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Abstract

Young exoplanets are snapshots of the planetary evolution process. Planets that orbit stars in young associations
are particularly important because the age of the planetary system is well constrained. We present the discovery of
a transiting planet larger than Neptune but smaller than Saturn in the 45Myr Tucana–Horologium young moving
group. The host star is a visual binary, and our follow-up observations demonstrate that the planet orbits the G6V
primary component, DS Tuc A (HD 222259A, TIC 410214986). We first identified transits using photometry from
the Transiting Exoplanet Survey Satellite (TESS; alerted as TOI 200.01). We validated the planet and improved the
stellar parameters using a suite of new and archival data, including spectra from Southern Astrophysical Research/
Goodman, South African Extremely Large Telescope/High Resolution Spectrograph and Las Cumbres
Observatories/Network of Robotic Echelle Spectrographs; transit photometry from Spitzer; and deep adaptive
optics imaging from Gemini/Gemini Planet Imager. No additional stellar or planetary signals are seen in the data.
We measured the planetary parameters by simultaneously modeling the photometry with a transit model and a
Gaussian process to account for stellar variability. We determined that the planetary radius is 5.70±0.17 R⊕ and
that the orbital period is 8.1 days. The inclination angles of the host star’s spin axis, the planet’s orbital axis, and
the visual binary’s orbital axis are aligned within 15° to within the uncertainties of the relevant data. DSTucAb is
bright enough (V= 8.5) for detailed characterization using radial velocities and transmission spectroscopy.

Key words: open clusters and associations: individual (Tucana-Horologium) – planets and satellites: detection –
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1. Introduction

Exoplanets do not form with the properties with which we
observe them today: migration and dynamical interactions
change their orbital parameters, high-energy radiation from their
host stars causes atmospheric mass loss, and gaseous planets
contract as they cool. The demographics of field-age (typically
>1 Gyr) exoplanetary systems offers one way to learn about
the evolutionary history of exoplanets. For example, the gap in
the observed radius distribution of close-in planets (between
super-Earths and mini-Neptunes) has been used as a probe of
photoevaporation and to constrain typical core compositions
(Lopez 2017; Owen & Wu 2017); and Owen & Lai (2018)
explained the dearth of close-in giant planets as the joint result of
high-eccentricity migration and photoevaporation.

Observations of planets young enough to still be undergoing
dynamical and atmospheric changes provide a more direct way
to probe planetary evolution; and planets in young stellar
associations are particularly useful because the ages of these
systems are known more precisely and accurately than those of
their counterparts in the galactic field. The typically close-
orbiting planets discovered through transit and radial velocity
(RV) surveys complement the constraints on planet formation
beyond the snow line available from direct imaging (e.g.,
Brandt et al. 2014; Bowler et al. 2015; Clanton & Gaudi 2016;
Nielsen et al. 2019). They are also likely to be young
representatives of the field-age exoplanets on which planetary
demographics studies are based.

RV programs have detected Jupiter-mass planets in young
clusters (Quinn et al. 2012, 2014), but are hindered by the RV
jitter exhibited by these young, active stars (e.g., Saar &
Donahue 1997; Paulson et al. 2004). Thanks to its excellent
photometric precision and wide-area coverage, K2 yielded a
surge of exoplanet discoveries around young stars via the
transit method. This included planets in the Hyades (David
et al. 2016a; Mann et al. 2016a), Upper Scorpius (David et al.
2016b; Mann et al. 2016b), Praesepe (Mann et al. 2017;
Rizzuto et al. 2018; Livingston et al. 2019), and Taurus-Auriga
(David et al. 2019) associations.

The Transiting Exoplanet Survey Satellite (TESS) will
survey 80% of the sky during its prime mission, with a focus
on bright stars. TESS enables the transit search for young
exoplanets in associations to be substantially expanded; and
motivates our collaboration, the TESS Hunt for Young and
Maturing Exoplanets (THYME) Project.

TESS provides the first opportunity for extensive transit
surveys of stars in young moving groups (YMGs). YMGs are
dynamically unbound associations of stars that are identified
based on their common motion through the galaxy. YMGs
have ages 300Myr; and probe a more continuous range of
ages than do young stellar clusters (see e.g., Bell et al. 2015).
The stellar environments in YMGs also differ from those found
in high-density, longer-lasting star clusters such as Praesepe or
Pleiades. These clusters are less compact, and therefore stellar
dynamical interactions are less frequent; as a result, they may
be more characteristic of the precursors of exoplanetary
systems that orbit typical field stars. Dynamical studies indicate
that stellar interactions in open clusters are unlikely to disrupt
planetary systems (e.g., Bonnell et al. 2001; Adams et al.
2006), but milder impacts, such as changes in eccentricity, are
possible (Spurzem et al. 2009). Finally, most known YMGs are
substantially less distant than stellar clusters (see e.g., Gagné &
Faherty 2018). This provides significant advantages for

detailed characterization of the planets through techniques
such as transmission spectroscopy and precise RV monitoring.
We report the discovery (Figure 1) of a close-in, transiting
planet with a radius in between those of Neptune and Saturn.
The stellar host is the primary component of DS Tuc (DSTuc
A, HD 222259A), which is a member of the Tucana–
Horologium (Tuc-Hor) YMG. DS Tuc was one of the original
members of the Tucana association of co-moving stars
identified by Zuckerman & Webb (2000). Tucana was soon
identified as being physically associated with the Horologium
association of active stars (Torres et al. 2000), and together
they formed one of the first known YMGs.
DS Tuc is a visual binary (Torres 1988), consisting of a G6V

primary and a K3V secondary (Torres et al. 2006) separated by
5″. Soderblom et al. (1998) suggested that the secondary
(DSTuc B, HD 222259B) is itself a short period binary based
on RV variations, and Cutispoto et al. (2002) reported spectral
types for the components of K3/4V and K5V but did not
provide further information. As we will discuss in Section 3.2,
our RV measurements demonstrate that DSTuc B is not likely
to be a short-period binary.
In Section 2 we present discovery data from TESS and

follow-up photometry from Spitzer. We additionally present
new high-resolution spectra and long-term photometric mon-
itoring, and discuss archival high-resolution spectra. In
Section 3 we update the stellar parameters, and analyze the
RVs and stellar rotation. In Section 4, we investigate the overall
DS Tuc system, including modeling of the binary star orbit, and
searching for additional companions in high-contrast imaging
and in the TESS transit data. We present the results of our
transit analysis, including identifying the stellar host as DS Tuc
A and assessing false-positive scenarios, in Section 5. We
discuss the overall system architecture and prospects for future
follow-up in Section 6 and briefly summarize our findings in
Section 7.

2. Observations

2.1. Photometry

2.1.1. TESS

TESS was launched on 2018 April 18 and commenced
science operations on 2018 July 25. TESS uses its four small
(10 cm effective aperture) cameras to monitor 24°×96°
sectors of sky nearly continuously over 27 day campaigns.
DS Tuc was observed in the first sector of science operations
during late 2018 July and August and was pre-selected for fast
(two minute) cadence observations because of its membership
in the young Tucana–Horologium Moving Group.28 After the
TESS data were downlinked to Earth, they were processed by
the Science Processing and Operations Center (SPOC) pipeline
at NASA Ames (Jenkins 2015; Jenkins et al. 2016), which
calibrated the TESS pixels, extracted light curves, de-blended
light from nearby contaminating stars, removed common-mode
systematic errors, high-pass filtered the light curve, and
searched for transits. We used the pre-search data condition
simple aperture photometry (PDC-SAP) light curve and
systematics solution throughout this Letter, masking the time
1346.5<t<1350, except in our transit injection and

28 The target was requested as part of our Guest Investigator program
GO11175 (PI: Mann), as well as by GO11176 (PI: Czekala) and GO11250 (PI:
Walter).
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recovery tests (Section 4.4). This time corresponds to the loss
of fine guiding, where t is given in TESS barycentric Julian date
(BJD −2,457,000.0).

