmholtz problem demonstrate that this
strategy yields rather low-dimensional reduced dual spaces.

Key words. a posteriori error estimation, parametrized equations, projection-based model order
reduction, Monte Carlo estimator, concentration phenomenon, goal-oriented error estimation
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1. Introduction. Many models for engineering applications, life sciences, en-
vironmental issues, or finance depend on parameters which account for variation in
the material or geometry but also uncertainty in the data. Often the respective ap-
plications require low marginal (i.e., per parameter) computational costs. This is,
for instance, the case in ``many query"" settings where we require the computation of
the solution of the corresponding parametrized equation for many different parameter
values. Examples for model order reduction techniques that aim at computation-
ally feasible approximations of such parametrized models are tensor-based methods
[11, 24] and the reduced basis (RB) method [9, 14, 26, 27, 30]. In order to ensure, say,
functional safety of a structure, certification of such approximation is of high impor-
tance. Moreover, bounding the approximation error to get a handle on the uncertainty
induced by the approximation is crucial when using it in the context of uncertainty
quantification. The subject of this paper is thus certification of approximations to
parametrized equations via an a posteriori error estimator for a large number of pa-
rameter queries. Our method is also well-suited to real-time contexts. Employing the
a posteriori error estimator, say, within a greedy algorithm to construct the reduced
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RANDOMIZED RESIDUAL-BASED ERROR ESTIMATORS A901

space requires some (minor) modifications, which we will touch on only very briefly
in this paper.

One of the most commonly used error estimators for inf-sup stable problems is
the product of the dual norm of the residual and the inverse of the inf-sup constant.
While the former can usually be computed rapidly, accurate estimation of the inf-sup
constant is in general rather costly. For instance, the successive constraint method
[17, 5, 16] computes a parameter-dependent lower bound of the inf-sup constant by
employing the successive solution to appropriate linear optimization problems. This
procedure is usually computationally demanding and can lead to pessimistic error
bounds [12].

In this paper we introduce a random a posteriori error estimator which does not
require the estimation of stability constants. The error estimator features several
other desirable properties. First, it is both reliable and efficient at given high proba-
bility and often has an effectivity close to one. Second, the effectivity can be bounded
from below and above at high probability with constants selected by the user, bal-
ancing computational costs and desired sharpness of the estimator. Moreover, the
presented framework yields error estimators with respect to user-defined norms, for
instance, the L2-norm or the H1-norm; the approach also permits error estimation
of linear quantities of interest (QoI). Finally, depending on the desired effectivity the
computation of the error estimator is in general only as costly as the computation
of the reduced order approximation or even less expensive, which makes our error
estimator strategy attractive from a computational viewpoint.

To derive this error estimator, we consider a Gaussian random vector whose co-
variance matrix is chosen depending on the respective norm or QoI we wish to esti-
mate. Summing the squares of the inner products of K independent copies of that
random vector with the approximation error yields an unbiased Monte Carlo esti-
mator. Using concentration inequalities, we control the effectivity of the resulting
random error estimator with high probability. This type of random subspace em-
bedding is typically encountered in compressed sensing [7]. The motivation for using
these techniques is to create a high-to-low dimensional map which, in high probability,
nearly preserves distances and is thus well-suited for norm estimation. By exploiting
the error-residual relationship we recognize that these inner products equal the in-
ner products of the residual and the dual solutions of K dual problems with random
right-hand sides. Approximating the dual problems via projection-based model order
reduction yields an a posteriori error estimator of low marginal computation cost. To
construct the dual reduced space we introduce a greedy algorithm driven by a scalar
QoI that assesses how well the fast-to-evaluate a posteriori error estimator approxi-
mates the original Monte Carlo estimator. This goal-oriented strategy outperforms
standard dual-residual-based greedy algorithms or the proper orthogonal decomposi-
tion (POD). We emphasize that the dual reduced space so obtained generally does
not contain the primal reduced space as a subspace; the intersection can even be
empty. Furthermore, the dimension of the dual reduced space can be smaller than
the dimension of the primal reduced space.

Our a posteriori error estimator is inspired by the probabilistic error estimator for
the approximation error in the solution of a system of ordinary differential equations
introduced in [4] by Cao and Petzold. To estimate the norm of the error, they employ
the small statistical sample method from Kenney and Laub [21], which estimates
the norm of a vector by its inner product with a random vector drawn uniformly at
random on the unit sphere. Rewriting that inner product using the error-residual
relationship results in an adjoint (or dual) problem with random final time, whose
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solution is then invoked to estimate the error [4]. This approach is extended to
ordinary differential equations via a POD by Homescu, Petzold, and Serban in [15]
and differential algebraic equations in [28]. Also, the effect of perturbations in the
initial conditions or parameters on the quality of the approximation of the reduced
model is investigated [15, 28]. In our work we extend these concepts to address the
general norms of interest within the PDE context, to explicitly address accurate error
estimation for any given parameter value within a finite parameter domain, and to
address the limit of many queries.

Randomized methods for error estimation are gaining interest in the reduced order
modeling community. For instance, in [1], randomized techniques are used to speed
up the computation of the dual norm of the residual used as an error indicator. By ex-
ploiting the fact that the residual manifold is included in a low-dimensional subspace,
the authors need appeal to only a few random samples when constructing the random
subspace embedding. Instead, our approach targets the true error which, in contrast
to the residual, is in general not exactly included in a low-dimensional subspace for
the problems we have at hand. Therefore, in our approach, we use different techniques
and we determine the number of random samples we need via the cardinality of the
parameter set on which we wish to estimate the error. In [19] a probabilistic a posteri-
ori error bound for linear scalar-valued QoI is proposed, with application in sensitivity
analysis. Contrary to the method presented in our work, the right-hand side of the
dual problem in [19] is the linear functional associated with the QoI and randomization
is done by assuming that the parameter is a random variable on the parameter set.
Another application of randomized techniques, in particular randomized numerical
linear algebra [13], to (localized) model order reduction is considered in [3]: a reliable
and efficient probabilistic a posteriori error estimator for the difference between a
finite-dimensional linear operator and its orthogonal projection onto a reduced space
is derived; the main idea is to apply the operator to standard Gaussian random vec-
tors and consider the norm of the result. Also in [32], an interpolation of the operator
inverse is built via a Frobenius-norm projection and computed efficiently using ran-
domized methods. An error estimator is obtained by measuring the norm of residual
multiplied by the interpolation of the operator inverse, used here as a preconditioner.

We note that also the hierarchical error estimator for the RB method presented
in [12] does not require the estimation of any stability constants, such as the inf-sup
constant. In [12] the error is estimated by the distance between two reduced approx-
imations of different accuracies and the computational costs depend highly on the
dimension of the (primal) reduced space and are always higher than the costs for the
computation of the RB approximation. In contrast, in our approach, the costs associ-
ated with the dual problems, and hence estimator evaluation, are commensurate with
the cost associated with the (primal) RB approximation. Finally, the reduced-order-
model error surrogates (ROMES) method introduced in [8] and the closely related
approaches [22, 29, 23] aim at constructing a statistical model for the approximation
error. In [8] the statistical model is learned via stochastic-process data-fit methods
from a small number of computed error indicators.

The remainder of this article is organized as follows. In section 2 we derive a
randomized a posteriori error estimator that estimates the error for a finite number
of parameter values at given high probability. As this error estimator still depends on
the high-dimensional solutions of dual problems, section 3 is devoted to the reduced
order approximation of the dual problems and the analysis of the fast-to-evaluate a
posteriori error estimator. In section 4 we demonstrate several theoretical aspects of
the error estimator numerically and finally draw some conclusions in section 5.
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2. Randomized error estimator for parameter-dependent equation.

2.1. Parameter-dependent equations and error measurement. Consider
a real-valued1 parameter-dependent equation

(2.1) A(\mu )u(\mu ) = f(\mu ),

where the parameter \mu belongs to a parameter set \scrP \subset \BbbR P . For every queried
parameter \mu \in \scrP , A(\mu ) \in \BbbR N\times N is an invertible matrix and f(\mu ) \in \BbbR N . We assume
we are given an approximation \widetilde u(\mu ) of the solution u(\mu ). In this paper, the goal is to
estimate the error

\| u(\mu ) - \widetilde u(\mu )\| \Sigma .
Here, \| \cdot \| \Sigma is either a norm defined by means of a symmetric positive-definite (SPD)
matrix \Sigma \in \BbbR N\times N via \| v\| 2\Sigma = vT\Sigma v for all v \in \BbbR N or a seminorm if \Sigma is only
symmetric positive semidefinite. We highlight that the framework presented in this
paper encompasses the estimation of the error in various different norms or the error
in some QoI as will be discussed in the remainder of this subsection; see Table 1 for
a brief summary.

Table 1
Possible choices for \Sigma depending on the target error.

Target error Choice of \Sigma 
\| u(\mu ) - \widetilde u(\mu )\| 2 \Sigma = IN
\| u(\mu ) - \widetilde u(\mu )\| X \Sigma = RX

\| u(\mu ) - \widetilde u(\mu )\| L2(D) \Sigma = RL2(D)

\| s(\mu ) - L\widetilde u(\mu )\| W \Sigma = LTRWL
| s(\mu ) - lT \widetilde u(\mu )| \Sigma = l lT

By choosing \Sigma = IN , the identity matrix of size N , \| \cdot \| \Sigma becomes the canonical
norm \| \cdot \| 2 of \BbbR N . If problem (2.1) stems from the discretization of a parameter-
dependent linear partial differential equation, there is usually a natural norm \| \cdot \| X
associated with a Hilbert space of functions X \subset H1(D) for some spatial domain
D \subset \BbbR d, d \in \{ 1, 2, 3\} . In such a case, there exists a discrete Riesz map RX \in \BbbR N\times N

which is an SPD matrix such that
\sqrt{} 
(\cdot )TRX(\cdot ) = \| \cdot \| X . The choice \Sigma = RX implies

\| \cdot \| \Sigma = \| \cdot \| X , which means that the error is measured with respect to the natural
norm of the problem. We may also consider, for instance, the error in the L2-norm
by choosing \Sigma = RL2(D), where the discrete Riesz map RL2(D) is chosen such that
(\cdot )TRL2(D)(\cdot ) = \| \cdot \| 2L2(D).

In some cases one is not interested in the solution u(\mu ) itself but rather in some
QoI defined as a linear function of u(\mu ), say,

s(\mu ) = Lu(\mu ) \in \BbbR m,

for some L \in \BbbR m\times N . In this situation one would like to estimate the error \| s(\mu )  - 
L \widetilde u(\mu )\| W , where \| \cdot \| W is a given natural norm on \BbbR m associated with an SPD matrix
RW so that \| w\| 2W = wTRWw for all w \in \BbbR m. With the choice \Sigma = LTRWL we can
write

\| u(\mu ) - \widetilde u(\mu )\| 2\Sigma = (u(\mu ) - \widetilde u(\mu ))T \bigl( LTRWL
\bigr) 
(u(\mu ) - \widetilde u(\mu )) = \| s(\mu ) - L\widetilde u(\mu )\| 2W

1Throughout the paper we consider real-valued equations: the extension of our method to the
case of complex-valued problems is straightforward using the isomorphy \BbbC = \BbbR 2.
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so that measuring the error with respect to the norm \| \cdot \| \Sigma gives the error associated
with the QoI. Notice that if m < N the matrix \Sigma is singular and \| \cdot \| \Sigma is a seminorm.
Finally, consider the scalar-valued QoI given by s(\mu ) = lTu(\mu ), where l \in \BbbR N . This
corresponds to previous situation with m = 1 and L = lT . The choice \Sigma = l lT yields
\| u(\mu ) - \widetilde u(\mu )\| 2\Sigma = | s(\mu ) - L\widetilde u(\mu )| , where | \cdot | denotes the absolute value.

