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ABSTRACT

The primary purpose of this dissertation is to state a modal account
of impredicativity. A (formal or explicit) definition (under a p -ticular
interpretation) is impredicative if the object defined )n that
interpretation is a value of a bound variable occurring in the detinition.
An object may also be called impredicative (with respect to a given
language), namely just in case it can be defined in that language but only
by means of an impredicative definition. Poincar6 charged in (1906) that
impredicative definitions are viciously circular and that impredicative
objects dc not exist. Russell agreed with these charges and went on to
formulate a logic (ramified type theory) on the basis of a principle which
banned imprediwativity (vicious circle principle). The main purpose in
this dissertation is to show how certain modal-semantic considerations can
be used to mtke sense of the subject of impredicativity, and give an
interesting account of what it is for an object to be impredicative. A
secondary purpose is to rebut in amore direct manner the charge of vicious
circularity.

Chapters 1 and 3 are on Russell. In Chapter 1, I examine Russell's
early idealist work (1895-1898) in the foundations of geometry. Although
Russell increasingly disassociated himself from this work, as indeed from
Kant and Hegel, an examination of Russell's idealist foundations can shed
light on Russell's later ban on impredicativity. Russell's idealist
metaphysical views (especially regarding the continuum) make extensive
appeal to modal notions such as essentiality and presupposition
(ontologic&l dependency). It was largely his change in attitude toward
just these modal notions that lead him to reject idealism and adopt in its
place logical atomism and an analytic philosophical methodology. The modal
account of impredicativity I give in Chapter 3 will rely chiefly on modal
notions Russell rejected when he abandoned his idealist philosophy. Thus
the purpose of the first chapter is largely historical: to sketch
Russell's views regarding essentiality and ontological presupposition as
they were applied in foundations of mathematics.

Chapter 2 concerns Poincard. I present Poincar6's views in the
foundations of arithmetic and geometry prior to his rejection of
impredicativity in 1906. I then try to highlight certain tensions in his
thought which the rejection of impredicativity created. These tensions
arise from Poincar4's use of Kant's claim that mathematical knowledge is
based upon synthetic a priori intuition. The principles Poincar4 held such
intuition to justify require, for their proof, the use of impredicative
definitions or the postulation of impredicative objects. Poincar6 took his
ban on impredicativity to show that explicit proofs of these principles
were not possible, and that therefore these principles presupposed a role
for synthetic a priori intuition. I argue that this conclusion is
misguided, and that Poincar4 does not successfully avoid impredicativity
in the foundations.

In Chapter 3 I discuss Russell's ramified type theory and argue
first that Russell's motivations for introducing this theory can be
expressed as certain modal prejudices Russell held. I then extend the
modal notions used to express Russell's motivations to define a notion of
mutual presupposition or reciprocal ontological dependency, which can be
seen to constitute the impredicativity of objects in the context of
ramified type theory. One outcome of my modal account of impredicativity
is an explanation why Russell thought his restriction to predicative
definition could be justified on strictly logical grounds. Russell's later
atomistic metaphysics simply ruled out the use of the modal notions
required to make sense of impredicative objects.

Thesis Supervisor: Professor Richard Cartwright
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O. Introduction

0.1 Opening Remarks

The subject of this dissertation is impredicativity. The term

"impredicative" can significantly be applied to a variety of things. I

will begin by saying how the term "impredicative" is to be used in this

work, and then go on to say why impredicativity has been thought to be

problematic.

The word "impredicative" was applied originally to definitions,

which one can think of for present purposes as stated in a formal or

symbolic language. A definition or, more precisely, a definition under a

particular interpretation, is called impredicative if the object defined

on that interpretation is a value of a bound variable occurring in the

definition. By extension, the term "impredicative" can be applied to

objects, which is to say, to the values of bound variables. It is in fact

here that the subject of impredicativity becomes most interesting

philosophically. An object may be said to be impredicative (with respect

to a given language) just in case it can be defined in that language but

only by means of an impredicative definition. The idea here, very roughly,

is that if it is impossible to say what an object is without supposing

that it exists, then the object is impredicative. This comment, and these

definitions of "impredicative," are subject to qualifications, which I

will only get to below. First I want to say why impredicativity has been

thought to be controversial.

Objections to impredicativity are usually framed in terms of

definitions, but the harder philosophical problems have to do with

impredicative objects. It is said that impredicative definitions are

viciously circular. From this, it has been charged, one may conclude that



there are no impredicative objects (at least with respect to languages

used in the foundations of mathematics, where the subject of

impredicativity first arose). Henri Poincar6, who first objected to

impredicative definitions in a general way, held that we humans create

mathematical objects by an act of definition. He claimed that it was

impossible to create an impredicative object, because such an object had

already to be presupposed to exist before it could be defined at all. If

an object can be defined only by assuming that it is there to be

quantified over in the first place, then we can't be said to have created

it ourselves. Since all mathematical objects are created by our defining

them, impredicative objects cannot exist.

Poincar6's argument has had its followers. Bertrand Russell, though

he disagreed with almost everything else Poincar6 believed in the

philosophy of mathematics, was among those who accepted the basic drift of

Poincar4's idea. What Russell did not accept was that mathematical objects

were created by the mind. Still, Russell accepted that impredicative

definitions were viciously circular, and he denied that any impredicative

objects existed (as far as any language was concerned which he used in the

foundations of mathematics). Obviously, Russell based these conclusions on

arguments very different from Poincar4's as stated above. Somehow, the

combined efforts of two thinkers of otherwise very different outlooks has

seemed to leave impredicativity very much in need of defense.

I believe that impredicative definitions are not in general

viciously circular, and also that impredicative objects might well exist.

(I do not believe that we create mathematical objects, but that is not my

main concern in this thesis). I want to show here how certain semantical

considerations can be used to make sense of the subject of

impredicativity, and give an interesting account of what it is for an

object to be impredicative. The semantical considerations involved use



modal notions such as necessity, essentiality and presupposition. In this

sense, my account of what it is for an object to be impredicative is an

importantly modal account.

The literature on the objections of Russell and Poincar6 to

impredicativity has tended to concentrate almost exclusively on the series

of articles in which the notion of impredicativity received its initial

formulations.' I take a different tack. Anyone who has looked at this

exchange is impressed by the pervasive mutual misunderstanding that occurs

in it. Several of the key terms (such as "logic," "intuition" and

"definition") are understood quite differently by the two writers. It

seems to me that one way around this interpretive difficulty is to look

farther back in the writings of both authors. In this way, some of the

presuppositions with which they entered the debate may be recognized more

distinctly. In addition, some of their own ideas about modality can be

used to motivate my own modal account of impredicative.

0.1.1 Outline

I would like now to give some indication of the overall structure of

the present work. In Chapter 1, I examine Russell's very early work in the

foundations of geometry. Despite the fact that Russell increasingly

disassociated himself from this work, and from the idealist philosophical

framework in which it was carried out, I believe there is much to learn

from Russell's early efforts about the notion of impredicativity.

Russell's metaphysical views at this time make extensive appeal to modal

notions such as necessity and essentiality, and his eventual rejection of

his early work was very largely motivated by a change in attitude

concerning just these notions. I will claim that certain of the modal

'This series is: Russell (1905a), Poincar4 (1905), Russell (1906), (1908),
Poincar4 (1909), (1912). Heinzmann (1986) collects all these and other primary
source materials.



notions he rejected when he abandoned his idealist philosophy are

precisely those required for a correct understanding of impredicativity.

One outcome of my modal account of impredicativity is an explanation why

Russell thought his restriction to predicative definition could be

justified on strictly logical grounds. Russell's later metaphysics simply

ruled out the modal notions required to make sense of impredicative

objects.

In Chapter 2, I turn to Poincar4. Poincar4 developed many of his

opinions in the philosophy of mathematics long before he formulated the

notion of impredicativity in 1906. There are some strains in his early

thought which anticipated the notion, but there are others which did not

sit well with the notion once it had been introduced. My general purpose

in this chapter is to highlight the tensions in his thought which the

introduction of the notion of impredicativity creates. These tensions

arise primarily from Poincard's reliance in the foundations of mathematics

upon the ideas of Immanuel Kant. In particular, Poincar6 insisted that our

mathematical knowledge was founded upon synthetic a priori intuition. But

the principles he held such intuition to justify are such as require, for

their proof, the use of impredicative definitions. When Poincar6 came to

reject the legitimacy of such definitions, he thought he had a new

argument why the proofs of these principles should be rejected. He wished

to conclude from this, not that the principles themselves should be

rejected, but rather that they should be accepted on the basis of so-

called pure intuition. I argue that this conclusion is misguided, and that

Poincard does not successfully avoid impredicativity in the foundations.

Chapter 3 is the heart of the present work. In it I discuss

Russell's ramified type theory and argue first that Russell's motivations

for introducing this theory can be expressed as certain modal prejudices

Russell held. I conclude that Russell's prejudices which led him to the



conclusion that impredicative definitions were impermissible, and that

impredicative objects cannot exist. I then extend the modal notions used

to express Russell's motivations to a

define a notion of mutual presupposition or reciprocal ontological

dependency, which can be seen to constitute the impredicativity of objects

in the context of ramified type theory.

This dissertation also includes two bibliographies. One is a list of

the works referred to in body of the dissertation. I explain there how

references are to be made in this work. The other bibliography covers the

subjects of predicativity and impredicativity. It is, I think, the most

extensive on the subject.

0.2 Two Informal Examples.

In this section, I discuss the concept of impredicativity in more

detail and sketch a fuller account of its nature. As is clear from the

above definitions, the concept of impredicativity is formal and rather

technical, but a few informal examples are fairly widely discussed. I try

here to motivate some of the technicalities by showing how two of the

earliest and most common informal examples are in certain respects

misleading.

In the philosophical literature surrounding the formal studies of

impredicativity there exist several non-technical examples of

impredicativity. Although useful for introductory purposes, these examples

bear undeniable limitations. A closer consideration of two of these

examples will bring these limitations into clearer focus. The examples may

be put in the form of definite descriptions, thus: "the tallest person in

the room" and "the property of having all the properties of a great
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generalW'. The impredicative feature of both these examples consists in

the use of the universal quantifier all. In the second example, one

quantifies over all properties of a certain sort, and the impredicativity

consists in the fact that the property to which one wishes in particular

to refer falls within the quantifier's intended range. And when we speak

of the tallest person in the room we mean a person in the room tallest

among all those in the room, who thus, on grammatical grounds alone, falls

into the intended range of the quantifier implicit in the superlative.

When, therefore, we seek to define (single out or uniquely characterize)

an entity such as this tall person or that martial property, we do so

impredicatively if we employ the concept all and intend this to cover,

among other entities, precisely that which we seek to define.3

The limitations are as follows. The first example is fine as an

impredicative definition, but it does not define an impredicative entity.

This distinction is of paramount importance to the study of

impredicativity. It is easy enough, in most cases, to go up to the tallest

person and point to him or her. We could also call out an appropriate

proper name, if we know one; or, provided with suitable instruments, we

could make various measurements, and discuss instead the person of such-

and-such a height (there being, as it eventuates, just one of them in the

room). These methods, on assorted assumptions, single out the tallest

person just as well as the impredicative method, and there seems in

2Definite descriptions may be thought of as definiens of explicit
definitions; thus I will sometimes speak of the descriptions as themselves
definitions. The first example is slightly modified from Ramsey (1926 204), the
second is found in Russell (1919 189 ff; 1959 120-6), who supplies a number of
inessential variations. The problems with two examples chosen are quite distinct.
Many informal examples discussed in the literature on impredicativity fall in
with Ramsey's, for instance Quine (1969 243) and von Kutschera (1976 171), "Die
Spezies mit der kleinsten Umfang aus der Menge der Spezies der Gattung Rosa". The
remarks I wish to make about Ramsey's example carry over to these.

'The existential quantifier "some" can also be used impredicatively. We may
provisionally define "some" in the usual way as "not all not" and continue to
speak simply of "all'.
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principle always to be some way to refer to ordinary objects other than

through an impredicative use of the word "all". Objects ordinarily have no

shortage of characteristic features expressible without any quantification

whatsoever, and the mention of any one of these as a definition suffices,

as does, often enough, the mention in context of non-unique features.

Hence if we can not in fact predicatively refer to such an object, it

seems this will always be due to an artificial restriction in our

capabilities - tied hands, inessential ignorance, or a shortness in

metersticks - and will have nothing to do with the object itself. Yet it

is precisely when our inability stems from the object itself that we say

that it, and not just our means of characterizing it, is impredicative.

Impredicativity is an ontological issue.

The second example appears, in our need, to be just such a case, for

it is difficult to imagine being given the special property of having all

the properties of every great general in a way which avoids quantifying

over all such properties. One speaks here of a particular property (which

if it exists at all is certainly an object) but one can do so, it might

seem, only in terms of all the properties of a sort to which the first

already belongs. There are, however, two related objections that curtail

the philosophical utility of this second impredicative definition. The

first is that it isn't at all obvious that this property is an object

(that is, a value of a bound variable); and the second is that properties

generally speaking, if indeed objects, are not obvious objects. Both of

these objections require explanation.

When discoursing of generals and their properties, the times are few

when we must irreducibly speak of a special property P of having all the

properties of a great general. Why not instead speak severally of all

those properties? Now surely, if P exists, it falls within the intended

range of the quantifier "all', so that to speak of all here is to speak of

12



P as well. But we lack good reasons to admit P's existence in the first

place. For when is it theoretically necessary to attribute a single

property P rather than a variety of properties, each displayed by every

great general? More precisely: need a general who has each of these

properties besides P also have a single property consisting in having all

of them (and P)? Not obviously so, in any case. Moreover, in order to

turn these questions into affirmations, we might just have to survey all

the contexts in which discourse of the properties of generals could find

a place. This would not be easy -- it might even be impossible -- which

alone shows that the need to quantify over P is not obvious. P is not

obviously an object, a fortiori not obviously an impredicative object.

The second objection to the second example is that properties, if

sometimes obviously objects, are not obvious objects: we don't really know

what they are. To see the force of this, we admit outright, contrary to

the last objection, that P is after all an object, and we inquire whether

it really is impredicative. If so, it must not be possible to characterize

P without admitting it as the value of a bound variable. We must try,

therefore, to restrict the range of our variables so that P is excluded,

and check if our words are thereby invariably prevented from denoting P.

Now, if this be the test, we needn't go very far to conclude that P seems

predicative. For we need merely relegate P to a higher logical type than

everything else in the intended range of the variables occurring in the

given description. As in the last objection, we remove P from the intended

interpretation of the variables and consider only, so to speak, all the

properties besides P of great generals. Unlike the last objection,

however, we admit P to be an object, and indeed to be a property of all

great generals: we question merely whether it is not equally well denoted

by the description under the modified interpretation (with types) as it

was under the unmodified interpretation (without types). Certainly nothing

appears to prevent us from referring to P in the new situation (nor even

13



to suggest, if we do not, whether we refer to something other than P).

Admittedly, to note these appearances and to raise our question is not yet

to argue. But this is just the point: to argue one way or another would

require having a good idea of what counts as the same property: it would

require an account of the identity conditions of properties. We should

have to know more about properties than we do. Properties are for us in

this respect inobvious ,bjects, and this prevents us from honestly

deciding on the predicativity of P.'

To sum up, if P is either not obviously an object, or not obviously

distinguishable from the entity (if any) referred to by the typified

description just discussed, then P is not obviously an impredicative

object. The second example, quite as much as the first, fails to present

us with an impredicative object.

The moral of all this is that the study of ontological

impredicativity does best when we have clear identity conditions for the

objects under consideration. Typically we have clear identity conditions

only in somewhat artificial settings, such as formal theories concerning

sets or mereological wholes. In a formal setting, we have the related

advantage of being in a position to survey all the strings of symbols

which may be used as a definition. In these convenient circumstances we

can sometimes even say when it is theoretically necessary to attribute to

an object a property whose any adequate expression employs quantification

over that object, something which is, naturally, of crucial importance in

regard to judging ontological impredicativity in individual cases.

Finally, we may even quite literally speak of not being able to define an

'The discussion here has an entirely different point than Russell's. For
Russell the description as interpreted without types has no meaning or denotation
at all (even in context). Thus, for him, we do not even have a candidate example
of an impredicative entity, in the sense of "impredicative" being introduced
here. Outside the context of Russell's type-theoretic assumptions, however, the
suggestion of impredicativity is clear, if ultimately misleading.

14



object, or of being able to define it only under certain assumptions, for

that will be understood relative to the interpretations of the kinds of

languages in question. This relativization may appear to weaken the

informal claim, but in a sense it strengthens it by lending it a clarity

and exactitude not accessible to the informal approach. With these

advantages in mind, I turn now to a more detailed discussion of the term

"impredicative" as it is used in such contexts.

0.3 Definitions

In this Section I discuss certain of the more technical terms that

occur in this dissertation. The first of these is the term "impredicative"

itself. Above I defined the term "impredicative" as it applies to

definitions as follows: An interpreted definition is said to be

impredicative just in case the object defined on that interpretation is a

value of a bound variable occurring in the definition. To this certain

qualifications must be added. In first-order logic there is only one type

of bound variable. Consequently, if one defines a symbol "S" in such a

language and uses bound variables at all, then, provided that the

existence of S is provable on the basis of the definition, the definition

will be impredicative in the above sense. Since we can typically prove

existence when we make definitions (definitions are not particularly

useful unless we can prove existence) our definitions will typically be

impredicative. This creates a problem: did the opponents of impredicative

definitions really want to ban typical definitions?

This problem is in fact rather superficial. In the first place, the

usual formal setting for a discussion of impredicativity is not first-

order logic, so that more than one type of bound variable will be in use.

So long as the type of bound variable used in the statement that S exists

is not the same as the type of any bound variable used in the definition

15



itself, the definition will not be impredicative in the above sense. Thus

in the usual formal setting for a discussion of impredicativity,

definitions will not be impredicative whenever they are useful.

But even when we assume the underlying logic is first-order, there

is a conventional way to avoid the conclusion that definitions are

typically impredicative. All that is needed is a judicious use of bounded

quantification. For example: consider a definition of "S," stated in the

language of first-order set theory, that employs a bound variable; and

suppose we can conclude in this theory that S exists. By relativizing the

quantifiers in the definition to a given set M - that is, by replacing

every occurrence of "Vx(...)" in the definition by "Vx(xeM-4 ... )" -- one

can imitate a logic with distinct types of variables. Although strictly,

the bound variable *x" in the definition still ranges over everything in

the domain of the interpretation (and thus over S), we can reasonably

speak of the variable "x" as if it ranged only over the elements of M.

After all, the definition relativized to M will define exactly the same

entity as that which the original definition would define if the bound "x"

in it were interpreted as ranging over just the elements of M. We can then

make the convention that our original definition of "S" is impredicative

with respect to a given M just in case SEM and the relativization of the

definition to M still defines S. Similarly, the object S itself can be

said to be impredicative (with respect to the language of set theory) just

in case no relativization to any set M of a definition in the language

defines S unless SEM. In this way, we can avoid the difficulty that most

definitions in first-order languages are impredicative.

The term "impredicative" can also be applied, not just to

definitions and objects, but also to theorems of a given theory. It

sometimes happens that a particular theorem of a given theory cannot be

proved unless certain objects can be proved to exist. In the simplest

16



case, the theorem itself affirms the existence of the objects satisfying

the definition. In other cases, it is simply not clear how a particular

theorem could be proven except by way of defining certain objects. If the

objects that must be shown to exist in order for proofs of the theorem to

go ahead are impredicative (with respect to the language of the theory),

then we can reasonably speak of an impredicative theorem (again understood

relative to the language). This intuitive idea can be made precise.

Feferman (1964) for instance has given a precise sense to "predicatively

provable theorem of analysis" and has identified subsystems of classical

analysis from which exactly the predicatively provable theorems of

analysis are deducible. If a theory has only predicative theorems, it may

itself by called predicative. If it contains some impredicative theorems,

it may be called an impredicative theories. In a similar way, a proof or

an informal justification of a theorem may be called impredicative if the

theorem is impredicative.

The fact that the term "impredicative" can sensibly be applied to

theorems, as opposed to just definitions or objects, has useful

consequences. One relatively common view in the philosophy of mathematics,

dating back to Kant, states that certain theorems are knowable through

"intuition." Now whatever quite is meant by a given author who employs the

term "intuition" to make such a claim, it is clear that the

impredicativity (with respect to a given language) of the theorems

allegedly knowable through this "intuition" may be ascertainable in the

way just now discussed. Under these conditions, it is convenient shorthand

to say that the intuition itself is impredicative. A similar remark

applies to such familiar (if obscure) phrases from the philosophy of

mathematics as "form of experience," "form of understanding" and

"category." In most cases (certainly in Russell and Poincar6) these

phrases are thought to denote some fact about our minds in virtue of which

we may know that specific theorems are true. So long as knowledge of
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specific mathematical theorems is believed to be based upon a "form of

experience" or a "category," we can meaningfully speak of such "forms" or

categories as predicative or impredicative. They are impredicative just in

case the theorems which are thought to be knowable by way of them are

impredicative. 5

There is a further remark to be made concerning the use of

"impredicative" as it applies to a theorem. Generality in a theorem is a

natural desideratum. Occasionally, a very general version of a theorem is

impredicative, while a less general version is not. Again, a convenient

shorthand permits one to speak of the instances of impredicative instances

of a theorem. These are instances of a theorem which follow from a general

impredicative theorem, but which do not follow from any less general

predicative version.

Before leaving this section I would like to say something about the

use of the word "continuous" in this dissertation. In its most technical

significance, the term applies to series.' A series is an ordered pair

(K,<) such that K is a non-empty set and < is a 2-place relation

satisfying the following conditions (for a,bEK):

a~b -+ (a<b v b<a)
a<b -+ asb
(a<b A h<c) -+ a<c

A series is dense if it is also true of it that, for any a,beK,

a<b -9 3xEK(a<x A x<b).

A series is then said to be continuous if it is dense and satisfies the

following important postulate: for any S and T,

'A natural requirement might be that if a given author has principled
objections to impredicativity in mathematics, then no theorems he or she holds
to be knowable on the basis of an intuition, category or form of experience may
be impredicative. It is just such a requirement that Poincar4 will be seen to
violate.

6The following definitions are based on those given by Huntington (1905).
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(*) ( S,T0 A S,TSK A VxEK(xES V xeT) A VxESVyET(x<y))
- 3zeK(Vx<z(xeS) A Vz<y(yET))

Although the term "continuous" applies to series (K,<), it can be extended

to apply to the set K alone provided that the relation < is obvious in the

context (e.g.: for real numbers, "<" denotes the relation less than).'

When in the chapter on Poincar6 I speak of "continuity in the mathematical

sense" it is this technical sense of continuity that I mean (the phrase is

a rough translation of a phrase in Poincar6).

This notion of continuity is important in discussion of

impredicativity because to show that the real numbers are continuous in

the above sense requires the use of an impredicative definition. The

theorem that shows this is often called the least upper bound theorem (lub

theorem). A set of real numbers is said to be upwardly bounded when it has

an upper bound, i.e., when there is some real number greater than or equal

to every number in the set. Then the lub theorem says that any upwardly

bounded set of real numbers has a least upper bound. It is fairly

straightforward to verify that, if the least upper bound theorem obtains,

then the set of real numbers is continuous according to the above

definition. Briefly, the least upper bound of an upwardly bounded set S of

real numbers will be an element z of K which makes the existentially

quantified consequent of (*) true. Speaking very roughly, one might define

such a real number z as follows:

the zeK such that Vx<z(xES) A VyeT(z<y)

The definiens here, however, contains bound variables "x" and "y" ranging

over all real numbers, so this definition is impredicative. It follows

from the work of Feferman (1964 98, 126-7) that it will not always be

possible to define the least upper bound of a set of real numbers without

7Space can be said to be continuous in a related sense, but there is some
additional complexity here since space has several dimensions. Full detail is
perhaps not required here but, roughly, n-dimensional space can be regarded as
the n-th Cartesian product of K. Then, we may say space is continuous if K is
continuous.
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making a similar use of quantification. In other words, the least upper

bound theorem is impredicative, for it affirms the existence of real

numbers definable (in the language of set theory) only by means of

impredicative definitions.

20



Chapter 1: Early Russell

1.0 Introduction

In 1898, Bertrand Russell underwent a wholesale change in outlook.

This change was so broad Russell called it a "revolution" in his thought,

and later stated that it was the only revolution in thought he had

experienced (1959 11, 54-64). In this revolution, Russell changed from a

follower of Kant and Hegel to an analytic philosopher. It is an

interesting historical question just what Russell abandoned at this time

and just what he came to believe in its place.8 In the present chapter I

discuss Russell's early work in the foundations of geometry in an effort

to highlight certain modal notions and principles which Russell adopted as

an idealist, but which he rejected when he came to endorse analytic

philosophy. I do not mean to claim that these are the only notions or

principles he abandoned in 1898, but they are among the most important.

The notions I highlight will be fundamental in Chapter 3 to my account of

impredicativity.

I begin the present chapter with a rare example of Russell's

dialectical skill. My intention in discussing this dialectical argument is

to outline three broad philosophical frameworks in terms of which Russell,

at various times in his career, attempted to give an account of

mathematical continuity. I go on in the rest of the present chapter to

discuss one of these philosophical frameworks in more detail. In Sections

1.2 and 1.3, I sketch the general outlines of Russell's early work in

foundations of geometry. This may be expeditiously done by documenting

Russell's indebtedness to Kant. In Sections 1.4, I discuss the geometrical

principle Russell called the "axiom of relativity," making particular

'Recent books relating to the subject include Hylton (1990) and Griffin
(1991).
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reference to the modal notions implicit in Russell's understanding of this

*axiom." These modal notions raise a certain problem for Russell's view,

which is presented in Section 1.5. Russell's changing solution to the

problem is the subject of Section 1.6. Finally, in Section 1.7, I return

to the dialectical argument with which I began and try to show in terms of

it, and in terms of the preceding discussion, what it meant to Russell to

abandon idealism. The particular modal notions and principles he abandoned

in 1898 will be taken up again in Chapter 3, in order to show their

importance for the subject of impredicativity.

1.1 The Philosophy of the Continuum.

The principle of our dialectic appears to lie in making the
Whole gradually more explicit. Our separate particles turn
out, first to be related to other particles, and then to be
necessarily related to all other particles, and finally to err
in being separate particles at all. With this we pass to the
plenum. (1897x 23)

The unlikely author of this passage is Bertrand Russell. He wrote it

in 1897, when the dominant influences on his thinking were idealists such

as Hegel and Bradley. It is in fact one of the few surviving passages in

which some indication is given of how Russell understood and applied

dialectical reasoning during his idealist period (1894-1898). More than

this, however, the passage suggests three broad philosophical frameworks

in terms of which Russell, at various stages of his career, conceived of

continuity. The notion of continuity is important to this dissertation

because the theory of continuity is impredicative. In my view, an account

of impredicativity can learn much from Russell's various efforts to supply

a logically adequate account of the continuum. Thus I now offer a brief

exegesis of what Russell is asserting in this early passage.

Hegel's influence on the early Russell is noticeable in the latter's

choice of a dialectical form of argument; but one should not assume that

Russell, even at this time, is entirely faithful to Hegel. In fact, the
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stages of Russell's dialectic are related to one another in a way quite

different from that in which the stages of a hegelian dialectic are

related. It is common to think of a hegelian dialectical argument

proceeding in three stages as follows. A thesis is affirmed at the initial

stage, but its contradictory is affirmed at the second. In the final

stage, the two earlier theses are "synthesized" -- something from both is

retained and something from both is rejected. The result is held to be a

more satisfactory explanation than those hitherto available in the

procedure of the subject at hand.

Whether a dialectical explanation of this sort is ever required, or

even makes sense, is not the issue here. The point is rather that Russell

departs here from this customary pattern of dialectical explanation. At

the second stage, Russell supplements his initial affirmation ("particles

[are] related to other particles') with a compatible, not a contradictory,

thesis ("'particles [are] necessarily related to all other particles").