SPOC used the Transiting Planet Search module (TPS) to
search for transits in the PDC-SAP data, applying a matched
filter to compensate for stellar variability. TPS identified
several “threshold crossing events,” or possible transiting
planet signals (TCEs), in the light curves of both DS Tuc A and
B. Upon visual inspection of results from the initial run of TPS,
our team of vetters concluded that while the periodicities
detected by TPS did not corresponded to transiting planets,
some of the TCEs appeared transit-like. We identified two
candidate transits 8.1 days apart; a third happened to fall during
the three-day period of time when TESS lost fine guiding. We
alerted the community to the detection via the MIT TESS Alerts
webpage29 under the designation TOI-200. We note that the
alert was issued in early November based on the first TPS run
from late August. The second, archival TPS run from mid-
September, which was not included in the alert, detected a TCE
that corresponds to DS Tuc Ab and that passed all diagnostic
tests in the data validation (DV) report.

2.1.2. Spitzer

Based on the TESS alert, we scheduled observations of two
transits with the Spitzer Space Telescope, which were conducted

on 2019 March 1 and 9 UTC (Program ID: 14011, PI: Newton).
We observed at 4.5 μm (channel 2) using the Infrared Array
Camera (IRAC; Fazio et al. 2004). We used the 32×32 pixel
subarray, and due to the brightness of DS Tuc A, we used 0.4 s
frame times. We followed the suggestions of Ingalls et al. (2012,
2016), placing DS Tuc A in the “sweet spot” of the detector and
using the “peak-up” pointing mode to keep the position of the
star fixed to within a half-pixel. Each transit observation
consisted of a 30 minute dither, a 7.5 hr stare including the
full transit, and a final 10 minute dither. Both DSTuc A and B
are present in the Spitzer images. In the post-cryogenic mission,
IRAC has a pixel scale of 1 2/pixel and an FWHM of 2 0, so
the binary components are resolved but not well separated
(4.5 pixels).
To address the potential for flux dilution, we modeled the

point spread functions (PSFs) of both components. We
generated IRAC PSFs using the prf_realize routine as
implemented in the software package IRACSIM30 (Ingalls
et al. 2016) and incorporated them into the PSF-fitting
framework described by Martinez & Kraus (2019), modified
for use with subarray images. To briefly summarize, we fit a
two-source PSF model in each subarray image by performing
an Markov Chain Monte Carlo (MCMC) analysis using a
standard Metropolis–Hastings algorithm with Gibbs sampling.
The PSF model is described by seven parameters: x-pixel
coordinate of the primary centroid (x), y-pixel coordinate of the

Figure 1. Discovery data from TESS, after our iterative flare rejection algorithm has been applied, and follow-up data from Spitzer. Data are shown as blue points; data
for Spitzer are the means of 250 equally spaced bins. The top panel shows the full TESS light curve and the stellar variability Gaussian process (GP) model. The
middle panel shows a zoom-in on the two transits observed with TESS. The bottom panel shows the two Spitzer transits at 4.5 μm. The best-fitting model from our
joint fit to the these light curves is shown in orange; in this analysis we simultaneously model stellar variability in TESS, using a GP, and the transit parameters. The
mean of the Markov chain Monte Carlo (MCMC) samples is shown as the opaque orange line; the 1σ deviations are shown as the semi-transparent orange region.

29 https://tess.mit.edu/alerts/ 30 https://github.com/ingalls91104/IRACSIM
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primary centroid (y), image background (b), primary peak pixel
value (n), projected separation (ρ), position angle (PA), and
contrast (Δm). We ran four MCMC chains with 140,000 steps
each, discarding the first 10% of each chain (the “burn-in”
phase). Using the weighted average of the median (x, y)-
centroid, ρ, PA, and Δm generated by our MCMC fits, we
made a single PSF model template of DSTuc B. This method
yielded an estimate for pixel-by-pixel flux contamination
levels, which we use to select the best aperture. Based on this,
we selected a fixed aperture of 4×4 pixels, which minimized
the level of contamination flux from DSTuc B (2.2%), while
capturing >90% of the flux from DSTuc A.

Due to Spitzer’s large intra-pixel-sensitivity variations and
its pointing jitter, the measured flux of the target can vary with
time as the location of the star shifts on the detector (Ingalls
et al. 2012). To correct for this, we used a high-resolution
pixel-sensitivity variation map (PMAP; Ingalls et al. 2012),
following the recommendations from the IRAC website31 to
calculate DSTuc A’s centroid position and total flux in each
image within the aperture given above. We then used the
iracpc_pmap_corr routine to calculate corrected flux
values. Further details about the photometric gain map are
discussed by Ingalls et al. (2012).

2.1.3. WASP

DS Tuc was observed by the WASP-South station of the Wide
Angle Search for Planets (WASP; Pollacco et al. 2006) located in
Sutherland, South Africa. WASP-South consists of eight cameras
on an equatorial mount, each with a 2048×2048 charge-coupled
device (CCD). Observations in 2010 and 2011 used 200mm,
f/1.8 lenses with a broadband filter spanning 400–700 nm and
a plate scale of 13 7/pixel. Observations from 2012 to 2014
used 85mm, f/1.2 lenses with a Sloan r′filter and a plate scale of
32″/pixel.

Approximately 74,000 observations of the DS Tuc system
were obtained over 900 nights spanning five years. DS Tuc A
and B are not resolved in the WASP data, and the precision is
not sufficient to detect the transit of DSTucAb; these data are
used to investigate the stellar rotation period (Section 3.4).

2.2. Spectroscopy

2.2.1. Southern Astrophysical Research (SOAR)/Goodman

On 2018 December 23 we acquired moderate-resolution
spectra of both DSTuc A and DSTuc B using the Goodman
High Throughput Spectrograph (Clemens et al. 2004) at the
4.1 m SOAR Telescope located at Cerro Pachón, Chile. We
observed both targets at low airmass ( ( ) zsec 1.4) with clear
sky conditions using the 0 46-long slit, 400 lines/mm grating
and M2 setup. This yielded moderate-resolution (R;1850)
spectra spanning 5000–9000Å.

After basic image reduction including bias and dark
subtraction, and flat-fielding, we removed sky lines in the 2D
image using the chip regions adjacent to the science spectrum
in the spatial direction and cosmic rays by median stacking
over five images of each target. We then optimally extracted
the spectrum (Horne 1986) and applied a wavelength solution
derived from HgAr lamp exposures taken just before the target
observations. Lastly, we flux calibrated each spectrum using

spectrophotometric standards taken during the night. These
data are used to determine the stellar parameters (Section 3.1).

2.2.2. Archival Data from HARPS, UVES, and FEROS

We gathered processed archival spectra from HARPS,
UVES, and FEROS using the ESO archive. While the FEROS
spectrum is labeled as DSTuc B in the ESO archive, the
spectral features (in particular, the strength of Hα and Hβ)
clearly reveals that this spectrum belongs to DSTuc A. These
data are used in our RV analysis (Section 3.2).