2.2. Estimating norms using Gaussian maps. In this section we show how
the (semi-)norm \| \cdot \| \Sigma can be approximated by \| \Phi \cdot \| 2 for some random matrix
\Phi \in \BbbR K\times N with K \ll N .

Let Z \sim \scrN (0,\Sigma ) be a zero mean Gaussian random vector in \BbbR N whose covariance
matrix is chosen to be the matrix \Sigma \in \BbbR N\times N which defines the (semi-)norm \| \cdot \| \Sigma ;
cf. Table 1. Given a vector v \in \BbbR N , for example, v = u(\mu )  - \widetilde u(\mu ) for some (fixed)
parameter \mu \in \scrP , we can write

\| v\| 2\Sigma = vT\Sigma v = vT\BbbE (ZZT )v = \BbbE ((ZT v)2),

where \BbbE (\cdot ) denotes the expected value. This means that (ZT v)2 is an unbiased esti-
mator of \| v\| 2\Sigma . Let Z1, . . . , ZK be K independent copies of Z and define the random

matrix \Phi \in \BbbR K\times N whose ith row is (1/
\surd 
K)ZT

i . The matrix \Phi is sometimes called a
Gaussian map. Denoting by \| \cdot \| 2 the canonical norm of \BbbR K , we can write

(2.2) \| \Phi v\| 22 =
1

K

K\sum 
i=1

(ZT
i v)

2 for any v \in \BbbR N .

In other words, \| \Phi v\| 22 is a K-sample Monte Carlo estimator of \BbbE ((ZT v)2) = \| v\| 2\Sigma .
By the independence of the Zi's, we have Var(\| \Phi v\| 22) = 1

K Var(ZT v) so that \| \Phi v\| 22 is
a lower variance estimator of \| v\| 2\Sigma compared to (ZT v)2. However, the variance is not
always the most relevant criteria to assess the performance of an estimator. In the
context of this paper, we rather want to quantify the probability that \| \Phi v\| 22 deviates
from \| v\| 2\Sigma . This can be done by noting that, provided \| v\| \Sigma \not = 0, the random variables
(ZT

i v)/\| v\| \Sigma for i = 1, . . . ,K are independent standard normal random variables so
that we have

\| \Phi v\| 22 =
\| v\| 2\Sigma 
K

K\sum 
i=1

\Bigl( ZT
i v

\| v\| \Sigma 

\Bigr) 2
\sim \| v\| 

2
\Sigma 

K
Q,

where Q \sim \chi 2(K) follows a chi-squared distribution with K degrees of freedom.
Denoting by \BbbP \{ A\} the probability of an event A and by A the complementary event
of A, the previous relation yields

\BbbP 
\Bigl\{ 
w - 1\| v\| \Sigma \leq \| \Phi v\| 2 \leq w\| v\| \Sigma 

\Bigr\} 
= 1 - \BbbP 

\bigl\{ 
Kw - 2 \leq Q \leq Kw2

\bigr\} 
for any w \geq 1. Then for any given (fixed) vector v \in \BbbR N , the probability that a
realization of \| \Phi v\| 2 lies between w - 1\| v\| \Sigma and w\| v\| \Sigma is independent of v but also
independent of the dimension N . The following proposition gives an upper bound
for \BbbP 

\bigl\{ 
Kw - 2 \leq Q \leq Kw2

\bigr\} 
in terms of w and K. The proof, given in Appendix A.1,

relies on the fact that we have closed form expressions for the law of Q \sim \chi 2(K).

Proposition 2.1. Let Q \sim \chi 2(K) be a chi-squared random variable with K \geq 3
degrees of freedom. For any w >

\surd 
e we have

\BbbP 
\bigl\{ 
Kw - 2 \leq Q \leq Kw2

\bigr\} 
\leq 
\Bigl( \surd e
w

\Bigr) K
.
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2 4 6 8 10

10−5

10−3

10−1

Number of samples K

P
ro

ba
bi

lit
y

of
fa

ilu
re

w = 1.5
w = 2
w = 4
w = 10

w K = 3
1.1 8.2\times 10 - 1  - 
2 1.4\times 10 - 1 5.6\times 10 - 1

5 1.0\times 10 - 2 3.5\times 10 - 2

10 1.3\times 10 - 3 4.4\times 10 - 3

50 1.1\times 10 - 5 3.5\times 10 - 5

w K = 10
1.1 6.7\times 10 - 1  - 
2 9.1\times 10 - 3 1.4\times 10 - 1

5 2.2\times 10 - 6 1.5\times 10 - 5

10 2.4\times 10 - 9 1.4\times 10 - 8

50 2.6\times 10 - 16 1.5\times 10 - 15

Fig. 1. Exact value of \BbbP 
\bigl\{ 
Kw - 2 \leq Q \leq Kw2

\bigr\} 
(solid curves on the graph, left column on the

table) and its upper bound (
\surd 
e/w)K given by Proposition 2.1 (dashed curves on the graph, right

column on the table) for different values of K and w.

Proposition 2.1 shows that the probability \BbbP 
\bigl\{ 
Kw - 2 \leq Q \leq Kw2

\bigr\} 
decays at least

exponentially with respect to K, provided w \geq 
\surd 
e and K \geq 3. Then for any v \in \BbbR N ,

the relation

(2.3) w - 1\| v\| \Sigma \leq \| \Phi v\| 2 \leq w\| v\| \Sigma 

holds with a probability greater than 1 - (
\surd 
e/w)K . As expected, a large value of w

is beneficial to ensure the probability of failure (
\surd 
e/w)K to be small. For instance,

with w = 4 and K = 6, relation (2.3) holds with a probability larger than 0.995.
However, we observe in Figure 1 that this theoretical result is rather pessimistic since
it overestimates the true probability by one order of magnitude for small values of w.
Also, we conjecture based on Figure 1 that there is an exponential decay even when
w \leq 

\surd 
e (see the blue curve with w = 1.5), which is not predicted by Proposition 2.1.

In many situations we want to estimate the norm of several vectors rather than
just one vector solely. This is, for instance, the case if one has to estimate the norm
of the error v = u(\mu ) - \widetilde u(\mu ) for many different parameter values \mu \in \scrP . In that case,
one would like to quantify the probability that relation (2.3) holds simultaneously for
any vector in a set\scrM \subset \BbbR N . Assuming\scrM is finite, a union bound argument---for a
detailed proof see Appendix A.2---yields the following result.

Corollary 2.2. Given a finite collection of vectors \scrM = \{ v1, v2, . . . , v\#\scrM \} \subset 
\BbbR N and a failure probability 0 < \delta < 1. Then, for any w >

\surd 
e and

(2.4) K \geq min

\biggl\{ 
log(\#\scrM ) + log(\delta  - 1)

log(w/
\surd 
e)

, 3

\biggr\} 
,

we have

(2.5) \BbbP 
\Bigl\{ 
w - 1\| v\| \Sigma \leq \| \Phi v\| 2 \leq w\| v\| \Sigma \forall v \in \scrM 

\Bigr\} 
\geq 1 - \delta .

Table 2 gives numerical values of K that satisfy (2.4) depending on \delta , w, and
\#\scrM . For example, with \delta = 10 - 4 and w = 10, estimating simultaneously the norm
of 109 vectors requires only K = 17 samples. Again, we emphasize that this result is
independent on the dimension N of the vectors to be estimated.

Remark 2.3 (comparison with the Johnson--Lindenstrauss lemma [6, 20]). The
Johnson--Lindenstrauss (JL) lemma states that for any 0 < \varepsilon < 1 and any finite
set \scrM \subset \BbbR N , the condition K \geq 8\varepsilon  - 2 log(\#\scrM ) ensures the existence of a linear
map \Phi : \BbbR N \rightarrow \BbbR K such that (1  - \varepsilon )\| v  - u\| 22 \leq \| \Phi v  - \Phi u\| 22 \leq (1 + \varepsilon )\| v  - u\| 22
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Table 2
Minimal value of K for which Condition (2.4) is satisfied.

\delta = 10 - 2 w = 2 w = 4 w = 10 \delta = 10 - 4 w = 2 w = 4 w = 10

\#\scrM = 100 24 6 3 \#\scrM = 100 48 11 6
\#\scrM = 103 60 13 7 \#\scrM = 103 84 19 9
\#\scrM = 106 96 21 11 \#\scrM = 106 120 26 13
\#\scrM = 109 132 29 15 \#\scrM = 109 155 34 17

holds for all u, v \in \scrM . Replacing \scrM by \scrM \cup \{ 0\} and letting u = 0, one has that
K \geq 8\varepsilon  - 2 log(\#\scrM +1) is sufficient to ensure the existence of a \Phi \in \BbbR K\times N such that

(2.6)
\surd 
1 - \varepsilon \| v\| 2 \leq \| \Phi v\| 2 \leq 

\surd 
1 + \varepsilon \| v\| 2 \forall v \in \scrM .

The above relation differs from (2.3) in the sense that the deviation of \| \Phi v\| 2 from \| v\| 2
is controlled in an additive manner via a parameter \varepsilon instead of a multiplicative way
via w. We highlight also the different dependencies of K on \varepsilon and w. In contrast to
the requirement in the JL lemma, condition (2.4) permits reduction in the number of
required copies K of the random vectors by considering an increased w. Note that the
computational complexity of the a posteriori error estimator we propose in this paper
crucially depends on K; see subsection 3.3. Since the goal in this paper is to estimate
the error we in general do not have to insist on a very accurate estimation of \| v\| 2.
Instead, in many situtations it might be preferable to accept a higher effectivity w of
the a posteriori error estimator in favor of a faster computational time. We emphasize
that the user has the choice here.

Notice also that with the choice w = 1/
\surd 
1 - \varepsilon , (2.6) implies (2.3). Then, the JL

lemma ensures that (2.3) holds true ifK \geq 8(1 - w - 2) - 2 log(\#\scrM +1). Even if we have
the same logarithmic dependence on \#\scrM , this is much larger than what we obtained
in (2.4), already for moderate but especially for large values of w. For example, with
w = 4, \#\scrM = 103, and \delta = 10 - 2, the JL lemma requires K \geq 63, whereas condition
(2.4) requires only K \geq 13. Finally, we highlight that a result similar to (2.3) has
been obtained in [21] for random vectors that are uniformly and randomly selected
from the sphere. The multiplicative type of estimates in [21] motivated us to derive
similar results for Gaussian vectors.

Remark 2.4 (drawing Gaussian vectors). In actual practice we can draw efficiently
from Z \sim \scrN (0,\Sigma ) using a factorization of the covariance matrix of the form of \Sigma =
UTU , e.g., a (sparse) Cholesky decomposition. It is then sufficient to draw a standard

Gaussian vector \widehat Z and to compute the matrix-vector product Z = UT \widehat Z. As pointed
out in [1, Remark 2.9], one can take advantage of a potential block structure of \Sigma to
build a (nonsquare) factorization U with a negligible computational cost.