Only at the third stage does a contradiction emerge, and then what is

contradicted is not one of the earlier theses per se, but a claim implied

by (Russell might have said "presupposed by") the natural interpretations

of both earlier theses. It is denied, in the end, that there are after all

useparate" or distinct "particles". (The significance of the term

"particle" is discussed later.) Russell expresses this by saying that, at

the third stage, the "particles" err in being separate. Strictly speaking,

of course, the "particles" don't err in the sense of holding false

beliefs. But nor does Russell mean that he made a simple mistake earlier

in dialectic. Rather, as we shall see, the "error" that was committed was

a necessary one, and would have to be made again.

For Russell, no doubt, the differences between the two kinds of

dialectic were less important than the similarities. A further similarity

lies in the conviction that the final stages of both provide the most
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satisfactory explanation of the subject, free from whatever errors must

occur at the earlier stages. But what exactly is the subject here? What

is "the Whole" Russell is trying to make gradually more explicit? The

context from which the quoted passage is taken leaves no doubt about the

answer: "the Whole" is the material or spatio-temporal world. It is this

which, at the final stage of Russell's dialectic, is seen to be a

mplenum'. Now to be a "plenum", in Russell's early terminology, is to be

a "material continuum", i.e., to be both continuous and made of matter.

Thus it was in order to account for the continuity of the material or

spatio-temporal world that Russell, in 1897, appealed to the dialectic.

Before I proceed to examine the three stages of this dialectical

account of the continuity of the material world, something should be said

about Russell's use of the word "particle". The particles Russell has in

mind here are mass points, which he thinks of as actual material entities.

For my purposes, however, the fact that the particles are material is

unimportant. What is important is what is said about the particles in the

course of the dialectic. At the beginning, they are taken to be "separate"

or distinct, but in the end they turn out not to be distinct. This

contradiction is not only what makes Russell's explanation "dialectical"

(as was mentioned above), it is also precisely similar to a contradiction

occurring in Russell's earlier account of continuity in pure geometry. In

(1897 189), Russell had argued that geometrical points ("particles" of a

non-material kind) had to be thought of for certain purposes as distinct,

but for others as identical. Thus the fact that the "particles" Russell is

speaking of in (1897x) are material plays no role in his account of

continuity per se, but is relevant only insofar as he happens to be

discussing the "plenum" or "material continuum'. As regards the account of

continuity itself, the crucial fact is quite simply that the "particles"

are logical subjects. A logical subject, in the terminology Russell
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employs at the time, is that of which something true can be said.9 Russell

believed that, in order to explain the continuity of geometrical space or

the spatio-temporal world, one had in the end to treat it as a single

logical subject not composed of distinct logical subjects. To get this

explanation off the ground, however, he also thought something true had to

be said about distinct logical subjects which collectively composed the

continuum in question. The contradiction, then, as to whether or not the

continuum was composed of distinct logical subjects was held to be

unavoidable, and indeed to demonstrate the necessity of a dialectical

account of continuity.

I come now to the individual stages of Russell's dialectical

explanation of the continuity of the spatio-temporal world. A closer

examination of these will lead to a sketch of three general philosophical

standpoints in terms of which Russell, at various times, attempted to give

an account of continuity. In the fiast stage of the dialectic, "separate

particles" turn out to be related to other "particles'. From what was said

above, it follows that the crucial claim here is that distinct logical

subjects are related to other logical subjects. Of course, if being

distinct is one way of being related, this first stage in the dialectic is

trivial. But Russell denies the hypothesis; difference, according to him,

is not a relation but, as he says, "presupposed by relations" (cf. 1897

198). Evidently, Russell is thinking of relations on the model of those

denoted by "x lies some distance from y" and "x lies to the left of y". If

these are seen to be instantiated (as spatial experience in fact suggests)

then there must be distinct logical subjects: something true must be said

about more than one "particle'. The claim at this first stage of the

dialectic, then, or at least part of it, might be formulated as follows:

'See (1898x 167-8) By this definition, anything at all is a logical subject.
Although Russell does want this kind of generality here, we will find him
elsewhere imposing further conditions on logical subjects. His equivocation is
discussed later in Chapter 1.
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there is some irreflexive relation, and it is instantiated. This

apparently obvious move already puts Russell into prima facie opposition

with Bradley, who held that no relation was "ultimately real" and that

there was only one logical subject.

At the second stage of the dialectic, "particles" turn out to be

mnecessarily related to all other particles'. Two additional claims are in

fact being made here. First, all logical subjects turn out to be related

to all others, just as every geometrical point is some distance from every

other geometrical point, and every mass point exerts some gravitational

influence upon every other. The second claim made here is that all

particles are "necessarily related" to all others. This second claim is

itself ambiguous in several respects.10 Let us assume first of all that

some particular irreflexive two-place relation R is in question, and that

R is not difference. Then the second claim might be: it is necessarily

true that, for any distinct logical subjects x and y, xRy. Or it might be

the stronger thesis that, of any two distinct logical subjects x and y, it

is necessarily true that xRy. This stronger claim is sometimes expressed

by saying that it is essential to x and y that xRy. It is not clear from

the text alone which of these two claims Russell is making here, but

circumstantial evidence suggests he intended the stronger second reading.

Years later Russell would take the second reading, and the notion of

essentiality that it may be taken to explicate, as characteristic of views

he held between 1894 and 1898, and characteristic in fact of a great many

philosophers, from Leibniz to Bradley. If this is so, and I shall present

more evidence to this effect below, then the second stage of Russell's

1897 explanation of continuity may be said to consist in the claim that

the logical subjects involved are all necessarily related (in the strong

'"Russell might mean either "xVyVR (x is necessarily related by R to y)" or
"RVxVy (x is necessarily related by R to y)." At present I am more concerned
with the ambiguity inside the parenthesis. I assume here that the formner is
intended, but the entire matter is discussed again at the end of this chapter.
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sense) by the relation R to all the others.

At the third and final stage of the dialectic, the particles "err in

being separate particles at all'. A good deal has already been said about

this stage. Perhaps all that remains is to indicate the drastic

consequences. If the material world is a 'plenum', as Russell held, then

it consists of a single incomposite logical subject. The rift with Bradley

which appeared at the outset of the dialectic is now repaired, and Russell

thought of himself as accepting here something like Bradlian monism, which

consists in the view that there is but one logical subject. The similarity

with Bradley goes further, since Bradley and Russell would agree that the

single logical subject is both continuous and incomposite. Except perhaps

the "logical subject' terminology, this a position endorsed by Parmenides,

and it is worth noting that the point of Russell's dialectic is similar to

the paradox of continuity sometimes attributed to Parmenides' most

renowned disciple, Zeno of Elea." If something is continuous, it is

incomposite. Now monism, if filled out in further detail, may not be as

bizarre as it .. initially appears, but left as it is stated here it is

certainly unsatisfactory. Quine once complained that Russell's ontology of

a later date was 'intolerably indiscriminate'. But however zealously one

sides with Quine in preferring desert landscapes in ontology, one

understandably hesitates to embrace the desert consisting of a single

grain of sand.

The stages of Russell's 1897 dialectic have not been drawn out in

order to show precisely what Russell's early views were. This is discussed

in more detail below. The point rather is that the different stages of the

dialectic correspond to general philosophical standpoints Russell held at

"See Grtnbaum (1952). Roughly, the paradox states that spatial continua (of
finite length), which seem ultimately to be composed of points, cannot be, since
points have no finite size and thus no number of them can combine to form a whole
of finite size. This and similar paradoxes involving motion also attributed to
Zeno were originally meant to demonstrate Parmenides' monism.
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different stages of his career, and to the accounts of continuity he gave

in terms of these standpoints. This has already been done sufficiently for

the final stage. Russell understood this stage as committing him to a sort

of materialistic monism, as he could not conceive of attributing

continuity to anything except a single logical subject. I turn now to the

other stages of Russell's 1897 dialectic.

In his mature period, of course, Russell dispensed altogether with

the dialectic. He refused, to put it another way, to go beyond its first

stage, or at least very far beyond it. At the first stage of the

dialectic, distinct logical subjects are said to be related to other

logical subjects: some irreflexive relation is instantiated. This,

certainly, is in accord with Russell's mature metaphysics, where distinct

logical subjects (he would eventually call them "logical atoms") do stand

in relations, and where these relations are in certain cases irreflexive.

More importantly, however, the mature Russell would maintain part of the

second stage of the 1897 dialectic, namely the view that every logical

subject is related to every other. (The relation of difference may even be

excluded from consideration here.) But Russell would go no further along

the dialectic: "logical atoms" were never "necessarily related" (in the

strong sense mentioned above) to one another; for if one logical atom were

ever to cease to stand in a relation to another, it would not thereby

become something else or cease to be at all. Indeed, after 1900, Russell

denied that this strong sense of "necessarily related" was even coherent.

Certainly his theory of continuity made no explicit appeal to it. Instead,

Russell relied on the theories of continuity developed by Cantor and

Dedekind, which consist in the specification of what must be true of a

relation if it is continuously to order the elements of its domain. These

conditions on the ordering relation, according to Russell, do not require

one to suppose there to be only one logical subject. More important,

Russell denied that any single logical subject is ever itself said to be
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continuous. Russell's logical atomism is characterized by the claims that

there are many logical subjects; that there are relations in which these

logical subjects stand; and that none of these relations hold necessarily

(in the strong sense given above). His view of continuity reflects all of

these: continuity consists in distinct logical subjects related non-

essentially in a certain way.

Now the second stage of Russell' 3 1897 dialectic similarly

corresponds to a philosophical framework in terms of which Russell tried

to give an account of continuity. In the second stage of the dialectic

every particle is "necessarily related" to every other in the strong sense

given above. The corresponding framework consists in the view that there

are many logical subjects; that these stand in various relations to one

another; and that all these relations are necessary in the strong sense

above. Except for the brief period in 1897 when Russell wrote the passage

quoted above, the early Russell worked entirely within this framework. I

shall call this framework monadism despite the fact that Russell sometimes

used this word somewhat differently. The difference turns mainly on

ambiguities of the term "internal relation", and the important question of

the relation between the various relevant senses of this term is addressed

in more detail below. The conception of the continuum corresponding to

monadism in my sense consists in the claim that the logical subjects

composing the continuum are essentially related to one another: they are

what they are only in relation to each other. As we shall see, the

relativistic view of space which Russell argued for in (1897) held

analogously that points are what they are only in relation to the other

points. Between 1896 and 1898 Russell worked on generalizing this view of

space to continua in general.

It was while working on the details of this generalization that

Russell came to see serious difficulties with monadism, and eventually to
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abandon altogether the notion of internal relation. Although it is an

exaggeration to say that with this move analytic philosophy was born, it

is certainly true that Russell's shift gave the fledgling philosophy a new

lease on life. Below I will give an account of the difficulties Russell

thought monadism faced, and trace this momentous change in Russell's

philosophical development. The role of the theory of continuity in this

transition will be seen to be quite paramount.

There is, however, a further reason for interest in early Russell's

monadism. In my view the corresponding view of the continuum is not quite

as mistaken as Russell thought. This can be seen by a careful study of the

inadequacies of Russell's final atomistic theory. In 1925, Russell

admitted that his official "logic" (ramified type theory without the axiom

of reducibility) was inadequate to the Dedekind-Cantor account of

continuity he endorsed. In short, this inadequacy is due to the fact that

the Cantor-Dedekind theory of continuity is impredicative and Russell's

"logic" is not. In chapter 3 I argue that the principle upon which Russell

based ramified type theory and which banned impredicative definition is in

fact a modal principle (despite Russell's claim to have dispensed with

modal notions in logic). Impredicative objects, then, (such as those

Russell would have needed to accept in order to render his logic adequate

to the Dedekind-Cantor theory of continuity) can be understood as

violations of this modal principle underlying ramified type theory. I

shall argue that this modal understanding of impredicative objects

strongly suggests the modal principles characteristic of Russell's earlier

monadist metaphysics. This is the central thesis of the present

dissertation. But before I come to it in chapter 3, I want now to discuss

Russell's monadist philosophy in more detail.

30



1.2 Russell's Early Foundational Program: Contrasts with Kant.

The major philosophical topics in Bertrand Russell's early

professional work come from the foundations of geometry. His 1895 Trinity

College dissertation dealt with our knowledge of geometry and with the

metaphysics of space; and although his original fellowship-winning work is

now lost, part of it probably appeared in (1896y 267-86), and a revised

version was published two years later in (1897). From these two sources,

as well as from others, such as numerous notes unpublished until (1990x),

it is possible to get a fairly clear interpretation of Russell's ideas *.n

the foundations of geometry at the time. I will discuss these ideas as the

first part of an effort to show that certain of the metaphysical problems

Russell treated in the 1890s are intimately related to the metaphysics of

impredicativity. Since Russell at the time was rather Kantian, I will

develop Russell's early views in part by contrasting them with Kant's.

In the foundations of geometry, as indeed in all epistemic

inquiries, Russell took sensation as his starting point. Space, he says,

is "given in sensation" and "immediately experienced" (1897 188; cf. 1896x

48). Thus the knowledge of space in which geometry was thought to consist

starts with spatial sensations. Now sensations, in Russell's terminology,

like Enpfindungen in Kant's [A19-20/834], are "the only mental states

whose immediate causes lie in the external world" (1897 ; cf. 1895y 258).

But (again as in Kant) the external cause of a sensation cannot alone

account for its appearance or nature. Rather "its nature is composite, in

part due to the external cause, in part to the nature of the subject

affected" (1895y 258; cf. Kant [A20/B34]). The former is the "material

element" of the sensation, the latter the "formal" or "a priori" element,

which was held to be presupposed in actual experience (1897 2). Now

spatial sensation has its own particular formal element, which Russell

called the "form of externality." The "content" of this form is given by
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describing it, i.e., by articulating it as a set of principles. With these

principles Russell hoped to arrive at necessary conditions of the

possibility of spatial experience in general (1897 3). Such axioms of

geometry as followed from these principles were to be regarded as

themselves a priori and necessary. The primary purpose of Russell's 1895

dissertation, then, as well as several papers on the same subject from

around the same time, was to isolate and identify the necessary conditions

of any possible spatial sensation, and to deduce from these the necessity

of axioms of geometry.

Already it is evident that Russell's task had a strongly Kantian

cast to it; and the similarities do not stop here. As a general principle,

however, differences of opinion are often concealed by similarities in

terminology, and this applies already to Russell's starting point. While

Kant would agree that space is "given in sensation" and "immediately

experienced,m both these phrases have a rather different significance for

Kant than for Russell, who leaned heavily on the tradition of idealist

monism represented by Hegel and Bradley. These differences are deep and

important, but it will not be possible to do justice to them here. I will

return briefly to the notion of sensation, but only after more has been

said about Russell's positive views in the foundations of geometry.

Russell's early foundational program in geometry overlapped with

Kant's at more points than those just mentioned. It was certainly a major

part of Kant's goal to isolate and identify the formal or a priori element

of spatial sensation [A22/B36], and Kant also expected principles

articulating this "reine Form der Sinnlichkeit* to express necessary

conditions of every possible spatial experience. Furthermore, it was

originally Kant's idea to derive "geometrische Grundsitze" from such

principles. His and Russell's common goal was to demonstrate the necessity

of geometrical truthe on this basis. There is reason to think, however,
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that this type of argument cannot succeed. Moore (1899) severely

criticized Russell (and indirectly Kant) on a crucial inference required

by the purported demonstration, namely from the so-called a priori (that

presupposed by actual experience) to necessary conditions of any possible

experience. The problem of moving from the latter to necessity tout court

is also serious. These are traditional errors which we will find Poincar6

conmmitting as well. My use of Russell's early work does not depend on his

success on either of these points.

Another reason Kant's efforts to demonstrate the necessity of the

axioms of geometry fell short is that he never actually provided explicit

deductions of this kind; nor did he articulate especially clearly the

principles of the pure form of sensibility. Russell, on the other hand,

tried to improve on Kant in both these respects. He gave a list of alleged

geometrical axioms and explicit arguments to the effect that some of

these, at least, followed from a refined description of the form of

externality. Although Russell's work also lacks formal precision, his

attempt is certainly to improve upon Kant.

At several points, however, Russell ventured into open disagreement

with the "creator of modern epistemology" (1897 1). Only some of these are

relevant to the subject of impredicativity. Whereas Kant maintained that

principles of the pure form of sensibility were synthetic, Russell, citing

the authority of Bradley and Bosanquet (1897 57), tells us that "modern

logic" has rejected any exclusive distinction between synthetic and

analytic propositions:

although we cannot retain the term synthetic, we can retain
the term a priori, for those assumptions, or those postulates,
from which alone the possibility of experience follows. (1897
59-60)

Russell's preference for the notion of the a priori over that of the

synthetic corresponds to the expanded role he accorded, even at this early

date, to logic. At one point Russell calls the whole project of
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demonstrating A la Kant the necessity of geometrical axioms "purely

logicalP (1896y 291), and elsewhere a similar point is made:

Of course Kant is right in maintaining that something must be
presupposed to make experience possible [... but] logic alone
must be presupposed. (1895y 261)

The purview of logic in the early Russell is stunningly broad, just as it

was later in Russell's analytic period. Thus at (1895x 259) Russell

casually remarks that all arithmetical axioms are attributable "to purely

logical motives." It would be wrong to say Russell was already a logicist

in 1895, but the views he held then must have made it easier for him later

to accept the idea that arithmetic was reducible to logic. Both the

expanded view of logic and the reluctance to accord the Kantian notion of

synthetic a priori much significance continue in Russell past his 1898

*revolution;" and both will cause considerable confusion in his debate

over logicism with Poincar4, during which the concept of impredicativity

is first introduced. Poincard puts a predicativity constraint on logic and

accepts certain impredicative principles only if they are viewed as

deriving from synthetic a priori intuition. The implications of this are

dealt with later, but it is already obvious thit the extent of logic and

the role of the synthetic a priori in mathematics are both bound up with

the problems of impredicativity. For the present, however, we need say

little about the synthetic a priori, except to point out that it is a

notion Russell makes no use of, even at this early stage.

By far the most important area of open disagreement between the

early Russell and Kant concerns the positive content of the a priori form

of sensibility. Differences of this kind can be brought out in two ways:

directly, via consideration of their alternative descriptions of the a

priori form of sensibility; or indirectly, via consideration of the

geometrical axioms held to be deducible from this description. I have

already mentioned that Russell refined the description of the form of

sensibility beyond what one finds in Kant. This refinement stems in part
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from differences as to the nature of sensation, and in part from

differences as to the nature of immediacy. In both, but especially in the

latter, Russell exhibits the influence of Hegel and Bradley. Again,

however, it is best to discuss Russell's refinements later.

The indirect way of exhibiting differences as to the content of the

a priori form of sensibility yields quicker results. Here we compare the

geometrical axioms thought to be deducible from the form. Even here,

however, difficulties arise, for Kant was not entirely explicit on this

point. Still, in Russell's day it was widely assumed that Kant held

Euclid's parallel postulate to be so deducible. If this were correct (and

Kant knew nothing of non-Euclidean geometries), then Kant would have

maintained that we know Euclidean geometry a priori. Russell, at any rate,

interpreted Kant in this way, and then took issue. It is not a priori

determinable whether actual space is Euclidean or not, Russell argued,

because no information regarding the curvature of space was deducible from

the form of sensibility beyond the fact that this curvature was constant.

All the axioms of geometry common to both Euclidean and non-Euclidean

geometry were deducible from the form of sensibility, Russell thought, but

the actual value of the constant of space-curvature, and therefore the

parallel postulate, could at best be known empirically. Russell's position

here is perhaps the best known of his early views, but it is not itself my

central concern. One consequence of his view, however, is important to the

issue of impredicativity, since impredicativ, mathematics has often seemed

incompatible with "subjectivisto accounts of mathematical existence. I

turn to this consequence now.

The consequence in question is an effective denial of what Kant

calls the "transcendental idealism of space." Russell's position makes it

necessary that he uphold the objectivity of space. He writes:

Kant contended that extension is subjective in a way in which
the secondary qualities are not so: that is, there is no
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counterpart to it in the object. (1895y 260)

In this, he seems to be correct. Kant denied

daE der Raum eine Form der Dinge sei, die ihnen etwa an sich
selbst eigen ware. [130/3451

This view, that sensed spatial properties of objects have to do

exclusively with our sensation, and nothing at all to do with the objects

in themselves, is what Kant calls the "transcendental idealism" of space.

Admittedly, Russell does not set out to disprove this view, and seeks

rather to leave aside all questions concerning the "subjectivity" of space

(1897 3-4). But his final position leaves him little room to maneuver. In

point of fact, Russell is careful to allow himself just enough room for

the objectivity of space:

necessity for experience [i.e., aprioricity] can only arise
from the nature of the mind which experiences; but it does not
follow that the necessary conditions could be fulfilled,
unless the objective world has certain properties.... Owing to
the constitution of the mind, experiences will be impossible
unless the world accepts certain adjectives. (1897 179).

Now my claim is that, if Russell is correct about exactly what is a

priori, or necessary for experience, then the property of being spatial is

among those the world has to accept. In particular, since Russell holds

that the actual curvature of space is empirically discoverable, he must

obviously hold that there is something there to discover in the first

place. The curvature of space must have "a counterpart to it in the

object." But if the curvature of space has a counterpart in the objects

themselves, how can space itself go without? The metric of space cannot

be an empirically discoverable property of space unless space itself is

objectively present. Russell, then, although importantly Kantian in the

other respects mentioned, denies Kant's transcendental idealism of space.

This brings us back to one of the first differences I mentioned

between Kant and the early Russell, namely the notion of sensation. For

Kant, sensations are intuitions; in fact, they are the only empirical

intuitions humans have. Thus Kant speaks interchangeably of the form of
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(outer) intuition and the form of sensibility. Russell, on the other hand

(most of the time at any rate), distinguishes between sensation and

intuition. He takes it to be a substantive question whether space is given

as a sensation or an intuition (1897 55, 180), and the only remarkable

difference, as far as I can tell, is precisely that, in veridical

sensation, a counterpart in the object is required; whereas, in veridical

intuition, this possibility is excluded (1897 180, 1896y 291-2). Russell's

terminology 'form of externality' is designed to allow him generality

across these two possibilities (even if in the end his view of the details

of the form of externality force him to accept objective space). For Kant,

on the other hand, there simply is no room in the first place for such

added generality, since sensation is already a special case of intuition.

To say that space is the form of sensation is, for Kant, unlike for

Russell, to affirm the transcendental idealism of space. By choosing the

word 'externality' Russell sought to gain neutrality.

1.3 Difficulties with Difference.

Notwithstanding this, Russell's use of the term "externality" is

suggested by one part of Kant 's "metaphysische ErSrterung" of the concept

of space. It is in fact the only part Russell accepted (1897 55-6, 60-1),

and it is also the basis of his refined 'direct" description of the formal

element of spatial sensation.

... damit gewige Empfindungen auf etwas auSer mich bezogen
werden ... , imgleichen damit ich sie als auSer und neben-
einander, mithin nicht blob verschieden sondern in
verschiedenen Orten vorstellen kbnne, dazu muS die Vorstellung
des Raumes schon zu Grund liegen. [838, cf. A23]

Sensation presents things in different places and external to one another.

This "AuSereinandersein" is the motivating connotation of Russell's "form

of externality" terminology. But despite Kant's emphasis on difference of

place, Russell expects his own "metaphysical deduction" to yield insight

into substantival difference. Externality, he says, "must mean, in this
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argument [i.e., in the metaphysical deduction], the fact of Otherness, the

fact of being different from some other thing."12 aReal diversity" is

intended here, he says, which is man Otherness of substance, rather than

of attribute" (1897 62). The principle articulating the form of

externality, then, at least as Russell understands this, must inform us as

to what it is for one logical subject to be distinct from another.

Interestingly, Russell hesitates to identify the principle

describing his form of externality with the traditional principium

individuationis, but he is happy to call it a "principle of

differentiationo (1897 136). Unfortunately, besides an unhelpful reference

to Bradley (1883 63), Russell does not explain his terms. Still, it is

clear that both principlas purport to explain substantival difference; or,

to put it in other words, which I will henceforth take to be equivalent,

they seek to explain what makes what is, what it is. The difference

between them, I think, lies in how they seek to do this. The former, which

Russell shies away from, puts emphasis on the individuality of the logical

subject: it looks to the qualities (possibly essential) that an individual

substance displays to find what makes it the particular logical subject

that it is. To answer Aristotle's question, "What is it?", this approach

would provide a list of 1-place properties which uniquely characterize the

substance, and possibly indicate its essence. The principle of

differentiation, by contrast, emphasizes the differences between the

logical subject in question and any other: it looks instead to the

relations (possibly essential) that an individual substance displays to

find what makes it the particular logical subject that it is. The answer

to Aristotle's question would importantly include some relations, which

12At this stage, Russell uses the term "thing" interchangeably with
"substance" and "logical subject" (see 1897x 21, 1896x 14; but cf. 1898x 168).
It is difficult, perhaps impossible, to say precisely what Russell intended, but
the only entities which are not logical subjects are qualities (which, following
Bradley, Russell sometimes calls "adjectives') and relations. This traditional,
intuitive distinction suffices for my purposes. I use the term *(n-place)
property' to cover both qualities (n=l) and relations (n>l).
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may form part of the essence of the substance in question. It is this, I

expect, which accounts for Russell's preference, since, as we shall see,

he thinks relations are necessary to explain the difference of substance

presented in sensat 4 on. His explanation of what makes what is, what it is,

contains, and does not merely imply, information regarding what makes what

is not another thing.

These principles suggest different ways, not only of answering

Aristotle's question, but also of satisfying the Identity of

Indiscernibles. As we shall see, Russell makes silent appeal to the

Identity of Indiscernibles in his version of the metaphysical deduction.

Ultimately, Russell failed in his effort to articulate a principle of

differentiation, and to provide an explanation of substantial difference.

Within a few years he would argue that his effort was destined to fail,

and that, that ultimately his early view "collapsed into monism," and was

incompatible with there being more than one thing. The arguments Russell

would later are already suggested by his 1897 dialectic. But it is best to

postpone a discussion of this matter until later (cf. Sec. 1.6).

To return. One major disagreement Russell had with Kant regarding

the positive content of the a priori form of sensibility was that, whereas

Kant expected it to tell us about difference of place, Russell expected it

to tell us about difference in substance. This is obviously connected with

the fact that Russell conceives of space realistically, as a form of

sensation (in his sense), whereas Kant conceives of space idealistically,

as a form of intuition. It is hard to see, however, how even Russell's

stronger expectation will get him what he wants, namely a principle from

which to deduce all the geometrical axioms common to both Euclidean and

non-Euclidean systems. But in practice, Russell supplements the "fact of

Otherness" with another principle which ensures the homogeneity of the

form of externality. Homogeneity consists in the fact that "one position
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[in the form] is exactly like another" (1896x 11, n. 1), or somewhat more

precisely, "positions do not differ from one another in any qualitative

way" (1896y 277). This supplementation is regarded as a simple consequence

of the formal nature of the "fact of Otherness" in question. As Russell

puts it:

when we abstract a form of externality from all material
content, and study it in isolation ... , a position can have no
intrinsic quality (1897 136-7).

It is difficult, of course, to attach any clear meaning to the traditional

philosophical technique of abstraction, but for historical purposes this

is not necessary. Suffice it to say that Russell's view is that the a

priori element of spatial sensation provides us with an awareness of

distinct but qualitatively indistinguishable things, and that this is what

Russell means when he says the principle of differentiation he is seeking

is concerned with "bare diversity" (1897 136).

The homogeneity of the form of externality is a linch pin for

Russell because he took the mathematical work of Georg F. B. Riem&nn to

show that homogeneity was an essential property of space. Thus if Russell

could show that homogeneity is a priori, or a necessary condition of

spatial experience, he would be well on his way to deriving fundamental

properties of space from the form of externality. Using the term

"manifold" to translate Riemann's Mannigfaltiges (which of course occurs

in Kant as well), and distinguishing examples of non-spatial manifolds

also found in Riemann, Russell writes:

This absence of qualitative difference [among the elements of
a manifold] is the distinguishing mark of space as opposed to
other manifolds, such as the colour and tone-systems. (1896y
277; for "manifold" see 1987 14 fn 2)

Essentially, Russell takes Riemann to have shown that the distinctive

property of space is constancy of curvature; and this, Russell says,

implies the homogeneity of space (1896y 277). The details of both

Riemann's and Russell's arguments are not important here, except perhaps

to say that the constancy of curvature was considered necessary to the
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possibility of measurement, which in turn seemed to require 'motion" of

figures through space." Riemann proved that, if figures were to retain

a constant magnitude through "motion', the curvature of space had to be

constant. Russell writes:

since magnitudes are to be independent of place, ... space
must, within the limits of observation, have a constant
measure of curvature, or must, in other words, be homogenous
in all its parts. (1897 22)

The homogeneity of the differences presented in sense is the primary

feature of Russell' s form of externality. But Riemann's work showed

homogeneity to be the essential or defining feature of space. Russell

sought to exploit this happy coincidence in his metaphysical deduction.