2.2.3. South African Extremely Large Telescope (SALT)/High
Resolution Spectrograph (HRS)

We observed independent spectra of DSTuc A and DSTuc
B using HRS (Crause et al. 2014) on SALT (Buckley et al.
2006). We obtained spectra on the nights of 2018 November
16, 18, 19, and 21. We used the high-resolution mode, and
spectra were reduced using the MIDAS pipeline (Kniazev et al.
2016, 2017).32 The pipeline performed flat-fielding and
wavelength calibration using ThAr and Ar lamps; we did not
use the sky-subtracted or merged data. The nominal spectral
resolutions of the blue and red arms are 65,000 and 74,000,
respectively; however, the resolution achieved by the MIDAS
pipeline is approximately 46,000 as a result of not accounting
for the tilt of the spectral lines. These data are used in our RV
analysis (Section 3.2).

2.2.4. Network of Robotic Echelle Spectrographs (NRES)/Las
Cumbres Observatory’s (LCO)

We observed one spectrum of DS Tuc A using LCO (Brown
et al. 2013) NRES (Siverd et al. 2018) on UT 2018 December
11. Data were reduced automatically by the LCO NRES
pipeline version 0.8,33 which included basic bias/dark
corrections, optimal extraction of the 1D spectrum, and
wavelength calibration with ThAr lamps. The NRES pipeline
also yielded a RV estimate, but we used our own determination
for consistency with other analyses (see Section 3.2). The final
reduced spectra have a resolution of approximately R;53,000
and cover 3800–8600Å. The spectrum had a signal-to-noise
ratio (S/N)>50 per resolving element around the Mg b
lines (;5160Å). These data are used in our RV analysis
(Section 3.2).

2.3. High-contrast Imaging

We performed H-band integral field spectroscopy of both
stars using the Gemini Planet Imager (GPI; Macintosh et al.
2014). As part of the GPI Exoplanet Survey (GPIES), DSTuc
B was observed on 2016 November 18 (program code GS-
2015B-Q-500) and DSTuc A was observed on 2016 October
22 (GS-2015B-Q500) under poor conditions, aborted after nine
images, and then observed again under better conditions on
2016 November 18 (GS-2015B-Q-500). A high-order adaptive
optics (AO) system compensated for atmospheric turbulence,
and an apodized Lyot coronagraph was used to suppress
starlight. Using 59.6 s integration times, we obtained
37.78 minutes of data with 14°.9 of parallactic angle rotation
for DSTuc B and 4.97 minutes and 35.79 minutes of data with

31 https://irachpp.spitzer.caltech.edu/page/contrib

32 http://www.saao.ac.za/~akniazev/pub/HRS_MIDAS/HRS_pipeline.pdf
33 https://github.com/LCOGT/nres-pipe
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5°.0 and 15°.2 of parallactic angle rotation for the two
observations of DSTuc A. All three data sets were reduced
using the GPIES automated data reduction pipeline (Wang
et al. 2018). Briefly, the data were dark subtracted, a bad-pixel
correction was applied, the microspectra positions determined
using an Argon arc lamp snapshot taken right before each
sequence, 3D spectral data cubes were extracted using
wavelength solutions derived from deep Argon arc lamp data,
the images were distortion corrected, and fiducial diffraction
spots (satellite spots) were used to locate the position of the star
in each image. The stellar PSF was then subtracted from each
image using both angular differential imaging (Marois et al.
2006) and spectral differential imaging (Sparks & Ford 2002)
to disentangle the stellar PSF from any potential companions,
and principal component analysis to model the stellar PSF
(Soummer et al. 2012; Wang et al. 2015). The resulting image
was then used to search for point sources (Section 4.2).

2.4. Literature Photometry and Astrometry

To better characterize the properties of each component we
drew resolved photometry and astrometry for DSTuc A and
DSTuc B from the literature. Specifically, we adopted optical
BT and VT photometry from the Tycho-2 Survey (Høg et al.
2000), optical G, BP, and RP photometry from the Gaia second
data release (DR2; Evans et al. 2018), near-infrared J, H, and
KS photometry from The Two Micron All Sky Survey
(2MASS; Skrutskie et al. 2006), and mid-infrared W1, W2,
W3, and W4 photometry from the Wide-field Infrared Survey
Explorer (WISE; Wright et al. 2010). We also adopted proper
motions and parallaxes for each component from DR2
(Lindegren et al. 2018), and J2000 positions from Tycho-2.

All photometry and astrometry from the literature used in our
analysis is listed in Table 1.

3. Measurements

3.1. Stellar Parameters

Age: DSTuc was one of the original systems used to define
the Tuc-Hor moving group (then called the Tucanae associa-
tion; Zuckerman & Webb 2000). The group has consistent age
estimates based on isochronal fitting (45± 4Myr; Bell et al.
2015) and the lithium-depletion boundary (40Myr; Kraus et al.
2014). Here we adopt the age estimate from Bell et al. (2015).

Luminosity, effective temperature, and Radius: We first
determined the bolometric flux (Fbol), Teff, and angular
diameter of DSTuc A and DSTuc B by fitting the resolved
spectral energy distributions (SEDs) for each component with
unreddened optical and near-infrared template spectra from the
cool stars library (Rayner et al. 2009). A demonstration can be
seen in Figure 2.

Our SED-fitting procedure followed the technique outlined
in Mann et al. (2015), which we briefly summarize here. Our
comparison assumed zero reddening, as DSTuc lands within a
region near the Sun of low interstellar extinction (the Local
Bubble; Sfeir et al. 1999). We simultaneously compared each
template spectrum to our optical spectra from SOAR/Goodman
(Section 2.2.1) and archival photometry (Section 2.4 and Table 1)
using the appropriate system zero-point and filter profile (Cohen
et al. 2003; Jarrett et al. 2011; Mann & von Braun 2015; Maíz
Apellániz & Weiler 2018). Gaps in each template spectrum are
filled with a BT-SETTL atmospheric model (Allard et al. 2012)
using the model interpolation and fitting procedure described in

Gaidos et al. (2014). This procedure simultaneously provided an
estimate of Teff based on the BT-SETTL model comparison to the
observed spectrum. To compute Fbol, we integrated each
template/model combination over all wavelengths.
We combined the derived Fbol with the Gaia DR2 distance

(d) to determine the total luminosity (L*) for each component
star. We then calculated a stellar radius (R*) from L* and Teff
using the Stefan–Boltzmann relation. Errors on each parameter
were assigned accounting for both the measurement uncertain-
ties (e.g., in the photometry) as well as the range of possible
templates (and their assigned Teff values) that can fit the data.
Final parameters and uncertainties are give in Table 1.
As part of our above procedure, the BT-SETTL model is

scaled to match the photometry and template. Assuming perfect
models, this multiplicative scale factor is equal to R d2 2

*(Cushing et al. 2008), which provided another estimate of R*
given the Gaia DR2 distance. This technique is similar to the
infrared-flux method (Blackwell & Shallis 1977). Radii derived
from this scale factor are not totally independent of the above
method, as they rely on the same photometry and models, but
the latter technique is less sensitive to the assigned Teff.
The first technique (Stefan–Boltzman) yielded a radius of

0.964±0.029Re, and the scaling (infrared-flux method)
yielded a consistent radius of 0.951±0.020Re for DS Tuc
A. We adopt the former value for all analyses.
Mass: We estimated the masses of DSTuc A and DSTuc B

by interpolating our luminosity estimates onto a modified
isochrone grid from the Dartmouth Stellar Evolution Program
(Dotter et al. 2008). These grids were adjusted to include the
effects of magnetic fields and where the boundary conditions are
applied, as described in more detail in Muirhead et al. (2014),
Feiden & Chaboyer (2014), and Feiden (2016). We assumed
solar metallicity, which is typical within a scatter of∼0.1 dex for
the young stellar populations in the Solar neighborhood (e.g.,
Spina et al. 2014 and references therein). We used both 40 and
50Myr grids, using the spread to approximate errors introduced
by the age uncertainty for the Tuc-Hor moving group. This
interpolation yielded mass estimates of 1.01±0.06Me for
DSTuc A and 0.84±0.06Me for DSTuc B. We considered
these errors to be slightly underestimated, as systematic
differences between model grids can exceed 10% at this age.