2.3. Randomized a posteriori error estimator. We apply the methodology
described in the previous subsection to derive a residual-based randomized a posteriori
error estimator for the error \| u(\mu ) - \widetilde u(\mu )\| \Sigma . Let \Phi = K - 1/2[Z1, . . . ZK ]T be a random
matrix in \BbbR K\times N where Z1, . . . ZK are independent copies of Z \sim \scrN (0,\Sigma ), and consider
the error estimator \Delta (\mu ) = \| \Phi 

\bigl( 
u(\mu ) - \widetilde u(\mu )\bigr) \| 2, or equivalently

(2.7) \Delta (\mu ) =

\Biggl( 
1

K

K\sum 
k=1

\Bigl( 
ZT
i

\bigl( 
u(\mu ) - \widetilde u(\mu )\bigr) \Bigr) 2\Biggr) 1/2

.

If the parameter set \scrP is finite, Corollary 2.2 with\scrM = \{ u(\mu ) - \widetilde u(\mu );\mu \in \scrP \} permits
control of the quality of the estimate \Delta (\mu ) uniformly over \mu \in \scrP . But in actual
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RANDOMIZED RESIDUAL-BASED ERROR ESTIMATORS A907

practice the parameter set is often of infinite cardinality. Using more sophisticated
techniques than just a simple union bound argument should provide results also when
\scrP has infinite cardinality. In this paper, we are, however, only interested in the case
of a finite set of parameter values, as restated in the following corollary.

Corollary 2.5. Let 0 < \delta < 1 and w >
\surd 
e. Given a finite set of parameter

values \scrS \subset \scrP , the condition

(2.8) K \geq min

\biggl\{ 
log(\#\scrS ) + log(\delta  - 1)

log(w/
\surd 
e)

, 3

\biggr\} 
is sufficient to ensure

\BbbP 
\Bigl\{ 
w - 1\Delta (\mu ) \leq \| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq w\Delta (\mu ) \forall \mu \in \scrS 

\Bigr\} 
\geq 1 - \delta .

It is important to note that condition (2.8) depends only on the cardinality of \scrS .
This means that K can be determined only knowing the number of parameters for
which we need to estimate the error. However, computing \Delta (\mu ) requires the solution
u(\mu ) of problem (2.1), which is infeasible in practice. By introducing the residual

(2.9) r(\mu ) = f(\mu ) - A(\mu )\widetilde u(\mu )
associated with problem (2.1) and, similar to [4, 15], exploiting the error residual
relationship we may rewrite the terms ZT

i (u(\mu ) - \widetilde u(\mu )), 1 \leq i \leq K, as follows:

(2.10) ZT
i (u(\mu ) - \widetilde u(\mu )) = ZT

i A(\mu ) - 1r(\mu ) = (A(\mu ) - TZi)
T r(\mu ).

The terms ZT
i (u(\mu ) - \widetilde u(\mu )) thus equal the inner products of the (primal) residual and

the solutions Yi(\mu ) \in \BbbR N of the random dual problems

(2.11) A(\mu )TYi(\mu ) = Zi, 1 \leq i \leq K.

Because of the random right-hand side in (2.11), the solutions Y1(\mu ), . . . , YK(\mu )
are random vectors. Thanks to the above the error estimator \Delta (\mu ), defined in (2.7)
can be rewritten as

(2.12) \Delta (\mu ) =

\Biggl( 
1

K

K\sum 
i=1

\bigl( 
Yi(\mu )

T r(\mu )
\bigr) 2\Biggr) 1/2

.

This shows that \Delta (\mu ) can be computed by applying K linear forms to the residual
r(\mu ). In that sense, \Delta (\mu ) can be considered as an a posteriori error estimator. Notice
that computing the solutions to (2.11) is in general as expensive as solving the primal
problem (2.1). In the next section we show how to approximate the dual solutions
Y1(\mu ), . . . , YK(\mu ) in order to obtain a fast-to-evaluate a posteriori error estimator.

Remark 2.6 (scalar-valued QoI). When estimating the error in scalar-valued QoIs
of the form of s(\mu ) = lTu(\mu ), the covariance matrix is \Sigma = l lT ; see subsection 2.1.
In that case the random vector Z \sim \scrN (0,\Sigma ) follows the same distribution as X l
where X \sim \scrN (0, 1) is a standard normal random variable (scalar). The random dual
problem (2.11) then becomes A(\mu )TYi(\mu ) = Xi l and the solution is Yi(\mu ) = Xi q(\mu )
where q(\mu ) is the solution of the deterministic dual problem A(\mu )T q(\mu ) = l. Dual
problems of this form are commonly encountered for estimating linear QoI; see [25] for
a general presentation and [9, 27, 31] for the application in reduced order modeling.
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Remark 2.7 (considerations when employing \Delta (\mu ) to enrich the reduced space).
Say that we use the a posteriori error estimator \Delta (\mu ) to select a new parameter and
use the associated solution to enrich the reduced space. Then, we wish to use \Delta (\mu )
again for the enriched reduced space. However, now the problem occurs that the
error between u(\mu ) and the reduced solution that uses the newly selected snapshot
depends on the error estimator and thus Z1, . . . , ZK ; we lose independence. One so-
lution would be to redraw the samples in each iteration, which is in general, however,
computationally infeasible. Alternatively, as suggested in [1], we can adapt the num-
ber of samples K in order to take into account (using union bound arguments) all
possible outcomes of the greedy algorithm; for further details we refer to [1, section
5.1].

3. A fast-to-evaluate randomized a posteriori error estimator. In or-
der to obtain a fast-to-evaluate a posteriori error estimator whose computational
complexity is independent of N , we employ projection-based model order reduction
techniques to compute approximations of the solutions Y1(\mu ), . . . , YK(\mu ) of the dual
problems (2.11). To that end, let us assume that we are given a fixed realization

of the K random vectors Z1, . . . , ZK and that we have a reduced space \widetilde \scrY \subset \BbbR N at
our disposal. Different ways to construct \widetilde \scrY will be discussed in subsection 3.2 and
compared numerically in section 4. In any case, \widetilde \scrY will be built from dual solutions
Yi(\mu ), i = 1, . . . ,K, of (2.11) for random right-hand sides Z1, . . . , ZK , the latter being

fixed before constructing the dual reduced space. \widetilde \scrY should thus be considered as a
random subspace. Then, we define \widetilde Yi(\mu ) as the Galerkin projection of Yi(\mu ) on \widetilde \scrY ,
meaning

(3.1) \widetilde Yi(\mu ) \in \widetilde \scrY : \langle A(\mu )T \widetilde Yi(\mu ), v\rangle = \langle Zi, v\rangle \forall v \in \widetilde \scrY .
Here, \langle v, w\rangle := vTw for all v, w \in \BbbR N . We emphasize that we employ the same reduced

space \widetilde \scrY for the approximation of the K dual solutions Y1(\mu ), . . . , YK(\mu ). Needless to
say that a segregated strategy, where we construct and use K different dual reduced
spaces \widetilde \scrY i for the K different right-hand sides Zi and associated dual reduced solutions
Yi(\mu ), i = 1, . . . ,K, can also be considered. The advantage of a segregated strategy is
that one can easily parallelize the computations, if needed. However, in this paper we
focus exclusively on the monolithic approach (3.1), employing one single dual reduced
space.

By replacing Yi(\mu ) in (2.12) by the fast-to-evaluate approximation \widetilde Yi(\mu ), we define
a fast-to-evaluate a posteriori error estimator as

(3.2) \widetilde \Delta (\mu ) :=

\Biggl( 
1

K

K\sum 
i=1

(\widetilde Yi(\mu )
T r(\mu ))2

\Biggr) 1/2

.

We highlight that, in constrast to, for instance, the ``standard"" a posteriori error
estimator being defined as the product of the reciprocal of a stability constant and
the dual norm of the primal residual, \widetilde \Delta (\mu ) does not contain any constants that require
estimation. Moreover, unlike hierarchical error estimators [2, 12] the quality of the
approximation used for the error estimator does not depend on the quality of the
primal approximation; the dual reduced space does not in general contain the primal
reduced space as a subspace and can even be of smaller dimension than the latter.
For a more elaborate comparison we refer to subsection 3.3.

Additionally, we shall show in subsection 3.3 that evaluating \mu \mapsto \rightarrow \widetilde \Delta (\mu ) requires

only the solution of one linear system of size n\widetilde \scrY := dim( \widetilde \scrY ), instead of K linear
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systems of size n\widetilde \scrY as suggested by (3.1). However, before discussing the computational

complexity of \widetilde \Delta (\mu ), we show in subsection 3.1 that under certain conditions \widetilde \Delta (\mu ) is
both a reliable and efficient error estimator at high probability. Based on this analysis
we propose in subsection 3.2 different greedy algorithms for constructing the reduced
space \widetilde \scrY .

3.1. Analysis of the fast-to-evaluate a posteriori error estimator. First,
we relate the relative error in the a posteriori error estimator to the error in the dual
residual.

Proposition 3.1. Assume \Sigma is invertible. The fast-to-evaluate error estimator\widetilde \Delta (\mu ) defined by (3.2) satisfies

| \Delta (\mu ) - \widetilde \Delta (\mu )| 
\| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq max

1\leq i\leq K
\| AT (\mu )\widetilde Yi(\mu ) - Zi\| \Sigma  - 1 \forall \mu \in \scrP .(3.3)

Here, \| \cdot \| \Sigma  - 1 denotes the norm on \BbbR N such that \| v\| 2\Sigma  - 1 = vT\Sigma  - 1v for all v \in \BbbR N .

The proof is given in Appendix A.3. Notice that Proposition 3.1 requires \Sigma to
be invertible, which excludes the cases where one wants to estimate the error in a
vector-valued QoI; see subsection 2.1. Proposition 3.1 allows us to control the error
via \widetilde \Delta (\mu ), where the effectivity w is enlarged in an additive manner, as stated in the
following corollary.

Corollary 3.2. Suppose we are given a finite set of parameter values \scrS \subset \scrP for
which we want to estimate the error \| u(\mu )  - \widetilde u(\mu )\| \Sigma . Let 0 < \delta < 1, w >

\surd 
e and

assume

(3.4) K \geq min

\biggl\{ 
log(\#\scrS ) + log(\delta  - 1)

log(w/
\surd 
e)

, 3

\biggr\} 
.

Furthermore, assume that \Sigma is invertible and that we have \varepsilon \leq w - 1, where

(3.5) \varepsilon = sup
\mu \in \scrP 

\biggl\{ 
max

1\leq i\leq K
\| AT (\mu )\widetilde Yi(\mu ) - Zi\| \Sigma  - 1

\biggr\} 
.

Then, we have

(3.6) \BbbP 
\Bigl\{ 
(w + \varepsilon ) - 1 \widetilde \Delta (\mu ) \leq \| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq w

1 - w \varepsilon 
\widetilde \Delta (\mu ) \forall \mu \in \scrS 

\Bigr\} 
\geq 1 - \delta .

The proof is given in Appendix A.4. Corollary 3.2 gives a sufficient condition to
control the quality of the estimator \widetilde \Delta (\mu ) over a finite set of parameter values \scrS \subset \scrP 
with high probability. It requires \varepsilon \leq w - 1, which is equivalent to \| AT (\mu )\widetilde Yi(\mu )  - 
Zi\| \Sigma  - 1 \leq w - 1 for all \mu \in \scrP and all 1 \leq i \leq K. To satisfy this condition, one has

to design an algorithm which builds \widetilde Yi(\mu ) in a way that AT (\mu )\widetilde Yi(\mu ) is close to Zi

uniformly over \scrS and independently on the value taken by Zi. Obtaining \varepsilon \leq w - 1,
however, can be challenging (from a computational perspective). To explain this,
let us note that \| Zi\| \Sigma  - 1 is, with high probability,2 of the order of

\surd 
N . Therefore

\varepsilon \leq w - 1 means that the relative dual residual norm ought to be of the order of

\| AT (\mu )\widetilde Yi(\mu ) - Zi\| \Sigma  - 1

\| Zi\| \Sigma  - 1

\simeq 1

w
\surd 
N

.