The homogeneity of space, Russell writes, is "our great resource"

(1896y 279). From it he will claim to deduce all the axioms of projective

geometry, which are those common to both euclidean and non-euclidean

geometry. I will concentrate mostly on the first axiom, which affirms the

relativity of space, but the "philosophically interdependent" (1897 132)

axiom of the continuity of space became increasingly important for Russell

as time went on. Throughout my concern will be with the metaphysical

difficulties these two properties, relativity and continuity, raise for

Russell, difficulties he attempted to face in the succeeding years. I will

not, however, be concerned with the errors in Russell's sketchy

Ometaphysical deductions" of the axioms from the assumption that

'positions do not differ from one another in any way." His deductions are

so bad criticism is virtually redundant. My point, rather, will be

historical. The difficulties these properties raise are in a new form

raised again by the problem of impredicativity, which remains closely

related to continuity. Russell considered himself to have done away with

these problems once and for all when he abandoned idealism in 1898 and

1The "abstract motion" in question was thought to be required for the
superposition of one geometrical figure upon another, a test of congruence dating
from Euclid at least. Moore (1899a) condemns the idea.
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accepted the metaphysical position I called atomism above. The paradoxes

forced Russell to refine his atomism into type theory. This metaphysical

refinement allowed him to exclude impredicativity on logical grounds

alone, but it also prevented him from giving an account of classical

continuity. Today, the acceptance of classical or impredicative continuity

requires a return to a clarified version of the idealist notion of

relativity which bothered early Russell.

1.4 Relativity

Russell states the first axiom of projective geometry, which affirms

the relativity of space, as follows:

We can distinguish different parts of space, but all parts are
qualitatively similar, and are distinguished only by the
immediate fact that they lie outside one another. (1897 132)

This statement of the so-called "axiom of relativity," Russell says, "is

not intended to have any exclusive precision," and indeed three separate

claims are made. The second claim made is in fact just the claim that

space is homogenous, which is apparently a serious slip of precision,

since this axiom was to be deduced from the homogeneity of space. This

lack of precision shows up elsewhere, for in unpublished notes Russell

writes: "Homogeneity is synonymous with complete relativity" (1896x 14).

More often, however, Russell speaks of the two properties as equivalent,

and I will follow this practice where possible. This leaves the first and

the third claims in the above statement; but of these the third, since it

involves no reference to persons, is evidently the more fundamental. The

relativity of space, then, consists in the fact that parts of space "are

distinguished only by the immediate fact that they lie outside one

another. "

There is a subtle but crucial difference between the homogeneity and

the relativity of space. Since space is homogenous, all positions in it
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are qualitatively indistinguishable. But positions are external to one

another, and so they stand in some relation. To affirm the relativity of

space is to affirm that these relations, and not any qualities of the

positions themselves, are what make the positions what they are. This step

takes Russell toward the "principle of differentiation" he is seeking, for

it begins, at least, to explain what makes what is, what it is and not

another thing. Strictly, of course, Russell would have here at most a

principle of differentiation for positions, but since Russell's goals were

much broader, I will continue to discuss a general form of the principle

concerning logical subjects, and ignore the very difficult problem of how

Russell got to the general version on his slim basis.

Now to infer the relativity of space from its homogeneity one needs

to make special assumptions. It is difficult to put these assumptions in

a form to which one can be certain Russell would have assented; for,

despite their appearing indispensable, Russell does not explicitly state

them. But I suppose the following would have seemed to him acceptably

precise. First, one must assume that distinct positions must be

distinguishable. Putting this in the general form Russell wants (and

assuming a broad scope reading of the implicit modal claim), we have:

It is necessary that distinct logical subjects be
distinguishable.

This assumption, evidently, is a form of Leibniz' Identity of

Indiscernibles, which may itself be regarded as a consequence of Leibniz'

Law of Sufficient Reason. (If everything true is true for some reason,

then for substantival difference too there must be a reason.) But the

principle I have stated is useless, unless we know the conditions under

which two things are discernible or distinguishable. To specify these

conditions, Russell may have assumed that positions are distinct only by

virtue of the qualities the possess or relations they enter into. More

generally:

Logical subjects are distinct only by virtue of the qualities
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or relations they enter into.

As was mentioned above, Russell held to the traditional metaphysical view

that there are, in the world, only substances, qualities and relations.

Given this, if Russell accepted the Law of Sufficient Reason, he probably

also made both the above special assumptions. I just noted why the Law of

Sufficient Reason might be taken to motivate the first assumption.

Assertions of substantival difference, according to that law, can not be

true on their own, but must be true for a reason. But in what would a

reason consist if not a fact (perhaps a necessary fact), and facts would

seem to be nothing other than logical subjects entering into qualities or

relations? Thus the Law of Sufficient Reason provides a motivation for

the second assumption as well. Now whether this was Russell's reasoning is

hard to determine, but he does appeal at times to the Law of Sufficient

Reason (1897 185, 1896x 39). Furthermore, Russell later took both the Law

of Sufficient Reason and the Identity of Indiscernibles as views

characteristic of "monistic idealism," which he says he subscribed to

during this early time (1900, 1907). In any case, we must recall that

Russell is seeking a reason for the substantial difference given in

sensation. This shows he thought something accounted for logical subjects

being what they are and not other things. Such an account is precisely

what the two principles from Leibniz would seem to provide.

I mention these debts to Leibniz (which are ultimately debts to

Spinoza) in order to give some indication of Russell's probable train of

thought in his version of the metaphysical deduction. But another purpose

is served as well. I shall need to assume a weak version of the Identity

of Indiscernibles later, when I argue in the third chapter that the

impredicativity of an object consists in its bearing certain relations

essentially. The issue of essential relations is already relevant here

too, for it is easy to see that Russell, in fact, took the relations

differentiating positions to be essential to those positions. Russell
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writes:

The whole essence of one part of space is to be external to
another part... (1897x 74).

Apparently, then, if one position or part of space exists in a possible

world, then so do others:"

From the absence of qualitative differences among positions,
it follows logically that positions exist only by virtue of
other positions (1896y 277).

Or again:

all position is relative; that is, a position exists only by
virtue of relations (1896y 276).

These statements are not as precise as one might like. "Relation," as

Russell says, "is an ambiguous and dangerous word" (1897 193). It is not

clear, for instance, whether Russell means that, given one position, all

others must exist, or only some others. If he means the latter, exactly

how many? And are these specific other positions or may they be

arbitrary? My guess is that Russell did not really address these

questions until 1898. At that time he came to believe that in fact all

other positions would have to exist, and this situation was unacceptable

to him. His response was to adopt atomism in the sense described above.

But this is a subject I discuss later. For the present it suffices to note

that Russell took the differentiating relations of positions to be, in

some significant sense, essential to those positions.

1.5 Essential Relativity and the Notion of Logical Subject

This fact, that Russell took the differentiating relations of

positions to be essential to those positions, leads to a very general

"Compare Kant: "erstlich kann man sich nur einen eigenen Raum vorstellen,
und wenn man von vielen RAumen redet, so versteht man darunter nur Teile eines
und desselben alleinegen Raumes.... Er ist wesentlich einig, das Mannigfaltige
in ihm ... beruht lediglich auf Einschrankungen." [A25/B39]. Russell may have
felt his essentiality claim was needed to obtain his goal of demonstrating the
necessity of geometrical axioms, and also justified by the quite reasonable idea
that things are not merely contingently themselves, i.e., that "x is distinct
from y" is always necessary.
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observation about Russell's notion of a logical subject. The general

observation is that Russell places conflicting demands upon this notion.

It was noted in the introduction that a logical subject is that about

which something true can be said. By this definition, anything at all is

a logical subject. But despite this, the fact that a position can be

differentiated from others only by means of relations essential to that

position led Russell to the' rather startling conclusion that positions are

not logical subjects. "Position," he says,

is a term in a relation, not a thing per se; it cannot,
therefore, ... exist by itself, apart from the other terms of
the relation (1897 86).

From this passage, it is clear that Russell required that a thing or

substance be able to "exist by itself" or per se. The idea that some

manner of independent existence is required by a substance has roots going

back at least to Aristotle; so it is not entirely peculiar to find the

idea in Russell. What is peculiar is that Russell equates substances in

this sense with logical subjects in the quite general sense given above.

"Matter, " he says for example elsewhere, "is not a mere relation or

adjective, but a thing, substance, or logical subject" (1897x 21; cf.

1896x 14). Similarly, an arbitrary spatial position is a logical subject

in the general sense, since geometrical axioms will in general have

something true to say about it; but since what it turns out these axioms

must say, according to Russell, is that positions depend for their

existence on other things, then positions are not logical subjects in a

new sense. Obviously if one insists on imposing conflicting conditions

upon a notion, contradictions will follow. In fact, to state such

contradictions as they apply to notions in the foundations of geometry was

one of Russell's main goals in (1897). The contradictions he formulated,

he thought, must inevitably arise in the foundations (cf. 1897 189). But

the inevitability Russell felt did not arise merely from wanton

equivocation. Rather, Russell thought the equivocation itself was

necessary. I am not quite able to see why Russell thought this, but that
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he did so can hardly be in dispute.

But my purpose in this Section is not simply to indicate a fallacy

in Russell, nor to show how the fallacy may have been motivated by other

beliefs he had. I am trying neither to refute Russell's early views nor to

show that they were plausible on their own terms. My point here is instead

to observe that Russell's equivocation, invalid or not, raises a

difficulty for Russell of a quite another sort. The difficulty is to

maintain his particular conception of the form of externality in the face

of his claim that the differentiating relations of positions are essential

to those positions. Let me elaborate a little further on this difficulty,

running the notions together just as Russell would have.

A position, according to Russell, cannot be a logical subject since,

being essentially related to other positions, it depends on them for its

existence. Position must, therefore, be a property of some underlying

substance. The obvious candidate is the point, but the position of a point

is its only differentiating feature: it is what makes a point the

particular point that it is. Now position is relative, so a given point

cannot be what it is, without there being other points bearing other

positions whose existence is implied by the existence of the position of

the given point. The essential property of a point is therefore a

relational property, so points too cannot be substances, or logical

subjects. This is what Russell means by saying that, "metaphysically,

space has no elements" (1897 68).

For Russell, the only other candidate for the logical subject

bearing positions, considered as properties, is space itself. But just

this causes difficulty for his foundational program, since it challenges

his notion of the form of externality. It is important to see, however,

that the idea that space is the logical subject, that space is itself a
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substance having positions as its properties, fits together very well with

several aspects of Russell's views. First, the idea that only one logical

subject is needed to account for geometrical knowledge must have been for

Russell a pleasant reminder of Bradley's monism, which affirmed the

existence of only one substance. But beyond such pleasant associations,

various considerations seemed to force him to treat space as a substance.

Space, recall, is "given in sensation" and "immediately experienced." But

"whatever is immediately presented has a This, and may therefore be

regarded, to some extent, as possessed of thinghood" (1896x 57). So space

can be neither relational nor "adjectival, " but a thing or logical

subject. Further, geometry seemed to be about space. If so, then the

correct logical form of geometrical axioms would make space their logical

subject. Axioms really ought to be given "in the most desirable form,

namely as adjectives [affirmed] of the conception of space" (1897 15).

Both these considerations gave Russell cause to regard space as a

substance.

But by far the most compelling reasons for doing so came from within

geometry itself, from the second axiom of projective geometry. This axiom

asserts that "space is continuous and infinitely divisible" (1897 132). As

was common at the time, Russell tended to regard these two properties as

definitionally equivalent. The substantiality of space followed easily

from its divisibility, via the apparent truism that "no mere adjective or

relation can be divided" (1897x 19).15 But its divisibility also seemed

to imply that space was "complex," the natural interpretation of which was

that it was composed of distinct logical subjects acting as parts. This

apparent implication, however, was incorrect, since the division could be

carried on ad infinitum. For Russell, every substance or "thing is either

5It is interesting that this is a "truism" Russell would come to deny. In
(1925), where are classes are dispensed with and only countable many individuals
assumed to exist, the continuum is divisible but nevertheless "degraded to an
adjective" (1896x 14), i.e., to a propositional function.
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simple, or built up of simple things" (1897x 19). Divisibility implied

space was a substance, but its infinite divisibility implied it was not

built up of simple substances. This was in accord with the essential

relativity of position, which implied that the parts of space were

essentially related to one another and thus not logical subjects. Thus

space was a simple substance, and if it could be said to have parts at

all, these could not be construed as independent logical subjects.

The substantial view of space was thus highly motivated by various

aspects of Russell's views, but it caused serious difficulties for

Russell. The difficulties threatened his refined account of the form of

externality. For, if geometrical axioms are really about some one single

substance, what can we possibly learn from spatial sensation about

substantival difference? What is to become of Russell's original claim,

which arose from his interpretation of Kant's metaphysical deduction

[B38/A23], that spatial sensation presents us with the very form of

substantival difference? Contra Kant, Russell hoped to "infer real

diversity, i.e. the existence of different things, ... from difference of

position in space or time" (1897 187). But difference of position, owing

to the axiom of relativity (as stated above in Sec. 1.3), seemed uniquely

unable to support any such inference. But then, no principle pertaining to

"substantival complexity," to difference of substance, was forthcoming

from an analysis of space. Russell was in hot water.

1.6 Getting to Monism

Russell's solution to this problem changed over the next few years,

but initially it took the following form. He held to the belief that

spatial sensation yielded knowledge of the existence of more than one

substance. Indeed, Russell continued to insist, at first, that the

positive content of the form of externality had to consist in principles
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which said what it was for one substance to differ from another. Only, the

substances of whose difference we learned in spatial sensation were not

themselves "parts" or "elements" of space. Space, says Russell, is "not a

thing, nor built up of things," "neither simple nor built up of simple

things" (1897x 20). For "real parts ... would be discrete elements" (1896x

17), and space is continuous. Yet Space is "no whole, either, of any real

sort" (1896x 13). Thus space is not composed of substances, nor yet itself

a substance, and it therefore had to be a property. Notice, Russell's view

is not that space consists in the fact that certain differing substance

possess some property. Rather, strange as it may be, space itself is said

to be a property. In Russell's mind, this immediately raised the question

whether space was a quality or a relation, for these were the only two

types of properties his view admitted. But in accordance with his belief

that spatial sensation taught us of the existence of many substances,

Russell held (at least at first) that space was a relation entered into by

the substances whose existence we determined from sensation. These

substances were related by the relation which was space, but they did not

literally compose space. Despite appearances, geometrical axioms were not

strictly about space, but about these substances; they did not attribute

properties to space, but spatial properties to these substances.

This, then, was Russell's initial solution. It was not without its

own difficulties, some of which Russell himself felt. There was first of

all the difficulty previously mentioned as to whether or not a property

can correctly be said to be divisible (1897x 19). Accordingly, Russell

came to believe that space was not divisible at all, and that its apparent

divisibility was "psychological illusion" (1897 196). Geometry was

"compelled" (1897 189) to treat space as a "thing per se', and it derived

from this the useful illusion that space was divisible, but the reality of

space was otherwise. I will not comment on this idea, except perhaps to

say that it has an early adherent in Spinoza. A second problem for
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Russell's initial solution was the difficulty as to precisely what

relational property space was supposed to be. One can easily enough think

of spatial relations, such as those denoted by such familiar phrase as "x

is some distance from y" or Ox is to the left of y." But these relations

could hardly be said to themselves be space. Even when Russell later came

to doubt that the property which was space was a relation, a problem

similar to this second one arose. Spatial qualities like being extended

are perhaps easy enough to imagine, but what quality was itself space? It

is not clear Russell ever recognized this question as a problem for his

solution.

Connected with this second problem is a third, this one recognized

by Russell himself. If space is a property, what exhibits it? Initially,

while Russell continued to hold that space was a relation, the third

problem required that he say just what stood in this relation. Here

Russell took the substances whose difference were known to us by spatial

sensation to be the things that stood in the relation he called "space."

The further question might well be asked as to just what these are, but

little need be said for my purposes. Russell did consider these substances

to be material (on the grounds that we may come to have true beliefs about

them through sensation), and he called them variously "material points

(1896x 14) and "particles" (1897x 23). He seems in fact to have identified

them outright with mass points.

Russell's initial solution did not last long. Sometime in 1897 he

came to believe that the space was a quality, and not a relation. It was

at this time that he wrote the dialectical argument with which I began.

The reasons for his change depend on an equivocation similar to that

mentioned above between the terms "substance" and "logical subject." Mass

points must on the one hand be substances, and thus exist "by themselves"

or independently; but on the other hand they seem to depend on further
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mass points to which they are essentially related. Again, the exact

details the "antinomy" Russell deduced from this need not be stated (see

1896x 18-19). The key point here is simply that, for much the same reasons

as he changed his view as to whether space was substantive or not, Russell

came to believe that space, though still a property, was not a relation.

Of course, the new view had still to resolve the third problem as to what

precisely exhibited the quality identified with space. Again, the

substance in question was material; in fact, strange to say, it was matter

itself: "Matter is the One Whole (sic), of which space and motion are mere

adjectives" (1897x 22). Russell's new solution left little room for the

form of externality he had labored so hard to put in place in (1897); for

there were no longer different substances to be sensed. But eventually

Russell simply could not see how the existence of distinct substance could

be made compatible with the apparent fact that they had essentially to

bear relations to one another. The hot water which Russell's systematic

equivocation had gotten him into in (1897) drove him to monism.

1.7 From Monism to Analytic Philosophy

Russell's shifting solution to the problem described in Sec. 1.5

shows his early indecision as to whether there was in the world one or

many substances. But the alternatives, as Russell saw them then, spanned

only the last two stages of his 1897 dialectic. I want now to resume my

discussion of Russell's 1897 dialectical argument with the goal of better

understanding what it was Russell gave up when he rejected idealism in

1898. I hope to show in Chapter 3 that an idea closely related to what he

gave up can be used to make sense of impredicativity.

In this Section I make use of possible-worlds semantics. Russell, of

course, had no such semantics in mind for his statements. It would be

wrong, therefore, to claim that the interpretation of the principles I
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discuss in this Section precisely capture Russell's ideas at the time. Yet

this is not to say that a possible-worlds semantics can be of no use in

the effort to become clear as to what Russell did believe as an idealist.

On the contrary, I think it will become evident that Russell had

interesting reasons for rejecting idealism, and that these make sense even

in a more formal setting. There is, too, an additional benefit to be

gained from using a contemporary semantics. I shall want to state my own

modal account of impredicativity in these terms, and having that account

and Russell's early views expressed in a similar way will greatly

facilitate comparison.

1.7.1 Russell's Dialectic Revisited

Russell's 1897 dialectic ran as follows:

The principle of our dialectic appears to lie in making the
Whole gradually more explicit. Our separate particles turn
out, first to be related to other particles, and then to be
necessarily related to all other particles, and finally to err
in being separate particles at all. With this we pass to the
plenum. (1897x 23)

I said in the introduction that the first stage of Russell's

dialectic may be taken to represent atomism, the philosophical framework

which Russell ultimately adopted, and in terms of which he tried a third

time to give an account of mathematical continuity. Yet the last two

stages of his dialectic retained a certain significance to Russell even

after he had so strictly dissociated himself in 1898 from idealism, which

is to say from the philosophical frameworks associated with the last two

stages of his dialectic. In particular, Russell continued to believe that,

once at the second stage, the transition to the third was unavoidable.

Roughly, this transition becomes Russell's later argument that monadism,

the philosophical framework associated with the second stage, collapses to

monism, that associated with the third (1900 58-9, 1907 39). Russell's

later claim suggests that he saw some difficulty getting to the second
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step at all. This, I think, can be seen to be the case.

In Russell's numerous arguments against the idealists, a principle

he calls the "doctrine of internal relations' plays a pivotal role.

Russell states this principle in a variety of ways, not all of which are

equivalent. Behind some of the statements Russell's gives of the principle

is the important, if imprecise, idea that a relation must be essential to

its terms. This idea may be formalized in the following way: for any x and

y, and for any 2-place relation R,

xRy - OxRy (1)

As an interpretation of the doctrine of internal relations, (1) is

intended to be a very general claim about all (2-place) relations. It may

be read: if any R relates any x to any y, it does so necessarily. In a

possible-worlds semantics, (1) will be evaluated as true just in case the

formula 'xRy' is evaluated as true in all possible worlds whenever it is

evaluated as true in some possible world.' 6 But in order for the use of

"O" in (1) to capture a notion of essentiality, it must be stipulated that

'xRy' may be assigned the value true even in worlds where one or both of

x and y do not exist. Without this stipulation, (1) would have to be

modified to express the essentiality of relations to their terms." 7 The

suggested stipulation, however, considerably simplifies the formalization

of the above imprecise statement of the so-called "doctrine of internal

relations, and may be accepted here despite the apparently odd idea that

"1Here and elsewhere I use the phrase O'xRy' is evaluated as true in a
world' as a shorthand for the phrase "for some assignment of objects to 'x' and
'y', 'xRy' is evaluated as true in a world.' Without the abbreviation, I should
say: (1) will be evaluated as true just in case if, for some assignment of
objects to 'x' and 'y', 'xRy' is evaluated as true in a world, then on that
assignment, the formula 'xRy' is evaluated as true in all possible worlds.

"An effective modification would be (1'): for any x and y, and for any 2-
place relation R, xRy-iO((Ex v Ey) -*xRy), where "Ex" is read "x exists" and is
interpreted as true in a given possible world just in case the value assigned to
"x" on that interpretation is an element of the domain of the possible world.
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NxRya may be true in worlds where x or y do not exist.

(1) bears an interesting relation to Russell's 1897 dialectic, but

before that is discussed, it may be useful to indicate how the early

Russell would have understood the words °any relation" as they occur in

(1). I said that (1) was intended to be a general fact about 2-place

relations. One might note, in the first place, t . the qualifier "2-

place& was redundant for Russell, since he tJ• Agh, all relations were 2-

place. More important, Russell says at (1897 198) that difference or

*externalitym is "a necessary aspect or element in every relation." In

other words, all 2-place relations are irreflexive. This view seems odd

today, but it is not necessary to pay it much heed. For my purposes it

does not matter whether we consider Russell as having accepted (1) for any

2-place relation whatsoever (all of them being, on his view, irreflexive)

or more simply as having accepted it only for all irreflexive relations R.

A very similar consideration applies to Russell's view that difference is

not itself a relation, but rather presupposed by all relations. The idea

may seem ludicrous today, since it is hard to image what else difference

could be, if not a relation. But I will let the matter pass, with perhaps

only the note that Russell woul', very probably have accepted (1) with "*"

substituted for "R."

Another point should be made regarding Russell's understanding of

the term "relation.0 Russell (most of the time) viewed predication as a

relation. To say that an entity exhibits a quality is to assert that a

special relation obtains between that entity and that quality. Thus what

we might be inclined to symbolize "Qx," Russell may have included as a

special instance of "xRy." If so, (1) for Russell would have as a special

case the following:

Qx - OQx (2)

If this is the case, and if, as I suggested earlier, Russell held that,
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among properties, there are only qualities and relations, he would have

been in a position to conclude that every property exhibited by an object

is necessarily exhibited by that object. This is certainly an odd view,

but it is worth noting that idealists like Bradley and Hegel may well have

wanted this conclusion. Later I will suggest that something quite like

this conclusion was important in Russell's rejection of idealism.

(1), interpreted in the above manner, is of special interest in

regard to the transition from stage one of Russell's 1897 dialectic to

stage two. In the dialectic, we begin with the proposition that "separate

particles [are] related to other particles." This was interpreted in Sec.

1.1 so as to imply that some irreflexive relation is instantiated. In the

hypothesis of (1), we suppose similarly that, for some irreflexive

relation R, and for x and y, two arbitrary possible entities, 'xRy' is

true in some possible world. In Russell's dialectic, we arrive with the

second stage at the proposition that particles are "necessarily related to

all other particles." This may be divided into two parts: namely, the

particles are necessarily related by some R; and they are all related to

one another by R. (1) clearly motivates the first claim, since the

consequent of (1) affirms that x and y are necessarily related by R. The

second part of stage two can be added by adopting the principle that, for

arbitrary x and y,

3RxRy" (3)

The consequent of (1), then, together with this latter principle, quite

plausibly represent the second stage of Russell's dialectic. For very

roughly, these two amount to the view that all things are necessarily

related (by some relation or other) to all other things.

The point of the above comparison is that the "doctrine of internal

'9Russell would no doubt have preferred us to say: for arbitrary x and
arbitrary ~yx, 3RxRy, where R is irreflexive but not itself •; but such niceties
may be ignored.
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relations," interpreted as (1), plays a pivotal role in Russell's 1897

dialectic. In particular, (1) may be understood as motivating part of the

transition from the first to the second stage of Russell's dialectical

argument, his explanation or account of the continuity of the material

world. (1) then is well situated to be one of the principles Russell

rejected when he abandoned idealism in 1898. Below I argue that Russell's

rejection c• idealism consisted largely in his rejection of (1), but it is

important to note that there are other plausible principles which may have

been the doctrine of internal relations as Russell understood this in

1898. I wish to digress for a moment and state one such principle, which

will prove important in Chapter 3.

1.7.1.1 Ontological Dependency and Internal Relation

Perhaps the oddest fact about the doctrine of internal relations is

that Russell seems not to have stated it until well after he rejected it.

It seems to have operated as an unnoticed presupposition. There is, for

example, no general enunciation of it in (1897). One does find Russell

mentioning, in an almost offhand manner, "that interdependence which a

relation requires" (1897 198). The presupposition here would seem to be

that

any two distinct logical subjects, provided they are related
in any way or another, depend on one another for their own
existence.

Much later Russell claimed to detect a similar presupposition in the

writings of Joachim, an idealist .ather after the Bradlian mold, which

Russell expressed: if A is independent of B, A cannot be related to B

(1906b 529; cf. also 1907 37). It is conceivable that the notion of mutual

ontological dependency implicit at (1897 198) above is at work again in

Joachim. Indeed, the same notion might have been the motivation for

Russell's view noted above that "a thing per se cannot ... exist by

itself, apart from the other terms of the relation" (1897 86). In
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practice, then, the so-called doctrine of internal relations may enforce

some form of mutual ontological dependency upon related things. This may

formalized as follows: for any x and y, and for any 2-place relation R:

xRy - D(Ex * Ey) (4)

(4) represents a second plausible interpretation of the so-called doctrine

of internal relations as it was applied by idealists.

(4) does not follow from (1), but I suspect that in practice Russell

took the two to come to much the same thing. In any case, he apparently

had rather good reasons to accept (4), for it is plausible to suppose he

accepted other principles from which, together with (1), (4) does follow.

One of these is sometimes called "K", and ensures the distributivity of

L"Y with respect to "-"r:

D(A-+ B) -ý- ([A --+[]B). (4) follows from K, (1) and the following principle:

for arbitrary x, y and 2-place R:

D(xRy - (Ex A Ey)) (5)

That Russell held K seems plausible of itself. That he held (5) may

perhaps inferred from the following, which he wrote before his 1898

revolution:

whatever can be the subject in a true judgment must have what,
in opposition to existence, I shall call Being. (1898x 168)

If "xRy" expresses a true judgement, then the logical subjects x and y

have being. (5), then,. interprets "x has being" by "Ex, " which is said to

be true in just those possible world where x exists. While not an

historically accurate account of Russell's intention, (5) might still be

thought to be a serviceable approximation.