3.2. RVs

We used high-resolution data from HARPS, UVES, FEROS,
SALT/HRS, and NRES/LCO to determine stellar RVs. We
measured RVs by computing the spectral line broadening
function (BF; Rucinski 1992) between DS Tuc A or B
observations and a zero-velocity template. The BF represents
the function that, when convolved with the template, returns
the observed spectrum, carrying information on RV shifts and
line broadening. Throughout the analysis we used the HARPS
G2 binary mask as our template (e.g., Pepe et al. 2002). A
Gaussian profile was fit to the BF to determine the stellar RV.
In each case the BF is single peaked and smooth, indicating a
contribution from only one star.
For each echelle order we computed a “first pass” BF, which

was used to shift the observed spectrum near zero velocity.
Orders that survive a 3σ-clipping algorithm were then stitched
into three equal-length wavelength regions where the final BFs
were computed. Our geocentric RV measurement and uncer-
tainty were computed from the mean and standard deviation
across these three regions. For archival observations that are
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provided as a single stitched spectrum, we created 150Åwide
initial “orders.”

Finally, for each epoch we computed the BF for telluric
absorption features using a continuum normalized A0 star as
our template. These offsets were applied to our measured RVs.
We have measured RVs for all archival data following the
above procedure. While the HARPS pipeline provides more
precise RVs, we preformed our own measurements to ensure
the same zero-point corrections across different instruments.
We found a ∼70 m s−1 offset from the HARPS observations,
similar to our measurement uncertainty, but recovered the same
epoch-to-epoch variability. Our final RVs are corrected for
barycentric motion and listed in Table 2. As noted in the
introduction, DS Tuc B was previously identified as a binary

based on its RV variability and the presence of two spectral
components. Our spectra are inconsistent with DS Tuc B
having two near-equal spectral type components; for both stars
at each epoch, there is only one peak in the BF. While the
previous work did not give sufficient information to test the
proposed scenario of RV variability, we also do not see
evidence for RV variations in excess of reasonable jitter levels
for young stars in either star.

3.3. Projected Rotation Velocity

We measured the projected rotation velocity (v sin i*) for DS
Tuc A and B by fitting the BF with a rotationally broadened
absorption line profile that has been convolved with the

Table 1
Parameters of DSTuc

Parameter DS TucA DS TucB Source

Identifiers
TOI 200.01
Gaia DR2 6387058411482257536 6387058411482257280 Gaia DR2
TIC 410214986 410214984 Stassun et al. (2018)
2MASS J23393949-6911448 J23393929-6911396 2MASS
HD 222259A 222259B Cannon & Pickering (1924)

Astrometry
α R.A. (hh:mm:ss J2000) 23:39:39.49 23:39:39.27 Tycho-2
δ decl. (dd:mm:ss J2000) −69:11:44.88 −69:11:39.51 Tycho-2
μα (mas yr−1) 79.464±0.074 78.022±0.064 Gaia DR2
μδ (mas yr−1) −67.440±0.045 −65.746±0.037 Gaia DR2
π (mas) 22.666±0.035 22.650±0.030 Gaia DR2

Photometry
BT (mag) 9.320±0.017 10.921±0.060 Tycho-2
VT (mag) 8.548±0.012 9.653±0.030 Tycho-2
G (mag) 8.3193±0.0010 9.3993±0.0014 Gaia DR2
GBP (mag) 8.7044±0.0049 9.9851±0.0059 Gaia DR2
GRP (mag) 7.8137±0.0036 8.7082±0.0044 Gaia DR2
J (mag) 7.122±0.024 7.630±0.058 2MASS
H (mag) 6.759±0.023 7.193±0.034 2MASS
Ks (mag) 6.68±0.03 7.032±0.063 2MASS
W1 (mag) 6.844±0.060 7.049±0.081 WISE
W2 (mag) 6.748±0.030 7.107±0.037 WISE
W3 (mag) 6.777±0.023 7.056±0.029 WISE
W4 (mag) 6.668±0.094 6.958±0.119 WISE

Kinematics
Barycentric RV (kms−1) 8.05±0.06 6.41±0.06 This work
U (kms−1) −8.71±0.04 −9.27±0.04 This work
V (kms−1) −21.50±0.04 −20.28±0.04 This work
W (kms−1) −1.53±0.04 −0.47±0.04 This work

Physical Properties
Spectral type G6V±1 K3V±1 Torres et al. (2006)
Rotation period (days) -

+2.85 0.05
0.04 unknown This work

Teff (K) 5428±80 4700±90 This work
Fbol (10

−8 erg cm−2 s−1) 1.2026±0.017 0.542±0.008 This work
M* (Me) 1.01±0.06 0.84±0.06 This work
R* (Re) 0.964±0.029 0.864±0.036 This work
L* (Le) 0.725±0.013 0.327±0.010 This work
Age (Myr) 45±4 45±4 Bell et al. (2015)
v sin i* (km s−1) 17.8±0.2 14.4±0.3 This work
i* (deg)a >82° L This work

Note.
a With the convention i<90.
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instrumental profile (Figure 3). We did not include additional
broadening components such as microturbulence, though these
factors should have minimal impact given the large v sin i*
values. For DS Tuc A, we find v sin i*=17.8±0.2 km s−1

using the HARPS spectra; the value is consistent when using
SALT/HRS. From SALT/HRS observations of DS Tuc B, we
measure v sin i*=14.4±0.3 km s−1.

3.4. Stellar Rotation

Rotation period: A photometric rotation period of 2.85 days
for DS Tuc was previously reported by Kiraga (2012), and is

clearly visible in both the TESS and WASP light curves. Using
ground-based monitoring with the LCO, we associate this
signal with DSTuc A. We break the WASP light curve into
four 200 day observing seasons and measure the rotation period
and amplitude of variability in each season. The period is
consistently 2.85 days with high variability in the semi-
amplitude (2%–2.6%), but the phase shifts. The periodogram
shows power at the period and the first harmonic, and no
additional signals are seen that could be associated with
DSTuc B.
The TESS light curve of DS Tuc shows consistent rotational

modulation with a semi-amplitude of 1%–2%. We modeled the
TESS light curve with a Gaussian process (GP) using the
celerite package from Foreman-Mackey et al. (2017). We
used a kernel composed of a mixture of simple harmonic
oscillators and a jitter term. Our GP model has a term to capture
the periodic brightness modulation caused by spots on the
stellar surface. This kernel is a mixture of two stochastically

Figure 2. Best-fit spectral template compared to the photometry of DSTuc A (left) and DSTuc B (right). Gray regions are BT-SETTL models, used to fill in gaps or
regions of high telluric contamination. Literature photometry is shown in red, with horizontal errors corresponding to the filter width and vertical errors the
measurement errors. Corresponding synthetic photometry is shown as green points. The bottom panel shows the residuals in terms of standard deviations from the fit.