2To show this, note that \| Zi\| 2\Sigma  - 1 \sim \chi 2(N) so that, by Proposition 2.1, relation w\prime  - 1
\surd 
N \leq 

\| Zi\| \Sigma  - 1 \leq w\prime \surd N holds with probability 1 - (
\surd 
e/w\prime )N for any w\prime \geq 

\surd 
e.
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When N \gg 1, the condition \varepsilon \leq w - 1 means that we need a very accurate ap-
proximation of the dual variables. For instance, with N = 106, the dual residual
norm \| AT (\mu )\widetilde Yi(\mu )  - Zi\| \Sigma  - 1/\| Zi\| \Sigma  - 1 has to be less that 10 - 3 for all \mu \in \scrP and all
1 \leq i \leq K, which can be too demanding in actual practice.

Next, we give an alternative way of controlling the quality of \widetilde \Delta (\mu ). Contrarily
to Corollary 3.2, which provides an additive type of control, the following proposition
gives a control in an multiplicative manner. The proof in given in Appendix A.5 in
the appendix.

Proposition 3.3. Suppose we are given a finite set of parameter values \scrS \subset \scrP 
over which we want to estimate the error \| u(\mu )  - \widetilde u(\mu )\| \Sigma . Let 0 < \delta < 1, w >

\surd 
e

and assume

(3.7) K \geq min

\biggl\{ 
log(\#\scrS ) + log(\delta  - 1)

log(w/
\surd 
e)

, 3

\biggr\} 
.

Then the fast-to-evaluate estimator \widetilde \Delta (\mu ) satisfies

(3.8) \BbbP 
\Bigl\{ 
(\alpha w) - 1 \widetilde \Delta (\mu ) \leq \| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq (\alpha w) \widetilde \Delta (\mu ), \mu \in \scrS ,

\Bigr\} 
\geq 1 - \delta ,

where

(3.9) \alpha := max
\mu \in \scrP 

\Biggl( 
max

\Biggl\{ 
\Delta (\mu )\widetilde \Delta (\mu )

,
\widetilde \Delta (\mu )

\Delta (\mu )

\Biggr\} \Biggr) 
\geq 1.

Proposition 3.3 shows that, with high probability, the error estimator \widetilde \Delta (\mu ) de-
parts from the true error \| u(\mu ) - \widetilde u(\mu )\| \Sigma at most by a multiplicative factor (\alpha w) - 1 or

(\alpha w). Notice that \alpha is a measure of the distance from \mu \mapsto \rightarrow \widetilde \Delta (\mu ) to \mu \mapsto \rightarrow \Delta (\mu ): if it

is close to 1, then \widetilde \Delta (\mu ) is close to \Delta (\mu ) uniformly over the parameter set \scrP . Unlike
Corollary 3.2, Proposition 3.3 does not require \Sigma to be invertible and, even more im-
portantly, it does not put any restrictions on \alpha . However, the computation of \alpha can
be expensive since it requires the exact error estimator \Delta (\mu ) over the whole parameter
set \scrP . Therefore, we propose to use \alpha as a stopping criterion when constructing the
dual reduced space to ensure that (\alpha w) - 1 \widetilde \Delta (\mu ) \leq \| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq (\alpha w) \widetilde \Delta (\mu ) holds
true for a rich training set \subset \scrP as we will detail in subsection 3.2.

3.2. Greedy constructions of the dual reduced space \widetilde \bfscrY .

3.2.1. Vector point of view of the dual problems. A popular technique to
build a reduced space is to take the span of snapshots of the solution. In order to
handle the K distinct dual problems, the index ``i"" in (2.11) in considered as an addi-
tional parameter. Thus, we define the augmented parameter set \scrP K = \{ 1, . . . ,K\} \times \scrP 
and seek a n\widetilde \scrY -dimensional reduced space of the form of

(3.10) \widetilde \scrY = span\{ Yi1(\mu 1), . . . , Yin \widetilde \scrY (\mu n \widetilde \scrY )\} ,
where the n\widetilde \scrY elements (i1, \mu 1), . . . , (in \widetilde \scrY , \mu n \widetilde \scrY ) are to be chosen in \scrP K . The RB
methodology (see, for instance, [14, 26, 9, 27] for an introduction) consists in se-
lecting (i1, \mu 1), . . . , (in \widetilde \scrY , \mu n \widetilde \scrY ) in a greedy fashion [30]. In detail, assuming that the j
first parameters are given, the (j + 1)th parameter is defined as

(3.11) (ij+1, \mu j+1) \in argmax
(i,\mu )\in \scrP train

K

\| A(\mu )T \widetilde Yi(\mu ) - Zi\| \ast ,
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Algorithm 3.1. Greedy construction of the dual reduced space \widetilde \scrY .
Data: Operator \mu \mapsto \rightarrow A(\mu ), samples \{ Z1, . . . , ZK\} , training set \scrP train

K , tolerance tol,
quantile order q

Initialize \widetilde \scrY = \{ 0\} and j = 0

while q-quantile(i,\mu )\in \scrP train
K
\{ \| A(\mu )T \widetilde Yi(\mu ) - Zi\| \ast \} > tol do

Compute \widetilde Yi(\mu ) \in \widetilde \scrY via (3.1)

Find (ij+1, \mu j+1) that maximizes (i, \mu ) \mapsto \rightarrow \| A(\mu )T \widetilde Yi(\mu ) - Zi\| \ast over \scrP train
K

Compute the snapshot Yij+1
(\mu j+1) = A(\mu j+1)

 - TZij+1

Update the dual reduced space \widetilde \scrY \leftarrow \widetilde \scrY + span\{ Yij+1
(\mu j+1)\} 

Update j \leftarrow j + 1
end

Result: Dual reduced space \widetilde \scrY .
where \widetilde Yi(\mu ) is the approximation of Yi(\mu ) given by (3.1) with \widetilde \scrY defined as in (3.10).
Here, \scrP train

K \subset \scrP K is a sufficiently rich training set with finite cardinality and \| \cdot \| \ast 
denotes an arbitrary norm of \BbbR N . According to Corollary 3.2, it is natural to chose
\| \cdot \| \ast = \| \cdot \| \Sigma  - 1 , provided \Sigma is invertible. After having computed the snapshot

Yij+1(\mu j+1), the reduced space \widetilde \scrY is updated using (3.10) with j \leftarrow j+1. By selecting
the parameter (ij+1, \mu j+1) according to (3.11), the idea is to construct a reduced

space that minimizes the dual residual norm \| A(\mu )T \widetilde Yi(\mu ) - Zi\| \ast uniformly over the
training set (i, \mu ) \in \scrP train

K .
It remains to define a criterion to stop the greedy iterations. Given a user-defined

tolerance tol \geq 0, the use of the stopping criterion

(3.12) max
(i,\mu )\in \scrP train

K

\| A(\mu )T \widetilde Yi(\mu ) - Zi\| \ast \leq tol

ensures that, at the end of the iteration procedure, the residual norm of the dual
problem is below tol everywhere on the training set \scrP train

K . One can relax that criterion
by replacing the max in (3.12) by the quantile of order q \in [0, 1]:

(3.13) q-quantile
\Bigl\{ 
\| A(\mu )T \widetilde Yi(\mu ) - Zi\| \ast : (i, \mu ) \in \scrP train

K

\Bigr\} 
\leq tol.

Here q-quantile\{ A\} denotes the \lceil q\#A\rceil th largest entries of a (ordered and finite) set
A. With this stopping criterion, the iterations stop when at least a fraction of q points
in \scrP train

K have a dual residual norm below tol. Notice that the q-quantile and the max
coincides when q = 1 so that (3.13) generalizes (3.12). The resulting greedy algorithm
is summarized in Algorithm 3.1.

3.2.2. Matrix point of view of the dual problems. Next, we propose an-
other greedy algorithm which relies on a matrix interpretation of the K dual problems
(2.11). Let us denote by

Y(\mu ) = [Y1(\mu ), . . . , YK(\mu )] \in \BbbR N\times K ,

the matrix containing the dual solutions. Instead of constructing the reduced space\widetilde \scrY as the span of vectors Yi(\mu ), like in (3.10), we now consider reduced spaces of the
form of

(3.14) \widetilde \scrY = span\{ Y(\mu 1)\lambda 1, . . . ,Y(\mu n \widetilde \scrY )\lambda n \widetilde \scrY \} ,
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where \lambda 1, . . . , \lambda n \widetilde \scrY are n\widetilde \scrY vectors in \BbbR K and where \mu 1, . . . , \mu n \widetilde \scrY \in \scrP . Notice that if

the vectors \lambda i are canonical vectors of \BbbR K we have that \widetilde \scrY can be written as in (3.10).
In that sense, the approximation format (3.14) is richer than (3.10) and we can expect
better performance. We also note that the greedy algorithm we propose here shares
some similarities with the POD-greedy algorithm introduced in [10].

We now propose a second greedy algorithm inspired by Proposition 3.3. Let
\scrP train \subset \scrP be again a finite training set and suppose that at step r in the greedy
algorithm we have a reduced space \widetilde \scrY as in (3.14) at our disposal. The first step is to
define the next evaluation point \mu j+1 as

(3.15) \mu j+1 \in argmax
\mu \in \scrP train

\Biggl( 
max

\Biggl\{ 
\Delta (\mu )\widetilde \Delta (\mu )

,
\widetilde \Delta (\mu )

\Delta (\mu )

\Biggr\} \Biggr) 
,

where we recall that \Delta (\mu ) = ( 1
K

\sum K
i=1[Z

T
i (u(\mu ) - \widetilde u(\mu ))]2)1/2. Finding \mu j+1 according

to (3.15) requires us to compute the solution u(\mu ) over the training set \mu \in \scrP train.
As this is in general not computationally efficient, we suggest replacing u(\mu ) by a
reference solution uref(\mu ) such that \| uref(\mu )  - u(\mu )\| \Sigma \ll \| \widetilde u(\mu )  - u(\mu )\| \Sigma . We can
choose as uref(\mu ), for instance, a hierarchical approximation of u(\mu ), where we use a
larger primal reduced space to determine uref(\mu ). Note that we only suggest using such
a reference solution for the construction of the dual reduced space and not afterward
when certifying the reduced approximation in the online stage. Then, we introduce
the reference error estimator

\Delta ref(\mu ) :=

\Biggl( 
1

K

K\sum 
i=1

\bigl( 
ZT
i (uref(\mu ) - \widetilde u(\mu ))\bigr) 2\Biggr) 1/2

and seek \mu j+1 as

(3.16) \mu r+1 \in argmax
\mu \in \scrP train

\Biggl( 
max

\Biggl\{ 
\Delta ref(\mu )\widetilde \Delta (\mu )

,
\widetilde \Delta (\mu )

\Delta ref(\mu )

\Biggr\} \Biggr) 
.