It should be observed that (5) does not run counter to the

stipulation made above, that "xRy" be interpretable as true in worlds

without x or y. The stipulation simply requires one to express an idea

explicitly, within a theory, rather than implicitly as a convention for

stating theories. Stating (5) explicitly helps to show that Russell had
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good reason to believe (4), a second interpretation of the doctrine of

internal relations. But in fact, it is not likely that Russell clearly

distinguished (1) and (4), or (5) from the stipulation opposite to the one

I made. (4) is not crucial to my account of Russell's rejection of

idealism, but it is relevant to my account of impredicativity in Chapter

3. With these remarks I will end my digression.

1.7.2 Revolution and the Rejection of Idealism

I come now to the main question: what principle or principles did

Russell give up during his 1898 revolution, in which he abandoned idealism

and embarked upon analytic philosophy? This question is a difficult one,

and I do not mean to answer it in any complete way. But something along

the lines of the following argument may well have occurred to Russell.

Let us suppose there are two logical subjects, x and y. Like

Russell, we might say these are known to us through sensation, or even

known a priori on the basis of a form of externality. More formally, this

may be interpreted as the claims that (i) *Ex" is true in some possible

world (not necessarily the actual world; call it w,); (ii) "Ey" is true in

some possible world wy (wy not necessarily the actual world); and (iii)

U"xy" is true in all possible worlds.

As mentioned above, Russell seemed to believe that there is a

relation standing between any two logical subjects. This was formalized by

(3) above. Thus for logical subjects x and y just introduced there is a

relation R such that xRy. More formally, this may be interpreted as the

claim that "xRy" is true in a world w. (Presumably w is the actual world,

but this is not important to my purposes.) It should be noted, however,

that it is not assumed that w=w, or that w=w,. For all we know, it could

be that wIw,*wJw.
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Russell further believed that any logical "subject in a true

judgment must have ... Being." This was formalized above by (5). This may

be interpreted in the present context as the claim that in every world w

where "xRy' is true, so is "Ex A Ey". Given (5), there is no possible

world in which "xRy" is true but in which x and y fail to exist. There is

as yet no reason to believe the converse holds; x and y may exist in

worlds where "xRy" is not true.

(1) supplies this converse. Given (1), and the x, y and R as above,

xRy - E cRy.

As interpreted above, this signified that, if "xRy" was true in one

possible world, it was true in them all. Now "xRy" is true in w, so "xRy"

is true in all possible worlds. By (5), therefore, "Ex A Ey" is true in

all possible worlds.

The problem with this is that x and y were perfectly arbitrary. It

was not even supposed at the outset that they existed together in any

single possible world. It follows that every possible entity, that is to

say every value of any free variable such as "x" or "y", exists in every

possible world. Similarly, regardless of the interpretation of "S" and

"z", "xSz" will be true in all possible worlds provided only that it is

true in some possible world. Parallel remarks apply to "Qx', given (2).

Put very roughly, everything possible is actual. Thus in the presence of

(i)-(iii), (3) and (5) then, there is no distinction to be made between

possible worlds.

In this context, it is difficult to attribute much significance to

"'0", the necessity operator. After all, if O[KRy" is true just in case

"xRy" is true in all possible worlds, and there is no distinction to be

made between possible worlds, why not assert merely "xRy"? I suggest that

this question, or one quite like it, is the question Russell came to ask
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himself in 1898, and his answer, that merely "xRy" should be asserted,

constitutes the heart of his 1898 revolution.

The idea that what Russell rejected in 1898 was the notion of

necessity fits well with the historical facts."9 In the first place, a

definitive feature of Russell's later metaphysics is the lack of any

robust role for necessity. For instance, Russell later writes that

Bradley' s

opinion seems to rest upon some law of sufficient reason, some
desire to show that every truth is "necessary". I am inclined
to think that a large part of my disagreement with Mr. Bradley
turns on a disagreement as to the notion of "necessity". I do
not myself admit necessity and possibility as fundamental
notions; it appears to me that fundamental truths are merely
true in fact, and that the search for a "sufficient reason" is
mistaken. (1910a 374)

Thus Russell thought his rejection of necessity marked a major point of

difference between his late metaphysics and Bradley's. But other

historical details fit well with the present account of Russell's

revolution. Without the notion of necessity, (1) become not false but

meaningless. Under these conditions, there is no relation R such that, for

some x and y,

xRy -+ ECRy

This is far stronger than a simple denial of (1), and yet it seems to be

what Russell held. For Russell the atomist, "fundamental truths are merely

true in fact." Insofar as (1) is an interpretation of the statement, "all

relations are internal", Russell, in rejecting (1), did not merely claim

that some relations failed to be internal; rather he insisted that no

relation was internal. Russell writes:

Mr Bradley has argued much and hotly against the view that
relations are ever purely "external". I am not certain whether
I understand what he means by this expression, but I think I
should be retaining his phraseology if I described my view as
the view that all relations are external. (1898x 142)

"See also (1903 454) quoted later. In a paper on Meinong, Russell wrote:
"it seems impossible to distinguish, among true propositions, some which are
necessary from others which are mere facts" (1904 26).
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I conclude, then, that Russell's 1898 revolution consisted very largely in

his rejection of the notion of necessity, and his consequent strong denial

of (1).

I will make one final remark concerning (4). Since the consequent of

(4) contains a necessity operator, Russell after his revolution must

apparently deny (4) any significance whatsoever. But just as (4) seemed to

act as an unstated presupposition for Russell the Hegelian, and so Russell

after his revolution seems to have generally left it unstated and not

singled it out particularly well as an instance (or even as a consequence)

of the doctrine of internal relations. In Chapter 3 I will return to the

question of the role of (4) in Russell's atomistic metaphysics. There it

will be found that the modal notion of mutual ontological dependency

formulated in the consequent of (4) can be extended in a certain way to

yield an modal account of impredicativity.
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chapter 2: Poincar6: Two Hard Choices

2.0 Introduction

I shall endeavor to explain Poincar6's ideas in the foundations of

mathematics, continuing in a historical and narrative style. It would be

sufficient to consider solely the contributions Poincar6 made to the

subject of predicativity, but it is advisable to examine Poincar4's more

general positions as well. By doing so, one finds prima facie tension

between what Poincar4 insists upon and what he forbids - more precisely,

between his opinions as to the legitimacy of "les vraies math4matiques"

and as to the illegitimacy of impredicative definitions. In brief,

Poincar4 first developed a general epistemological account of our

knowledge in arithmetic and analysis, but then later sought to restrict

our knowledge to predicative mathematics. Although the latter move is in

keeping with some aspects of his earlier theory, it is in serious conflict

with certain other positions Poincar4 did not wish to abandon. One must

allow for change in his views over this period of more than twenty years,

but Poincar6 nevertheless has some hard choices to make.

As in my discussion of the early Russell, I will develop Poincar6's

ideas in part by contrasting them with Kant's. This will add unity to my

overall discussion, but it helps as well because of the continuing

importance of Kant's ideas in regard to the philosophical issues of

impredicativity. The two hard choices Poincar6 has to make turn on his

interpretation of the Kantian conception of the synthetic a priori, which

Poincar4 appeals to in the foundations of arithmetic and analysis. In each

case, the only plausible formal equivalents of the conception are

impredicative, and Poincar6 must choose between an illegitimate Kantian

intuition or a legitimate formal impredicativity. I will suggest that this

conflict puts pressure on Poincar4's subjectivism, i.e., his belief in the
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dependence of mathematical entities on activities of the human mind.

2.1 Poincar"'s Program: The Primacy of Arithmetic

To account for mathematical knowledge, Poincar6 endorsed, with

certain important modifications, Kant's view that mathematical knowledge

is derivable from synthetic a priori intuition. Of course, the

significance of the term "synthetic a priori" is no clearer in Poincar6

than it is in Kant, but for general historical purposes a full analysis is

not necessary. The following rough and partial gloss will serve my initial

purposes, and would very likely meet with the assent of both Poincar4 and

Kant: mathematical knowledge is a priori, epistemically certain knowledge

of necessary truths which do not follow from the meanings of words used to

express them.2" Again, I will not undertake a complete exposition of all

the elements of this initial gloss, but I will come back to some of them

as my narrative demands more detail. Here I want to begin the discussion

by pointing out that Poincar4 (at least in the earliest phases of his

career) sought to trace the synthetic a priori character of mathematical

knowledge back to a single primitive a priori notion, the "intuition du

nombre pur, celle d' ou est sorti ... le v6ritable raisonnement

math~matique." "Cette intuition du nombre pur," he held, is "la seule qui

ne puisse nous tromper" (1900 122). With characteristic optimism, the

early Poincar6 conceived of this single indubitable intuition as

underlying every branch of mathematics:

Autrefois, on parlait d'un grand nombre de notions, regard6es
comme primitives, irr~ductibles et intuitives; telles 6taient
celles de nombre entier, de fraction, de grandeur continue,
d'espace, de point, de ligne, de surface, etc. Aujourd'hui une
seule subsiste, celle du nombre entier; toutes les autres n'en
sont que des combinaisons, et A ce prix on a atteint la

2"It is best, perhaps, to indicate at the outset that Poincar6 does not
adequately distinguish the notions of aprioricity, certainty and necessity. He
takes each to be sufficient evidence for the others; e.g., if we know P with
certainty, we know it a priori and P is necessary. The triple mistake is
traditional, and I will not be calling Poincar6 on his error, although I will
have to interpret several important passages where it occurs.
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rigueur parfaite. (1899a 129)

My first major task, then, will be to examine this fundamental

intuition into natural number (see Sec. 2.1.1). But before that it is

worth pausing over Poincar4's list of reduced notions. Except for

fractions (the reduction of which by Poincar6's day presented no special

problem) all the mentioned notions receive explicit reduction in

Poincar4's hands.21 The notion upon which Poincard expended the greatest

effort was that of space, the topic of (1895), (1898), (1903) and (1912).

Its inclusion here among the non-primitive notions marks the first

important modification Poincar4 made to Kant: space is not a form of our

sensibility. Below I concentrate only on a component part of this

reduction, namely Poincar4's treatment of "le grandeur continue" or, more

simply, of continuity (Sec 2.2). This notion is important of course

because a correct analysis of it is required in the foundations of

geometry, analysis and topology, all of which Poincar6 made major

contributions to and considered part of "les vraies math6matiques".

Poincar6 believed that the reduction of continuity to the natural numbers

had been accomplished with "perfect rigor." This belief reveals his early

faith in the great arithmetization of analysis that had been pursued

throughout the 19th century. Poincar4 never wavered from defending the

certainty and legitimacy of analysis, but he was eventually to adopt a

principle which would leave him little room for an explanation of our

knowledge of classical continuity. This situation, we shall see, poses the

second of the hard choices I want to raise for Poincard: he believed we

had knowledge of classical continuity, which is impredicative, but he

rejected impredicativity (Sec. 2.2.2).

At the turn of the century, then, Poincar6 was upbeat. Not only had

2 Points are discussed in (1895 640-1), (1897 65-7) and (1898 24 ff), lines
in (1898 20), and surfaces briefly in (1899 130). Some indication of Poincar6's
view of fractions is found in (1893) and (1904 260).
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the long-sought arithmetization of analysis been accomplished, but it had

been accomplished with perfect rigor: "On peut dire qu'aujourd'hui la

rigueur absolue est atteinte" (1900 122). Poincar6 was aware that if

analysis was to be traced back to a primitive intuition of the natural

numbers, the construction of subsets ("combinaisons", elsewhere

"syst&mesm) of the set of natural numbers would have to be allowed for.

The infinite would have to be tolerated, but for Poincar4, even as late as

1902, this was not a problem:

Notre fagon de concevoir l'infini s'est 4galement modif6e. M.
G. Cantor nous a appris A distinguer des degr6s dans l'infini
lui-m&me .... La notion du continu, longtemps regard6e comme
primitive, a 6t4 analysde et r6duite A ses 616mentes" (1902a
93-4).

Poincar4 is writing here after almost twenty years of familiarity with

Cantor. He was one of the first mathematicians in France actually to

employ results of Cantor, and in 1883 he aided in the first French

translation of several of Cantor's important early papers.2 2 Thus, despite

Poincar4's later condemnation of the new "fagon de concevoir l'infini", he

evidently felt early on not only tolerance but considerable sympathy for

the work of Cantor. He included Cantor's theory, or at least as much of it

as was required for the analysis of the continuum within "les vraies

math4matiques" and accorded it the same "perfect" and "absolute" rigor he

found in other contemporary mathematics.

2.1.1 Pure Arithmetical Intuition and Mathematical Induction

But I now return to the single arithmetical intuition Poincar6 early

on identified as the sole primitive concept in mathematics and the source

of "le vdritable raisonnement math4matique". I mentioned that, although

22These translations, as it turns out, were Russell's first contact with
Cantor. His notes have been preserved and were published in (1896x 463-481). For
further references on Poincar4's early involvement in support of Cantor, see
Heinzmann (1985 15). Veuilleman (1968 213) states that Poincar4 in this early
period was "encore cantorien", and Hadamard (1921 161, 171) discusses generally
Poincar6's contributions to topology.
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Poincard considered himself a Kantian, he introduced certain modifications

of Kant's views, one of which was his denial that space was a primitive,

synthetic a priori form of intuition. The second modification is

Poincar6's specification of the "v6ritable raisonnement math6matique"

licensed by our a priori intuition into pure number. In particular, that

intuition underwrites the application of mathematical induction, "le

raisonnement math4matique par excellencem (1894 379; 1905 818). "Cette

rbgle,' he says, minaccessible A la dbmonstration analytique et a

l'exp6rience, est le veritable type du jugement synthdtique a priori"

(1894 381-2). 23 This idea, that mathematical induction is the principle

which articulates the content of the primitive intuition at the base of

mathematics, is new to Poincar4 and not to be found in Kant's own work.

But other familiar features of the traditional Kantian notion of synthetic

a priori are still found in Poincar4. For example, mathematical induction

for Poincar4 is the principle which establishes "la possibilit4 m&me de la

science math catique', understood as yielding certainty of truths which

are necessary but not analytic (1894 371; cf. Kant [814-15]). Secondly,

the principle of induction, according to Poincar6, "n' est que

l'affirmation d'une proprit64 de 1'esprit lui-m&me" (cf. Kant A36-7/B52-

3). As we shall see, there are other points at which one may wish to

challenge Poincar4's allegiance to Kant, but in these respects there is

similarity.

It was just noted that, according to Poincar6, the principle of

mathematical induction is an affirmation of a property of the human mind.

nHe goes on: "On ne saurait d'autre part songer A y voir une convention."
But in his interpretation, the logicists ('les logiciens intransigeants") would
soon dream of just that (cf. 1905 818). Notice the equation of conventionality
and explicit definability. Convention in Poincard is a difficult but crucial
notion, and his competing demands on it are discussed more later. Here the
difficulty is that, since conventions, cn his view, are neither true nor false
(1895 645, 1898 42), the logicist justification of induction on the basis of an
explicit definition, construed as a convention, could not be a justification for
believing induction is true. But this is obviously a misrepresentation of the
logicist position.
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It is not clear on the face of it what Poincar4 intends by this. How can

a mathematical principle just be the affirmation of a property of the

mind? Closer examination shows that Poincar6 has several theses in mind

which he is not always careful to distinguish. The property of the mind

which he wants to emphasize is a capacity. The assertion of the principle

of mathematical induction "n'est que 1'affirmation de la puissance de

1'esprit qui se sait capable de concevoir la r6p6tition ind~finie d'un

m&me acte d&s que cet acte est une fois possible' (1894 382). The idea

that the mind can indefinitely repeat certain types of acts is relatively

uncontroversial, although obviously a qualification such as 'in principle"

would have to be added and analyzed. Rather than undertake such an

analysis, I will try to explain the relation, as Poincar4 conceives it,

between this capacity or 'puissance" of the mind and mathematical

induction.

One thing is clear: the capacity Poincar6 has in mind is closely

related to our understanding of the sequence of natural numbers or, in his

terminology, to our 'intuition du nombre pur'. In fact, one indefinitely

repeatable act attributable to the mind is the very creation of the

natural numbers themselves:

Quand je parle de tous les nombres entiers, je veux dire tous
les nombres entiers qu'on a invent6s et tous qu'on pourra
inventer un jour' (1909 477).

It is odd, but not uncommon, to speak of creating or inventing

mathematical objects. The early Russell, for example, also held that

'counting creates numbers' (1897x 20). For Poincard, invention takes place

by definition or construction. Abstract mathematical objects

"n'existeront qu'aprAs qu'ils auront 4t4 construits, c'est-A-
dire aprbs qu'ils auront 4t4 d6finis' (1912 7).

Since the natural numbers are thought to be "invented" or "constructed" by

repeated acts of explicit definition, Poincar4 evidently conceives of the

natural numbers as being introduced, not as a totality by an explicit

definition, but successively by a so-called recursive definition. A
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"d6finition par r6currence", he says, "est d'une nature particuli&re qui

la distingue dbj& de la d~finition purement logique; [elle] contient en

effet une infinit6 de d6finitions distinctes" (1894 375). The synthetic

"intuition du nombre pur" itself, then, can be codified or expressed by

means of a recursive definition. This interpretation accords with

Poincar4's view (which is very important in Sec. 2.1.3) that mathematical

induction is not analytically deduced from prior synthetic principles, but

rather follows synthetically from a certain intuition (1894 371) ." For

induction is informally motivated by a recursive definition of natural

numbers, but cannot be formally deduced from it. Additional confirmation

of this interpretation is found in one assessment Poincar6 gives of the

significance of the principle of mathematical induction itself, which

implies that the natural numbers are indeed defined "par r4currence": "Le

principe d'induction compl&te', he writes, "signifie que sur tout nombre

qui peut §tre d4fini par r6currence, on a le droit de raisonner par

r6currence" (1906a 142, 1905 835). Thus the "puissance" of the human mind

indefinitely to repeat the act of adding one to a previous result

underpins our understanding of the natural numbers, and a recursive

definition of these expresses or captures our synthetic "intuition du

nombre pur'. Poincar4 stresses induction as the "le v6ritable type du

jugement synth6tique a priori" because induction is the primary principle

which spells out the content of the intuition represented by this

recursive definition, and he is correct to see this connection between

them as non-deductive.

From this it is clear that Poincard's conception of synthetic a

priori intuition in arithmetic actually consists in three distinguishable

theses. First,

24Cf. Beth (1955 234) on this point. Actually, Poincar4 seems to have
admitted the existence of explicit definitions of the (set of) natural numbers,
but denied that they yield induction "analytically'. In some cases, the only
strong principle appealed to in the relevant derivation is the axiom of choice.
See (1905 303, 1906 867). In all cases, some form of iminpredicativity is involved.
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i) the human mind has the power to repeat a type of act
indefinitely.

We see or intuit that "il n'y a pour ainsi dire aucune raison intrins&que

de s'arreter" (1893 31). Second,

ii) the natural numbers are created by the exercise of this
power.

A recursive definition of the natural numbers states the instructions or

rules for this "creation". Finally,

iii) we see by "une intuition directe" that our creations obey
the principle of mathematical induction.

The first two theses relate directly to a modal claim Poincar6 wants to

make about the human mind. The third thesis is more plainly epistemic in

that it offers an a priori justification for a specific proposition.

Still, Poincar6 can be found at various points identifying each of these

with the allegedly unique synthetic a priori "intuition du nombre pur."

For us, obviously, it is advisable to keep the three theses separate in

our minds. Note also that it is, strictly speaking, only at this third

stage, once we have intuited or seen the validity of instances of

mathematical induction, that we may meaningfully speak of "tous les

nombres". Before long we will see that some of these instances are in an

important respect impredicative, and this will raise the first hard choice

for Poincar4: he will have to chose between a legitimate impredicativity

or an illegitimate "pure intuition".

A few interpretive and historical remarks are perhaps in order here.

Poincar4 may not have intended a hard and fast distinction between i and

ii, but opted instead for a kind of structuralism. That is, he may have

thought that virtually any indefinitely extendable linear sequence of

mental acts was tantamount to the construction of the natural numbers.

First, Poincard was aware of instances of mathematical induction which

pertain not to the natural numbers, but to indexed mathematical entities

of other sorts. Second, Poincar6 evinces some doubt as to the genuine

definability of individual numbers (1905 823-4). Both of these suggest
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that he took the form or structure of indefinite repeatability to be more

important than the content of any particular indefinite sequence, and this

seems to be confirmed by certain statements Poincar4 makes (1903 427,

quoted below) which suggest even repeated human body movement suffices for

our intuition of number. Finally, in the following passage, which occurs

in a rather different context, Poincar4 once more appears to confirm that

he took a structuralist attitude:

Les mathematiciens n'1tudient pas des objets, mais des
relations entre les objets; il leur est donc indiff4rent de
remplacer ces objets par d'autres, pourvu que les relations ne
changent pas. La matibre ne leur importe pas, la forme seule
les intdresse. (1893 28; cf. 1906a 142 and 1898 40)

Still, it is not necessary for my purposes to establish Poincar6's

structuralism beyond the possibility of doubt. However ii is interpreted,

it is bound to appear astonishing. According to Poincar4, the natural

numbers are created by the human mind. In fact Poincar6 believes quite

generally in the dependence of mathematical entities on human mental

activity, and he eventually was to call this belief "idealism" (1909 10-

11). I will use the term subjective idealism about F's (or sometimes more

simply subjectivism about F's) for the view that F's are the products, the

potential products or even the acts themselves of the human mind. In

contrast to his views about mathematical objects, Poincar4 was not a

subjective idealist about actual physical space, for example. Although he

held that space was given to us in a contradictory form (cf. Russell 1896x

57) and possessed no intrinsic metrical properties or dimensionality, he

nevertheless thought it existed objectively (without "self-contradiction")

and exhibited other properties quite independently of our mental activity.

Mathematical objects, on the other hand, were created by, and are

dependent on, the activities of the human mind for their existence.

How early did Poincar4 adopt subjective idealism about mathematical

objects? This question is important because the restriction of
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mathematical knowledge to predicative mathematics is typically argued for

in terms of subjective idealism about mathematical entities. The

quotations included above show that Poincar6 was indeed a subjective

idealist about mathematical objects, but only as of 1909, three years

after his adoption of a predicativity constraint. There is, as far as I

know, no early statement of similar generality and explicitness, but it is

nevertheless reasonable to extend Poincar4's subjective idealism back to

his earliest writings in the philosophy of mathematics. Certainly in

(1893) the mathematical continuum in particular (as opposed to physical

space) is understood as a human creation; and in (1894), as we have

already seen, synthetic a priori judgements are said to affirm a property

of the mind to act. Further, in (1905 819) Poincar6 distinguishes

explicitly the "existence des objets mat4riels", which alone amounts to

*objective existence" (1905 31; cf. the later 1905 297), from "l'existence

en math6matiques". Thus in 1905, prior to the introduction of the notion

of predicativity, Poincar6 countenanced two sorts of existence: one

pertained to material objects and was considered "objective", the other

pertained to mathematical objects and was thus presumably "subjective".25

The strain of subjectivism about mathematics in Poincar4's thought, then,

seems to precede his adoption of a predicativity constraint in logic, and

it is probably out of this strain that his predicativism develops.

It is, however, the thesis iii which marks Poincare's most original

contribution to the philosophy of arithmetic. The leading function of the

"intuition du nombre pur" is that it licenses mathematical induction. The

third thesis asserts that mathematical induction is justified in an a

2SThe term "subjective" is not used by Poincard. To explain the non-
objective sort of existence, Poincar4 wrote that "en math6matiques le mot exister
ne peut avoir qu'un sens, il signifie exempt de contradiction" (1905 819). This
suggests the word "existence" could be strictly eliminated from mathematics by
making appeal to the property of non-contradictoriness in concepts (or
predicates). One must not infer from this the "conceptual" or "subjective" nature
of mathematical existence, however, since Cantor thought that the non-
contradictoriness of a mathematical definition was sufficient to commit one to
the "objective" existence of the entity defined.
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priori way for the "creations" mentioned in the first theses. This is an

important and interesting modification of Kant's views on the founding

intuition of mathematics. Thesis iii incurred the opposition of many of

the logicists, and was, according to Poincar4, the "objet principal du

dbbat" between them (1906b 867, 1905 832). Couturat (1905) for example

maintained that one could formulate an explicit definition of the natural

numbers from which it was possible analytically to derive mathematical

induction. At first, Poincar4 replied that the need to show the

consistency of the logicist definition required an unseen appeal to

induction (1905 829). But in an effort to formulate more general

objections to logicism, Poincar4 latched onto the paradoxes that had

arisen. Rejecting the idea that the paradoxes arose from ordinary

("vraies") mathematics, he charged that the paradoxes revealed a deeper

petitio systematically committed by the logicists. This deeper petitio

consisted in the violation of a principle banning impredicative

definitions and came to be known as the vicious circle principle. Below I

discuss Poincar6's charge in more detail. Here I want to emphasize that,

once the predicativity constraint had been formulated, Poincar6's primary

interest in it was not really the solution to the paradoxes at all (which

after all did not arise in "les vraies math6matiques") but rather the

resolution of "le vraie debat* concerning induction. Poincard claimed that

there was an essential appeal to an impredicative definition in the

logicist proof of induction, and that this undermined the alleged

analyticity of their demonstration. But, as we shall see below (Sec.

2.1.3), Poincar6's own justification of induction on the basis of a

recursive definition of the natural numbers (thesis iii) requires a

similar appeal to impredicativity (cf. Parsons 1983). This puts Poincar4

in a hard position: how can the impredicativity of the logicist proof of

induction indicate a vicious circularity while the impredicativity

embodied in the less explicit justification he favors be unobjectionable?

An exactly parallel difficulty will face Poincard in the case of
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continuity in analysis.

2.1.2 Poincar6's Kantian Credentials

An underlying difficulty here is the notion of synthetic a priori

intuition. As I have just suggested, it will turn out that the only

plausible formal equivalent of the allegedly synthetic character of

induction is precisely the impredicativity essential to the justification

of induction. One way to put this first hard choice Poincar6 has to make

is to raise the question: is the impredicativity of induction itself

responsible for the synthetic character Poincar6 wished to underline? But

here clarity as to the notion of the synthetic a priori must first be

maintained. According to the rough gloss of this notion given above,

Poincart's position includes the claim that induction is a necessary

truth, known a priori and with certainty, but which does not follow from

the meanings of words used to express it. Yet, traditionally, the notion

of "pure" synthetic intuition has involved much more than this. Kant does

not merely say that the justification of arithmetic requires appeal to an

underlying synthetic a priori intuition; he also ties this intuition to

time and the possibility of experience in general. He argues that since

all experience occurs in time, certain formal or structural properties of

time are deducible from formal or structural properties of experience. In

fact, for Kant, the form of experience ('Form des inneren Sinnes") just is

time; so that things in themselves, apart from experience of them, have no

temporal properties, and experience as we know it would be impossible

unless time had the formal or structural properties it does. Finally, Kant

would appear to be committed to the claim that the formal temporal

sequence with which we are acquainted a priori is isomorphic to the

standard model for arithmetic, for he believes that our knowledge of this

temporal sequence (i.e., of the form of inner experience) suffices for

knowledge of arithmetic. According to Kant, we can rest assured that
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arithmetical truths are necessary because their truth is a precondition of

experience.26

Recently, however, Goldfarb has asserted that Poincar4 does not

share with Kant this more robust notion of synthetic a priori intuition.

Poincar4's synthetic a priori "intuition du nombre pur," Goldfarb

believes, is not tied to time or the possibility of experience:

in Poincar6's hands the notion of intuition has little in
common with the Kantian one. The surrounding Kantian structure
is completely lacking; there is no mention, for instance, of
sensibility or of the categories.... Intuition, in
[Poincar6's] sense, ... might just as well be called
"immediate conviction" (1988 63)

According to Goldfarb, Poincar4's usage of Kantian terminology, as well as

his striking assertions of allegiance to Kant (cf. 1905 815-6; 1906 34),

are not to be taken at their face value. I have suggested above certain

modifications to the Kantian view which Poincar4 made, but Goldfarb would

rather emphasize the complete lack of the "surrounding Kantian structure"

and argue that Poincar6 has abandoned the traditionally Kantian notion of

pure arithmetical intuition with its links to time and the possibility of

experience. Poincarb, he thinks, ought not to be considered a Kantian at

all. In favor of his interpretation Goldfarb can point to the sudden

increase in Poincar4 around 1905 of candidate synthetic a priori

principles. How can all of the diverse principles Poincar4 suggests

indicate temporal order or the form of inner sensibility? This evidence

is strong, but I believe nevertheless that Goldfarb has overstated his

case. If one looks beyond Poincard's work on impredicativity to his

earlier foundational research, one finds a modified but nevertheless

traditional conception of the synthetic a priori.