Table 2
RV Measurements of DS Tuc A and B

Site BJD RV σRV
(km s−1) (km s−1)

DS Tuc A
HARPS 2453500.876233 7.82 0.07
HARPS 2453521.828166 7.93 0.05
HARPS 2453522.888133 8.32 0.06
HARPS 2453541.927465 8.02 0.07
HARPS 2453600.704290 7.85 0.07
UVES 2454243.856154 8.27 0.10
FEROS 2455853.592265 7.98 0.24
SALT 2458439.283495 8.08 0.43
SALT 2458441.278033 8.29 0.46
SALT 2458442.295852 8.34 0.28
SALT 2458444.297823 7.74 0.31
LCO 2458463.540450 8.28 0.15

Mean: 8.05 (km s−1)
rms: 0.21 (km s−1)
Std. Error: 0.06 (km s−1)

DS Tuc B
SALT 2458439.288665 6.41 0.31
SALT 2458441.273940 6.66 0.30
SALT 2458442.302087 6.42 0.21
SALT 2458444.302819 6.33 0.27
UVES 2454243.850252 6.25 0.11

Mean: 6.41 (km s−1)
rms: 0.14 (km s−1)
Std Error: 0.06 (km s−1)

Figure 3. DS Tuc A broadening function computed from a representative
HARPS spectrum. The broadening function presented in blue is clearly single
peaked and rotationally broadened. A best-fit rotational broadening profile is
over plotted in orange. Extended wings in the broadening function as compared
to the rotational broadening profile arise from additional line broadening
mechanisms (macro/microturbulence), which are not included in our pure-
rotation model.
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driven, damped harmonic oscillator models and has two modes
in Fourier space: one at the rotation period of the star and one at
half the rotation period. We initially included an additional
damped harmonic oscillator with a period of 20 days to capture
long-term trends in the light curve, but the fitted power of the
signal indicated that it was unnecessary.

We used a Lomb–Scargle periodogram to identify the
candidate rotation period. We then fit the stellar rotation model
using least squares, iterating five times and rejecting 3σ outliers
each pass. This served to remove smaller flares. We then started
an MCMC fit using the affine-invariant MCMC implemented
in the package emcee (Foreman-Mackey et al. 2013),
beginning half the chains at the candidate rotation period
identified in the periodogram, and a quarter each at half and
twice the rotation period. We use 50 walkers and a burn-in of
5000 steps. We end the run when the autocorrelation timescale
τ of all chains changes by <0.1 and the length of the chain is
>100τ. We measure a rotation period of -

+2.85 days0.05
0.04 .

Stellar inclination: Following the method detailed in Morton &
Winn (2014), we combined the stellar rotation period measured
from the TESS light curve, R*, and v sin i* measurements from
above to estimate of the stellar inclination for DSTuc A.
Although this measurement is not very precise, this method can
identify highly misaligned systems (e.g., Hirano et al. 2012) or be
used for statistical studies of large planet populations (e.g., Winn
et al. 2017). We determine an equatorial velocity of
17.13±0.6 km s−1, which is consistent with our spectroscopic
measurement of v sin i*=17.8±0.2 km s−1. This corresponds
to a 1σ lower limit on the inclination of i>82° and a 2σ lower
limit of i>70°. We cannot distinguish between i<90° and
i>90°, and so adopt the convention i<90°.

4. Constraints on the DS Tuc System Architecture

4.1. Stellar Binary Orbit

We fit orbital parameters to the motion of the binary pair
using a modified implementation of the Orbits for the Impatient
(OFTI) rejection-sampling methodology described in Blunt
et al. (2017). This implementation is publicly available on
GitHub34 and described further in Pearce et al. (2019).

Both objects have a well-defined Gaia DR2 astrometric
solution, so we used the positions and proper motions of DSTuc
B relative to DSTuc A in the plane of the sky. We used the RV
measurements of Table 2 to interpolate a relative RV at the Gaia
observation epoch of 2015.5. Relative separation and position
angle (PA) measurements in the Washington Double Star

Catalog (WDS) spanning 126 yr provide additional constraints
on the stellar orbital motion. We performed a modified OFTI fit
constrained by these measurements.
Previous implementations of OFTI have fit orbital para-

meters to astrometric observations spanning several epochs
(e.g., Blunt et al. 2017; Cheetham et al. 2019; Pearce et al.
2019; Ruane et al. 2019). In this system, the precision of the
Gaia solution for both objects allowed us to constrain five of
the six position vector elements using just this single epoch,
and we additionally have the astrometric measurements
provided by WDS; only the line of sight position is not
sufficiently constrained to contribute to the fit.
Table 3 displays the orbital parameters we determined for the

stellar binary orbit. Figure 4 displays the orbital parameter
distributions, joint credible intervals, and a selection of orbits
plotted in the plane of the sky. The orbital semimajor axis is
157<a<174 au, with a closest approach of 59<rperi<93 au
(where the ranges are 1σ credible intervals). The stellar binary is
constrained to be nearly edge-on (96°.0< i< 97°.8), which is likely
aligned with both the transiting planet’s orbit and the primary star’s
spin axis.

4.2. Limits on Additional Directly Imaged Companions

To search for companions in high-contrast imaging data
from GPI, we forward modeled the PSF template of a
hypothetical companion at each pixel in the image using the
Forward Model Matched Filter technique (FMMF; Ruffio et al.
2017a). We then ran a matched filter with the template in an
attempt to maximize the signal of a planet at that location in the
image. The method accounts for the distortion of the signal
due to the speckle subtraction step. The detection limits are
expressed in terms of the flux ratio between the point source
and the star and were calibrated using simulated point-source
injection and recovery. The detection limits are set at six times
the standard deviation of the noise in the final image, which is
calculated in concentric annuli as a function of separation to the
star. This detection threshold ensures a false-positive rate of
less than one per 20 sequence of observations. The default
matched filter reduction used for GPIES assumes a featureless
spectrum, corresponding to hot planets, for the estimation of
the point-source brightness. However, Ruffio et al. (2017b)
showed that it can be used for the detection of stars without loss
of sensitivity. We did not detect any candidate companions
above our detection threshold in either data set.
We determined completeness to bound substellar companions

using the method described in Nielsen et al. (2019). An
ensemble of simulated companions were generated with full

Table 3
Stellar Binary Orbital Parameters

Element Median Std. Dev. Mode 68.3% Min. CI 95.4% Min. CI

a (au) 176 29 160 (157, 174) (157, 219)
P (yr) 1760 510 1500 (1470,1730) (1470,2440)
e 0.57 0.10 0.47 (0.46, 0.60) (0.46, 0.77)
i (°) 96.9 0.9 96.6 (96.0, 97.8) (95.0, 98.6)
ω (°) 186 35 196 (164, 233) (122, 256)
Ω (°) −12 3 −13 (−15, −10) (−18, −6)
T0 (yr) 1250 480 1520 (1250, 1530) (−590, 1530)
Periastron (au) 75 17 85 (59, 93) (44, 105)

Note.We report the median, mode, standard deviation, and 68.3% and 95.4% minimum credible intervals, with marginal posteriors and joint distributions displayed in
Figure 4.

34 https://github.com/logan-pearce/LOFTI (Pearce 2019).
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orbital parameters at a grid of semimajor axis and planet mass.
The projected separation in arcseconds was then computed for
each simulated companion given the distance to the star, and the
contrast was calculated using the BT-Settl models (Baraffe et al.
2015), the age of the star (45Myr), and the star’s H magnitude.
Each simulated companion was compared to the measured
contrast curve, and companions lying above the curve were
considered detectable. The same simulated companions were
compared to multiple contrast curves, advanced forward in their
orbits when observations are made at different epochs, as is the
case for DSTucA. Outside a radius of∼1 1, not all PAs fall on
the detector; to compensate, we reduce the completeness beyond
∼1 1 using the fractional coverage as a function of radius.