Once the parameter \mu j+1 is found either with (3.15) or with (3.16), we compute the
dual solutions Y1(\mu j+1), . . . , YK(\mu j+1) and assemble Y(\mu j+1). Here we need to solve
K linear equations with the same operator A(\mu j+1)

T but with K different right-
hand sides; see (2.11). This can be done efficiently say by using a Cholesky or LU
decomposition and reusing the factorization for the K problems.

The second step is to determine the vector \lambda j+1. In order to maximize the im-
provement of the reduced space, we propose to define \lambda j+1 as follows:

(3.17) \lambda j+1 \in argmax
\lambda \in \BbbR K

\| Y(\mu j+1)\lambda  - \widetilde Y(\mu j+1)\lambda \| 2
\| \lambda \| 2

,

where \widetilde Y(\mu j+1) = [\widetilde Y1(\mu j+1), . . . , \widetilde YK(\mu j+1)]. The rationale behind (3.17) is to align

\lambda j+1 with the direction where the matrix \widetilde Y(\mu j+1) differs the most from Y(\mu j+1).
One can easily show that \lambda j+1 defined by (3.17) is the first eigenvector of the K-by-K
matrix

(3.18) M(\mu j+1) =
\bigl( 
Y(\mu j+1) - \widetilde Y(\mu j+1)

\bigr) T \bigl( 
Y(\mu j+1) - \widetilde Y(\mu j+1)

\bigr) 
.
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Algorithm 3.2. Greedy construction of \widetilde \scrY with goal-oriented greedy selection.

Data: Operator \mu \mapsto \rightarrow A(\mu ), samples \{ Z1, . . . , ZK\} , training set \scrP train, tolerance tol,
quantile order q, approximation \mu \mapsto \rightarrow \widetilde u(\mu ), reference solution \mu \mapsto \rightarrow uref(\mu )

Compute \Delta ref(\mu ) for all \mu \in \scrP train

Initialize \widetilde \scrY = \{ 0\} and j = 0

while q-quantile\mu \in \scrP train

\bigl\{ 
max

\Bigl\{ 
\Delta ref (\mu )\widetilde \Delta (\mu )

,
\widetilde \Delta (\mu )

\Delta ref (\mu )

\Bigr\} \bigr\} 
> tol do

Define \widetilde Yi(\mu ) \in \widetilde \scrY by (3.1) and \widetilde \Delta (\mu ) by (3.2)

Find \mu j+1 that maximizes \mu \mapsto \rightarrow max
\Bigl\{ 

\Delta ref (\mu )\widetilde \Delta (\mu )
,

\widetilde \Delta (\mu )
\Delta ref (\mu )

\Bigr\} 
over \scrP train

Compute the solutions Yi(\mu j+1) = A(\mu j+1)
 - TZi for all 1 \leq i \leq K

Compute the matrix M(\mu j+1) by (3.18) and its leading eigenvector \lambda j+1

Update the dual reduced space \widetilde \scrY \leftarrow \widetilde \scrY + span\{ Y(\mu j+1)\lambda j+1\} 
Update j \leftarrow j + 1

end

Result: Dual reduced space \widetilde \scrY .
Once \lambda j+1 is computed, we set j \leftarrow j + 1 and we update the reduced space \widetilde \scrY using
(3.14). We terminate the algorithm based on the following stopping criteria:

q-quantile

\Biggl\{ 
max

\Biggl\{ 
\Delta (\mu )\widetilde \Delta (\mu )

,
\widetilde \Delta (\mu )

\Delta (\mu )

\Biggr\} 
: \mu \in \scrP train

\Biggr\} 
\leq tol.

The resulting greedy algorithm is summarized in Algorithm 3.2.

Remark 3.4 (comparison with POD-greedy). Note that in the POD-greedy al-

gorithm [10] one would consider the orthogonal projection on the reduced space \widetilde \scrY 
instead of the actual reduced solutions in (3.17). However, for problems where the
Galerkin projection deviates significantly from the orthogonal projection, we would
expect that using the reduced solution gives superior results than the POD-greedy as
the latter does not take into account the error due to the Galerkin projection which
can be significant, for instance, close to resonances in a Helmholtz problem. We have
performed numerical experiments for the same benchmark problem (parametrized
Helmholtz equation) we consider in section 4 that confirm this conjecture.

3.3. Computational aspects of the fast-to-evaluate error estimator. At
a first glance the complexity for evaluating \mu \mapsto \rightarrow \widetilde \Delta (\mu ) is dominated by the solution
of the K reduced problems (3.1), meaning K times the solution of a (dense) linear
system of equations of size n\widetilde \scrY . The next proposition, inspired by Lemma 2.7 in [31],

shows that one can actually evaluate \mu \mapsto \rightarrow \widetilde \Delta (\mu ) by solving only one linear system of
size n\widetilde \scrY , which reduces the previous complexity by a factor K; the proof is provided

in Appendix A.6. Note, however, that the complexity for evaluating \mu \mapsto \rightarrow \widetilde \Delta (\mu ) is not
completely independent on K. Indeed, as we employ the same reduced space for the
approximation of K dual problems, the dimension of n\widetilde \scrY depends on K. The rate
of the increase of n\widetilde \scrY for growing K will be investigated in numerical experiments in
section 4.
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Proposition 3.5. The error indicator \widetilde \Delta (\mu ) defined by (3.2) can be written as

(3.19) \widetilde \Delta (\mu ) =

\Biggl( 
1

K

K\sum 
i=1

\bigl( 
ZT
i \widetilde e(\mu )\bigr) 2

\Biggr) 1/2

,

where \widetilde e(\mu ) \in \widetilde \scrY is the solution to

(3.20) \widetilde e(\mu ) \in \widetilde \scrY , \langle A(\mu )\widetilde e(\mu ), v\rangle = \langle r(\mu ), v\rangle \forall v \in \widetilde \scrY .
Besides giving an alternative way of computing \widetilde \Delta (\mu ), Proposition 3.5 also gives a

new insight into the fast-to-evaluate error estimator. Reformulating problem (3.20) as

\widetilde e(\mu ) \in \widetilde \scrY , \langle A(\mu )
\bigl( \widetilde u(\mu ) + \widetilde e(\mu )\bigr) , v\rangle = \langle f(\mu ), v\rangle \forall v \in \widetilde \scrY 

demonstrates that \widetilde e(\mu ) \in \widetilde \scrY may be interpreted as a correction of the primal approx-
imation \widetilde u(\mu ), so that \widetilde u(\mu )+\widetilde e(\mu ) is an enriched solution of the original problem (2.1)

compared to \widetilde u(\mu ). Since \widetilde \scrY is not designed for improving the primal approximation\widetilde u(\mu ), one cannot reasonably hope that the correction \widetilde e(\mu ) improves significantly \widetilde u(\mu ).
However, the norm of \widetilde e(\mu ), estimated by the fast-to-evaluate error estimator (3.19),
gives relevant information about the error \| u(\mu )  - \widetilde u(\mu )\| \Sigma . Finally, we emphasize
again that the primal reduced space is in general not a subspace of the dual reduced
space and that the intersection of the primal and dual reduced space can even be
empty. As a consequence, the right-hand side in (3.20) is in general not zero for test
functions from the dual reduced space.

Remark 3.6. Assume A(\mu ) =
\sum QA

q=1 \alpha q(\mu )Aq and f(\mu ) =
\sum Qf

q=1 \zeta q(\mu )fq with
Aq, fq parameter-independent and consider \widetilde u(\mu ) as the Galerkin projection onto some

primal reduced order space \widetilde \scrX of dimension n \widetilde \scrX . Since all inner products involving
high dimensional quantities can be preassembled, the marginal computational com-
plexity of \widetilde \Delta (\mu ) is \scrO (QAn

2\widetilde \scrY + Qfn\widetilde \scrY + QAn\widetilde \scrY n \widetilde \scrX ) for assembling (3.20), \scrO (n3\widetilde \scrY ) for

solving (3.20), and \scrO (Kn\widetilde \scrY ) for calculating (3.19). For moderate QA the marginal

computational complexity of \widetilde \Delta (\mu ) is thus dominated by \scrO (n3\widetilde \scrY ), i.e., the costs for

solving (3.20).

Remark 3.7 (comparison with hierarchical type error estimators [12]). An al-
ternative strategy for estimating the error is to measure the distance between the
approximation \widetilde u(\mu ) \in \widetilde \scrX and a reference solution uref(\mu ), which is an improved ap-
proximation of u(\mu ) compared to \widetilde u(\mu ). When using projection based model order
reduction uref(\mu ) can be defined as a Galerkin projection onto an enriched reduced

space of the form of \widetilde \scrX + \widetilde \scrY , as proposed in [12]. Unlike our approach, the space \widetilde \scrY 
ought to be adapted for capturing the error u(\mu ) - \widetilde u(\mu ). The complexity for evaluat-
ing such a hierarchical error estimator is dominated by the solution of a dense system
of equations of size dim( \widetilde \scrX + \widetilde \scrY ). In contrast, our approach requires the solution of a
system of equations whose size is independent on the dimension of the primal reduced
space \widetilde \scrX ; see Remark 3.6.

4. Numerical experiments. We numerically demonstrate various theoretical
aspects of the proposed error estimator. Our benchmark is a parameterized Helmholtz
equation for which a reduced order solution is obtained by the RB method. Estimating
the error in this reduced order model is challenging because, around the resonances,
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RANDOMIZED RESIDUAL-BASED ERROR ESTIMATORS A915

we lose the coercivity of the operator, which makes a posteriori error estimation quite
difficult with standard methods.

Let us mention here that all the training sets \scrP train (or \scrP train
K ) and all the online

sets \scrS comprise snapshots selected independently and uniformly at random in \scrP (or
in \scrP K). Those (random) sets are redrawn at each new simulation, unless mentioned
otherwise.

4.1. Benchmark: Multiparametric Helmholtz equation. Consider the pa-
rameterized Helmholtz equation

 - \partial x1x1u - \mu 1\partial x2x2u - \mu 2 u = f in D := (0, 1)\times (0, 1),

u = 0 on (0, 1)\times \{ 0\} ,
(4.1)

\partial x2u = cos(\pi x1) on (0, 1)\times \{ 1\} ,
\partial x1u = 0 on \{ 0, 1\} \times (0, 1).

The solution u = u(\mu ) is parameterized by \mu = (\mu 1, \mu 2) \in \scrP := [0.2, 1.2] \times [10, 50],
where \mu 1 accounts for anisotropy and \mu 2 is the wavenumber squared. The source term
f is defined by f(x1, x2) = f1(x1)f2(x2) for any (x1, x2) \in D, where

f1(x1) :=

\left\{                   

5 if 0 \leq x1 \leq 0.1,

 - 5 if 0.2 \leq x1 \leq 0.3,

10 if 0.45 \leq x1 \leq 0.55,

 - 5 if 0.7 \leq x1 \leq 8,

5 if 0.9 \leq x1 \leq 1,

0 else,

and f2(x2) :=

\Biggl\{ 
1 if 0.5 \leq x2 \leq 1,

0 else.

A similar test case with a smaller parameter set has been considered in [16]. The
resonances can be determined analytically and are depicted by the black lines in
Figure 2. Because of the multiparameter setting, we have resonance surfaces which
are more difficult to deal with than a union of isolated resonance frequencies in the
single-parameter setting; see [16]. Moreover, we observe that in the region [0.2, 0.4]\times 
[30, 50] \subset \scrP there are quite a few resonance surfaces that are also relatively close
together, making this an even more challenging situation both for the construction of
suitable reduced models and even more for a posteriori error estimation.