Part of the difficulty in discovering the pedigree of Poincar4's

26As Moore (1899 399) argues, the inference Kant makes from necessity-for-
experience to necessity tout court is fallacious. I will not base my criticism
of Poincar4 on his frequent acquiescence to the related shift from aprioricity
to necessity.
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understanding of the synthetic a priori stems from his failure to use the

word "intuition" in a uniform manner. In (1900 121) Poincar6 distinguishes

several diverse classes of "intuition." The various classes are

represented by quite different kinds of knowledge, including knowledge of

traditional logical inference rules, convention, mathematical insight,"

synthetic a priori judgement, empirical induction, imagination and sensory

experience. (In (1912) he introduces "le veritable intuition g~ometrique"

to this list, and this, as we shall see, may mark a major shift in

Poincar6's late views.) Obviously, not all of these can play the important

role that pure synthetic intuition plays for Kant. A further difficulty is

that Poincart is not consistent in his discussions of the properties of

the different classes of intuition. In one work we read: "cette intuition

du nombre pur [est] la seule qui ne puisse nous tromper" (1900 122); but

a mere four pages later, he discusses "la Logique, qui peut seule donner

la certitude" (1900 126; 1899 129). In a subsequent paper, which repeats

entire passages from (1899a) and (1900), Poincar6 assures us that

Ul'intuition ne peut nous donner la rigueur, ni m&me la certitude" (1904

262). Poincard's use of the word "intuitive" therefore is not only non-

uniform, it is outright contradictory, and this makes the task of

extracting a traditionally Kantian notion particularly difficult.

Yet despite this jumble of inconsistent usage, Poincar4's different

classifications of knowledge, as well as their important properties, are

relatively straightforward. These, in fact, are drawn directly from the

Kantian tradition. Empirical understanding (including sensation,

27Mathematical insight, the ability to discover ("inventer" ) new
mathematical truths, was an important faculty for Poincar4. In (1900 129), he
tried to reduce this class of intuition to another: "C'est l'intuition du nombre
pur, celle des formes logiques pures qui ... permet ... d'inventer." The
reduction (not mentioned in any other paper) is not carried out, and since
"intuition" of this sort (insight) is admittedly fallible, it seems he could
achieve it only by denying that synthetic a priori intuitions always yield
certainty. Only in (1900) are conventions and (traditional) logical inference
rules called "intuitive", and the same applies (as far as I know) to empirical
induction.
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imagination representation and non-mathematical induction) are always

uncertain and never "sterile" or void of content. Inference rules of

traditional formal logic, on the other hand, are known with certainty but

the cost is sterility. "Tout raisonnement analytique est sterile" (1897

63). Convention is typically thought of as not productive of truth at all,

but there are exceptions in Poincar4's handling of this difficult notion

(see Sec. 2.2.1). Like Kant, however, Poincar4 maintains that the class of

certain non-sterile truths is non-empty, and these truths he "baptizes"

(1894 371) "synthetic a priori". With the exception of convention, all of

this is very much as it is in Kant, who first brings in the categories and

the forms of sensibility precisely in order to account for so-called

synthetic a priori knowledge, knowledge that is neither uncertain nor

empty of content. This already leads to a minor correction to Goldfarb's

rendering of Poincar'Bs "intuition" as "immediate conviction". Our

immediate conviction must be correct in the first place, so that what we

are convinced of must be true; and it must be non-sterile or non-analytic

- it must have content not entailed by the meanings of the words used to

formulate it. This correction is minor, however, since if Poincar6's

conception of the synthetic a priori went no further than this one could

hardly claim he was "vindicating Kant" (Goldfarb 1988).

Poincard, then, recognizes mathematical induction as a truth about

which we can be certain, but which is not analytic or "sterile", i.e., not

derivable from facts about the meanings of the terms required to state it.

He sees his position as a vindication of Kant, but without what Goldfarb

calls a "surrounding Kantian structure", these pledges of allegiance can

mean little. In order for Poincar4 to place induction in a "surrounding

Kantian structure", he would have to claim that it plays epistemic roles

similar to those played by the categories (forms of understanding) or the

forms of sensibility in Kant. As I mentioned, one crucial role these

"forms" play in Kant is to render experience possible at all. This raises

77



the apparent problem that, even in 1894, Poincar4 did not take

mathematical induction to be the only principle in the class of certain

non-sterile truths (1905 818; cf. 1894 374). Instead he considers it

*typical" of such truths. He may mean that the others are logically

equivalent (i.e. various other formulations of mathematical induction),

but if not he will have to give some account of how non-equivalent

principles can both articulate the "form" of our understanding or

sensibility. At this early date the problem is perhaps not very severe,

for Poincar4 does not offer other examples of synthetic a priori

principl.es. But when Poincar6 went on the defensive against the logicists,

he claimed an enormous variety of non-equivalent principles were synthetic

a priori. These include all twenty of Russell's (1903) indemonstrable

propositions; our understanding of Russell's nine (1903) primitive

notions; the existence of logical sums and products (1905 829-30); the

passing from "the point of view of intension" to that of extension (1905

832); the existence of an infinite class (1905 311-2); and the axiom of

choice (1905 313).28 This plethora of candidate "forms" of our experience

gives powerful support to Goldfarb's claim that the term "intuitive" has

no special Kantian sense in, Poincar6. For how can this hodge-podge of

"principles" ever be made to articulate a coherent universal form of human

experience?

Goldfarb's point thus has particular appeal in respect to these

later "defensive" applications of the term "intuitive". Poincar6's purpose

is surely to show that the logicists have "immediate conviction" of

principles not traditionally part of analytic logic. His purpose is

dialectical, and this observation is reinforced by the fact that Poincar4

actually doubts most of the "principles" just mentioned, and considers

others outright false. But if we grant this, we save Poincar6 from the

2'The same status is also suggested, albeit with hesitation, for our
understanding of one-one correspondence and even of independent variables (1905
830, 831). On the former, see Couturat (1900 26).
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obligation to provide a coherent account of how these many "principles"

together describe the "form" of our sensibility or understanding. Poincar4

does not really believe these "principles" fall into the special class of

certain truths not reducible to the meanings of the terms used to state

them. If no single coherent notion of "intuition" is extractible from all

of Poincar6's attributions, this at least does not affect the pedigree of

his own views about nature of the "intuition" underlying induction. But

Goldfarb's problem is not thereby entirely dismissed, however, since we

still have no account of the "Kantian structure" surrounding mathematical

induction. Without this, Poincar6's Kantian credentials with respect to

what he calls "le veritable raisonnement mathdmatique" are still lacking.

In this narrower domain, however, Poincar6's status as a Kantian is

justifiable. It was mentioned that, in Kant, the categories and the forms

of our sensibility make experience possible in the first place. Now it is

easy to show that Poincar4 believed in the existence of categories, or

forms of the understanding, playing this role.2" Poincar6 is quite

explicit about this in his writing on the foundations of geometry. It is

not so easy, but I think still possible, to show that theses i and iii are

presupposed by, and thus in some sense are part of, at least one such

category. If both of these can be accomplished, a third modification

Poincar4 made to Kant will be evident. The "pure intuition" underlying

arithmetic is not a form of our sensibility but a form of our

understanding, or at least part thereof. The "intuition du nombre pur" is

categorial. This constitutes a important modification but not, as Goldfarb

suggests, a total abandonment of Kant.

'Poincar4 seems to think of the categories as sets of propositions which
must be true if experience is to be possible. It will be noted that in this
respect Poincar4's categories are similar to Russell's "form of externality" as
discussed in the last chapter. Russell's "form" may also be identified with a set
of principles which must be true if (spatial) experience is to be possible. I
will say that a proposition is categorial if it follows from the set of
propositions which constitute the category.
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It is undeniable that Poincar4 made at least one Kantian distinction

relevant to our discussion, namtely that between the categories and the

forms of sensibility, since he held that the concept of group was a

category of thought:

le concept g6n6ral de groupe pr6existe dans notre esprit, au
moins en puissance. Il s'impose A nous, non comme forme de
notre sensibilit6, mais comme forme de notre entendement.
(1895 645)

The idea here is that the general concept of group, and in fact the

various concepts of more specific sorts of groups, are all available to us

a priori, although which group we choose to represent a given set of

experiences is not "imposed" upon us a priori. This idea is central to

Poincar6's account of geometrical knowledge, for

What we call geometry is nothing but the study of formal
properties of a certain continuous group; so that we may say
space is a group. The notion of this continuous group exists
in our mind prior to all experience; but the assertion is no
less true of the notion of many other continuous groups. (1898
41)

Thus the "general concept" of a group is a form of our understanding, and

that form is "filled out" in various ways by a priori constructions of the

pure understanding. We may then select, empirically or by convention, one

such result as that which best corresponds to our experience of space. One

step still within the a priori "filling out' process is the introduction

of the notion of continuity, to which we will later turn (Sec. 2.2.2). As

we shall see, however, Poincar6 makes explicit appeal to the "intuition du

nombre pur' in his account of our understanding of continuity. In fact,

all three theses distinguished above regarding the interpretation in

Poincar4 of arithmetical synthetic a priori intuition are implicated in

his account of continuity, although again Poincar6 is not always clear

which he means on any given occasion. What this implies, however, is that

both the notion of continuity and the three theses regarding our

"intuition du nombre pur" play specific roles in possible a priori

specifications of a general form of our understanding. This suggests a

very Kantian "surrounding context" for Poincard's use of the term
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"intuition"

More can be said than this, however. It is likely that the "form of

our understanding" actually contains "'Wintuition du nombre pur", in at

least two of the senses given above for the latter term. To see this, one

must observe that the continuous group which is (sic) space is a group of

displacements. Poincar6 offers a phenomenalist understanding of

displacement which he claims makes no appeal to spatial understanding. The

details of this account are irrelevant here (see 1895 639-41, 1897 64-5,

1898 7-12), but the consequences of the fact that displacements form a

group is highly relevant:

This ... fact, that displacements form a group, contains in
germ a host of important consequences. Space must be
homogeneous; that is, all its points are capable of playing
the same part. (1898 12)

Homogeneity (the property of space given by Russell as the "content" of

his form of externality) is explained by Poincar4 in the following terms:

If a displacement D transports me from one point to another,
or changes my orientation, I must after such displacement D be
still capable of the same movements as before the displacement
D, and these movements must have preserved their fundamental
properties, which permitted me to classify them [phenomenally]
among displacements. If this were not so, ... displacements
would not form a group. (1898 12)

Groups are closed under their associated composition operation. Thus after

any displacement, it must be possible to "add" any other displacement. But

this presupposes thesis i above, namely that the human mind has the power

to repeat a type of act indefinitely. Indeed, Poincar6 says

C'est de cette r4p6tition que la raisonnement math6matique
tire sa virtu; c'est donc grace A la loi d'homog6n6it6 qu'il
a prise sur les faits g4omdtriques. (1895 640; cf. 1898 9 ff).

The situation then is clear. Our understanding of the homogeneity of

space, according to Poincar4, requires that thesis i be true, that we can

repeat a certain type of act indefinitely. If this is our "intuition du

nombre pur', then this intuition is required in the a priori "filling out"

or specification of a general form of our understanding. Indeed, the use

of principles equivalent to mathematical induction on geometric figures,
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conceived of as in analytic geometry, rests upon our capacity indefinitely

to repeat an act-type in precisely the same way that our knowledge of the

validity of induction for natural numbers rests, in Poincar4's view, on

our ability to "create" the numbers, in short, to count. Whatever one

thinks of the truth of these foundational accounts, one at least cannot

doubt that, for Poincar6, the synthetic a priori intuition into pure

number plays a clear role in a "surrounding Kantian context' . This

intuition is an integral part of a category, or form of our understanding.

One final piece of evidence for my modification of Goldfarb may be

mentioned. It was said above that one basic role which the synthetic a

priori principles play in Kant is that they make experience possible: they

must be true if experience as we know it is to be possible. Now there is

an obvious sense in which mathematical induction makes arithmetic

possible, and Poincar4 is quick to exploit this (1894 371). But he also

seems to have held that, without synthetic a priori intuition, there would

be no experience at all as we know it. Again, this can be seen by

understanding the relation of our arithmetical intuition to the notion of

a homogenous group. In (1899), Poincar6 reviewed Russell (1897). This

incident, which marks their first scientific interaction, was an

impressive boost to the young Russell's career. Poincar4 begins by making

certain concessions:

M. Russell commence par 4tablir qu'aucune expdrience ne serait
possible sans une forme de extbriorit6 [et] que cette forme
doit &tre parfaitement homoghne. Sur tous ces points nous
sommes d'accord (1899 254; but cf. 1899 253; my emphasis).

As we have seen, however, Poincard attempts to base homogeneity of space

is precisely on an appeal to the "puissance" upon which mathematical

induction is said to be based. Thus this "puissance" and mathematical

induction itself are parts of a form of our understanding, and as such

'aucune expbrience ne serait possible" without them.

The question whether Poincar6 was a "structuralist" in the sense
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described above is related to the Kantian role of the synthetic a priori

in rendering experience possible. As was mentioned above, Poincar4's

objections to logicist definitions of individual numbers suggest an

indispensable role for individual numbers in normal thought (1905 823-4).

Although in (1894 373) and (1897 60) Poincar4 does imply that individual

numbers can be defined, he considers their definition irrelevant to

mathematical reasoning. This suggests that genuine definitions, i.e.,

explicit definitions that are both legitimate and informative, are not in

the final analysis possible. Again at (1903 427), discussing the muscular

sensations whose indefinite repeatability is appealed to in the

foundations of geometry, Poincar6 says "c'est de leur r6p6tition que vient

le nombre'. This again suggests that the nature of the entities standing

in sequence (here the muscular sensations accompanying human body

movement) is entirely irrelevant to mathematics; all that is relevant is

the form or structure of the sequence itself. More importantly, however,

Poincar4 asserts that this "r6p6tition suppose le temps." Now it is quite

possible that Poincar4 intended by this the Kantian view that our

understanding of the ordering of the natural numbers just is our

understanding of the structure of time. I know of no place in Poincar4

where he makes his opinion unambiguous, but certainly he leaves room for

this very Kantian position. In any case, he does conclude, A la Kant, that

knowledge of space presupposes knowledge of time. His idea is that our

knowledge of space arises from human body movement and this presupposes

some awareness of time. It is clear, therefore, that the sequence of

natural numbers remains for Poincard intimately related to (perhaps even

identical to) the structure of time, even though it does not articulate

the form of our "inner sensibility" but part of a form of our

understanding.

To conclude: the forms of sensibility are not the only synthetic a

priori forms according to Kant or, yet more curtly expressed, "intuition"

83



need not translate "Anschauung". The categories, or forms of our

understanding, are also synthetic a priori. It is here that the "intuition

du nombre pur" fits in, according to Poincar6, not in connection with our

inner "sensibility." Arithmetical intuition is categorial. Contrary to

Goldfarb, Poincard does mention the categories and in fact makes epistemic

use of them in his account of our knowledge of mathematics. Arithmetical

knowledge is tLed to the possibility of experience, and may even be

tantamount to our understanding of temporal sequence. Poincar6's Kantian

credentials with regard to mathematical induction are thus solid. He

modifies Kant in order to vindicate him, and this modification should not

be construed as an abandonment of "surrounding Kantian structure."

2.1.3 The Hard Choice in Arithmetic

We have seen that Poincar6's foundational views were Kantian, that

he held that our knowledge of arithmetic is based on a categorial

intuition into pure number. This intuition, in the sense of thesis i,

renders experience possible, in the sense that it articulates an

experiential capacity we know ourselves to possess, namely the capacity

indefinitely to repeat certain types of acts (including physical acts of

movement). But it also suffices for arithmetic in that Poincar6 seeks to

justify induction on the basis of thesis i. This justification is given as

thesis iii above. I wish now to examine the problem that this

justification is irremediably impredicative.

The impredicativity of mathematical induction has been recognized by

some writers for over fifty years, but it has recently become the topic of

a great deal of new research. The earliest result concerning it that I

have been able to find occurs in Fitch (1938)." Early proof theoretic

'oFitch shows that transfinite induction up to of is not provable in Russell
and Whitehead's (1925), and this is well below F0, the proof theoretic number of
predicative analysis as determined by Schttte (1965) and Feferman (1964).
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studies of impredicativity carried out by Feferman and Kreisel

concentrated on notions of predicativity which included mathematical

induction, but both authors give clear and early indication that this

inclusion is motivated merely by historical considerations, and both

assert that mathematical induction is itself in a specific way

impredicative. Later, Royce published in (1969) a short proof based on

Gbdel's incompleteness theorem which showed again that induction was in a

specific sense not predicatively provable.3 Finally, some ten years ago

Parsons argued that the specific sort of justification of induction

favored by Poincard (namely thesis iii) reproduces the impredicativity

present in the formal justifications. Parsons' philosophical argumentation

is amply confirmed by the emergence lately of bounded or predicative

arithmetic, sub-theories of Peano Arithmecic which do not accept as valid

those instances of induction signaled by Parsons as impredicative. This

field is burgeoning, and bears interesting connections with theories of

computational feasibility and complexity.

The work just cited suggests that, with regard to the foundations of

mathematical induction, there are two broad alternatives one can adopt.

Either (A) one accepts an explicit definition of the totality of natural

numbers, and attempts formally to deduce induction from it; in this

alternative, induction is a theorem and its epistemic justification

depends only on the epistemic viability of the definitions, inference

rules and axioms employed in the proof. Or, rejecting this approach and

adopting the second alternative (B), one accepts a non-explicit definition

of the totality of natural numbers (a recursive definition) and eschews a

formal derivation of induction in favor of a more "intuitive" epistemic

motivation for its legitimacy in arithmetic. The first alternative splits

"Shoenfield proves the same theorem in a different way; his (1974) paper
is the standard reference to the theorem in the literature although it by no
means has priority. Schoenfield also shows that the identity relation is only
impredicatively definable.
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into two sub-cases, which are distinguished according to whether the

explicit definition of natural number used in the proof of induction is

predicative or impredicative. Understanding the impredicativity implicated

in the justification of induction in both these sub-cases of alternative

A is instrumental to seeing the existence of the impredicativity concealed

in the less formal approach, B.

The totality of natural numbers was first defined last century by

Dedekind and Frege, both of whom sought to transform the burgeoning

programme of arithmetization into logicism, the idea that ultimately all

the principles of mathematics were not arithmetical but logical in

character. Arithmetic itself, according to this view, was derivable in

logic alone from appropriate explicit definitions of the fundamental

concepts, such as natural number. Dedekind and Frege independently

succeeded in explicitly defining the property of being a natural number,

and their definitions, which are equivalent, provide examples of the first

sub-case of alternative A mentioned above. In contemporary symbolism, one

may express their definition as follows:

Nx =: VF(FO & Vy(Fy -+ FSy). -4 Fx)

Here "O" denotes zero and "S" denotes the one place function "the

successor of"; the exact definitions of these expressions are not

important here. From this definition, mathematical induction is easy to

derive. If, therefore, as Frege and Couturat maintained, this definition

is permissible within the confines of a logic whose axioms are analytic,

then induction is provable on analytic principles alone. This view would

garner little support today, since the logic underlying the definition is

second-order (and must be in order that the proof of induction, in its

full generality, may go ahead); and few would claim that second-order

logic is analytic. For among the values of the bound variable "F" are

properties which would require, for their specification, use of the

defined term "N". This shows not just the indispensable role of second-
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order quantification in the intended proof of induction on the basis of

the Frege-Dedekind definition, but also the impredicativity inherent in

this logicist justification of induction. The property N is defined in

part by the use of a bound variable which includes in its range not only

N itself but other properties whose specification requires reference to N.

Any attempt to remove such properties from the range of the bound "F" will

lead to an incomplete justification of induction.

Poincar6 was the first to point out the impredicativity of this

justification of induction, and he concluded that the justification was

illegitimate. If so, support was removed from beneath the claims Frege and

Couturat wished to make on the basis of this justification, including the

claim that induction could be proved analytically. On the face of it,

however, logicists need not yet abandon the hope of deriving induction

from principles of logic alone, even if they agree (as Russell was to do)

with Poincard's premise that impredicativity is illegitimate. For the

first alternative A includes, as a sub-case, the possibility of appeal to

a predicative explicit definition of the natural numbers. Russell's

repeated attempts to derive induction in ramified type theory (1908, 1910,

1925) are examples of this second sub-case. The failure of his attempts is

shown by Fitch and Schoenfield, and seems to have been known to Wang as

well. Recently A. George (1987) has given the matter a nice formulation.

Correcting an attempt Quine (1969) made to state an explicit predicative

definition of natural number, George offers the following definition:

Nx =: Va(xEa & Vy(Sya - ye a) . -+ Oar). &.
3a(xea & Vy(Syea -+ yea))

Here "a" ranges over finite sets only (at least one of each size), so the

definition is predicative. As George points out, however, the

justification of induction for an arbitrary predicate "Rx" in the language

on the basis of this predicative definition is still impredicative. Such

a justification would proceed by considering a set j={xey: 'Rx}, where y

satisfies the bound existential variable in the second conjunct of the
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above definition. The problem he points out is that 0 will in general be

impredicative, since some instances of "Rx" will contain bound variables

ca" ranging over 0 itself. If this is not permitted the justification of

induction for such "Rx" will not go through. Thus both sub-cases of the

first broad alternative A for the justification of induction make

indispensable use of impredicative definitions. Logicism, if it is to be

viable at all, must go impredicative.

It was precisely this fact which Poincar4 wished to exploit to

refute logicism: if the viability of logicism depends upon its acceptance

of impredicative definitions, and these are illegitimate, then logicism

itself is not viable. Moreover, his argument to the effect that logicism

depends upon the admission of impredicative definitions was not limited to

a consideration of the first sub-case alone. This is a point the

historical literature on Poincard misses. Poincar4 knew of, or at least

suspected, the existence of predicative explicit definitions of the

natural numbers." This is of great importance for the interpretation of

Poincar6's foundational program, for Poincar4 is sometimes thought to have

objected to logicism merely by arguing that the Frege-Dedekind definition

of natural numbers is illegitimate. If so, the existence of predicative

explicit definitions effectively thwarts his attack. The fact is, however,

that Poincard concedes it is possible explicitly to define natural number.

It is rather the justification of induction on the basis of such a

definition which introduces the alleged vicious circularity. This

circularity is thought to consist in the need to make use of an

impredicative definition in this justification. In other words, Poincard's

objection to logicism rests not just on the impredicativity of the Frege-

Dedekind definition of natural number (sub-case 1 of A), but equally on

the impredicativity George's exposition brings out (sub-case 2 of A).

2See (1905) pages 835, 303, 308-9, 867-8; compare (1905 32) with the
version published in (1908).
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Poincar6 concludes from this dual appearance of impredicativity that

induction does not follow analytically from the concept of natural number.

Rather, it follows synthetically from a prior intuition." After (1906),

it was on these grounds that Poincar6 condemned logicism. Logicism, he

thought, illegitimately extended logic into the impredicative. The result

was paradox and contradiction (1905 316; 1908 154).

The illegitimacy of impredicativity, on Poincar6's view, forced a

restriction of the devices of logic (including definition) to the

predicative. On this conception, however, a "logical" proof of induction

will not be forthcoming. Without this, Poincar4 argued, we must accept the

second broad alternative B sketched above for the justification of

induction, namely an "intuitive" justification on the basis of a recursive

definition of the natural numbers. This, as Poincar4 understood it,

implied a return to Kantian foundations, for the possibility of offering

a recursive definition of anything, let alone the natural numbers,

depended upon our ability indefinitely to repeat certain act-types (such

as counting and body motion) and this ability was considered necessary to

experience as we knew it. Now it turns out that the failure of a recursive

definition of the natural numbers to yield induction "deductively" (or, as

Poincard would put it, "analytically") arises from a kind of

impredicativity implicit in certain instances of induction. Poincar6

wanted these instances as much as he wanted any others, and if he wants

them, I am prepared to grant them to him. But the cost is that his

justification of induction (the "intuition du nombre pur" in the sense of

his thesis iii) is irremediably impredicative. To see this, I will now

review the justification of induction on the basis of a recursive

definition.

"Similarly, Poincar4 considers several proofs of Bernstein's theorem, all
of which are impredicative. He concludes not that the theorem is false or
unsupported, but that it is legitimate and based on synthetic a priori intuition.
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It is a commonplace that induction is not strictly derivable from a

recursive definition of the natural numbers. In such a definition, one

supposes initially that 1) zero is a natural number and that 2) the

successor of any natural number is itself a natural number. The

justification of induction stems from the so-called "extremal" clause in

this definition, which states that something is a natural number only in

virtue of these two "initial" assumptions. To see how this justification

is supposed to work, suppose now that we have a predicate "F" in the

language of arithmetic for which we know that 3) FO and that 4) if Fn,

then FSh, where n is recognized to be a natural number. The principle of

mathematical induction concludes that 5) "Fx" is true of all natural

numbers x. License for this conclusion is clearly the function of the

extremal clause, for falsity of the instance of induction in question

would consist in there being a natural number m for which "Fm" fails,

whereas the extremal clause seems to prevent there being any such m. By

(3), such an m could not be 0, and so by the extremal clause, m is a

natural number in virtue of clause (2) of the recursive definition. Thus

m is the successor of some natural number n. It is clear that if m were

the least natural number for which "Fm" fails, "Fn" would be true; but

then from (4) it would follow that FSn, which is to say Fm, contrary to

hypothesis. Thus the "intuitive" justification of induction (5) on the

basis of a recursive definition will go ahead so long as we are permitted

to assume m is the least natural number for which "Fm" fails. The extremal

clause is again relied upon here, for the assumption that m is least is

permissible only on the condition that there is no infinitely descending

sequence of natural numbers, and this condition is intuitively fulfilled

if the extremal clause is true. Like the bound second-order variable in

the Frege-Dedekind definition, the extremal clause has the function of

keeping to a minimum the entities satisfying the definition. Given this

(ordinal) minimality, falsification of induction on "F" would require

there to be a natural number m which is neither 0 nor the successor of any
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natural numiber. m would thus have to be a natural number, but not in

virtue of the initial suppositions (1) and (2), contrary to the extremal

clause (3). This motivation does not amount to a deductive proof, but the

truth of induction is "immediately evident" if the initial assumptions and

the extremal clause are.

This justification of induction is evidently the one Poincar6

accepted since, as I have argued above, he took our "intuition du nombre

pur" to be captured or expressed by a recursive definition and insisted

that induction followed synthetically from this intuition. But instances

of induction like those which give rise to the charge of impredicativity

in alternative A give rise again to a charge of impredicativity here. In

discussing the Frege-Dedekind definition, Poincar6 (1905 309-10) singles

out for special scrutiny instances of induction un predicates "Fx" which

contain as part the predicate "Nx" to be defined. These predicates, in his

view, by restricting bound variables to the natural numbers, presume that

the notion of natural number is already on hand. In this he sees a

circularity, but he is quite clear that the instances of induction in

question are perfectly legitimate: only their formal derivation is not.

Their legitimacy, he thinks, is made manifest by the "intuitive"

justification just given, even though the quantification involved in these

predicates is precisely the same. One is therefore forced to ask why the

same use of quantification is legitimate in an informal setting, but

illegitimate in a formal setting. Why does the use of bound variables

restricted to natural numbers presume the notion of natural number is

already on hand in the explicit derivation of induction but fail to do so

in the non-explicit derivation? Or why does presumption constitute a

vicious circularity in the one case but not in the other?

Poincar4 remains strangely silent on this question. Unfortunately,

the difficulty also threaten the coherence of his Kantian program in the

91



foundations. Experience as we know it is possible, according to Poincar4,

only because we have the capacity indefinitely to repeat certain act-

types. It is therefore natural to ask what the precise content is of the

synthetic a priori "intuition du nombre pur" which has this function of

rendering experience possible? The Kantian programme in the foundation of

mathematics must surely not arrive at the point where it says: something

we know makes experience possible, but this cannot be stated. One might

just as well say: we can explain the possibility of experience, but this

explanation cannot be given. It may well be that a certain type of

inadequacy will affect our expression of the specific content of

underlying intuition which renders experience possible, so that a complete

statement of this content is impossible; but surely the attempt itself to

express this content in an admittedly incomplete way cannot be entirely

futile. Accepting this, however, one sees that the only content of

Poincar4's "intuition du nombre pur" which could play the role of

rendering experience possible is precisely the impredicative content.