The depth of search plots, giving completeness as a function
of semimajor axis and companion mass, are given for DS Tuc
A and B in Figure 5, along with the underlying contrast curves.
There are two contrast curves at each epoch: a T-type curve
assuming heavy methane absorption in the matched filter step
(appropriate to companions as hot as ∼1100 K), and an L type
contrast curve assuming a flatter spectrum appropriate to hotter
brown dwarfs and stars. Overall, wider separation planets and
brown dwarfs are ruled out at high confidence between
∼10–80 au, more massive than ∼5 MJup, around both A and B.

4.3. Limits on Wide Binary Companions

Past AO observations of the DS Tuc system have been limited
to an outer working angle of ρ10″ (e.g., Kasper et al. 2007),
leaving open the possibility of a hierarchical architecture with a

very wide tertiary companion. The Gaia catalog reveals that
there is one co-moving, codistant candidate Tuc-Hor member
within <1 pc of the DS Tuc system, 2MASS J23321028-
6926537, which was also suggested to be a candidate low-mass
(spectral type around M5) member of Tuc-Hor by Gagné et al.
(2015). However, given the very wide separation (ρ= 1.12×
105 au), this source is likely an unbound member of Tuc-Hor
and not a bound companion of DS Tuc. There are no other
candidate wide companions in Gaia DR2 within ρ<1 pc and
brighter than a limiting magnitude of G∼20.5 mag, corresp-
onding to a mass limit of M>15MJup at τ=40Myr (Baraffe
et al. 2015).

4.4. Limits on Additional Transiting Planets

We tested the detectability of additional planets in the
TESSsector 1 light curve of DSTuc Ausing the notch-filter
detrending and planet search pipeline of Rizzuto et al. (2017).
For this process, we used the SAP light curve, which is not
corrected for systematics using the cotrending basis vector
method. This choice was made based on the presence of
artifacts in the PDCSAP light curve, likely introduced by the
presence of a strong stellar rotation signal. We first apply a
deblending factor based on the TESS magnitudes for DSTuc
Aand B and masked the time interval when fine guiding was
lost. We then injected a set of model transiting planets
synthesized with the BATMAN model of Kreidberg (2015)
with orbital and size parameters chosen randomly. We used
orbital periods of 1–20 days and planet radii of 1–10 R⊕, and

Figure 4. Top panels: 100 randomly selected orbits from the posterior distribution of accepted orbits for the stellar binary system. DSTuc A is marked by the orange
star at the origin, while the present position of DSTuc B relative to A is located where the orbit tracks converge. Orbital phase is shown by the color bar, with an
orbital phase of 0.0 corresponding to the Gaia observation epoch 2015.5. Bottom panels: posterior distributions for all orbital parameters from the fit, as well as
periastron. Semimajor axis and epoch of periastron passage have been truncated for clarity. The inclination is tightly constrained to be nearly edge-on (90°), close to
the inclination of the transiting planet.
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allowed orbital phase and impact parameter to take values in
the interval [0,1]. Eccentricity was fixed to zero for this
process, as it does not significantly influence detectability of a
transit, but requires two additional variables over which to
marginalize. We injected a total of 1000 trial planets for
this test.

For each trial planet, we apply the notch-filter detrending
pipeline, and then search for periodic signals with the BLS
algorithm (Kovács et al. 2002), retaining signals with power-
spectrum peaks above 7σ. We then set tolerance windows of
1% in both injected period and orbital phase to flag a trial
planet as recovered. Figure 6 shows the completeness map for
additional planets in the DSTuc Asystem. Our search and the
TESSsector 1 data for DSTuc Aare sensitive to ∼4 R⊕
planets at period <10 days, and ∼3 R⊕ at periods <6 days. At
periods longer than 10 days, the time baseline and gaps due to
the masked section significantly decrease sensitivity to
transiting planets.

5. Analysis of the Planetary Signal

5.1. Identification of the Stellar Host

The two components of DS Tuc are separated by 5″ and are
not resolved by TESS,35 which has a plate scale of 21″ pixel−1

with 50% of light concentrated within one pixel (Ricker et al.
2014). We examined the measured centroid of the in-transit/
out-of-transit difference image, which is calculated by the
SPOC pipeline and included in the DV report (from the initial
TPS run) that accompanied the alert. The DV report indicated
that both DS Tuc A and B are contained within the 3σ
confusion radius of the centroid (which we note is dominated
by the 2 5 additional error added in quadrature to the
propagated uncertainty) and the centroid analysis averages a
transit signal and a spurious event. In the second TPS run, not
included in the alert, the centroid offset is consistent with DS
Tuc A at 2σ. We also analyzed the image centroids measured
by the SPOC pipeline. The scatter in the centroid measure-
ments is too large (;1 millipixel per 4 hr bin) to detect the

expected change in centroid position if the planet were to in
fact orbit DS Tuc B (0.5 millipixel over a 3 hr transit). In
summary, we found that the TESS data alone cannot
conclusively identify which star hosts the transit.
Our Spitzer observations definitively show that the planet

orbits DS Tuc A. A 4×4 pixel aperture placed on DS Tuc A
revealed a transit signal that is consistent with that detected in
the TESS data. An equal-sized or smaller aperture centered on
DS Tuc B yielded no detectable transit signature (Figure 7).

5.2. Transit Fitting

We simultaneously fit the TESS and Spitzer photometry
using the transit fitting code misttborn.36 misttborn was
first used in Mann et al. (2016a) and has been used for a
number of more recent works including Johnson et al. (2018).
Briefly, we fit each system using emcee, and produced
photometric transit models using batman (Kreidberg 2015),
which is based on the transit model of Mandel & Agol (2002).
In the MCMC we fit for the following planetary parameters: the

Figure 5. Left and middle panels: completeness to substellar companions from the GPIES observations of DS Tuc A and B. Planets and brown dwarfs more massive
than ∼5 MJup are excluded at high completeness between 10 and 80 au. Right panel: contrast curves from which these completeness maps are derived, based on two
epochs of GPIES observations of DS Tuc A, and one of B. The contrast limits are slightly deeper for T-type spectra, as PSF subtraction can leverage the strong
methane absorption for the coolest planets.

Figure 6. Completeness map for additional planets in the DSTuc Asystem,
produced from injection-recovery testing of our search pipeline (Rizzuto
et al. 2017). Each point represents an injected planet signal, with blue points
indicating recovery and red points indicating non-recovery. The magenta star
marks the position of the detected planet DS Tuc Ab.

35 The TESS alert somewhat arbitrarily identifies DS Tuc A as the host because
it is the brightest star in the vicinity. 36 https://github.com/captain-exoplanet/misttborn
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planet-to-star radius ratio RP/Rå (assumed to be the same in all
filters), impact parameter b, period P, and the epoch of the
transit midpoint T0. We fix eccentricity to zero. We also fit the
following stellar parameters: linear and quadratic limb-darkening
parameters for each filter (q1, q2) using the triangular sampling
method of Kipping (2013), and the mean stellar density (ρå). We
use Gaussian priors for the limb-darkening parameters, using
the values in Claret & Bloemen (2011) and Claret (2017). We
use uniform priors within physically allowed boundaries for
the remaining parameters (most notably, we enforced ∣ ∣ < +b 1

R RP in order to assure that a transit occurs while allowing
grazing transits).