Fig. 2. Norm of the solution \| u(\mu )\| \Sigma over the online set \scrS \subset \scrP with \#\scrS = 104 and \Sigma = RX .
The lines represent the resonances of the Helmholtz equation (computed analytically).
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We employ the finite element (FE) method to discretize the weak solution of
(4.1). To that end, we define an FE space Xh \subset X := \{ v \in H1(D) : v(x1, 0) = 0\} by
means of a regular mesh with square elements of edge length h = 0.01 and FE basis
functions that are piecewise linear in x1 and x2 directions, resulting in an FE space
of N = dim(Xh) = 10100. The FE approximation uh(\mu ) is defined as the Galerkin
projection of u(\mu ) on Xh, and we denote by u(\mu ) \in \BbbR N the vector containing the
coefficients of uh(\mu ) when expressing it in the FE basis. Moreover, we denote by
RX \in \BbbR N\times N the discrete Riesz map associated with the H1-norm, which is such that
u(\mu )RXu(\mu ) = \| uh(\mu )\| 2H1(D) for any \mu \in \scrP . By default the covariance matrix \Sigma is
always chosen to be \Sigma = RX , unless mentioned otherwise.

We may also consider a QoI defined as the trace of the FE solution on the bound-
ary \Gamma = \{ 0\} \times (0, 1) \subset \partial D, meaning uh| \Gamma (\mu ). We denote by s(\mu ) \in \BbbR 100 the vector

containing those entries of u(\mu ) \in \BbbR N that are associated with the grid points on \Gamma .
Then, we can write s(\mu ) = Lu(\mu ), where L \in \BbbR 100\times N is an extraction matrix. To
measure the error associated with the QoI, we use the norm \| \cdot \| W defined as the
discretization of the L2(\Gamma ) norm, which is such that \| s(\mu )\| W = \| uh| \Gamma (\mu )\| L2(\Gamma ) for any
\mu \in \scrP .

The primal RB approximation \widetilde u(\mu ) is defined as the Galerkin projection of u(\mu )

onto the space of snapshots, meaning \widetilde u(\mu ) \in \widetilde \scrX := span\{ u(\mu 1), u(\mu 2), . . .\} , where the
parameters \mu 1, \mu 2, . . . are selected in a greedy way based on the dual norm of the
residual associated with (4.1). Each time we run Algorithm 3.2, we use a reference
solution uref(\mu ) defined as an RB approximation of u(\mu ) using n \widetilde \scrX +10 basis functions,

where n \widetilde \scrX := dim( \widetilde \scrX ). Note that this reference solution appears only in the offline
stage.

4.2. Randomized a posteriori error estimation with exact dual. We
demonstrate here the statistical properties of the error estimator \Delta (\mu ) defined by
(2.12). Figure 3 shows histograms of the effectivity indices \{ \Delta (\mu )/\| u(\mu )  - \widetilde u(\mu )\| \Sigma ,

10−1 100 101

K = 5 (w = 26.1)

10−1 100 101

K = 10 (w = 6.5)

10−1 100 101

K = 20 (w = 3.2)

Fig. 3. Histograms of \{ \Delta (\mu )/\| u(\mu ) - \widetilde u(\mu )\| \Sigma , \mu \in \scrS \} for n \widetilde \scrX = 10 for five different realizations
of the vectors Z1, . . . , ZK , one color per realization. Dashed lines: value of 1/w and w, where w is
obtained from (2.8) prescribing \delta = 10 - 2.
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\mu \in \scrS \} for five different realizations of the vectors Z1, . . . , ZK . Here, the same online
set \scrS with \#\scrS = 104 is used. We observe that for each of the five realizations, the
effectivity indices \Delta (\mu )/\| u(\mu ) - \widetilde u(\mu )\| \Sigma lie in the interval [1/w,w] for any \mu \in \scrS , as
predicted by Corollary 2.5. This theoretical bound, however, looks pessimistic, as the
effectivities for K = 5 (resp., K = 10) lie in the interval [1/w,w] that corresponds to
K = 10 (resp.,K = 20). This might be due to the rather crude union bound argument.

The solid lines in Figure 3 represent the probability density function (pdf) of\sqrt{} 
Q/K, where Q \sim \chi 2(K). This is the pdf of \Delta (\mu )/\| u(\mu )  - \widetilde u(\mu )\| \Sigma for any fixed

\mu . Even though the histograms depicted in Figure 3 are not representing that pdf
(instead they represent the distribution of the effectivity index among the set \scrS ), we
observe good accordance with the black line. In particular we observe a concentration
phenomenon of the histograms around 1 when K increases.

4.3. Approximation of the dual problems.

4.3.1. Construction of the dual space. In Figure 4 we compare the maxi-
mum, the minimum, the 95\% quantile, and the 99\% quantile of \{ \widetilde \Delta (\mu )/\| u(\mu ) - \widetilde u(\mu )\| \Sigma :
\mu \in \scrS \} , where the dual reduced space is constructed either by Algorithm 3.1 (with
\| \cdot \| \ast = \| \cdot \| R - 1

X
), by Algorithm 3.2, or by a POD. We observe that by using Algo-

rithm 3.2 we need many fewer dual basis functions than for Algorithm 3.1 and for the
POD. In detail, we see, for instance, in Figures 4(d), 4(e), and 4(f) that for K = 5
employing Algorithm 3.2 requires about n\widetilde \scrY = 20 dual basis functions to have 99\%
of the samples in the interval [1/3, 3], while when using the Algorithm 3.1 or the
POD we need about 35 or 30 basis functions, respectively. We emphasize that for
K = 20 the difference is even larger. Moreover, when considering the QoI (last row
of Figure 4), the difference between Algorithm 3.2 and Algorithm 3.1 and POD is
less pronounced but still considerable. This significant disparity can be explained by
the fact that while both the POD and Algorithm 3.1 try to approximate the K dual
solutions \widetilde Y1(\mu ), . . . , \widetilde YK(\mu ), Algorithm 3.2 is driven by the approximation of the error
estimator \Delta (\mu ) and thus a scalar quantity; compare the selection criteria (3.11) and
(3.15). This also explains why the discrepancy increases significantly for growing K:
while POD and Algorithm 3.1 have to approximate a more complex object (the K

dual solutions), we only obtain an additional summand in \widetilde \Delta (\mu ) for each additional
random right-hand side. Let us also highlight the significant difference between the
maximum value and the 99\% quantile over the parameter set and the somewhat er-
ratic behavior of the maximum, which both seem to be due to the resonance surfaces.
As indicated above this motivates considering, for instance, the 99\% quantile as a
stopping criterion in both Algorithm 3.1 and Algorithm 3.2.

4.3.2. Dimension of the dual space. Table 3 shows statistics of the dimen-
sion of the dual reduced space \widetilde \scrY obtained by Algorithm 3.1 with different stopping
criteria. We consider tol = 0.5 and relax this tolerance by multiplication with a vary-
ing relaxation parameter \rho taking the values 1, 10, and 100. We observe that except
for tol \cdot \rho = 50 and moderate K the dimension of the dual space is in general quite
large. Comparing with Figure 4, we observe that choosing tol \cdot \rho = 50 is sufficient to
obtain an effectivity close to 1. Notice, however, that the use of Corollary 3.2 requires
tol \cdot \rho \approx \varepsilon \leq 1/w \leq 1, which excludes tol \cdot \rho = 5 and tol \cdot \rho = 50. Figure 5 shows
the evolution of the stopping criteria during the first 80 iterations of Algorithm 3.1.
We observe a significant impact of K on the convergence profiles: with K = 20 the
curves do not attain the tolerance tol = 0.5, which explains the results we observed
in Table 3.
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(f) POD, RX , K = 5
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(h) Alg. 3.1, RX , K = 20
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(i) POD, RX , K = 20

0 20 40 60 80
10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)

(j) Alg. 3.2, QoI, K = 20
0 20 40 60 80

10−2

10−1

100

101

102

103 max and min
quantile(99%)
quantile(95%)
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Fig. 4. Maximum, minimum, and two quantiles (99\% and 95\%) of \{ \widetilde \Delta (\mu )/\| u(\mu )  - \widetilde u(\mu )\| \Sigma :

\mu \in \scrS \} as a function of n \widetilde \scrY . The dual reduced space \widetilde \scrY is constructed by Algorithm 3.2 (left

column), Algorithm 3.1 (middle column), and POD (right column). The first three rows correspond
to different values of K = 2, 5, 20 with \Sigma = RX . The last row corresponds to \Sigma = LTRWL (the
QoI) with K = 20. On each row we use the same realization of the vectors Z1, . . . , ZK , which allows
a fair comparison of the different algorithms. For each plot we use \#\scrP train = 103 and \#\scrS = 104.
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Table 3
Mean (\pm standard deviation) of n \widetilde \scrY over 100 realizations of the K vectors Z1, . . . , ZK . Here \widetilde \scrY 

is built using Algorithm 3.1 with different stopping criterion, i.e., with different values for q and \rho .

tol \cdot \rho = 0.5 (\rho = 1) tol \cdot \rho = 5 (\rho = 10) tol \cdot \rho = 50 (\rho = 100)
K = 5 47.7 (\pm 1.9) 39.9 (\pm 3.24) 30.6 (\pm 9.3)
K = 10 74.2 (\pm 1.75) 56.2 (\pm 4.4) 43.5 (\pm 10.8)
K = 20 > 80 > 80 65.4 (\pm 9.65)
K = 50 > 80 > 80 > 80

(a) Stopping criterion: max (q = 1) over \scrP train is \leq tol \cdot \rho 

tol \cdot \rho = 0.5 (\rho = 1) tol \cdot \rho = 5 (\rho = 10) tol \cdot \rho = 50 (\rho = 100)
K = 5 45.4 (\pm 2.14) 35.9 (\pm 3.29) 16.9 (\pm 6.99)
K = 10 70.6 (\pm 1.83) 53.7 (\pm 4.17) 31 (\pm 9.4)
K = 20 > 80 > 80 55.1 (\pm 9.43)
K = 50 > 80 > 80 > 80

(b) Stopping criterion: 97.5\%-quantile (q = 0.975) over \scrP train is \leq tol \cdot \rho 

0 20 40 60 80
10−1

100

101

102

103

K = 5

0 20 40 60 80
10−1

100

101

102

103

K = 10

0 20 40 60 80
10−1

100

101

102

103

K = 20

Fig. 5. Evolution of the 97.5\% quantile of \{ \| A(\mu )T \widetilde Yi(\mu )  - Zi\| \ast : (i, \mu ) \in \scrP train
K \} during the

first 80 iterations of Algorithm 3.1. Each gray line corresponds to one realization of Z1, . . . , ZK and
the black lines are the mean of the gray lines.

In comparison, Algorithm 3.2 yields much smaller dual reduced spaces; compare
Tables 3 and 4. We see in Table 4 that, except for tol = 1.5, the dimension of the
dual RB space \widetilde \scrY is smaller than the dimension of the primal RB space \widetilde \scrX when using
the 95\%, 97.5\%, 99\% quantiles for the stopping criterion. Moreover, for instance for
tol = 3, we see that for n \widetilde \scrX = 20, 30 we can use (significantly) less dual than primal
basis functions. However, we also see that tight tolerances for tol will lead in general to
dual reduced spaces that have a larger dimension than the primal RB space. As larger
tolerances \geq 5 may lead to an significant underestimation of the error (see Figure 8),
tolerances for tol between 1 and 4 seem to be preferable. Figure 6 shows the evolution
of the stopping criteria during the first 80 iterations of Algorithm 3.2. Note that for
higher tolerances for tol it may happen for a realization that Algorithm 3.2 terminates
in a valley between two peaks.