This charge, that the seat of the explanatory power of Poincar6's

basic intuition is the impredicative content of that intuition, renders

Poincar4's Kantian foundation incoherent. Yet it appears to follow from

positions he allows are true. He admits that induction has impredicative

instances (that is to say, instances where the predicate in question

contains the predicate Nx). It is on the basis of this alone that he

rejects the logicist justification of induction which proceeds from an

explicit predicative definition of natural number. He admits as well that

induction restricted to its predicative instances is an inadequate

foundation for arithmetic. A model not satisfying induction, in its full

generality, is not, on his view, a model of arithmetic. The predicative

instances of induction, however, are evidently justifiable on logical

grounds alone, for these do not raise any of the difficulties Poincard

tried to put in the way of the explicit proofs of induction. Obviously the
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possibility of experience cannot depend only on that part of the content

of the underlying intuition which is merely logical, for the Kantian

doctrine is precisely that the synthetic a priori content does this.

Poincard is left with no choice: the synthetic a priori content of the

"intuition du nombre pur," which alone renders experience possible, is

precisely the impredicative content of the justification of induction he

favors. On his assumptions, the impredicative content of thesis iii can

alone fulfill the Kantian task of rendering experience possible.

The consequence is that, even for Poincar6, impredicativity can't be

all bad. This, however, runs contrary to his assertion that

impredicativity is indicative of a petitio or vicious circularity. I

conclude that there is a fundamental incoherence in the conjunction of two

of Poincar4's principles: the principle which pronounced impredicativity

illegitimate and the neo-Kantian view that arithmetic is based on a

specific intuition into numbers satisfying mathematical induction.

Ultimately, Poincar6 must make a choice between these two principles.

Interestingly, it was Poincar6's subjectivism regarding mathematical

entities which motivated him to accept both these principles. The

recursive definition of natural numbers he favored was understood as a set

of instructions or rules for the "creation" of natural numbers, and the

vicious circle principle is defended by citing limits on our power to

•create" objects. It seems to me that the fundamental incoherence of

Poincar4's two principles suggests a problem with his subjectivism about

mathematical objects. But this suggestion will have to be developed

elsewhere. I turn now to the hard choice Poincar4 must face in the

foundation of analysis.
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2.2 The Changing Place of Continuity

I turn now to Poincar6's views about the continuum. As is to be

expected, the notion of continuity, in Poincar6's view, is fundamental to

geometry; for, as was seen above, geometry for him "is nothing but the

study of formal properties of a certain continuous group" (1898 41). Now,

since the notion of this and other continuous groups is part of the "forme

de notre entendement," so too, apparently, is the notion of continuity

itself. In this section I will try to show that this is indeed the view

Poincar4 held. At issue is the classical notion of mathematical continuity

as defined in Sec. 0.3, which I will call "continuity in the mathematical

sense," or simply "mathematical continuity." It is useful to have these

terms available at the outset for the purposes of context-setting; but it

will not be until Sec. 2.2.2 that I come discuss Poincar6's own account of

our knowledge of continuity mathematical sense, which consists in a

dialectical construction of a mathematical continuum. In the next section,

I will look at some preliminary questions regarding the philosophical

context in which Poincar6's construction is to take place.

2.2.1 Convention and the Continuity of Actual Space

Space is a group, Poincar6 says, and geometry is the study of this

group. The idea here, quite simply, is that one can point to certain

group-theoretical facts to distinguish different metrical geometries, such

as the various non-euclidean geometries. Poincar4 believed that a

complicated series of empirical inferences and conventions would lead us

to the conclusion that actual space, understood as a continuous group of

displacements, is euclidean. We could have adopted other conventions, but

the ones we chose are, under our experiential conditions, the most

convenient. That we could have gotten by, under our experiential

conditions, with "non-euclideanr conventions shows, according to Poincar6,
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that there is no intrinsic metric of actual space: precisely measurable

distances do not objectively exist. Other properties of space objectively

exist, but precise metrical properties do not. The conclusion that actual

space is euclidean, therefore, is to be taken with an important

qualification: we do not conclude that euclidean geometry "est la

gbombtrie la plus vraie, mais [qu'elle] est la plus commode" (1895 645).

I will not go into Poincard's arguments for this view, but he held a

precisely similar position with respect to the number of dimensions of

actual space: this was decided by a series of empirical inferences and so-

called conventions, and we could have made the convention, even under

identical experiential conditions, that space has more or fewer dimensions

than three (the number Poincar6 believe to be "la plus commode"). There is

no fact to the matter regarding the dimensionality of actual space. In

general, Poincar4 holds that there is no fact to the matter underlying any

convention, for conventions are not strictly true or false, but merely

convenient.

The issue of convention is notoriously difficult in Poincar6. In a

late paper, Poincar4 expanded on its significance:

ce mot de commode n'est peut-Atre pas ici assez fort; un &tre
qui aurait attribu6 & l'espace deux ou quatre dimensions se
serait trouv6 dans un monde comme la n8tre, en 6tat
d'inf4riorit6 dans la lutte pour la vie (1912 498).

The idea that conventions are naturally selected for, that what is

convenient is that which promotes differential reproductive success,

raises problems that are difficult to answer. On the one hand, it begins

to make sense of Poincar4's strange claim that some conventions (including

those pertaining to the metric of space and to its dimensionality) are

non-arbitrary (cf. 1912 503). On the other hand, there is no reason to

think that conventions in the sense of evolutionarily selected-for beliefs

fail to have a truth-value. Perhaps Poincar6 has an argument here, but he

does not state it. The problem gets worse in (1912) where, as we shall

see, Poincar6 introduces a new synthetic a priori intuition into
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mathematical continuity, and seems to assimilate it to evolved conventions

as well, even though such intuitions clearly have a truth value according

to him. My own opinion is that Poincar4's extant writings are confused on

this issue, and the best we can do is recall at all times that Poincar6

makes competing demands on his notion of non-arbitrary convention. He

assimilates convention to evolved belief, and never faces up to the

question whether they therefore do, after all, have truth-values.

In spite of the difficulties affecting the notion of convention, one

must ask the question: is actual space, on Poincar6's view, continuous in

the mathematical sense by a convention? This question will arise again

later, but if we take it for the moment to be the question whether or not

there is a fact to the matter regarding the continuity of actual space,

then I think Poincard's answer will be that there is such a fact to the

matter. The conventionality of the metric of space and of the number of

its dimensions imply, for Poincar4, that actual space has no intrinsic

metric and no intrinsic number of dimensions. But the situation with

continuity is otherwise. Theories of actual space are possible according

to which space is not continuous in the mathematical sense3' (1895, 1898).

These, however, have been falsified by experience. (See (1898 15-6) for

the "experiment" which shows it to be true.) Had experience been

otherwise, we might have been led to favor such a theory of space, but in

point of fact this has not happened. The claim that actual space is

continuous in the mathematical sense is an empirical claim: we know it to

be true, but we know it without certainty. I bring this up now because we

shall see later that other aspects of Poincar6's views suggest that he did

in fact consider space to be mathematically continuous by convention. My

point here is that, if so, the competing demands he made on his notion of

convention come into conflict here, since there can be little doubt that

"On the phrase "continuous in the mathematical sense" see Sec. 0.3. The
phrase is meant to capture Poincar6's feeling that classical continuity alone is
somehow true continuity.
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he thought there was a fact to the matter regarding the continuity of

actual space.

So actual space is continuous in the mathematical sense, but this is

typically thougx.t of by Poincar4 as a contingent fact (1898 15-6), which

we infer for empirical reasons. Geometry supposes the notion of continuity

to be on hand, and the natural question is: where do we obtain this

notion? Again, there is some indication that this notion is part of the

resources of the pure understanding, in that Poincar6 does say the notion

of a continuous group is prior to all experience (1898 41), and that the

mathematical continuum, he says, "a 4tL cr64e de toutes pihces par

l'esprit" (1893 30). What is required, therefore, is a brief survey of

Poincard's account of the "construction" or "creation" of the mathematical

continuum. But there are still several unanswered questions concerning the

overall place of mathematical continuity in Poincar4's foundational

thinking. In particular, even if we obtain the notion of mathematical

continuity from synthetic a priori intuition, the question remains as to

the content of this intuition. Is it a special intuition into mathematical

continuity itself, or does the arithmetical "intuition du nombre pur"

already suffice? The answer to this question depends in turn on the

success of the arithmetization of analysis. We have seen that, early on,

Poincar4 accepted the success of this arithmetization, but in a far later

paper he seems to backpedal somewhat. It will be useful to map out the

alternatives in Poincar6's mind before turning to the details of his

"construction" of the mathematical continuum, the interpretation of which

depends upon the supposed content of the synthetic a priori intuitions at

work.

2.2.1.1 Arithmetization: Early Optimism

It is important to see that, for Poincar6, precisely the same notion
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of mathematical continuity underlies three separate mathematical sciences:

geometry, analysis, and Analysis Situs, or topology. "L'espace

g6ometrique" is continuous in the mathematical sense (1898 14-6), as is

the so-called "espace amorphe" studied by topology. Similarly, as I

indicate later, it is indubitable that on Poincard's view the real numbers

form a mathematical continuum. Clearly, then, the notion of continuity in

the mathematical sense is part of a common foundation for all three

sciences. But analysis and Analysis Situs seem to be more directly about

mathematical continuity than geometry is (cf. 1887 79; 1903 28); for

Poincar6 sometimes suggests that geometry presupposes this notion only in

so far as it is concerned with actual space, which we know only

empirically to be continuous in the mathematical sense. The question of

which of these other two sciences is itself properly the study of

mathematical continuity (as well as the subordinate question whether

"points" or "numbers" are the elements of the mathematical continuum) need

not be answered, since Poincar6 seems not to care (cf. 1893 28; 1898 40).

For example, he says at one place that the theorems of topology are among

the most beautiful known to the "analyst pur" (cf. 1912 484), and in (1893

26, 31) he indifferently attributes the notion of mathematical continuity

to the "analyst pur" and the "g4ometre pur." Similarly, the domain of

"l'intuition geometrique" which Poincar6 invokes late in life is not

geometry but Analysis Situs. My own feeling is that, while he accepted the

arithmetization of analysis without reserve, Poincar6 tended to look on

analysis as the true home of the notion of mathematical continuity; but

later, after he began to feel reservations, he preferred topology."

"SPoincar6 was one of the founders of modern topology, but he did not
conceive of the discipline in anything like the general way we do today. While
he considered topology to be concerned with certain properties of spaces,
construed as point-sets, the spaces in question were restricted to those whose
points were continuously ordered. Since nothing else was assumed about these
spaces (e.g., no metric was defined for them), Poincar6 understood topology to
be in some sense about the notion of continuity in its simplest and most
unencumbered form. This is implicit in some of the quotations given later, such
as (1912 185, 187).
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Early in his career, Poincar6 thought that analysis had been

perfectly arithmetized:

dans l'Analyse d'auhourd'hui, quand on ver ;e donner la peine
d'etre rigoreux, il n'y a plus que des yllogismes ou des
appels A cette intuition du nombre pur (1900 122).

Thus our pure or a priori intuition into number justified not only

mathematical induction but analysis, including the important least upper

bound theorem, which shows, roughly, that the real numbers are continuous

in the mathematical sense (see Sec. 0.3). The "syllogisms" of mere logic

were needed for this justification, but they added nothing since "c'est

surtout en Logique que rien ne se tire de rien" (1887 79). Not logic,

according to this view, but the categorial intuition into pure natural

number accounts for our understanding of continuity in analysis. Thus

analysis does not stand alone: it is built from foreign resources with

imported labor. The resources are our capacity indefinitely to repeat act-

types such as counting (theses i and ii); the imported labor is the

synthetic justification of induction (given in thesis iii)i

L'id6e vague de continuit4, que nous devions A l'intuition,
s'est r6solue en un systeme compliqu6 d'inegalit6s portant sur
des nombres entiers.... Les Math4matiques, comme on l'a dit,
se sont arithmetis6es" (1900 120).

Notice that Poincar6 here says we obtain a "vague idea" of continuity from

intuition, and then "resolve" this into "un systbme compliqu6

d'in6galit6s" concerning natural numbers (i.e., Dedekind cuts). The

"intuition" intended here is obviously not synthetic a priori, since it is

called vague. Probably the word is being used in the sense of sensation,

or Kantian "empirical intuition" since, as we shall see, sensation is the

starting point of Poincar6's dialectical construction of mathematical

continuity. More important for present purposes is the implication that

specification of the "syst~me compliquc" involves no non-arithmetical

notions. We know today, however, that this claim is false. The use of sets

of natural numbers to represent real numbers, and the proof of the

mathematical continuity of the reals in their natural ordering, employs

means that go beyond what is fairly called arithmetical. The great
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arithmetization attempted in the 19th century has failed. In (1900),

however, Poincar6 was still riding high.

The philosophical consequences of the perceived success of the

arithmetization of analysis were enormous. According to Poincar6,

arithmetization showed that the rconception ordinaire" of continuity

employed by "metaphysciens" was "toute autre chose" than that constructed

by the "analyst pur". Speaking of the continuity conceived as in analysis,

Poincar4 says:

Le continu ainsi conqu n'est qu'une collection d'individus
ranges dans un certain ordre, en nombre infini, il est vrai,
mais exterieurs les un aux autres. Ce n'est pas 1a la
conception ordinaire, oi l'on suppose entre les 6l1ments du
continu une sorte de lien intime qui en fait un tout, oui le
point ne preexiste pas A la ligne, mais la ligne au point. De
la c641bre formule, le continu est l'unit6 dans la
multiplicitd, la multiplicit6 seule subsiste, l'unit4 a
disparu (1893 26-27).

It is useful to compare the metaphysical views maligned here to those the

young Russell would soon hold and publish. Russell found in the

foundations of geometry an antinomy regarding the notion of a point, and

generalized this to the Hegelian "contradiction of relativity" which he

thought inflicted any continuum. These "contradictions" were understood in

such a way as to imply something quite like "the celebrated formula"

Poincar6 indicates. "Projective Geometry," Russell says, "is founded on

the possibility of experiencing diversity in relation, or multiplicity in

unity" (1897 146; cf. 136, 181 ff.). Russell concluded that continua were

in one sense not "wholes," for they were not composed of simple parts, but

their elements nevertheless possessed "une sorte de lien intime qui en

fait un tout." The "lien intime" among elements of continua consisted in

the reciprocal ontological dependency which obtained among them (cf.

principle (4) of Sec. 1.7.1.1). This dependency, essentiality, threatened

according to Russell the very notion of the substantive point, and for

this reason he saw the notion of point as self-contradictory. He concluded

that "straight lines and planes are the true spatial units" (1897 193).
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Poincar6 says "le point ne pr6existe pas a la ligne, mais la ligne au

point." The views Poincar4 criticizes here significantly overlap with

those Russell later held, and the overlap is not accidental. The

"celebrated formula" is a veiled reference to Hegel, and precisely Hegel's

views were adopted by Russell.

Evidently, then, Poincar6 took the supposed success of the

arithmetization of analysis to refute not only Kant's view of space, but

also Hegel's. Kant was wrong to think that the form of spatial sensation

gave rise to a primitive intuition into continuity (Ausdehnung [A20-

1/B35]), and Hegel was wrong to take Zeno's paradoxes and Kant's

antinomies of reason as "contradictions" actually obtaining in nature.

Such "contradictions," judging at least from Russell, consisted in the

reciprocal ontological dependency among the elements of continua.

Poincar4, on the other hand, seems to believe that the elements of a

continuum exist independently of one another. It is evidently this belief

he intends to express when he says the elements of a continuum are

"ext4rieurs les un aux autres" and that they possess no "lien intime"

which makes them into a "whole". He sums up his view by denying the

"celebrated formula", which says that the continuum is "unit6 dans la

multiplicit4." According to the early Poincar6, "l'unitd a disparu" from

this formula. Although the elements are arranged in a "certain ordre" they

do not form any special "whole" or possess any special "unity" in virtue

of this. As we shall see, however, Poincar6 later shifts his position and

argues for the importance of some kind of "unity" in our understanding of

the "certain ordre" in question. This late unity is thought to imply that

the elements of the continuum do after all form a "whole" in some robust

sense, thought he continues to deny the elements of the continuum depend

upon one another for their existence. Acceptance of this sense of unity

(whatever it happens to consist in) will require that Poincar6 withdraw

his categorical denial of the "celebrated formula." At this early stage,
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however, Poincar6 still thinks of the Hegelian view of the continuum as

way off base.

2.2.1.2 Arithmetization: Late Doubts

There is considerable evidence that Poincar6 backed away from some

of his early hopes for arithmetization after having raised the problem of

impredicativity in 1906. Initially he raised this problem to obstruct the

logicist proof of mathematical induction. Of course, if induction was

purely logical and the arithmetization was a success, continuity would

also fall to the logicists. Some time after 1906, however, Poincar6 began

to sense problems with the arithmetization he had so firmly believed in,

and he began to speak about "l'intuition g6om6trique". Now Poincar6 may in

fact be returning here to a view he held very early on, for in (1887 90),

he wrote: "On peut montre que l'Analyses repose sur un certain nombre de

jugements synthetique a priori". The statement, however, is inconclusive,

since a "certain number" might well be one, which in the context would

imply that mathematical induction alone was required for analysis and

continuity. More likely, however, Poincar6 had not quite decided yet that

the arithmetization of analysis had been a success. It would take him only

a few years to do so, but by (1912 486) he was again having doubts: "Je ne

veux pas dire que cette <arithn4mtisation> des math6matiques soit une

mauvais chose, je dis qu'elle n'est pas tout."

The problem with arithmetization, Poincar6 came to feel, is that it

leads us to accept, as entirely satisfactory, what he calls the

"ddfinition analytique" of a continuum of n dimensions. This definition

runs as follows: a continuum of n dimensions is

un ensemble de n quantitbs susceptibles de varier
independamment l'une de l'autre et de prendre toutes les
valeurs r4elles satisfaisant a certaines indgalit4s (1912
486).

It goes without saying, perhaps, that this definition is imprecise and
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formally inadequate. But it is important to see that Poincar6's objections

were not based on formal considerations. Rather, he thought of the

definition as philosophically misleading:

Cette d4finition, irr4prochable au point du vue math6matique,
ne saurait pourtant nous satisfaire entierement. Dans un
continu les diverses coordonn6es ne sont pas pout ainsi dire
juxtaposdes les uncs aux auti~s, elles sont li6es entre elles
de faqon A former les divers aspects d'un tout (1912 486-7).

This "analytic" definition fails to incorporate certain intuitively

evident features of the mathematical continuum. It leaves unstated the

fact that the "coordenn6es" are "libes entre elles" and form "aspects of

a whole" which is the continuum. Although it is by no means clear

precisely what Poincar6 has in mind here, the similar language ("lien" and

"tout") in the early and late passages is arguably significant. It

suggests that Poincar6's late hesitation regarding arithmetization led him

to reconsider, and partially at least to withdraw, his early denial of the

"lien intime" among the elements of a continuum which "les m6taphysiciens"

had insisted upon.

This suggestion can be confirmed if we restrict attention to the

special case of the 1-dimensional continuum. According to the "analytic"

definition, a 1-dimensional continuum is the singleton of a single

"variable quantity" taking all real numbers as values. Poincard expresses

the philosophical inadequacy of this definition by saying that the

"coordonn4es" involved are not merely juxtaposed but "li6es entre elles."

But what are the "coordonn4es" involved here? Properly speaking,

coordinates are n-tuples of numbers which indicate the position of a point

in space. The coordinates here are therefore singletons of real numbers.

But Poincar4 is no doubt following the familiar convention of identifying

coordinates (in general, n-tuples) with the positions they indicate.

Assuming this, Poincart's difficulty might better be expressed as follows:

the positions of points on our 1-dimensional continuum are not merely

juxtaposed (as the "analytic" definition suggests) but "libes entre
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elles." Evidently, some philosophically essential fact about the ordering

of points along a line is left out of the "analytic" definition. Indeed,

all the definition says is that a 1-dimensional continuum is the singleton

of a "variable quantity" which takes all real numbers as its values. The

ordering of the points composing the continuum then reduces to the natural

ordering of the real numbers by magnitude. These too are not merely

juxtaposed but "li6es entre elles." The philosophical inadequacy of the

"analytic" definition therefore comes to this: nothing is said in this

definition about the underlying natural ordering according to magnitude of

the real numbers.

The difficulty can be put in another way. The traditional notion of

a "variable quantity", even on its own terms, has little content unless

one can specify precisely the values it can take. In this case, those

values are all the real numbers. But what does it mean to speak of all

real numbers? Where do we derive this notion? A similar question was

raised in arithmetic. What does it mean to speak of all natural numbers?

In Poincar6's understanding, it is only after we have accepted his thesis

iii, after we have intuited or seen the validity of instances of

mathematical induction, that we may meaningfully speak of "all natural

numbers." Now mathematical induction can be viewed as the characteristic

ordering theorem for the natural numbers. Poincar4's late answer to the

question whence we derive the notion of all real numbers follows his views

in arithmetic quite closely. Like the natural numbers, the real numbers

are given to us originally in a natural ordering, namely the ordering

according to magnitude. It is only after we have seen or intuited their

order-type that we may meaningfully speak of "all real numbers." Now the

characteristic ordering theorem for the real numbers is the least upper

bound theorem, which in its geometric form is sometimes called the

Vollstandigkeitsaxiom. It is undeniable that Poincar4 accepted this

theorem as true. All that changes late in his life is the content of the
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synthetic a priori intuition which underlies our understanding of

mathematical continuity. Rather than construct this continuum with purely

arithmetical resources, Poincar6 began to look on mathematical continuity

as the object of a special primitive intuition. As we shall see, both

interpretations are compatible with his early dialectical construction of

a mathematical continuum. For the moment, however, I wish to return to

(1912) and interpret more fully the philosophical implications of the

inadequacy of the "analytic" definition of mathematical continua of n

dimensions.

The failure of the "analytic" definition to provide any information

concerning the order-type of the real numbers is expressed by Poincar4 in

terms he also used in (1893). The definition is thought to leave

unspecified how the real numbers, or more generally, how the elements of

a mathematical continuum, are "libes entre elles" so as to form "divers

aspects d'un tout." The failure to do so "fait bon march6 de l'origine

intuitive de la notion de continu, et de toutes les richesses que reckle

cette notion." Notice here, once more, that the notion of continuity is

said to be intuitive, but this time it is evident from the context that

Poincar6 is referring to his newly introduced "intuition g6om6trique." The

precise sense in which this intuition is synthetic a priori is best left

to the side for a moment. For the present, simply note what it is that the

"richesses" of this intuition are thought to consist in. Unlike the

"analytic" definition, it reveals to us the wholeness of the continuum

which arises from its elements being "li4es entre elles" in a special way.

Geometric intuition shows us that the mathematical continuum is, in some

rich sense, a whole. This is evidently a withdrawal of Poincar4's early

denial that some "lien intime" among the elements of the continuum made

the latter into a whole ("tout") in some rich metaphysical sense. On the

basis of this denial, Poincar4 rejected what he called "la conception

ordinaire" of the continuum along with the celebrated formula of "les

105



metaphysiciens." The unity, he said, had disappeared from the hackneyed

phrase that the continuum was "unit4 dans la multiplicite." By (1912), all

this had changed. Now the "aspect of the whole" is said to be missing left

out of a machematically adequate definition, and it is restored by appeal

to a non-arithmetical intuition. The existence of a specifically geometric

intuition must be accepted after all, on Poincar6's final view, for

otherwise we cannot account for the interrelation among the elements which

consists in their being continuously ordered. The unity of the

mathematical continuum has reappeared, and with it some interpretation at

least of the celebrated formula must be countenanced.

To be satisfied with the "analytic" definition, Poincar6 says, is to

make the mistake of replacing "l'objet A d6finir et la notion intuitive de

cet objet par une construction faite avec des mat6riaux plus simples". Now

Poincar4 is quick to point out that he does not mean that the correct

construction of the mathematical continuum requires "materials" as complex

as the continuum itself. He admits, on the contrary, that the "materials"

needed are after all simpler. Unfortunately, he does not offer a criterion

of simplicity. One necessary condition of simplicity which Russell

accepted, however, applies perfectly. For Russell, simple substances could

not be essentially related to one another. Similarly, Poincar4, despite

his weakening faith in arithmetization, continues to consider the elements

of the continuum as existing independently of one another. As he puts it,

the elements are "exterior to" and "absolument distinct" from one another

(1912 489; 1893 27). In fact, this view is, so to speak, the null

hypothesis, and so in an additional sense the "simplest" assumption to

make. Thus the problem with the "analytic" definition is not that the

"a•terials" used to construct the continuum are in no sense simpler than

the continuum itself. Rather, the problem with this definition is that the

"construction" itself out of these materials is not specified. The mistake

it makes is to leave unstated the manner in which the elements form a
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whole: the "certain ordre" in which the elements occur in a continuum is

not articulated by the purported definition.

In sum, then, quite late in his career Poincar6 began to believe

that the arithmetization of analysis could deceive us into thinking that

we understood the order-type of the real numbers when we did not.

Understanding this order-type was tantamount to understanding the "unity"

of the continuum which Poincar6 earlier either ignored or failed to

notice. Evidently, then, the unity of the continuum can be expressed as

some fact about the natural ordering of the real numbers. This fact is

essential to a philosophically adequate definition of the continuum and so

is presumably constitutive of the very notion of the real numbers

themselves. Arithmetization is not a bad thing, but it is not the whole

story either, for it passes over this constitutive fact in silence.

If arithmetization is not the whole story, some new intuition

besides the one into pure number is needed to explain our understanding of

the order-type of the real numbers. "Nous ... tirons la notion du continu

A n dimensions, non de la d6finition analytique pr6cit6e, mais de je ne

sais quelle source plus profonde" 11912 187). This more profound source

Poincar4 calls the "intuition gdom6trique," and "le v6ritable domaine de

l'intuition g6om6trique" is Analysis Situs. Analysis Situs, or topology,

makes no use at all of the notion of quantity, and is thus the "purely

qualitative geometry," contrary to the early Russell, who had reserved

this honor for projective geometry. Poincar6 writes:

L'espace, consider4 ind4pendamment de nos instruments de
mesure, n'a donc ni proprift4 m6trique, ni propri6t6
projective; il n'a que des propri4t4s toplopgiques (c'est-A-
dire de celles qu'4tudie 1'Analysis Situs). Il est amorphe
(1912 485).

True "intuition gdomdtrique" allows us to understand the amorphous

continuum of topology. This continuum is amorphous with respect to

metrical and projective properties, but it is nevertheless "qu'une
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collection d'individus rang6s dans un certain ordre, en nombre infini"

(1893 26). Our intuition allows us to recognize under what conditions two

spaces are topologically isomorphic, namely precisely when there exists a

continuous 1-1 correspondence between the elements of the two spaces. The

requirement that the function be continuous is essential, and is part of

the reason Poincar4 says the object of this new intuition is continuity

itself. It was this new intuition which was to take up the slack caused by

the hesitation Poincar4 had begun to feel regarding the arithmetization of

analysis, and restore to the content of our notion of continuity the sense

of unity. It is this intuition which is invoked to express what the

"analytic" definition failed to express, namely the natural ordering of

the real numbers. Our question is how well it can succeed.

2.2.1.3 The Kantian Credentials of Geometric Intuition

The continuiLy which is the object of true geometric intuition acts

as a "fond commun' (1903 281) for the various geometries (projective and

metric, euclidean and non-euclidean) which can be constructed upon it. But

it is not yet clear that this intuition is "pure," i.e., that it is a

synthetic a priori intuition. The issue does not concern merely the rough

and partial gloss given above, but also the more traditional and robust

Kantian sense. The key issue (since we are no longer concerned with time)

is whether experience as we know it presupposes, or would be impossible

without, the topolcgical notion of cor-tinuity. "Apropos des th6oremes de

l'Analysis Situs', Poincar6 asks just the right questions:

Peuvents-ils &tre obtenus par un raisonnement d6ductif? Sont-
ce des conventions d6guis6es? Sont-ce des v6rit6s
expbrimentales? Sont-ils les caractbres d'une forme imposbe
soit A notre sensibilit4, soit A notre entendement? (1903 285)

Poincar6 raises these questions in (1903) but does not answer them there.