DS Tuc is a visual binary with a separation of ρ∼5″. The
TESS photometry is de-blended, but the deblending process
may introduce errors, while our Spitzer aperture on DSTuc A
includes a small amount of contamination from DSTuc B. We
included as an additional MCMC parameter the contamination
of the aperture by flux from other stars. This is implemented as
a (fractional) flux added to the transit model to create a diluted
model (LCdiluted) of the form

( )=
+

+
C

C
LC

LC

1
, 1diluted

undiluted

where LCundiluted is the model light curve generated from
Batman and our GP model. This is comparable to the method
used in Johnson et al. (2011) and Gaidos et al. (2016) to correct
for flux dilution from a binary using the measured Δm between
components. The key difference is that Equation (1) allows for
flux to be subtracted from the model (C< 0) in the case of an
overcorrection.

We set a Gaussian prior upon C of 0.00±0.02 for TESS and
0.0217±0.0050 for Spitzer. The width of 0.02 for TESS
photometry was estimated based on uncertainties in the derived
TESS magnitudes from the TIC. Section 2.1.2 describes how C
for Spitzer was calculated from a model of the PSF.

The target displays substantial stellar variability in the TESS
bandpass. In addition to the transit model described above, we
utilized Gaussian process regression to account for stellar

variability in the TESS photometry. This enables us to model
the variations in the stellar flux occurring during the transit.
Our kernel is a mixture of simple harmonic oscillators, the
same as described in Section 3. We included the Gaussian
process hyperparameters as fit parameters in our MCMC, and
placed priors on those parameters based on the results of our
stellar rotation modeling. The parameters are the stellar rotation
period P*, the amplitude AGP of the primary signal at P*, the
relative strength of the secondary signal at P*/2 (MixQ1,Q2),
the decay timescales of the primary and secondary signals
(Q1GP, Q2GP), and a jitter term to account for white noise
(σGP).

37

We ran the MCMC chain with 100 walkers for 30,000 steps
and cut off the first 5000 steps of burn-in, producing a total of
2.5×106 samples from the posterior distributions of the fit
parameters. The resulting fit is shown in Figure 1, and the best-
fitting values are listed in Table 4.

Figure 7. Spitzer light curve from 2019 March 1 for a 4×4 pixel aperture
centered on DSTuc B (black) compared to the TESS photometry at an aperture
centered on DSTuc B (red). The TESS data shown here assumes (incorrectly)
that the planet orbits DSTuc B, and it has been corrected for contamination
from DSTuc A. Flux measurements from Spitzer were binned with 300
measurements per bin for clarity. In the resolved Spitzer data, DSTuc B shows
no transit signal, and we thus conclude that the planet orbits DS Tuc A.

Table 4
Parameters of DS Tuc Ab

Parameter Value

Measured Parameters
T0 (TJD)

a 1332.30997±0.00026
P (days) 8.138268±1.1×10−5

RP/Rå 0.05419±0.00024
b -

+0.18 0.12
0.13

ρ* (ρe) -
+1.7 0.17

0.07

q1,1 -
+0.284 0.053

0.055

q2,1 0.284±0.051
q1,2 -

+0.0266 0.0091
0.0094

q2,2 -
+0.054 0.013

0.014

CTESS -
+0.015 0.017

0.018

CSpitzer -
+0.0208 0.005

0.0049

Pln * (day) -
+1.0606 0.0098

0.0102

Aln GP (%2) - -
+10.87 0.12

0.11

Qln 1GP -
+2.57 0.37

0.39

Qln 2GP -
+0.052 0.026

0.027

MixQ1, Q2 -
+0.15 0.11

0.26

σGP −8.682±0.013

Derived Parameters
RP(R⊕) 5.70±0.17
a/Rå -

+20.35 0.69
0.29

i(°) -
+89.5 0.41

0.34

δ (%) 0.2936±0.0026
T14 (days) -

+0.13235 0.00039
0.00049

T23 (days) -
+0.11818 0.00057

0.00039

Tperi (TJD)
a 1332.30997±0.00026

g1,1 -
+0.3 0.054

0.055

g2,1 -
+0.228 0.06

0.066

g1,2 -
+0.0172 0.0051

0.0057

g2,2 -
+0.145 0.028

0.024

Notes.We report the median and 68% confidence interval for each parameter.
Associated probability distributions for key parameters are shown in Figure 1.
a TJD is TESS Julian Date, which is BJD-2,457,000.0.
b Although we allow b to explore negative values, the absolute value of b is
listed because positive and negative values are degenerate. Similarly, we
cannot distinguish between i<90° and i>90° and adopt the conven-
tion i<90°.

37 https://celerite.readthedocs.io/en/stable/python/kernel/
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5.3. False-positive Analysis

As we do not have dynamical (RV) confirmation of
DSTucAb, we use our other observations to show that the
transits are caused by a real transiting planet. We consider and
rule out the following false-positive scenarios.

1. The transits are caused by instrumental artifacts or
residuals from stellar variability:Though there are only
two transits in the TESS data set with amplitudes much
lower than the amplitude of starspot variability, we
confirm the transits with Spitzer, conclusively ruling out
an instrumental origin for the signal. The Spitzer
detection of the transits in the near-infrared, at the
predicted time and with the same depth as in TESS rules
out stellar variability as an origin, which should be
significantly lower in the Spitzer bandpass and should not
produce periodic transit-like signals.

2. DS Tuc A is an eclipsing binary:Our RV observations
showed no variations large enough to be caused by a
stellar companion. To test this, we generated 100,000
binaries with random (uniform) mass ratios, argument of
periastron, phase, inclination, and eccentricty. The period
was fixed at 8.138 days, and inclination was restricted
ensure the companion eclipses (70°). We then com-
pared each synthetic binary’s predicted velocities to the
observed velocities assuming an extra jitter term in the
velocities of 100 m s−1 (from stellar variability). All
generated binaries down to 20MJ in mass were rejected at
>5σ, and >99% were rejected down to 5MJ.

3. Light from a physically unassociated eclipsing binary
star or transiting planet system is blended with light from
DS Tuc:Spitzer confirms that the transit signal detected
toward DS Tuc A must originate from within a few
arcseconds of the star. We detected no stars nearby DS
Tuc in our GPI AO imaging, and other groups have
previously detected no nearby stars in their own AO
observations (Kasper et al. 2007; Vogt et al. 2015).
Crucially, due to its proper motion, DS Tuc has moved
over half an arcsecond with respect to stationary back-
ground sources between the different AO imaging epochs
over the last decade, so we are able to definitively rule out
background stars too close to DS Tuc A for GPI to
resolve.

4. Light from a physically associated eclipsing binary or
planet-hosting companion is blended with light from DS
Tuc A:For this to be true, DS Tuc A must have a binary
companion close enough to escape detection by GPI
(inside about 8 au) and bright enough to cause the transit
signal that we see. The magnitude difference Δm
between DS Tuc A and the faintest companion, which
could contribute the transit signal, is given by

⎛
⎝⎜

⎞
⎠⎟ ( )

d
D m

t

t
2.5 log 210

12
2

13
2

where t12 is the duration of transit ingress/egress, t13 is
the transit duration from first contact (beginning of
ingress) to third contact (beginning of egress), and δ is the
observed transit depth (Vanderburg et al. 2019). Fitting
the TESS light curve with MCMC, but without any
constraints from the stellar parameters, yields Δm2.4
(95% confidence). From a 45Myr MIST isochrone (Choi
et al. 2016; Dotter 2016) at solar metallically (provided in

the TESS bandpass), this magnitude difference corre-
sponds to a companion star with a mass >0.63 Me.