Furthermore, we observe in Table 4 a very large standard deviation of about 10 if
we consider the maximum over the offline training set, while for the 95\%, 97.5\%, 99\%
quantiles we have often a standard deviation of about 2. Additionally, the dimension
of the dual reduced spaces for the maximum is much larger than for the considered
quantiles, but among the considered quantiles we observe only very moderate changes.
Again, it seems that this behavior is due to the resonance surfaces. Moreover, as we
obtain a very satisfactory effectivity of \widetilde \Delta (\mu ) when we use, for instance, the 99\%
quantile (see subsection 4.3.3), we conclude that using quantiles between 97.5\% and
99\% as a stopping criterion in Algorithm 3.2 seems advisable.
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Table 4
Mean (\pm standard deviation) of n \widetilde \scrY over 100 realizations of the K vectors Z1, . . . , ZK . Here \widetilde \scrY 

is built using Algorithm 3.2 with different stopping criterion q and tol, and with different primal
approximation n \widetilde \scrX = 10, 20, 30. Here \#\scrP train = 104.

tol = 1.5 tol = 2 tol = 3 tol = 5
K = 5 26.9 (\pm 4.41) 23 (\pm 5.58) 19 (\pm 6.35) 14.8 (\pm 6.52)
K = 10 28.1 (\pm 7.64) 22.1 (\pm 5.72) 16.4 (\pm 5.25) 12.3 (\pm 3.56)
K = 20 28.4 (\pm 10.2) 22.4 (\pm 9.56) 16.3 (\pm 8.38) 13.1 (\pm 8.04)
K = 50 31.8 (\pm 11.3) 21.8 (\pm 8.06) 14.9 (\pm 4.93) 11.3 (\pm 2.68)

(a) Stopping criterion: max of \alpha (q = 1) over \scrP train is \leq tol, n \widetilde \scrX = 10

tol = 1.5 tol = 2 tol = 3 tol = 5
K = 5 18.7 (\pm 4.89) 13.9 (\pm 4.23) 9.7 (\pm 4.25) 6.66 (\pm 3.22)
K = 10 18.2 (\pm 5) 12 (\pm 3.51) 7.64 (\pm 2.08) 6.08 (\pm 1.64)
K = 20 21.9 (\pm 6.96) 13.9 (\pm 4.18) 8.88 (\pm 2.56) 6.02 (\pm 1.9)
K = 50 25.1 (\pm 9.77) 15.7 (\pm 5.74) 9.44 (\pm 3.44) 6.12 (\pm 2.03)

(b) Stopping criterion: 97.5\%-quantile (q = 0.975) over \scrP train is \leq tol, n \widetilde \scrX = 10

q = 100\% (max) q = 99\% q = 97.5\% q = 95\%
K = 5 19 (\pm 6.35) 11.7 (\pm 5.14) 9.7 (\pm 4.25) 8.52 (\pm 3.84)
K = 10 16.4 (\pm 5.25) 9.5 (\pm 2.59) 7.64 (\pm 2.08) 6.8 (\pm 2.01)
K = 20 16.3 (\pm 8.38) 10.5 (\pm 3.29) 8.88 (\pm 2.56) 7.38 (\pm 2.55)
K = 50 14.9 (\pm 4.93) 10.7 (\pm 3.46) 9.44 (\pm 3.44) 7.16 (\pm 2.58)

(c) Stopping criterion: q-quantile over \scrP train is \leq tol = 3, n \widetilde \scrX = 10

n \widetilde \scrX = 10 n \widetilde \scrX = 20 n \widetilde \scrX = 30

K = 5 9.7 (\pm 4.25) 6.74 (\pm 1.65) 7.56 (\pm 2.27)
K = 10 7.64 (\pm 2.08) 9.86 (\pm 2.55) 9.62 (\pm 3.1)
K = 20 8.88 (\pm 2.56) 14.2 (\pm 3.57) 13.6 (\pm 2.7)
K = 50 9.44 (\pm 3.44) 22.1 (\pm 5.22) 23.1 (\pm 5.27)

(d) Stopping criterion: 97.5\%-quantile (q = 0.975) over \scrP train is \leq tol = 3

0 20 40 60 80
100

101

102

K = 5

0 20 40 60 80
100

101

102

K = 10

0 20 40 60 80
100

101

102

K = 20

Fig. 6. Evolution of the 97.5\% quantile of \{ max\{ \Delta ref (\mu )\widetilde \Delta (\mu )
;

\widetilde \Delta (\mu )
\Delta ref (\mu )

\} : \mu \in \scrP train\} during the first

80 iterations of Algorithm 3.1. Here, n \widetilde \scrX = 30. Each gray line corresponds to one realization of
Z1, . . . , ZK and the black lines are the mean of the gray lines.

Finally, we observe both a very moderate dependency of the dimension of the dual
reduced space constructed by Algorithm 3.2 on K and a rather mild dependency on
n \widetilde \scrX . Therefore, we conjecture that the proposed error estimator might also be applied
to rather complex problems.
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10−1 100 101

K = 5 (w = 26.1)
nỸ = 14± 5

10−1 100 101

K = 10 (w = 6.5)
nỸ = 21± 7

10−1 100 101

K = 20 (w = 3.2)
nỸ = 28± 8

Fig. 7. Histograms of \{ \widetilde \Delta (\mu )/\| u(\mu )  - \widetilde u(\mu )\| \Sigma : \mu \in \scrS \} with \#\scrS = 104 for five realizations of

K random vectors Z1, . . . , ZK (one color per realization). The dual reduced space \widetilde \scrY is built using
Algorithm 3.2 with q = 0.99, tol = 2, and \#\scrP train = 103. Here n \widetilde \scrX = 20 and \Sigma = RX . The vertical

dashed line correspond to w - 1 and w where w is obtained from (2.8) prescribing \delta = 10 - 2. The gray
area corresponds to the amplification of the confidence interval due to \alpha \approx tol; see Proposition 3.3.

4.3.3. Performance of \widetilde \Delta (\bfitmu ) on an online parameter set. In Figure 7

we plot the histograms of \{ \widetilde \Delta (\mu )/\| u(\mu ) - \widetilde u(\mu )\| \Sigma : \mu \in \scrS \} for five realizations of the

random vectors Z1, . . . , ZK , where the dual reduced space \widetilde \scrY is built via Algorithm 3.2.
We observe a similar behavior as for the error estimator \Delta (\mu ) with the exact dual;

see Figure 3. In particular for all \mu \in \scrS the effectivity index \widetilde \Delta (\mu )/\| u(\mu )  - \widetilde u(\mu )\| \Sigma 
lies between (\alpha w) - 1 and (\alpha w) (see Proposition 3.3), where \alpha is estimated by tol = 2.
Finally, we highlight that Figure 7 demonstrates that with near certainty we obtain
effectivities near unity with a dual space dimension on the same order as (or less than)
the primal space dimension. Hence the costs for the a posteriori error estimator are
about the same as those for constructing the primal approximation.

In order to understand the average performance of the online-efficient error in-
dicator, we plot in Figure 8 the histograms of the concatenation of 100 realizations
of the effectivity indices \{ \widetilde \Delta (\mu )/\| u(\mu )  - \widetilde u(\mu )\| \Sigma : \mu \in \scrS \} . Here, for each new real-
ization, we redraw the K vectors Z1, . . . , ZK and the training set \scrP train, then run
Algorithm 3.2 to construct the dual reduced space \widetilde \scrY , and finally redraw the online
set \scrS . We observe that for a larger tolerance tol the histograms are shifted to the
left, which seems to be a bit stronger for larger K (corresponding to smaller w). This

is due to the fact that Algorithm 3.2 is stopped earlier and the dimension of \widetilde \scrY is
not sufficiently large to approximate well the error estimator \Delta (\mu ). Nevertheless, we

observe that the effectivity indices \widetilde \Delta (\mu )/\| u(\mu )  - \widetilde u(\mu )\| \Sigma are always in the interval
[(\alpha w) - 1, (\alpha w)], where \alpha \approx tol, as expected thanks to Proposition 3.3. This shows
that even with a rather crude approximation of the dual solutions, it is safe to use
the fast-to-evaluate error estimator \widetilde \Delta (\mu ), as the gray area is taking into account the
approximation error in the error estimator.

To guarantee that the effectivity indices lie in a user-defined interval of the form
of [c - 1, c], it is sufficient to choose \alpha and w such that \alpha w = c; see Proposition 3.3.
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10−1 100 101

K = 10 (w = 6.5)
tol = 3
nỸ = 12± 2

10−1 100 101

K = 10 (w = 6.5)
tol = 2
nỸ = 21± 7

10−1 100 101

K = 10 (w = 6.5)
tol = 1.5
nỸ = 33± 5

10−1 100 101

K = 20 (w = 3.2)
tol = 3
nỸ = 16± 4

10−1 100 101

K = 20 (w = 3.2)
tol = 2
nỸ = 28± 8

10−1 100 101

K = 20 (w = 3.2)
tol = 1.5
nỸ = 42± 10

10−1 100 101

K = 50 (w = 2.1)
tol = 3
nỸ = 26± 5

10−1 100 101

K = 50 (w = 2.1)
tol = 2
nỸ = 39± 7

10−1 100 101

K = 50 (w = 2.1)
tol = 1.5
nỸ = 56± 9

Fig. 8. Histograms of the concatenation of 100 realizations of \{ \widetilde \Delta (\mu )/\| u(\mu ) - \widetilde u(\mu )\| \Sigma : \mu \in \scrS \} 
where at each realization, the vectors Z1, . . . , ZK , the training set \scrP train, and the online set \scrS are
redrawn and \widetilde \scrY is rebuilt using Algorithm 3.2 with q = 0.99. The solid lines are the pdf of

\sqrt{} 
Q/K,

where Q \sim \chi 2(K). As in Figure 7, the gray area corresponds to the amplification of the confidence
interval [(\alpha w) - 1, (\alpha w)] due to \alpha \approx tol. Here n \widetilde \scrX = 20, \Sigma = RX , \delta = 10 - 2, \#\scrP train = 103, and

\#\scrS = 104.

As a consequence there is a degree of freedom in the choice of \alpha and w, meaning in
the choice of tol \approx \alpha and K = K(w) via relation (2.8). To avoid a too-large shift of
the histogram to the left as, for instance, observed for w = 2.1 and tol = 3 it seems
advisable to choose \alpha at least as small as w. Additionally, the plots corresponding
to w = 3.2, 2.1 and \alpha = 2 highlight the importance of choosing \alpha small enough
compared to w if one is interested in rather tight estimates. However, decreasing \alpha 
has, as anticipated, a much stronger effect on the dimension of the dual reduced space
(see Figure 8). Therefore, for the considered test case choosing \alpha /w \in (1/3, 1) seems
to be a good compromise between computational costs and effectivity of the error
estimator. We also see that, for instance, w = 6.5 and \alpha = 3 or \alpha = 2 yield already
very good results in this direction.