This is due to the fact that he is there concerned mainly with the number

of dimensions of space. The possible answers to the present question are

restricted, however, by Poincar6's views about certainty and aprioricity.
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The truths of topology are known with certainty, so they must be known a

priori. They cannot be "des verites exp4rimentales." Yet they cannot be

obtained by deductive reasoning alone, since then they would be empty of

content. Moreover, since they are indeed true, they cannot be the result

of mere convention in the way the number of dimensions is. This leaves

only the Kantian option. Poincar6 writes:

Je conclurai que nous avons tous en nous 1'intuition du
continu d'un nombre quelconque de dimensions, parce que nous
avons la facult6 de construire un continu physique et
math6matique; que cette facult6 pr6existe en nous A toute
exp4rience parce que sans elle, l'experience proprement dite
serait impossible et se reduirait A des sensations brutes,
impropres A toutes organization, que cette intuition n'est que
la conscience que nous avons de cette facult6 (1912 504).

Geometric intuition is indeed pure. Without it, experience "proprement

dite' would be impossible. It is categorial, and provides a foundation not

for topology alone, but for analysis and (in part) for geometry as well.

These sciences too are embedded by Poincar4 in a "surrounding Kantian

context." The inadequacies of the arithmetization of mathematics show,

according to Poincar6, that a new categorial synthetic a priori intuition

must be called upon in the foundation of those fields which depend on the

notion of continuity in the mathematical sense. And just as arithmetical

intuition (formulatable as the principle of mathematical induction) rests

upon our capacity to "create" the natural numbers, so too here geometric

intuition rests upon our ability to "create" a mathematical continuum.

I mentioned that the theorems of topology resting on this intuition

were considered by Poincar6 to be true. Thus they could not be the result

of mere convention in the way that the metric of space was. But strangely

enough, Poincar6 seems to allow in (1912) that these theorems, despite

being based on a categorial intuition which renders experience possible,

were at the same time due to non-arbitrary convention. Apparently the form

of our experience has been selected for. To see this, one must realize

first that in his review (1902) of the first edition (1899) of Hilbert's

Grundlagen der Geometrie, Poincar4 singles out the so-called "Axiome der
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Anordnung" as the specifically topological axioms. He criticizes Hilbert's

presentation of them, which does not allow one easily to see that they are

independent of the axioms in his other groups. But Hilbert left out of the

first edition what would in later editions be called the

"Vollstandigkeitsaxiom." This axiom ensures that the spaces in question

are mathematically continuous, and Poincar6 fills the gap left by Hilbert

by formul.ating for him one version of this second-order axiom. Now

Poincar6 would have wanted to include a version of the

Vollstandigkeitsaxiom among the axioms of topology, for precisely this

axiom represents the content of the geometric intuition he later takes to

supply the subject matter of topology, as we have seen. Although in

Hilbert's treatment the Vollstandigkeitsaxiom is not among the "Axiome der

Anordnung,7 it does impose an ordering condition on the elements that

constitute the spaces under investigation. With this background, we can

now turn to Poincar4's late assimilation of geometric intuition to

convention.

In (1912) Poincar4 returns to Hilbert's "Axiome der Anordnung" in

the context of a discussion of his Kantian foundations for topology.

Speaking of these axioms, he says:

les axioms ne sont pas, en realit6, pour nous simples
d6finitions, des conventions arbitraires, mais bien des
conventions justifides. Pour les axiomes des autres groupes,
je tiens qu'elles sont ... les plus commodes; pour les axiomes
de l'ordre il me semble qu'il y a quelque chose de plus, que
ce sont de v6ritables propositions intuitives, se rattachant
A 1'Analysis situs (1912 503).

The argumentation here is complicated and condensed, but notice first that

Poincar4 asserts that the axioms of order are both "conventions

justifi4es" and "vWritables propositions intuitives." Of course, given his

inconsistent use of the term "intuition," this in itself need not be

surprising. In fact, however, Poincar6 goes on to trace our knowledge of

the axioms of order back to geometric intuition, which we have just seen

to be synthetic a priori: "ces v6rit6es, telles que les axionmes de
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l'ordre, nous sont r4v416s par l'intuition" into mathematical continuity

(1912 503). This statement comes a mere four pages after the passage

quoted above in which Poincar6 says that justified conventions are

naturally selected for. The competing demands on the notion of convention

are becoming intolerable, for "conventional" axioms are conceived of as

true, synthetic a priori beliefs laid down in us by evolution. Perhaps the

notion cannot be saved, and that, as far as I am concerned, is just as

well. But we should not let this cloud our perception of the general

outlines of Poincar4's view. Evidently the axioms of order and geometric

intuition into mathematically continuous order are pulled very close

together, and appear to share fundamental epistemic properties. Geometric

intuition provides us with an original model of the axioms of order. In

this model, the elements also satisfy a version of the

Vollstandigkeitsaxiom; i.e., they are continuously ordered in the

mathematical sense. We ourselves construct this model, but the possibility

of this construction is built into our understanding: it is a form of our

understanding. Our understanding arose in our evolutionary history and is

a product of natural selection. If this is the correct interpretation,

then not just the axioms of order but our understanding of mathematical

continuity as well is at once synthetic a priori and "conventional" in the

sense that it arose via natural selection.

Again, one might well object to the use of "convention" in this

sense, especially if conventions are thought to lack truth-values. I am by

no means interested in preserving the word in this context, except for

purposes of historical accuracy. Poincard seems to have thought it was

important. It is perhaps worth noting that the apparent blending of

evolutionary convention (or belief) and Kantian forms of experience, while

perhaps confusing, fits in well with other views Poincar6 held (cf. also

Russell 1897 187). According to Poincar4, "pour un &tre complAtement

immobile, il n'y aurait ni espace, ni g~om4trie" (1903 294; cf. 1898 7).
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The idea is that we learn about space by exercising our capacity for human

body movement, for it is only through movement that we obtain the notion

of displacement, and geometry is the study of a continuous group of

displacements. We have already met with this idea above, but in the

present context its significance lies in the fact that the capacity for

human body movement is in all major details hereditarily determined. It is

reasonable to conjecture that Poincar4 knew this, since ablation

experiments on the cerebellum performed already for decades had shown it

played an important role in coordination and integration of movements. But

it is beyond the scope of my study to argue conclusively that Darwin and

Kant are joined in quite this way by Poincar6.

2.2.2 Poincar6's Construction of Mathematical Continuum.

I want now to discuss in more detail "la facult6 de construire un

continu ... math6matique." I will try to make my discussion sensitive to

the change in Poincar4's views over time. The purpose of my discussion

will be twofold. Through it, the precise point will become clear at which

appeal to "geometric intuition" would be needed in the construction of the

mathematical continuum. Secondly, by comparing this construction with a

parallel formal development of the foundations of real number theory, it

is possible to determine a formal equivalent of this geometric intuition.

Evaluation of this formal equivalent will then show the impredicativity

implicit in the original intuition into topological continuity. We shall

find, I think, that Poincar6 must again choose between an illegitimate

intuition or a legitimate impredicativity.

Our understanding of mathematical continuity occurs in three stages,

but it begins, as it did for Russell, in sensation. It begins with "les

donnees brutes de l'expbrience, qui sont nos sensations" (1893 29). The

leading characteristic of sensation is what Poincard calls its
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"imperfection'. The imperfection of sensation prevents us from

distinguishing in sensation what we can easily infer are distinct:

Il arrive que nous sommes capables de distinguer deux
impressions l'une de l'autre, tandis que nous ne saurions
distinguer chacune d'elles d'une meme troisibme. (1903 286)

For example, the sensation produced by objects of 10 and 12 grams

respectively may be easily enough distinguishable, even though neither is

distinguishable from the sensation produced by an object of 11 grams. This

situation is characteristic of what Poincar6 calls "the physical

continuum, " and he expresses the "formule du continue physique" as

follows:

A=B & B=C & A<C

This formula Poincar6 considers "repugnant to reason" (1898 14): "11 y a

l&, avec le principe de contradiction, un d6saccord intol6rable" (1893

29). We escape this contradiction by an "artifice" (1898 14), the a priori

construction of the mathematical continuum. But before continuing with the

next step of this construction, a few interpretive remarks are perhaps in

order.

Poincar4 is quite clear that to arrive at the recognition of the

physical continuum we must make many conventions and abstractions (1912

490-1). Phenomenally, it is no easy matter to isolate the sensation

produced by an object of 12 grams to the point where we can compare it

directly with another sensation. The music playing in the background must

be ignored. The possibility of this wholesale abstraction is not one I

wish to question; for my purposes it does not matter if Poincar6's

phenomenalist attitude is viable. Similarly, I will ignore the related

difficulty regarding the "contradiction" given in sensation. The problem

here is that, unless we specify the conventions and abstractions in

certain ways, the formula of the physical continuum will not actually

entail a contradiction. For the identity sign "=" is obviously being used

conventionally: literal identity is not intended, only identity in some
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respect, or similarity. Similarity is not transitive, but the

"contradiction" Poincar6 wishes to deduce from the formula depends upon

the transitivity of the relation denoted by "=". Comparable problems

infect the interpretation of "<", but I am not interested in raising this

sort of problem for Poincar6. I grant he has shown that sensations are

imperfect in that the "donn4es brutes" of sensation are "contradictory."

Having assumed this, one cannot fail to notice the historical

precedent in Hegel. Poincar6's account of the psychological genesis of the

notion of continuity is dialectical. Indeed, after "escaping" the

contradiction given in sensation, Poincar6 will introduce the mathematical

continuum of the first order, which will also be found, on certain

assumptions, to be contradictory. The repair leads to the notion of

classical continuity, or continuity in the mathematical sense. But

Poincar4's preference for a dialectical construction of mathematical

continuity should not be taken to indicate any great allegiance on his

part to Hegel. After all, Poincar4 maintained throughout his career, in

(1893) as well as in (1912), that the elements of the continuum were

modally independent of one another. Moreover, he also held (at least at

the time of writing (1893)) that the "celebrated formula" was false: the

mathematical continuum is in no sense unity in multiplicity, for there is

no unity. It is interesting to note in this regard Russell's reactions to

Poincar6's vacillations. In (1897x 78-9), Russell lauds Poincar6's

dialectical account of the notion of continuity as showing conclusively

that this notion is "conceptual", and not sensational. He does not at this

time mention the disappearance of the unity from the celebrated formula,

with which he can hardly have agreed. In (1903 347), however, Russell

passes in silence over Poincar4's dialectic but quotes him with approval

on the falsity of the celebrated formula. By the time Poincar4 considers

reintroducing a sense of unity into his new "g4ometrique intuition,"

Russell has himself reintroduced impredicativity in the form of the Axiom
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of Reducibility. In my opinion, both of these devices are misleading in

that they merely disguise the impredicativity necessary in any account of

mathematical continuity. Moreover, if, as I argue in detail later, the

impredicativity of the mathematical continuum consists in the mutual

ontological dependency obtaining among some of its elements, then a formal

account will be forthcoming of "celebrated" unity which both early

Poincar4 and late Russell wished to eliminate.

Hegel's view is that the continuum of mathematics is "self-

contradictory." According to Russell (1897), this "self-contradictory"

character stems from the combination of the homogeneity and the relativity

of continua. Homogeneity requizes that a continuum have distinct elements,

but the relativity requires that these not be ultimately distinct, since

they stand essentially in specific relations to one another. I have

indicated above how the alleged "contradiction" here, which Russell sought

to identify with the Kantian form of sensation, is based on a confusion of

two separate notions of logical subject. But it is interesting that, for

Poincar4 too, the contradictory character of sensed continua stems

precisely from its elements being distinct but not distinguishable. One

can see Poincar4's position as a response to the view that continua such

as space are given in sensation. Hegel begins here and pronounces continua

self-contradictory. Poincar4 claims sensed continua are not continua in

the mathematical sense, which are free from contradiction. Clearly

Poincar6 is trying to account for, but also limit the significance of, the

"Ineinandergeflossensein" which Hegelians considered the essence of

continuity. Thus he denies that elements of the sensed continuum are

"exterior" to one another, but insists (even very late in life) on their

being exterior in mathematical continuity."36

"Cf. Russell (1897 189; 1896x 17) and references there. McLarty (1988)
gives a nice explanation of the topological facts which may have motivated the
notion of elements not being external to one another in the mathematical
continuum.
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According to Poincar6, "our representations are simply the

reproductions of our sensations" (1898 5). Thus represented continua

suffer the same self-contradiction as sensed continua. By consequence,

knowledge of continuity in the mathematical sense is not representational.

Since geometrical space is continuous in the mathematical sense, "we

cannot image geometrical space.... We cannot represent to ourselves

objects in geometrical space, but can merely reason on them as if they

existed in that space" (1898 5; cf. 1895 635, 1903 424). This view is

connected with the idea that it is from human body movement that we learn

about space. We do not literally represent objects in space; we "localize"

them only in the sense that we know what movements are necessary to obtain

them. This, however, brings out an interesting difficulty for Poincar6's

view: what is non-representational knowledge? How can we know about

something without representing it? If, as he later thought, our knowledge

of the mathematical continuum is based directly on a synthetic a priori

intuition into continuity, then this intuition itself is not

representational. From a Kantian point of view, this is confusion, since

intuitions, even pure intuitions, are representations ("Vorstellungen").

But I leave this matter to the side.

To escape the "contradiction" of the sensational or representational

continuum, one makes use of the arithmetical intuition represented by

thesis i above. The "contradiction," according to Poincar6, forces us

first to recognize that B is distinct from both A and C. But this raises

the question: how many distinct elements (or possible elements) exist

between A and C? Poincar6 contends that the contradiction will not be

alleviated by postulating only a finite number of such elements, since we

can always imagine between them others, D, E, and F, which reproduce the

"contradiction" inherent in the physical continuum, i.e., such that D=E,

E=F but D<F. In short, once we begin to intercalate terms between A and C,

"nous sentons que cette opbration peut &tre poursuivie au delA de toute
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limite et qu'il n'y a pour ainsi dire aucune raison intrins~que de

s'arr&ter" (1893 31). We "sense" this (sic) via the capacity postulated by

thesis i above:

Tout se passe comme pour la suite des nombres entiers. Nous
avons la facult6 de concevoir qu'une unitd peut &tre ajout6e
A une collection d'unit6s; c'est gr&ce A l'exp6rience que nous
avons l'occasion d'exercer cette facult6 et que nous en
prenons conscience (1893 31).

The result is the "continu math6matique du premier ordre" (a dense series,

in the sense of Section 0.3), knowledge of which is therefore synthetic a

priori, since the same fundamental "puissance" is employed in creating it

as is employed in creating the natural numbers. Again, serious questions

could be raised about this account, but raising these is not part of my

purpose here. Suffice it to say that the use of mathematical induction to

conclude something about all the terms interpolated in this second step

would no doubt be legitimate by Poincar4's lights, so that this stage of

the construction of mathematical continuum is thoroughly arithmetical, and

involves thesis iii discussed above as well.

The next and final step engenders the "continu de deuxibme ordre,

qui est le continu math6matique proprement dit" (1893 32). Poincar6's

introduces this final step as follows. It is clear that if two continuous

lines of merely first order were to cross, they need not overlap, or have

a part in common. By an "effort de plus" the "gdomAtre pur" is able to

derive a contradiction from this. This contradiction will not be

alleviated unless one admits the existence of elements in the continuum

corresponding to all real numbers. The "effort de plus" involves, as

Poincar4 conceives it, taking the limit of the common area of two crossing

represented lines, e.g., two crossing one-dimensional physical continua:

La partie commune nous apparaitra comme un point qui
subsistera toujours quand nous voudrons imaginer nos bandes de
plus en plus minces, de sorte que nous admettrons comme une
v4rit4 intuitive que si une droite est partag4e en deux demi-
droites, la frontibre commune de deux droites est un point
(1905a 55, cf. 1893 32)

This passage, which I will interpret more precisely in a moment, raises
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numerous difficulties. The most obvious is perhaps the question whether

the "v4rit6 intuitive" to which the pure geometer appeals is a new non-

arithmetical synthetic a priori intuition or somehow a further application

of the "intuition du normbre pur." From what I have said above, it should

be clear that Poincar6 vacillated on this question over the years, so let

me put this first question aside for the moment as well. A second

difficulty parallels the problem I raised a moment ago for the dialectical

transition from the physical to the first-order mathematical continuum.

Various assumptions have to be made to obtain the "contradiction" inherent

in the inferior continuum. Last time we saw that Poincar6 assumed the

relation denoted by 0=" was transitive, and this seemed dubious. Here,

however, the problem is yet more serious. The assumption needed to show

that the first order continuum is self-contradictory seems to be precisely

that crossing 1-dimensional continua always overlap. Since crossing first

order continua do not always overlap, they cannot be continua "proprement

dit." But the assumption states (admittedly in an imprecise form) the very

essence of the continuum of the second order, so Poincar6 seems to be

reasoning in a circle. First order continua, he seems to be saying, are

inadequate precisely because there are not second order continua. It is

hard to see how his dialectic is to get off the ground.

The nature of this difficulty can be brought out by a consideration

of the example Poincar6 uses to illustrate the final step in his

construction of the mathematical continuum. This will serve as well to

clarify the passage quoted and render clearer Poincar6's argument. But,

unless I am mistaken, the argument does have a circular character. What

will remain apparent, however, is that even at this early stage Poincard

believed we had synthetic a priori intuition into classical mathematical

continuity. His later vacillation concerns only whether this intuition was

entirely arithmetical or only partly so. The example he uses bear this

out. But, I shall argue, his intent with this example entails, as a
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special case, the postulation of elements of the continuum corresponding

to impredicative real numbers. This is fine and well before (1906) when

Poincar4 first banned impredicativity. After that time, his continued

belief in synthetic a priori knowledge of classical continuity defies

explanation. Poincar6 cannot have things both ways: either his synthetic

a priori intuition is impredicative, or it is not; but then, it does not

yield knowledge of mathematical continuity.

The pure geometer is able, by a special effort, to conceive a limit

to the diminishing common area of two crossing 1-dimensional physical

continua. This limit is the point. Since the two overlapping physical

continua are arbitrary, the special effort of the geometer ensures such an

intersection-point will always exist. The "v6rit4" that "deux lignes qui

se traversent ont un point commun ... parait intuitive" (1893 32). But if

'lines' are first-order continua, this "truth" is false. Thus the

contradiction:

La contradiction serait manifeste dbs qu'on affirmerait par
example l'existence des droites et des cercles. Il est clair,
en effet, que si les points dont les coordonndes sont
commensurables 6taient seuls regard6s comme r4els, le cercle
inscrit dans un carr4 et la diagonale de ce carr6 ne se
couperaient pas, puisque les coordonndes du point
d'intersection sont incommensurables. Cela ne serait pas
encore assez, car on n'aurait ainsi que certains nombres
incommensurables et non pas tout ces nombres. (1905a 54)

I wish to draw attention to Poincar4's leading conclusion here, which is

that fewer than all the incommensurable numbers "ne serait pas encore

assez.' Any two curves which cross one another must have a point in

common. The example Poincar4 gives is, as he indicates, not sufficient to

demonstrate his contention, but what this contention is is clear enough.

When we inscribe a circle in a square, and then draw a diagonal of the

square, the diagonal crosses the circle twice. In order to speak of the

'points" at these crossings, it is necessary that we do not conceive of

the perimeter of the circle as merely first order continua. For such

continua have gaps, and the crossings may fall on the gaps and not on
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points.

If these considerations are meant as an argument for the leading

conclusion I just mentioned, the appropriate response to them is: so what?

Certainly it "appears intuitive" that the diagonal of the square and the

perimeter of the circle intersect, or cross at a point and not at a gap.

Certainly they might cross at a gap if these lines were merely first order

continua. There is nothing incompatible about believing both these at

once. One may further admit that if "lines" (such as the perimeter of the

circle and the diagonal of the square) always cross at a point, then

•lines" are not so-called first order continua. But we have as yet no

reason to jettison the idea that continua "proprement dite" are merely

first order: we might just as soon jettison the "apparent intuition" that

there are "lines" in the relevant sense, i.e., lines which always cross at

a point. Thus there is no compelling motivation to join in the "effort de

plus" of the pure geometer and pass beyond the first order continuum to

the "continu math6matique proprement dit." Poincar6's argument for the

necessity for this move is circular.

2.2.3 The Hard Choice in Analysis

Criticism of Poincar6's dialectical account of the creation of the

mathematical continuum, however, is not my real concern. Poincar6 wants

classical continuity, and I am prepared to let him have it. Let us just be

clear what he has. He has a continuum composed of elements corresponding

to all real numbers. He has this, not just as an accident of his early

exposition of the foundations of analysis, but even in his final writings,

in which (as we saw above) he hesitantly accepts as "mathematically

adequate" the "d4finition analytique" of dimension, which commits him to

"variable quantities" taking all real numbers as their values. Again, in

an almost casual way, Poincar4 (1902) pointed out that Hilbert (1899) had
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not succeed in studying "notre espace" because he neglected to include

what came to be called the "Vollstandigkeitsaxiom," a version of which

Poincar4 actually gives and which is equivalent to classical continuity as

it has come down to us from Dedekind (1872) and Cantor (1895). For

Poincar4, classical continuity is not just acceptable, but a necessary

idea for the foundations of geometry, analysis and topology. If, early on,

he had a mistaken faith in arithmetization, and held that the elements of

this continuum could be "created" simply by virtue of the arithmetical

capacity given as thesis i, later he had the mistaken impression that such

elements could ultimately be defined predicatively. As if sensing his

mistake, he introduces in (1912) "l'intuition g~om4trique" to justify our

knowledge of "ce continu ... primitivement amorphe" (1903 281) and

backpedals from his earlier metaphysical objections to the Hegelian "lien

intime" among its elements. "Unity" and "wholeness" of the continuum

return with this new intuition, but the "lien" never gets quite so

intimate as the early Russell evidently thought it was; for while the

elements of the mathematical continuum are "li4es entre elles," they

remain "exterior l'un A les autres", or "externally related" as Russell

would have put it. For Poincar4, the elements which compose the

mathematical continuum are modally independent of each other.

Now, in my view, it is this last point which makes Poincar6's views

metaphysically inadequate. His cherished belief in a continuum in the

mathematical sense commits him to the existence of all real numbers. His

early faith in arithmetization was actually incompatible with this

commitment, but later his 1906 ban on impredicativity was incompatible

with it as well. If there are no impredicative real numbers, there is no

continuum of real numbers. This can be seen by the following illustration,

which improves upon Poincar4's admittedly inadequate example of the circle

inscribed within a square, but does not admit any postulate Poincar6 would

have wanted to deny. Let f be a continuous function such that f(0)<0 and
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f(l)>O. Recall that the notion of continuous function is supposed to be

justified by Poincar4's "intuition g6om4trique" (1912 485-6). The x-axis

and the curve described by f are crossing 1-dimensional continua. Clearly

Poincar4 is committed to the claim that these continua cross at a point p

with coordinates (r,0). Now in general, r will be not only non-

arithmetical, but impredicative. Any definition of certain such r's in the

language of analysis will contain bound variables ranging over r. To put

this in a more general way, any definition of certain r in the language of

analysis will contain bound variables whose range is a set s containing r

as an element. I think it could be argued that this statement requires a

modal interpretation: in every possible world in which such an

impredicative r exists, there also exist the other elements of s. r is

essentially related to these, and cannot exist independently. Belief in

the mathematical continuum thus requires, contra Poincard, that we

relinquish the claim that its elements are modally independent.

The argument for this will have to be made elsewhere." My concern

at present is still the philosophical context of Poincar6's attempted

construction of the mathematical continuum. Poincar4 never rejected

arithmetization, he only limited its significance. In certain

circumstances, according to him, arithmetization could lead us into a

misunderstanding of the phrase "all real numbers." Mathematically adequate

definitions using this phrase were in such circumstances apt to be

philosophically inadequate. Philosophical adequacy could be attained only

by introducing a categorial intuition into mathematical continuity, just

as the justification of mathematical induction, on his view, could not

proceed through any explicit definition of natural number, but required

"Chapter 3 is intended to go part of the way toward this goal by presenting
a theory of impredicativity involving similar claims of mutual ontological
dependency. There, however, the claim will not concern the real numbers
specifically, but only impredicativity as it is understood in Russell's ramified
type theory. I hope in the future to extend this account to standard set-
theoretic constructions of the real numbers, and thus explicitly to justify the
suggestion made above.
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appeal to a categorial intuition. Actually, the parallel between the two

branches of mathematics is deeper than this. In arithmetic, the "informal"

justification of induction succeeds only by hiding impredicative

principles in "categorial intuition'. In analysis, the impredicativity of

the continuum needs similar hiding. Poincar4's "intuition gbombtrique" can

account for the "construction of the mathematical continuum" only if it is

considered equivalent to formally impredicative principles. The mathematic

continuum is impredicative, and if Poincar6 wants to say impredicative

definition is viciously circular, he will have to hide the impredicativity

of his own creation. Kantian synthetic a priori intuition is a suitable

device for such concealment; it appeared at least to have worked in

arithmetic to much the same effect. This deeper parallel leads to a second

very hard choice Poincard has to make, a choice which has exactly the same

form as the choice we saw he had to make in the foundations of arithmetic:

why is the impredicativity of mathematical continuity illegitimate if

formalized, but legitimate if kept at the level of "intuition"? It is as

if saying what you mean made what you say meaningless, but passing over

what you mean in silence expresses your intentions perfectly.

The choices Poincard has to make face us as well. Contemporary

formal developments of impredicativity support a distinction like

Poincar4's between "mathematical adequacy" and "philosophical adequacy" in

definitions. Take analysis first. The set (or concept: it does not matter

which we chose) of real numbers can be defined in mathematically precise

fashion; we owe such definitions to Dedekind and Cantor. Such definitions

say, in a mathematically irreproachable way, what it is to be a real

number. The standards for "irreproachability" are high, and would have

satisfied Poincar4, for there are predicative definitions of the set

(concept) of real numbers. In the same way, there exist a predicative

"mathematically adequate" explicit definition of the set (or concept) of

natural numbers. By themselves, however, the predicative definitions of
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these two sets (concepts) are "philosophically inadequate" and should not

satisfy us entirely, and the reason is similar to Poincard's reason for

philosophical suspicion of the "definition analytique" of the 1-

dimensional continuum. This failed, he thought, to license talk of all

real numbers, and such talk could be justified only by consideration of

the natural ordering in which the real numbers are presented to us. The

philosophical inadequacy of contemporary predicative definitions of the

real numbers ought really to raise in us the same suspicions. We do not

have license to talk about "all real numbers" if part of our understanding

of this conception is that the real numbers are continuously ordered in

the mathematical sense. The predicative definition of the real numbers

does not support proof of the classical continuity of real numbers, and so

it "gives" us the real numbers only in an abstract sense, i.e., without

justification of their natural ordering properties. In contemporary formal

understanding of arithmetic, the same dichotomy applies: the predicative

definition of the natural numbers does not support proof of mathematical

induction, and so it "gives" us the natural numbers only in an abstract

sense, i,e., without justification of their natural ordering properties.

Induction and the least upper bound principle are not only the fundamental

theorems of the ordered structure of the numbers systems they "define,"

but they can even be put in quite similar forms,'" so that the distinction

between the two number systems lies in relatively weak differentiating

axioms.

It seems to me, therefore, that Poincar&'s attempt to shunt the

formal power of explicit theories of arithmetic and analysis off into

intuition does not work. He can only say his intuition suffices if he

swears himself to silence on the issue of how it suffices. This may have

been part of what Goldfarb intended by finding little of Kant in

Poincar4's notion of intuition. For the latter's insistence that

"Compare e.g. the treatment in Huntington (1905).
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Rgeometric intuition" justifies the least upper bound theorem (like his

insistence that thesis ii justifies mathematical induction) appears to

reduce to an ineffable mimmediate conviction. Still, it would be wrong to

separate this from the "surrounding Kantian context" evident from e.g.