To place a dynamical upper limit on the mass of a
companion, we perform a Monte Carlo simulation of
companion orbits to DS Tuc A with randomly drawn
isotropic inclinations, masses below 1Me, and semimajor
axes below 8 au (holding the eccentricity to zero). For
orbits that produce semimajor amplitudes less than half
the range of our RV observations (0.6 km s−1), we find
that we can exclude companion masses above 0.28 Me at
95% confidence. The large discrepancy between these
mass limits excludes this scenario at high confidence.

Our observational constraints confidently rule out these
false-positive scenarios, so DSTucAb is almost certainly a
genuine exoplanet.

6. Discussion

6.1. DS Tuc Ab in Context

With an age of τ∼45Myr, DS Tuc Ab is one of the few
transiting planets with ages τ<100Myr, joining the planets
K2-33b (David et al. 2016b; Mann et al. 2016b), V1298 Tau b
(David et al. 2019) and AU Mic b (P. Plavchan et al. 2019, in
preparation). At V=8.5, DS Tuc A is the brightest of these
transiting planet host stars, closely followed by AU Mic
at V=8.6.
Using photometry from TESS and Spitzer, we determined

that DS Tuc Ab has a radius of 5.70±0.17 R⊕, placing it in
the sparsely populated realm of super-Neptunes and sub-
Saturns. The planet is young enough that it likely still
contracting due to internal cooling and may also be losing
mass; models from Bodenheimer et al. (2018) suggest that its
radius will shrink by 5%–10% over the next few 100Myr.
DS Tuc is a visual binary, and we find no evidence for

additional massive companions in the system. While DS Tuc B
has previously been suggested to be a spectroscopic binary, we
do not see two components in the spectrum of DS Tuc B at any
observed epoch, a visual companion in high-contrast imaging
data, or periodic RV variations at the precision of our data
(200 m s−1). The detection of planetary or substellar compa-
nions orbiting DS Tuc A exterior to DS Tuc Ab could indicate
that dynamical interactions played a role in the present orbit of
DS Tuc A; however, our high-contrast imaging data from GPI
shows no companions with masses more than about 5MJup

between 10 and 80 au.
The orbit of the stellar binary is likely to be closely but not

perfectly aligned with both the orbit of the transiting planet and
the spin axis of the planet-hosting star. We found a binary orbit
inclination of 96°.9±0°.9, a planetary inclination of -

+89.5 0.41
0.34 ,

and a stellar inclination of i>82° (1σ limit). The latter two
quantities use the convention of i<90; however, i>90 is
equally likely. Although the PAs are presently unconstrained,
the chance of all three having the similar inclinations by chance
is small, suggesting that the three axes are in fact close to
aligned. This is similar to the five-planet Kepler-444ABC
system (Campante et al. 2015). Dupuy et al. (2016) found that
the orbit of Kepler-444BC and the orbits of the planets around
Kepler-444A have the same inclination angle, and suggested
that the planets formed in situ in close orbits around
Kepler-444A.
The stellar density that we determine from the transit fit

differs from that which we calculate from the stellar parameters
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by 3σ. The most likely reason is either errors in the model-
derived stellar mass, or a mild eccentricity (0.05e0.1).
While our mass estimate has formal errors of ;6%, predictions
from different model grids can vary by ;10%. Moderate
eccentricities have been found for some other young planets,
including two in the Hyades (Quinn et al. 2014; P. C. Thao
et al. 2019, in preparation).

6.2. Prospects for Follow-up

Due to the brightness of DS Tuc A, this system offers an
exciting opportunity for detailed characterization of a young
planet. Measuring the planetary mass would allow one to
compare the planet’s density to that of older planets. A distinct
possibility is that mass estimates based on field-age planets
represent an overestimate for DS Tuc Ab, given that the planet
could still retain heat from its formation and might undergo
future radius evolution as its atmosphere is sculpted by
photoevaporative ultraviolet flux. While these processes would
impact the planetary radius, they are not expected to have a
substantial impact on the planetary mass.

The Chen & Kipping (2017) mass–radius relation, which is
based on field-aged planetary systems, predicts a planetary
mass of -

+28 13
35 M⊕. The expected RV semi-amplitude produced

by DS Tuc Ab would then be -
+9 4

11 m s−1. As evidenced by the
large error bars on the inferred planet mass, there are relatively
few planets with sizes between Neptune and Saturn with
measured masses; and the planetary mass–radius relation is
poorly constrained for planets of this size.

Measuring the Rossiter–McLaughlin effect would determine
the sky-projected angle between the stellar rotational and
planetary orbital angular momentum vectors, and test our
hypothesis that the stellar spin and planetary orbital axes are
aligned. We estimate the RV amplitude due to the Rossiter-
McLaughin effect using the relation ΔRV;0.65v sin i*

( ) - b1R

R

2
2P

*
(Gaudi & Winn 2007), finding a predicted

amplitude of 32 m s−1. Combining a spin–orbit misalignment
measurement from Doppler Tomography (e.g., Johnson et al.
2017) or the Rossiter–McLaughlin effect (e.g., Narita et al.
2010) with our measurement of i* from the rotation period and
v sin i*, one could measure full 3D spin–orbit misalignment ψ.
DS Tuc Ab joins a small number of planets where such
measurements are possible.

Measuring RV signals on the scales noted above would be
well within reach of current high precision RV instruments, but
stellar activity poses a major challenge (e.g., Saar & Donahue
1997; Paulson et al. 2004). DS Tuc A is a very magnetically
active star, with ¢ = -Rlog 4.09HK (Henry et al. 1996). For stars
like DS Tuc A, the stellar activity signal on many-day
timescales (i.e., over many stellar rotation periods) is expected
to be 100–200 m s−1 based on the sample of active stars
monitored with Keck by Hillenbrand et al. (2015). While a
jitter of this level would seem to preclude RV measurements of
the planetary signal, stellar activity signals can be mitigated by
simultaneously modeling the activity and planetary signals
using, e.g., Gaussian processes, a process which would be
aided by our knowledge of the star’s photometric variability
(e.g., Haywood et al. 2014; Rajpaul et al. 2015; López-Morales
et al. 2016). It is not clear how well the activity signal can be
modeled and removed in an intensive RV campaign to measure
a planet’s mass or Rossiter–McLaughlin effect.

We investigate prospects for atmospheric characterization with
the James Webb Space Telescope (JWST) by computing its
transmission spectroscopy metric using Equation(1) of Kempton
et al. (2018). We assume zero albedo and full day-night heat
redistribution to estimate an equilibrium temperature for the planet
of 850 K. We find a transmission spectroscopy metric is 264,
which can be interpreted as the S/N with which its transmission
spectrum is expected to be measured (assuming a cloud-free
atmosphere) with a 10 hr observing program with the NIRISS
instrument. This makes DS Tuc Ab an excellent target for
observations with JWST. Finally, we note that it may be possible
to detect the planetary exosphere, e.g., using He 10830Å transit
observations (Oklopčić & Hirata 2018; Spake et al. 2018).

7. Summary

We report the discovery of a hot planet with a radius of
5.7±0.17R⊕ around the young star DS Tuc A (G6V, V= 8.5)
using data from NASA’s TESS mission. The host star was one
of the first identified members of the 45Myr old Tucana–
Horologium association, and has a stellar companion orbiting
at 157<a<174 au (1σ interval). The TESS data alone were
insufficient to validate the planet given the nearby stellar
companion, so we used photometry from Spitzer to confirm
that the planet orbits DSTuc A and revise the transit
parameters. We find that the rotation axis of DS Tuc A, the
orbital axis of the stellar binary, and the orbital axis of the
planet are likely to be aligned.
This 45-Myr-old planet offers numerous opportunities for

further characterization and illustrates the utility of TESS in
furthering the study of planetary evolution.
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