5. Conclusions. In this paper we introduced a randomized a posteriori error es-
timator for low-rank approximations, which is constant-free and is both reliable and
efficient at given high probability. Here, the upper and lower bounds of the effectivity
are chosen by the user. To derive the error estimator we exploit the concentration
phenomenon of Gaussian maps. Exploiting the error residual relationship and ap-
proximating the associated random dual problems via projection-based model order
reduction yields a fast-to-evaluate a posteriori error estimator. We highlight that we
had to put some effort into proving the concentration inequalities but regarding the
parametrized problem we only relied on its well-posedness and the definition of the
adjoint operator. Therefore, there is some chance that the presented framework might
be extended quite easily to more complex problems.

D
ow

nl
oa

de
d 

02
/1

1/
20

 to
 1

8.
10

.2
9.

25
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMIZED RESIDUAL-BASED ERROR ESTIMATORS A923

To construct the dual reduced space we employed a greedy algorithm guided by
a QoI that assesses the quality of the fast-to-evaluate error estimator. The numerical
experiments for a multiparametric Helmholtz problem show that we obtain much
smaller dual reduced spaces than with a standard greedy algorithm driven by the
dual norm of the residual or with the POD. Moreover, the numerical experiments
demonstrate that for moderate upper bounds for the effectivities of about 20 the
dimension of the dual reduced space needs only to be a bit more than half of the
dimension of the primal reduced space. If a very tight effectivity bound of about
2 or 3 is desired the dual reduced spaces have to be about twice as large as the
primal approximation spaces. We emphasize, however, that even for larger bounds
of the effectivity thanks to the concentration of measure the effectivity is still very
often close to one. Furthermore, we observed only a very moderate dependence of
the dimension of the dual reduced space on the number of random vectors K, which
controls the variance of the estimator and a very mild dependence on the dimension
on the (primal) reduced space. This might indicate that the error estimator will also
perform well for challenging problems. Finally, we showed that to compute the fast-
to-evaluate a posteriori error estimator we need to solve one dense linear system of
equations of the size of the dimension of the dual reduced space.

Due to the above the proposed a posteriori error estimator features a very favor-
able computational complexity and its computational costs are often about the same
as the costs for the low-rank approximation or even smaller for moderate effectivity
bounds. The presented error estimator can thus be more advantageous from a com-
putational viewpoint than error estimators based on the dual norm of the residual
and a (costly to estimate) stability constant or hierarchical type error estimators.

Appendix A. Proofs.

A.1. Proof of Proposition 2.1. First we give a bound for \BbbP \{ Q \leq Kw - 2\} . This
quantity corresponds to the cumulative distribution function of the \chi 2(K) distribution
evaluated at Kw - 2. We have \BbbP \{ Q \leq Kw - 2\} = 1

\Gamma (K/2)\gamma (
K
2 ,

K
2w2 ), where \Gamma (\cdot ) is the

gamma function such that \Gamma (a) =
\int \infty 
0

ta - 1e - tdt and \gamma (\cdot , \cdot ) the lower incomplete

gamma function defined by \gamma (a, x) =
\int x

0
ta - 1e - tdt. Following the lines of [18], we can

write \gamma (a, x) \leq 
\int x

0
ta - 1dt = 1

ax
a and

\Gamma (a) =

\int a

0

ta - 1e - tdt+

\int \infty 

a

ta - 1e - tdt \geq e - a

\int a

0

ta - 1dt+aa - 1

\int \infty 

a

e - tdt = 2aa - 1e - a,

whenever a \geq 1. Then, if K \geq 2 we have
(A.1)

\BbbP \{ Q \leq Kw - 2\} = 1

\Gamma (K/2)
\gamma 
\Bigl( K
2
,
K

2w2

\Bigr) 
\leq (K/2)eK/2

2(K/2)K/2
\cdot (K/(2w2))K/2

K/2
=

1

2

\Bigl( \surd e
w

\Bigr) K
.

Now we give a bound for \BbbP \{ Q \geq Kw2\} . Using a Markov inequality, for any 0 \leq t <
1/2 we can write

\BbbP \{ Q \geq Kw2\} = \BbbP \{ etQ \geq etKw2

\} \leq \BbbE (etQ)
etKw2 =

(1 - 2t) - K/2

etKw2 ,

where for the last equality we used the expression for the moment-generating function
of \chi 2(K). The minimum of the above quantity is attained for t = (w2  - 1)/(2w2) so
we can write
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\BbbP \{ Q \geq Kw2\} \leq (w2e1 - w2

)K/2 =
\Bigl( \surd e
w

\Bigr) K
(w2e - w2/2)K \leq 

\Bigl( \surd e
w

\Bigr) K 2K

eK
\leq 1

2

\Bigl( \surd e
w

\Bigr) K
for any K \geq 3. Together with (A.1), the previous inequalities allow writing

\BbbP 
\bigl\{ 
Kw - 2 \leq Q \leq Kw2

\bigr\} 
= \BbbP \{ Q \leq Kw - 2\} + \BbbP \{ Q \geq Kw2\} \leq 

\Bigl( \surd e
w

\Bigr) K
for any K \geq 3, which concludes the proof.

A.2. Proof of Corollary 2.2. A union bound allows writing

\BbbP 
\Bigl\{ 
w - 1\| v\| \Sigma \leq \| \Phi v\| 2 \leq w\| v\| \Sigma \forall v \in \scrM 

\Bigr\} 
\geq 1 - 

\sum 
v\in \scrM 

\BbbP 
\Bigl\{ 
w - 1\| v\| \Sigma \leq \| \Phi v\| 2 \leq w\| v\| \Sigma 

\Bigr\} 
= 1 - (\#\scrM ) \BbbP 

\bigl\{ 
Kw - 2 \leq Q \leq Kw2\} \geq 1 - (\#\scrM )

\Bigl( \surd e
w

\Bigr) K
,

where, for the last inequality, we used Proposition 2.1 (assuming w >
\surd 
e and K \geq 3

hold). Given 0 < \delta < 1, condition K \geq log(\#\scrM )+log(\delta  - 1)
log(w/

\surd 
e)

is equivalent to 1  - 
(\#\scrM )(

\surd 
e

w )K \geq 1  - \delta and ensures that (2.3) holds for all v \in \scrM with probability
larger than 1 - \delta .

A.3. Proof of Proposition 3.1. Let \Psi (\mu ) = K - 1/2[Y1(\mu ), . . . , YK(\mu )]T and\widetilde \Psi (\mu ) = K - 1/2[\widetilde Y1(\mu ), . . . , \widetilde YK(\mu )]T so that, from (2.12) and (3.2), we can write \Delta (\mu ) =

\| \Psi (\mu )r(\mu )\| 2 and \widetilde \Delta (\mu ) = \| \widetilde \Psi (\mu )r(\mu )\| 2. Using a triangle inequality we can write

| \Delta (\mu ) - \widetilde \Delta (\mu )| =
\bigm| \bigm| \| \Psi (\mu )r(\mu )\| 2  - \| \widetilde \Psi (\mu )r(\mu )\| 2

\bigm| \bigm| \leq \| \Psi (\mu )r(\mu ) - \widetilde \Psi (\mu )r(\mu )\| 2.
Dividing by \| u(\mu ) - \widetilde u(\mu )\| \Sigma we can write

| \Delta (\mu ) - \widetilde \Delta (\mu )| 
\| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq \| (\Psi (\mu ) - \widetilde \Psi (\mu ))r(\mu )\| 2

\| u(\mu ) - \widetilde u(\mu )\| \Sigma =
\| (\widetilde \Psi (\mu ) - \Psi (\mu ))A(\mu )(u(\mu ) - \widetilde u(\mu ))\| 2

\| u(\mu ) - \widetilde u(\mu )\| \Sigma 
\leq sup

v\in \BbbR N\setminus \{ 0\} 

\| (\widetilde \Psi (\mu ) - \Psi (\mu ))A(\mu )v\| 2
\| v\| \Sigma 

= sup
\| v\| \Sigma =1

\sqrt{}    1

K

K\sum 
i=1

\bigl( 
(A(\mu )T \widetilde Yi(\mu ) - Zi)T v

\bigr) 2
\leq sup

\| v\| \Sigma =1

max
1\leq i\leq K

| (A(\mu )T \widetilde Yi(\mu ) - Zi)
T v| 

= max
1\leq i\leq K

\| (A(\mu )T \widetilde Yi(\mu ) - Zi)
T v\| \Sigma  - 1 ,

which yields (3.3) and concludes the proof.

A.4. Proof of Corollary 3.2. By Proposition 3.1 we have | \Delta (\mu )  - \widetilde \Delta (\mu )| \leq 
\varepsilon \| u(\mu ) - \widetilde u(\mu )\| \Sigma , which is equivalent to

\Delta (\mu ) - \varepsilon \| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq \widetilde \Delta (\mu ) \leq \Delta (\mu ) + \varepsilon \| u(\mu ) - \widetilde u(\mu )\| \Sigma .
By Corollary 2.5, it holds with probability larger than 1 - \delta that w - 1\Delta (\mu ) \leq \| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq w\Delta (\mu ) for all \mu \in \scrS . Then with the same probability we have

(w - 1  - \varepsilon )\| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq \widetilde \Delta (\mu ) \leq (w + \varepsilon )\| u(\mu ) - \widetilde u(\mu )\| \Sigma 
for all \mu \in \scrS , which yields (3.6) and concludes the proof.
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A.5. Proof of Proposition 3.3. By Corollary 2.5, it holds with probability
larger than 1 - \delta that w - 1\Delta (\mu ) \leq \| u(\mu ) - \widetilde u(\mu )\| \Sigma \leq w\Delta (\mu ) for all \mu \in \scrS . Then with
the same probability we have

\| u(\mu ) - \widetilde u(\mu )\| \leq w\Delta (\mu ) \leq w

\Biggl( 
sup
\mu \prime \in \scrS 

\Delta (\mu \prime )\widetilde \Delta (\mu \prime )

\Biggr) \widetilde \Delta (\mu )
(3.9)

\leq (\alpha w)\widetilde \Delta (\mu )

and

\| u(\mu ) - \widetilde u(\mu )\| \geq w - 1\Delta (\mu ) \geq w - 1

\Biggl( 
inf
\mu \prime \in \scrS 

\Delta (\mu \prime )\widetilde \Delta (\mu \prime )

\Biggr) \widetilde \Delta (\mu )
(3.9)

\geq (\alpha w) - 1 \widetilde \Delta (\mu )

for any \mu \in \scrS , which yields (3.8) and concludes the proof.

A.6. Proof of Proposition 3.5. By construction, both \widetilde Yi(\mu ) and \widetilde e(\mu ) belong
to \widetilde \scrY . Then for all i = 1, . . . ,K we can write

\widetilde Yi(\mu )
T r(\mu ) = \langle r(\mu ), \widetilde Yi(\mu )\rangle 

(3.20)
= \langle A(\mu )\widetilde e(\mu ), \widetilde Yi(\mu )\rangle 

= \langle \widetilde e(\mu ), A(\mu )T \widetilde Yi(\mu )\rangle 
(3.1)
= \langle \widetilde e(\mu ), Zi\rangle = ZT

i \widetilde e(\mu ).
Then, by definition (3.2) we can write

\widetilde \Delta (\mu ) =

\Biggl( 
1

K

K\sum 
k=1

\bigl( \widetilde Yi(\mu )
T r(\mu )

\bigr) 2\Biggr) 1/2

=

\Biggl( 
1

K

K\sum 
k=1

\bigl( 
ZT
i \widetilde e(\mu )\bigr) 2

\Biggr) 1/2

,

which gives the result.
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