(1899 254) and (1912 504). It appears strange to us today to claim that,

if we had no a priori capacity to define second-order mathematical

continua, ordinary experience would be impossible; but such, I believe,

was Poincar4's view.
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chapter 3: Modality and p&redicativity

3.0 Introduction

In this chapter I give a modal account of impredicativity. The

principal modal notion in this account will be what I call reciprocal

ontological dependency. The basic idea behind this notion appeared in

Section 1.7.1.1. as the consequent of principle (4), which was one

formalization of the so-called doctrine of internal relations. Roughly, x

and y may be said to be reciprocally ontologically dependent if they are

distinct and the following holds:

O(Ex e4 Ey)

This notion is one which Russell apparently rejected during his 1898

revolution. Yet in (1903) Russell defined, and made systematic use of, a

notion of strict (or non-reciprocal) ontological dependency. I begin this

chapter by stating a certain difficulty Russell's definition poses in the

context of his post-revolution rejection of modality. I then go on in

Section 3.3 to say how a solution to this difficulty can be extended in a

specific way to define a notion of reciprocal ontological dependency which

is key to the modal account of impredicativity I support.

In the remainder of this introduction, I want to accomplish two

things. First, I want to describe the modal semantics I will use

throughout this chapter. Second, I want very briefly to sketch some

technical logical results regarding Russell's ramified type theory.

Ramified type theory is Russell's official logic. In this logic, Russell

sought to define basic mathematical notions such as natural number and

continuity, and to deduce key mathematical theorems. The technical results

I sketch concern how effective Russell's logic can be in attaining these

goals. This sketch will also facilitate the presentation of my modal

account of impredicativity in Section 3.3.
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3.0.1 Possible Worlds Semantics

In what follows I take as an underlying logic a free modal logic

with two logical predicates "=" and "E" for identity and existence.

Sentences are defined in the usual way and are assigned truth-values

relative to a possible world. Bound first-order variables occurring in

such sentences are understood to range over the objects in the possible

world relative to which the sentence is assigned a truth-value. Free

first-order variables, by contrast, are assigned values from the union of

the domains of all possible world. Thus first-order free variables range

over what may be called the possible objects in the model. As in chapter

1, I sometimes say *'xRy' is evaluated as true in world w" to abbreviate

Ofor some assignment of objects to 'x' and 'y', 'xRy' is evaluated as true

in world w."

*ExO is assigned the value true in a world just in case the possible

object assigned to "x" is in the domain of that world. Again as in Chapter

1, I adopt the convention that, with the exception of "E', predicates may

be true of objects in worlds where those objects do not exist. This

convention is often made only with respect to the predicate "=', since it

simplifies the theory of identity:

x=y -, O(x=y) (R=)
x*y -4 (xfy) (R•)

But here the convention is extended to other predicates as well. The point

of this extension is similarly to simplify expression of the claim that

other predicates hold essentially of objects of which they hold at all.

Parsons (1983a 298 ff.), for example, has proposed that modal principles

similar to those just stated for identity should be adopted for set

membership:

xey -4 0 (xEy) (Re)
xy-, o (xy) (R)

There are obvious ways of stating the above principles under the opposite
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convention. Given the convention, however, the existential consequences of

truths must be made explicit. Thus Parsons also argues for a principle

equivalent to following:

(xey Ay Ex) (Es)

In Parsons' view, the existence of a set in a given possible world

requires that each of the elements of that set exist in the same possible

world. By contrast, the existence of all the elements of set in a possible

world is not sufficient for the existence in that possible world of that

set. Parsons' goal is to supply an analysis of the intuitive idea that

sets are constituted by their elements. Similar remarks would seem to

apply for example to extensional mereological wholes.

3.0.2 Meta-mathematical Results concerning Ramified Type Theory

I come now to certain meta-mathematical results pertaining to the

logical strength of Russell's ramified type theory. I will describe these

results only in the briefest outline, and only in so far as they are

relevant to my account of impredicativity. The results are important

because they show that Russell's type theory was not sufficient to define

key mathematical ideas nor to prove certain key mathematical theorems. The

theorems which cannot be proven in Russell's ramified type theory may be

said to be impredicative, since type theory is based upon a principle

expressly formulated to prohibit the use of impredicative definitions and

exclude the postulation of impredicative objects.

Russell originally formulated ramified type theory as a means of

resolving the paradoxes that emerged around the turn of the century, but

also as a logical foundation of mathematics. Ramified type theory, then,

was the official logic used in Russell's foundation of mathematics. But

Russell's "logic" comes with a specific interpretation, which is to say

with a specific ontology consisting in an infinite hierarchy of
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propositional functions classified into types. It was crucial to Russell's

foundational goals that key theorems of mathematics be seen to be true on

this interpretation of type theory, as well as derivable within his logic.

In particular, Russell wanted to prove in his logic both the principle of

mathematical induction and the least upper bound theorem. These two

theorems are plausibly thought to be indispensable to any theory which

sets out to provide a definition or analysis of the concepts natural

number and real number or continuity respectively. The question is whether

these theorems are, as Russell hoped, derivable in ramified type theory.

Now Russell's original formulation of ramified type theory included

a principle he called the axiom of reducibility." With this axiom in

place, there is no difficulty deriving the two theorems just mentioned.

But the axiom of reducibility did not prove popular; and in (1925) Russell

decided that it had to be rejected. Although Russell thought he could

still prove mathematical induction in ramified type theory without the

axiom of reducibility, he saw no way of deriving the least upper bound

theorem. Russell's hope of having derived mathematical induction without

the aid of the axiom of reducibility was dashed in (1944) when GSdel

pointed out an error in Russell's proof.

In the years after 1925, more general methods were worked out for

determining whether a given theory could or could not deductively yield a

given theorem. Developments in proof theory and other areas of logic have

made it possible to measure and compare the proof-theoretic strength of

theories, and under some conditions to say when certain theorems are

beyond the means of a particular theory. Various attempts were made to

reformulate Russell's type theory in accordance with the increased

standards of rigor, and to determine whether Russell's error could be

3"In point of fact there is more than one axiom of reducibility. Their
precise content need not be explained here; see (1907 241-244) and (1910 55-60,
161-167).
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repaired, and also whether the least upper bound theorem is derivable in

a more rigorously formulated ramified type theory. From these developments

it has turned out that Russell's ramified type theory is insufficient to

prove either of these theorems, which may therefore be considered

impredicative in a particular sense. More important perhaps, one must

conclude that ramified type theory by itself is inadequate as a foundation

for classical mathematics.

My concern in what follows will be to express in modal-semantic

terms one principle underlying Russell's type theory. This principle,

called the vicious circle principle, states what it is to be predicative

on Russell's theory. Violations of the modal interpretation of this

principle will suggest a general account of impredicativity. It is hoped

that being clear on the original sense of "impredicative" in Russell will

be of assistance in future attempts to extend the present modal account to

set-theoretic or other foundations of mathematics.

3.1 Necessity and Logical Priority

I want now to return to Russell's rejection of modality. I argued in

Chapter 1 that the principal notion Russell rejected when he abandoned

idealism was the notion of necessity. Although there is considerable

evidence for this, there are also passages in which Russell seems to

qualify his rejection somewhat, and others where Russell seems positively

to require some notion of necessity. I begin by restating some of the

relevant principles from Chapter 1. I then discuss in terms of these

principles the qualifications Russell sometimes seems to make regarding

his rejection of necessity. But the main goal of this section is to

discuss Russell's definition of a form of strict ontological dependency

and to show why it is be interpreted modally.
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The principles I discussed in Chapter 1 and which are also relevant

in this chapter are the following. For any x and y, and for any 2-place

relation R,

xRy - EkRy (1)
xRy - O(Ex 4 Ey) (4)
O(xRy - (Ex A Ey)) (5)

In addition, I discussed the non-modal principle that, for arbitrary x and

y,

3RxRy (3)

Now Russell's rejection of necessity led him to deny (1) in a strong way.

(1) was not false, according to him, but meaningless. Perhaps Russell

should have denied the others in the same strong way, to the extent, at

least, that they make use of the notion of necessity. But Russell did not

uniformly do so. I want now briefly to indicate what became of these

principles in Russell's analytic period. I will leave (3) out of account

here, since the necessity operator is not needed to state it; but it may

be said that Russell evidently would have believed (3) even if the

relation * were excluded from the range of the bound '"R.

At times, Russell's rejection of necessity seems total, as for

example in (1900a) when he wrote that "the subject of modality ought to be

banished from logic" (cf. 1904 26). At other times, however, it seems that

Russell retained some rather thin conception of necessity definable in

terms of material or formal implication:

Everything in a sense is a mere fact .... What is true, is
true; what is false, is false; and concerning fundamentals,
there is nothing more to be said. The only logical meaning of
necessity seems to be derived from implication. (1903 454; cf.
1910a 374)

Russell is never very clear on what this derived notion would be, and the

details are not important here. The point here is just that Russell's

rejection of necessity sometimes seems less than total. Still, Russell

made no systematic use of his derived notion, nor did he try to use it to

interpret (1) in a new way. Similarly, Russell's qualified rejection of
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necessity was in no way used to make (4) seem plausible or even

meaningful. Despite his occasional qualifications, Russell rejected (1)

and (4), as well as the modal notions of essentiality and reciprocal

ontological dependence"4 associated with them.

Principle (5), however, did seem to live on in some form in Russell,

despite the occurrence in it of the notion of necessity. Even after 1898

Russell appears to affirm (5), since he wrote passages quite similar to

(1898x 167-8), which was interpreted in chapter 1 as an affirmation of

(5):

whatever may be an object of thought, or may occur in any true
or false proposition, or can be counted as one, : call a
term..... every term has being, i.e., is in some sense. (1903
43)

This again would suggest that Russell's rejection of necessity was not

total, but it is not my concern to spell out an interpretation of (5)

Russell would have accepted. Suffice it to say that Russell's use of "may

be" and "may occurm must apparently have some modal interpretation.

Yet despite his rejection of modality, Russell defines at (1903 137-

8) a form of strict ontological dependency which he calls logical priority

and which would seem to be a modal notion. Russell's definition is not

perfectly explicit, but is based on his claim that the "logical priority

of A to B requires" that "B is implies A is, but A is does not imply B

is. It is difficult to formulate this definition without the aid of modal

notions Russell rejected, but an obvious first try would be the following:

x <ip Y = : (Ey -4 Ex) A -(Ex -4 Ey) (6)

Here "x <. y" can be read "x is logically prior to y" or, alternatively,

"y strictly presupposes x'. This is intended to bhe strict logical priority

"In (1904 26), Russell goes so far as to conclude that "the subsistence or
being of a whole cannot presuppose that of its parts in any sense in which that
of the parts does not presuppose the whole." Although, as we shall see, Russell
elsewhere defines a notion of presupposition for which this statement is not
true, (1904 26) can be taken to confirm that Russell had little use for the
notion of reciprocal ontological dependency.
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in the sense that the relation <, is asymmetric. Now Russell's original

definition as quoted was intended by him to capture the intuitive idea

that e.g. a part of a whole is logically prior to that whole because,

whereas the part could exist without the whole, the whole could not exist

without the part. But (6) fails to capture this idea, at least if "-10

represents material or truth functional implication. In fact, under these

conditions, "x <p y" is true iff y does not exist and x does. There are

further difficulties, since it is not clear what significant role the

existence predicate "E" can play in Russell's extensional, non-free logic.

With "Er as Russell's 'being," if "all terms have being," clearly "-Ex" is

always false.

Clearly the idea Russell is trying to express at (1903 137-8) would

be better captured by interpreting O-V in (6) as some form of

counterfactual implication or as C.I. Lewis's strict implication. But

Russell had no real way to understand "-9 except as material implication.

This is presumably why Russell elsewhere calls logical priority a "very

obscure notion. " I suggest the following alternat "ve formulation of

Russell's notion of strict presupposition or logical priority:

x <1p y =: D(Ey -• Ex) A -O(Ex -4 Ey) (7)

According to (7), Ox <P, y" is defined to mean that it is necessary that,

if y exists, x does, but it is not necessary that, if x exists, y does.

The existence of x presupposes that of y, but the reverse is not true.

Thus despite Russell's sweeping rejection of necessity, his own notion of

logical priority would appear to require it.

One might, therefore, pose the following dilemma for Russell. He

must either reject his notion of logical priority or embrace (7), and with

it some modal-semantic notion of necessity. In what follows, I will use

the possible-worlds semantics described in Sec. 3.0.2 to interpret (7). On

this semantics, "x <, y" will be interpreted as true just in case x exists
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in any possible world where y does, but it is not the case that y exists

in every possible world where x does. By posing the above dilemma for

Russell, I do not mean that, short of rejecting his notion of logical

priority, Russell must accept a possible worlds semantics; for Russell

need only interpret the necessity operator in (7), and this can presumably

be done in some other way. On the other hand, nothing turns in the sequel

on which semantics Russell would have to accept if he were to accept (7);

and for present purposes a possible worlds semantics is as good as any.

Thus (7), as I henceforth interpret it, is not intended in any

historically accurate way to capture Russell's own intention with his

definition of logical priority; but it will, I hope, help to promote

clarity in subsequent discussions.

3.1.1 Serious Difficulty for Russell

I said that Russell must either reject his own notion of logical

priority, or embrace (7), and with it some modal-semantic notion of

necessity. But Russell cannot reject the notion of logical priority. He

uses it not only in (1903) but in a far more important way in (1910). Thus

for example Russell's characterization of ramified type theory uses terms

that are meaningless unless something like his notion of strict logical

priority is employed. My purpose now is to use the above possible-worlds

semantics to interpret some of the claims Russell makes in (1903)

regarding propositions, and in (1907) and (1910) regarding propositional

functions in his ramified type theory.

In (1903), speaking of the mathematical theory of the real numbers,

Russell writes:

For the comprehension of analysis, it is necessary to
investigate the notion of whole and part, a notion which has
been wrapped in obscurity ... by the writers who may be
roughly called Hegelian (1903 137)

Russell is not announcing a mereological foundation of mathematics, but
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rather using the term "whole" in the quite general way that was common at

the time. He goes on to distinguish three quite different so-called "part-

whole" relations: set-membership, set-inclusion (subset of) and

proposition-constituenthood. (Like Russell, I will ignore the second,

since it is definable in terms of the first.) What is of interest here is

that, according to Russell, each of these relations formally implies

logical priority; that is, if "xRy" abbreviates one of "xey', x"fy", or "x

is a constituent of a proposition y', then the following holds for all

values of x and y:

xRy -+ x <4 y (8)

Again, it is hard to make sense of this implication in Russell, but,

suitably interpreted, (8) seems quite plausible. Parsons for example has

argued for a modal principle equivalent to the following to account for

the sense one has that elements constitute the sets of which they are

menmbers.

O(xey A Ey - Ex) (EE)

Notice that (Es) follows from (8) together with the definition of logical

priority given in (7).

The relation expressed by Ox is a constituent of the proposition p"

is, according to Russell, indefinable. But Russell nevertheless feels

confident that the relation formally implies logical priority:

Again, if we take a proposition asserting a relation of two
entities A and B, this proposition implies the being of A and
the being of B, and the being of the relation, none of which
implies the proposition [even conjointly] (1903 137-8)

Observe that Russell says that the proposition implies the existence of

its constituents, rather than that the existence of the proposition does.

Nevertheless his idea is evidently that the proposition is a kind of whole

which strictly presupposes its "parts" or constituents, much as a set

strictly presupposes its elements. Notice too that Russell quite clearly

states that the relation (a propositional function) is a constituent of

the proposition. When the propositional function is itself complex and has
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constituents, these are in turn presupposed by the proposition. This

changes in (1910), when Russell denies that propositions are after all

wholes, and claims that "the values of a [propositional] function are

presupposed by the function, not vice versa* (1910 39, 44). Still, what

applied earlier to the proposition applies later to the propositional

function. Russell will continue to insist that a propositional function

strictly presupposes its constituents, which are thus logically prior to

it.

3.2 The Vicious Circle Principle and Russellian Bound Variables

Indeed, understood correctly, this latter claim is the very basis of

Russell's ramified type theory: it is tantamount to Russell's vicious

circle principle. Analysis of Russell's explication of ramified type

theory, and of his formulations of the vicious circle principle, will show

this to be the case. The key idea will be that bound variables, on

Russell's view, are not letters but constituents of propositional

functions, and as such are presupposed by such functions. What this

amounts to practically is that the values of a bound variable are strictly

logically prior to propositional functions which contain them.

We have already seen Russell claim that "the values of a function

are presupposed by the function, not vice versaA (1910 39; cf. 54).

"This," according to Russell, "is a particular case, but perhaps the most

fundamental case, of the vicious circle principle." I do not want to

examine this particular case in detail, except to indicate the prominent

role in it of the notion of presupposition. Frankly, it is difficult to

make any sense of this notion except in terms of (7), and we have already

seen how ill-suited this definition is in the context of Russell's

metaphysics. Yet here it is again occurring in the "most fundamental case"

of the vicious circle principle, which is itself the foundation of
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Russell's mature logic, ramified type theory. Unless some modal notions

are employed, it seems to me, one cannot strictly make sense of Russell's

logic. Furthermore, once this point is accepted, it becomes possible to

understand violations of the vicious circle principle in modal terms.

Russell at one point gives the following convoluted formulation of

the vicious circle principle (VCP):"

given any set of objects such that, if we suppose the set to
have a total, it will contain members which presuppose this
total, then such a set cannot have a total. By saying that a
set has "no total," we mean, primarily, that no significant
statement can be made about "all its members. 0 (1910 37)

This statement obviously calls for analysis, but it may be considerably

simplified before such analysis sets in. It is worth noting up front,

however, that the notion of presupposition occurs again in this more

general formulation of the VCP. I take it that Russell means (at least in

part) the following:

no significant statement can be made about any plurality of
objects if any of the objects in the plurality presuppose that
plurality

It must be noted at once that a "significant statement about a plurality"

is an interpreted sentence which contains a bound variable understood as

ranging over the objects in the plurality. Russell's principle represents

an attempt to restrict what may count as the range of a bound variable, or

a type. It must also be said under what conditions an object presupposes

a plurality. Here it is vital to bear in mind that Russell is thinking of

propositional functions with constituent bound variables that range over

the plurality. "Whatever contains a bound variable," so another statement

of the VCP goes, 'must not be a value of that variable." Thus an object

presupposes a plurality if it contains a bound variable which ranges over

"It is important to note that "set" here does not mean what it might in
discussions of contemporary set theory. What Russell means by it might be better
expressed by us as "plurality'. I use this term to avoid confusion with the
contemporary notion of a set. More is said about pluralities below. It might also
be noted that Russell uses the word "about" here in an unusual way. Usually he
prefers to say a propositional function is about the value of the free (not
bound) variable(s) occurring in it.
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that plurality.

The VCP as stated must be understood in the context of Russell's

logic. For Russell, the range of bound variables is fixed and not subject

to re-interpretation. In order to make the same significant statement

about two distinct pluralities, one doesn't reinterpret a special

linguistic entity, but, as Russell would say, one substitutes one entity

(a bound variable) in the proposition for another. Consider, by contrast,

a predicate Ox is at least as tall as every one in Room 101". In one

sense, the property expressed by this predicate is the same regardless of

who happen to be in Room 101. If only very short people are in Room 101,

one need not be especially tall to have this property. If quite tall

people are there, one must be taller to have the very same property. But

regardless how tall one must be to have the property, the property does

not itself consist in having just this height. Rather, the property

expressed by the predicate can be regarded as one and the same, no matter

who's in Room 101 and no matter how tall one must be to be taller than

anyone in it.

Russell, however, does not in general regard predicates in this way.

Russell's view is more nearly comparable to the idea that the property

expressed by Ox is at least as tall as everyone in Room 101" changes as

people enter and leave the room. This is due to the fact that, according

to Russell, a bound variable is a constituent of a propositional function,

and the ranges of bound variables are fixed by the natures of the

variables. To change the range of the bound variable in a propositional

function, one must change the bound variable; and by doing this, one

changes the propositional function to a different, if systematically

related, one. Thus the fact that bound variables are not letters (as they

are for us) and are subject to fixed interpretations (instead of to

interpretations that vary however we stipulate), leads Russell to regard
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the interpretation of a bound variable as crucial to the identity of

propositional functions.

3.3 Pluralities, Existence, and Ontological Dependency

The vicious circle principle, as Russell understood it, stated a

condition that pluralities must meet if significant statements were to be

made about them. Since a significant statement about a plurality is an

interpreted sentence containing a bound variable which has this plurality

for its range, Russell's condition amounts to a condition that a plurality

must meet if it is to constitute the range of a bound variable, or a type.

In this section I want to formalize the condition on pluralities

that, according to Russell, makes a plurality suitable for being a type.

Before this can be done, I need to say more about pluralities, including

what it is for a plurality to exist, and what it is for an object to

presuppose a plurality. I use the capital letters "X", "Y", "T", etc., to

symbolizes pluralities and "EX" to symbolize "X exists". Let me begin with

some remarks about the interpretation of these symbols.

The capital letters, "X", "Y", "T", etc., are to be understood as

free plural variables." Substitutends of plural variables are plural

terms, for example plural descriptions. Thus a substitution instance of

"EX" Imight be "the Hindu gods exist". But it is sometimes useful to speak

of pluralities in the singular, as in '"a plurality exists" or "the

plurality of Hindu gods exists." I will use such singular notation, but I

am not to be understood as making an ontological commitment to anything

other than the things in the plurality. In particular, no single entity is

to be identified with the plurality. There may well be a set of Hindu

gods; there might even be a mereological sum of Hindu gods; but

aI will not make use of bound plural variables.
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ontological commitment to any such single entity constituted in some way

by the Hindu gods will have to be made separately, and will not be

understood as following from "EX'. To say that a plurality X exists, then,

is only to say that the things in the plurality exist.

The things that can be in pluralities are the values of the first

order variables. In the modal-semantics I am working with, these may be

thought of as possible objects, which is to say elements of the union of

the domains of all possible worlds. In principle, a given plurality could

have objects in it which do not exist together in any possible world, but

if "EX" is true in a world, then everything in the plurality exists in

that world. This claim is reminiscent of Parson's principle (Ee) quoted

above, and may be formulated in a similar way. If an object y is in a

plurality X, I will write

y C X

Then the following principle may be accepted concerning pluralities: for

any y and for any plurality X,

O(y o X A EX -+ Ey) (9)

(9) serves to formulate the idea that a plurality, like a set, is

constituted by the things that are in it. Unlike sets, however, which need

not exist in possible worlds where all their elements do, a plurality is

nothing other than the things in it, and so it does exist in every

possible world where all those things do."

I said above that the VCP can be understood as Russell's attempt to

articulate a necessary condition for a plurality to act as the range of a

bound variable, or a type. Roughly, types are pluralities none of whose

"Note that it is essential that (9) be formulated with free first-order
variable "y", since binding "y" in (9) would make the consequent true in every
world. For similar reasons, the claim that pluralities exist in every world where
all of the things in the plurality exist is not to be formulated by "iJVy(y - X
A Ey -+ EX)*.
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members presuppose the plurality. I want now to extend Russell's notion of

logical priority to apply to pluralities.

Y <1p x =: O(Ex -+ EY) A -O(EY -+ Ex) (10)

"Y < p x" may be read "Y is logically prior to x" or "x strictly

presupposes Y'. It seems plausible that some objects strictly presuppose

some pluralities; for example, a set x whose members were exactly the

objects in a plurality Y may be said to strictly presuppose Y. By Parsons'

principle (Fe), every element of the set x exists in every world where x

does, and this is all that is required for Y to exist in a world. Thus it

is necessary that "EY" be true in all possible worlds where "Ex" is true;

hence the first conjunct holds. But the existence of all the elements of

a set does not require the existence of the set; thus the second conjunct

holds as well.

Russell's VCP was understood above as stating that a plurality is a

type only if no object in the plurality presupposed the plurality. One

might therefore formulate the idea behind Russell's VCP as follows:

x G Y-+x <1 Y (11)

Unpacking the definition, one arrives at

x o Y - O(EY -- Ex) A -O(Ex -4 EY)

The first conjunct is redundant given (9), so (11) may be simplified to:

x -c Y -ý -O(Ex - EY)

Only pluralities which satisfy (11), and thus strictly presuppose

everything in them, may be said to constitute a type. Note that this

condition on a plurality is not sufficient for it to be a type, since it

obtains for pluralities which are included in pluralities satisfying the

condition.

Now let E"#" denote a propositional function of some type. Suppose

that it has as a constituent a bound variable of type n, and let Y be the

range of this bound variable; that is, Y is the plurality consisting of
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the objects of type n. Then it seems clear that Russell believed

Y <1i p (12)

This ensures that 4±, which contains a bound variable, is not a value of
that variable; for if it were, then by (11) it would follow that 02 <,P Y,

whereas <1p is asymmetric.

Accepting (11) as a formulation of the idea behind the VCP, one sees

why Russell might have accepted the VCP as a principle of logic. If it

were ever the case that

x Y A -(x <P, Y) (13)

then from the latter conjunct one could derive

-O(EY -+Ex) v O(Ex -t EY) (14)

The first disjunct of (14), however, is not compatible with (9) and the

first conjunct of (13). So the second disjunct of (14) must be true. But

this too would have seemed strongly counter-intuitive to Russell. Why

should the existence of one thing imply the existence of many things, none

of which are all parts of the former in any recognized sense? In fact, the

second disjunct of (14) must have appeared contrary to fundamental

metaphysical principles. The status of the VCP as a logical principle

seems secure.

There is of course one metaphysical framework according to which it

is not so absurd that the existence of one thing should require the

existence of others, namely the holism of "the writers who may be roughly

called Hegelian." In the same year that Russell completed his first

version of ramified type theory, he renewed his an attack on the

idealists. In the course of this attack, he characterizes the view he

rejects by saying that it admits the existence of organic unities or

significant wholes:

In a "significant whole, " each part ... involves the whole and
every other part.... The whole is constitutive of the nature
of each part
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Clearly on this view, which further maintains that "there can be one and

only one ... significant whole" (1907a 34; quoted from Joachim 1906 78),

it is true for any x and Y that

O(Ex -+ EY) (15)

This, however, leads to much the same position as that associated with

Russell's idealism (principles (1)-(5)) as this was discussed in Chapter

1. By (15), every possible object exists in every world where any possible

object exists. Thus when Poincar6 suggested the VCP in 1906, Russell must

have felt that it had to be correct, since a denial of it seemed lead to

back to a notion prominent among the idealists.

According to (15), it is necessary that, if one thing exists,

everything does. To deny (11), however, all one needs is that there is

some plurality Y and some x c Y such that "D(Ex -+ EY)" is true. To deny

the VCP as based upon (11), one only need allow that there be some

significant statement about Y; which is to say that Y be the range of some

bound variable. Notice that, if *O(Ex -+ EY)" is true, so is "O(Ex " EY)",

so that the denial of (11) amounts to the claim that there is a Y and an

x mo Y such which are reciprocally ontologically dependent as this was

defined at the beginning of this chapter. According to the VCP as based on

(11), no range of a bound variable can be a plurality which is

reciprocally ontologically dependent on something in itself. On the modal

semantics I am using, this amounts to a denial that there are possible

worlds where such pluralities exist. The domains of such worlds violate

the VCP. Either there are no such worlds or the VCP is false.

On one sense of "impredicative" in Russell, an object x which

reciprocally presupposes a plurality Y is impredicative. Given the above

modal considerations, such an x will exist in a possible world just in

case Y does. This is the primary tenet of my modal account of

impredicative.
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It seems to me that we have no good reason to deny there are

possible worlds whose domain are pluralities some of whose members require

the existence of all such members. There seems to be no obstacle at all to

making significant statements about such domains. The VCP therefore

appears false, and the notion of reciprocal ontological dependency

perfectly coherent. Indeed, given the formalizations above, there appears

to be no principled reason why Russell could accept his notion of strict

ontological dependency as meaningful, but deny meaning to the notion of

reciprocal ontological dependency.

Moreover, since ramified type theory is not itself inadequate for

defining key mathematical notions or deriving key mathematical theorems,

it is hoped that the above modal account of the VCP and impredicativity

will be of some use explaining what adequate foundations of mathematics

are committed to. What is needed here, for example, is a development of

modal set-theoretical foundations of mathematics, along the lines of

Parsons (1983a) perhaps, but extended to included the notion of reciprocal

ontological dependency. It could then be investigated whether, for

example, real numbers impredicative with respect to the language of set

theory are subject to any special modal conditions. But this investigation

is beyond the scope of the present work, and will have to be left for

another time.
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